
Loyola University Chicago Loyola University Chicago

Loyola eCommons Loyola eCommons

Computer Science: Faculty Publications and
Other Works

Faculty Publications and Other Works by
Department

4-29-2019

Efficient, Effective, and Realistic Website Fingerprinting Mitigation Efficient, Effective, and Realistic Website Fingerprinting Mitigation

Weiqi Cui
Oklahoma State University, Stillwater

Jiangmin Yu
Oklahoma State University, Stillwater

Yanmin Gong
University of Texas at San Antonio

David Chan-Tin
Loyola University Chicago, dchantin@luc.edu

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Cui, Weiqi; Yu, Jiangmin; Gong, Yanmin; and Chan-Tin, David. Efficient, Effective, and Realistic Website
Fingerprinting Mitigation. EAI Transactions on Endorsed Transactions on Security and Safety, 19, 20: ,
2019. Retrieved from Loyola eCommons, Computer Science: Faculty Publications and Other Works,
http://dx.doi.org/10.4108/eai.29-1-2019.161977

This Article is brought to you for free and open access by the Faculty Publications and Other Works by Department
at Loyola eCommons. It has been accepted for inclusion in Computer Science: Faculty Publications and Other
Works by an authorized administrator of Loyola eCommons. For more information, please contact
ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution 3.0 License.
© 2019 Weiqi Cui et al., licensed to EAI.

https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.4108/eai.29-1-2019.161977
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/

Efficient, Effective, and Realistic Website
Fingerprinting Mitigation
Weiqi Cui1, Jiangmin Yu1, Yanmin Gong2, Eric Chan-Tin3,∗

1Oklahoma State University
2University of Texas - San Antonio
3Loyola University Chicago

Abstract

Website fingerprinting attacks have been shown to be able to predict the website visited even if the network
connection is encrypted and anonymized. These attacks have achieved accuracies as high as 92%. Mitigations
to these attacks are using cover/decoy network traffic to add noise, padding to ensure all the network packets
are the same size, and introducing network delays to confuse an adversary. Although these mitigations have
been shown to be effective, reducing the accuracy to 10%, the overhead is high. The latency overhead is above
100% and the bandwidth overhead is at least 30%. We introduce a new realistic cover traffic algorithm, based
on a user’s previous network traffic, to mitigate website fingerprinting attacks. In simulations, our algorithm
reduces the accuracy of attacks to 14% with zero latency overhead and about 20% bandwidth overhead. In
real-world experiments, our algorithms reduces the accuracy of attacks to 16% with only 20% bandwidth
overhead.

Received on 30 February 2019; accepted on 20 April 2019; published on 29 April 2019
Keywords: Privacy, Noise, Website Fingerprinting, Cover Traffic
Copyright © 2019 Weiqi Cui et al., licensed to EAI. This is an open access article distributed under the terms of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.
doi:10.4108/eai.29-1-2019.161977

1. Introduction
Website fingerprinting violates the privacy expected
from a user when she is using an anonymizing service
such as a proxy or Tor [1]. The goal of website
fingerprinting attacks [2] is to determine the website
visited by a victim. The adversary, in this case, is usually
local, for example on the same network or the Internet
Service Provider, and can observe all the network traffic
sent by the victim. These attacks are effective and are
accurate in successfully identifying the websites. The
accuracy is over 90% even when the network traffic is
encrypted or anonymized through a proxy. Since the
adversary knows who the user is and can accurately
guess what websites she is visiting, the user has no
privacy.

Various defenses against website fingerprinting
attacks [3–7] have been proposed. The defenses include
padding so that every packet has the same size, cover
traffic to generate enough noise to fool the adversary, or

∗Corresponding author. Email: Chantin@cs.luc.edu

introducing network delays between network packets.
Although they have been shown to be effective, the
overhead introduced by these defenses is high. The
latency overhead is above 100% and the bandwidth
overhead is from 30% to over 100%.

Our contribution is a new cover traffic algorithm
that generates just enough noise to mitigate website
fingerprinting attacks. Our algorithm also has zero
latency overhead and lower bandwidth overhead than
current schemes. Our algorithm generates “realistic”
cover traffic 1; it collects the network traffic from
a user, then uses that historical network traffic data
as training set to feed the cover traffic generation
algorithm. The generated noise thus will look exactly
like a website that a user has previously visited. This
prevents website fingerprinting attacks and introduces
little bandwidth overhead. In a workshop paper [8],
we showed through simulations that our proposed
algorithm reduces accuracy of attacks to 14% while

1cover traffic and noise are used interchangeably

1

Research Article
EAI Endorsed Transactions
on Security and Safety

EAI Endorsed Transactions on
Security and Safety

01 2019 - 04 2019 | Volume 6 | Issue 20 | e2

http://creativecommons.org/licenses/by/3.0/
mailto:<Chantin@cs.luc.edu>

Weiqi Cui et al.

introducing no latency overhead and 20% bandwidth
overhead. We expand this work by undertaking real
world experiments and show that our simulation results
hold in these experiments.

Table 4 shows a comparison of our proposed
algorithm with existing mitigation techniques. Our
algorithm has comparable accuracy over the other
schemes, zero latency overhead, and lower bandwidth
overhead. The table shows the lowest accuracy (best-
case for the mitigation) regardless of the classification
algorithm used. Our algorithm has zero latency
overhead since we are only introducing cover traffic. No
delays are introduced.

The remainder of this paper is organized as follows.
Section 2 gives a survey of related work. Section 3
describes website fingerprinting attacks and our threat
model. The design of our proposed cover traffic
algorithm is provided in Section 4. The simulated
experiments and results are outlined in Section 5.
Section 6 shows the effectiveness of our proposed
algorithm in the real-world. Future work is discussed
in Section 7.

2. Related Work
It has been shown that analyzing encrypted network
traffic can reveal the websites and webpages visited [2–
6, 9–21]. Since the payload is encrypted, only the
metadata is available such as packet sizes, number of
packets, direction of packets, and time interval between
packets. A training dataset is built. Then, given a
network traffic trace, machine learning techniques are
used to predict the website visited. Previous results
have shown that websites can be recognized with a high
accuracy. More recent research results have looked at
anonymized network traces such as using Tor instead of
a simple HTTPS proxy. Although initial results showed
that Tor provided adequate protection against website
fingerprinting, more advanced data parsing techniques
show that websites can be recognized with a fairly high
accuracy even when the website trace is over Tor. The
consequences of website fingerprinting is censorship
or prosecution by the government if the user visits a
forbidden website. It has been argued [22] that website
fingerprinting is not a practical attack due to the large
number of webpages and the false positive would be
high. Website fingerprinting attacks have also been
extended to identify the webbrowser used [23], which
could lead to user identification as most users utilize a
unique webbrowser [24].

Website fingerprinting is one type of network traffic
analysis. There has been other work on network traffic
analysis [25] and traffic analysis resistant protocols [26–
28]. Network traffic analysis is usually performed for
censorship [29]. Various techniques to avoid censorship
have been proposed, using traffic morphing [30] to

disguise the network traffic as VoIP [31, 32] or using
other covert channels [33–35]. It has, however, been
shown that it is still possible to see through this
obfuscation [36–38].

Using cover/dummy/fake traffic to mask a user’s
activities has been proposed before [39]. It has been
shown that this mechanism can be countered or the
cover traffic removed [40, 41] to reveal the user’s
activities. Cover traffic is useful to mask real web
search queries by performing many other unrelated
and random search queries. Cover traffic can also
be used to make network traffic analysis harder by
adding unrelated network-level packets. Our algorithm
generates realistic cover traffic making it harder for
website fingerprinting attacks to accurately guess the
website from the observed packet trace. Another
scheme, Track Me Not [42], focused on web search
queries and generating fake web searches, but [43] has
shown that web search queries obfuscation can still be
analyzed.

Various website fingerprinting defenses have been
proposed [3–7, 14, 44, 45]. They all make use of some
sort of padding, delaying sending of packets, or adding
cover traffic. Many of these defenses have high latency
and/or bandwidth overhead and have been shown to
be effective in mitigating website fingerprinting attacks.
Our proposed defense has zero latency overhead and
lower bandwidth overhead while maintaining a high
level of effectiveness.

Traffic morphing [46] is another possible defense
against website fingerprinting attacks. It attempts to
modify the shape and patterns of network traffic such
that it looks different. For example, Stegotorus [47]
attemps to make Tor network traffic look like HTTPS.
Similarly, [31, 32] attempt to morph Tor traffic to
look like VoIP traffic so that network traffic analysis
or deep packet inspection will not allow Tor traffic
to be blocked or identified; VoIP traffic is usually
allowed. However, [37, 38] have shown that these
traffic morphing schemes can be circumvented. We are
not proposing to modify network traffic patterns. Our
algorithm generates realistic cover traffic to mask the
original packet trace.

3. Background
3.1. Website Fingerprinting
Website fingerprinting aims to determine the website
visited by examining the network trace sent by a
victim’s webbrowser. That trace is usually encrypted
and sent over a proxy or an anonymous network like
Tor [1, 48] so that the network contents cannot be
analyzed. The only information that can be observed are
the packet sizes, the direction of the packets, the time
interval between packets, and the number of packets
sent and received.

2 EAI Endorsed Transactions on
Security and Safety

01 2019 - 04 2019 | Volume 6 | Issue 20 | e2

Efficient, Effective, and Realistic Website Fingerprinting Mitigation

A packet trace P T consists of n network packets. P T
also consists of the tuple < Σn

i=0Ni , Ns, Nc >, where Ni is
each individual network packet, Ns is the total number
of packets from server to client, Nc is the total number
of packets sent from the client to the server. Each
network packet Ni forms the tuple < Si , Ti , D,Ms,Mc >,
where Si is the size of the packet, Ti is the time interval
until the next packet, D is the direction of the network
packet (from client to server or from server to client),
Ms is the number of packets from the server to the
client, and Mc is the number of packets from the client
to the server. Ms and Mc denotes each “train” of packets,
that is, there are usually a few packets from client to the
server, followed by several packets from server to client.
On the other hand, Nc and Ns denotes the total number
of packets for the whole packet trace.

3.2. Classification
Previous work [2–4, 9–16, 18–21] have achieved a
classification accuracy of around 90% in both the open
and closed world settings. A closed world is where the
set of training packet traces are the same as the testing
set. An open world setting is where there is a small set
of monitored/sensitive packet traces among a larger set;
the goal is to detect if a packet trace belongs to one of
these monitored websites.

To perform classification, various features have been
used such as number of outgoing and incoming packets,
total size of incoming and outgoing packets, and
cumulative size of packets. If the Tor network is used,
some features that have also been considered include
the Tor cells before and after. Various algorithms
have also been used such as k-nearest neighbors (K-
NN), support vector machine (SVM), random decision
forests, edit distances, Jacard index, and Naive Bayes.

In this work, we used the same features as those
mentioned in [18]: cumulative size of packets sampled
at regular intervals over the whole packet trace, number
of incoming packets, total size of incoming packets,
number of outgoing packets, and total size of outgoing
packets. We also used the random decision forests as it
was used by the most recent paper [21].

3.3. Mitigations
Various defenses against website fingerprinting attacks
have been proposed such as padding of packets to
a fixed size and cover traffic (noise) to mask the
real packet trace. They have all been shown to be
somewhat effective reducing the accuracy of website
fingerprinting to about 10% to 30%. However, all of
these defenses incur high latency overhead or high
bandwidth overhead or both.

Our proposed algorithm achieves a similar reduction
in accuracy while keeping the overhead manageable.
Our cover traffic generated is realistic instead of

random as it depends on what the user has done
previously. A threshold value for the amount of cover
traffic generated can also be chosen by the user. Our
algorithm experiences zero latency overhead.

3.4. Threat Model
The threat model is a local adversary that can see all
the network traffic from a user. The adversary cannot
decrypt the contents of the network packets but can
observe the metadata such as packet sizes, direction of
the packets, and the timings of packets. The adversary
can also look at the IP headers to determine the source
and destination IP addresses and port numbers. The
victim is using an anonymous service such as a VPN or
Tor [1]. Figure 1 illustrates the model and shows where
the adversary is located. The goal for the adversary is to
guess the website or webpage from only the encrypted
network packet trace.

4. Proposed Noise Algorithm
4.1. Overview
Our proposed algorithm to generate cover traffic is
novel since it generates realistic noise rather than
random noise or random padding. The intuition of this
algorithm is from the results of previous work [19]
which shows that it’s hard to split two mixed traces
of websites. The noise generated is learned from the
network traffic generated by the user’s webbrowser.
The information recorded is the network traffic trace
without the payload contents: each incoming and
outgoing packet’s size, and the time interval between
packets and “train” of packets. A train is a set
of incoming packets with size of MTU (Maximum
Transmission Unit) with the last packet size less than
MTU. Usually an outgoing web request is followed
by one or more trains of incoming packets. Replaying
this recorded network traffic will simulate that user’s
browsing habit. Our hypothesis is that if the cover
traffic generated is similar to what the user usually
does, this will provide a better noise in preventing
website fingerprinting and also reduce the bandwidth
overhead since this would be traffic that the user usually
generates anyway. It has already been shown that if a
client visits several webpages at the same time [19],
then it is hard for an adversary to identify the webpage
visited.

Instead of replaying the web requests to the actual
servers which would use up resources on these servers,
we set up our own simple webserver. Our algorithm can
be implemented as a plugin for Firefox (Tor Browser
Bundle). It will send a web request padded to a certain
packet size to our webserver through the Tor network.
The request will contain the total size of data that the
server has to send back and the time that the data

3 EAI Endorsed Transactions on
Security and Safety

01 2019 - 04 2019 | Volume 6 | Issue 20 | e2

Weiqi Cui et al.

Figure 1. Our system model and experimental setup.

should be sent. Both the client plugin and webserver do
not have to send any content; only pad the packets to the
specified packet size. The generated network traffic will
be transferred over the Tor network; a local adversary
will not be able to determine which packet is noise.

The algorithm will first record traffic of a web page,
then parses the recorded traffic trace. Packets are put
into two sets based on whether they are incoming
packets or outgoing packets. For each set, packets are
organized by trains of packets. For each train, the size
and timestamp of each packet is recorded. Trains of
packets are listed in order by the timestamp of the first
packet in the train.

Figure 2 shows an example sample of a recorded
network traffic. The only information recorded is the
relative time between packets and the packet sizes.
Both incoming and outgoing packets are recorded. The
format of the sample shown in the figure is as follows:
< timestamp >:< packetsize >. The actual time is not
relevant; only the time difference between two packets
is used. This is the time difference between the current
packet’s timestamp and the next packet’s timestamp.
The packet size is the TCP-level packet size. A red
packet size indicates an outgoing packet.

4.2. Pseudocode for Algorithm
Ideally, the generated cover traffic will be exactly the
same as the real recorded sample. For example, they
have the same number of packets and the same timing
gap between packets. In practice, we cannot control

the time distribution of every packet due to network
latency. Instead, we break the sample traffic into several
segments based on the timing gap of packets. Then our
goal is to make the cover traffic have similar timing
gaps with the sample in terms of traffic segments.
The pseudocode of noise client and server is shown in
Algorithm 4.2 and Algorithm 4.2.

FnFunction isend FRecursconstructNoiseRequestList
*[h]Construct noise request list {Reqi1 , Reqi2 Reqin}
based on Si

*[h]Si is the size of each packet.
()Si
*[h]Break Si into segments based on MaxNum-

berOfRequest and MinTimediffBtwRequests parameter
{RSi1, RSi2 RSin} ← break(Si ,

MaxNumberOf Request, MinT imedif f BtwRequests)
*[h]RSij is the size of the packet for each request to

the noise server.
RSij in {RSi1, RSi2

RSin} sumOf OutgoingP ktSize←
sum(outgoing packet′s size) timeOf Request ←
time of f irst outgoing packet Reqij ←
new Req(timeOfRequest, sumOfOutgoingPktSize)

*[h]For each request, generate the number of response
packets P RSijk and the size of each packet

{P RSij1, P RSij2, ..., P RSijn} ←
break(RSij , MaxNumberOf Response,
MinT imedif f BtwResponse)
P RSijk in {P RSij1, P RSij2, ...,

P RSijn} sumOf SubResponseP ktSize←

4 EAI Endorsed Transactions on
Security and Safety

01 2019 - 04 2019 | Volume 6 | Issue 20 | e2

Efficient, Effective, and Realistic Website Fingerprinting Mitigation

sum(incoming packets size) ∗
CoverT raf f icLoadRatio timeOf SubResponse←
time of the f irst incoming packet
Reqij .append(timeOf SubResponse :
sumOf SubResponseP ktSize)
{Reqi1, Reqi2, ..., Reqin}.append(Reqij) {Reqi1 , Reqi2
Reqin} sNoiseRsendNoiseRequest ()ReqList Reqij in

{Reqi1 , Reqi2, ..., Reqin} *[h]Send Reqij to noise
server. Wait and receive message from noise server
fork(Send Reqij to noise server. Wait and receive
message from noise server.)

*[h]Sleep certain time based on the time gap
between Reqij and Reqi(j+1) sleep() PrProcedure isend
PrmainRecordsampletraf f ictracesf ornwebpages, denotedas{S1,
S2 Sn} Si ← random({S1, S2
Sn}) ReqList ← constructNoiseRequest(Si)
sendNoiseRequest(Reqlist)

FnFunction isend FRecursforkNewThread (*[h])Reqij
*[h]For each request RSij from the client, respond

with number and size of response packets based on
P RSijk

{RSij1 , RSij2 RSijn}← extract(RSij)
P RSijk in {P RSij1, P RSij2, ..., P RSijn}

*[h]Send random characters with specific size to
client
send(randomcharacters, client)
*[h]sleep certain time based on the time gap between

P Reqijk and P Reqij(k+1)
sleep() True Reqij ← receive()
f orkNewT hread(Reqij)

4.3. Implementation Details
The cover traffic needs to have two features: 1) it
should customize total packet size so that the cover
traffic can be controlled, 2) it should have similar
packet distribution with the real web traffic so that
it cannot be filtered out easily. Modern web pages
usually contain multiple resources, such as html text,
CSS files, javascript files, and images. Modern web
browsers support multiple parallel connections to a
website. From a typical web page network traffic,
we can see that a web browser sends multiple
requests to download multiple resources in parallel.
Considering these web page features, we separate
web page traffic into segments based on requests.
We define two parameters: 1) MaxNumberOfRequest
and 2) MinTimediffBtwRequests. MaxNumberOfRequest
denotes the maximum number of web requests
and MinTimediffBtwRequests denotes the minimum
time interval between two web requests. Combining
these two parameters, we can separate a network
traffic trace into request segments. We scan the
recorded traffic trace, find two consecutive outgoing
packets which have a time interval greater than
MinTimediffBtwRequests, then use these two packets

Figure 2. Sample of recorded network traffic. The format is <
timestamp >:< packetsize >. Red indicates outgoing packets.

as the delimiter of two request segments. If we
get a higher number of request segments than
MaxNumberOfRequest, the algorithm will adjust the
requested segment time interval threshold accordingly
to get exactly MaxNumberOfRequest number of request
segments. To further control the distribution of
incoming packets, we separate incoming packets into
segments inside the request segment. We define
two other parameters: 1) MaxNumberOfResponse and
MinTimediffBtwResponses. These two parameters work
the same as for outgoing packets.

To control the overall cover traffic size, we define
another parameter CoverTrafficLoadRatio. The total
cover traffic size will be the total packet size of
network traffic multiplied by CoverTrafficLoadRatio.
Since we separate the network traffic trace into
segments, the size of cover traffic segments will be the
size of corresponding traffic segments multiplied by
CoverTrafficLoadRatio.

So far, we have parsed the recorded real web traffic,
our next step is to generate the cover traffic. To do
that, we have a cover traffic client agent running on
the user side. This client agent connects to a cover
traffic server, sends requests to the server and receives
responses from the server. Figure 3 shows how our
cover traffic is generated. The first step we need to do
is to parse the recorded real traffic trace. As we can
see from the sample traffic trace, the only information
recorded is the time of packets and the packet sizes.
Both incoming and outgoing packets are recorded. The
format of the sample shown in the figure is as follows:
< timestamp >:< packetsize >. We use negative packet
sizes for outgoing packets and positive packet sizes for
incoming packets.

The content of a request contains the following
information: relative time to send back segments of
responses and total packet size of each segment. Table 1
shows a list of requests sent to the cover traffic server.
These requests are generated by parsing one recorded
web traffic network trace. Each cover traffic request will
be sent at a certain time (“Time to Send”) and will be
of certain size (“Total Size”). The request content shows
the number of responses to be sent back by the server,

5 EAI Endorsed Transactions on
Security and Safety

01 2019 - 04 2019 | Volume 6 | Issue 20 | e2

Weiqi Cui et al.

Figure 3. Cover traffic client and server.

along with the time and packet size of each response.
Since all requests and responses are encrypted, no
actual content is sent; the content of both the request
and response can be filled with random data.

From Table 1, the client agent sends a total of
nine requests to the cover traffic server. The first
request is sent at time 0 (relative time), the size of
the request is 703 bytes and the request content is
“Response=0:676,354:18,756:91”. We add padding to
the request content if its size is less then the expected
request size. When the cover traffic server receives this
request, it will send back 676 bytes of data at time
0. The time is relative to when the server receives the
request. At time 0, that means the server just received
the request. At time 354 ms, the server sends a response
packet of size 18 bytes and at time 756 ms, the server
sends a packet response of size 91 bytes. The contents of
the response packet the server sends back to the client
are filled with random characters. At time 7, 320 ms, the
client agent sends the second request to the server.

4.4. Example
Taking the packet traces from Figure 2 as an example,
the following two tables are built based on this example.
Table 2 shows the parsed outgoing packets set, denoted
as T Sout . Table 3 shows the parsed incoming packets
set, denoted as T Sin. Most webbrowsing network traces
have a higher number of incoming packets than
outgoing packets. Moreover, the size of the incoming
packets is higher than outgoing packets, which are
usually web requests for a URL resource (such as jpg,
html, etc...). This is typical of web traffic and is reflected

in the tables. Generating noisy cover traffic works as
follows.

1. Randomly select one traffic train from T Sout and
T Sin each, denoted as Tout and Tin respectively.
The total size of Tout is Sout and the total size of
Tin is Sin.

2. Construct a cover traffic request with size Sout .

3. Send this request to the noise server.

4. The server will reply back with data of size Sin
in WTin milliseconds. WTin is the time difference
between the first packet of Tin and the first packet
of the next traffic train after Tin in the incoming
traffic train set.

5. Wait for some time WTout , where WTout is the
time difference between the first packet of the
chosen outgoing traffic train Tout and the first
packet of the next outgoing traffic train.

6. Repeat steps 1 to 5 until the total incoming traffic
from the noise server is equal to the size of all the
incoming packets of the recorded traffic trace.

As an example, let’s suppose outgoing traffic train 4
is selected from T Sout and incoming traffic train 8 is
selected from T Sin. Our algorithm will create a new
cover traffic request to send to the noise server. The
request will ask the server to send back data of size
1448 + 1448 + 1448 + 476 = 4820 bytes with a time of
5367 − 5130 = 237 milliseconds. The request contains
only total size of data to be sent and the time. For

6 EAI Endorsed Transactions on
Security and Safety

01 2019 - 04 2019 | Volume 6 | Issue 20 | e2

Efficient, Effective, and Realistic Website Fingerprinting Mitigation

Cover Traffic Request Time to Send (ms) Total Size (bytes) Request Content
1 0 703 Response=0:676,354:18,756:91;
2 7,320 4,149 Response=0:784,872:325;
3 9,190 8,087 Response=0:325,569:1045,1065:645,2000:325,

6109:211;
4 19,196 1,0628 Response=0:217,380:108,657:942,1101:4581,

1444:942,1920:8442;
5 27,094 703 Response=0:676,312:109;
6 29,434 148 Response=0:676;
7 30,395 358 Response=0:18;
8 31,166 197 Response=0:91;
9 38,185 543 Response=0:108;

Table 1. Cover traffic requests based on one recorded real web traffic trace. The request content contains the number of responses to
be sent from the cover traffic server and is in the format < relativetime >:< packetsize >.

Traffic Train ID Time and Packets
1 83:565
2 116:565
3 5025:565
4 5075:565
5 5130:1130

Table 2. The parsed outgoing traffic train set.

Figure 4. An example of the algorithm, train 4 is selected from
T Sout and train 8 is selected from T Sin.

example, the server only needs to send padded data
with size 4820. The lower level network interface will
determine how to send each packet – if the MTU is
1448, packet size will be 1448 + 1448 + 1448 + 476. The
outgoing packet will be of size 565 bytes. Since the
actual contents of the packet is small, the rest of the
packet is padded. To simplify the example, we ignore
packet headers. When the noise server receives this
cover traffic request, it will send back data of size 4820
bytes and sleep for 237 milliseconds before responding

to next request. At the same time, the client side
waits for 55 milliseconds, which is the time difference
between the first packets of the outgoing traffic train 4
and outgoing traffic train 5 from Table 2. The procedure
of this example is shown in figure 4. This process
is repeated until the sum of all the incoming packet
sizes from the server is equal to the recorded traffic
trace. The reason for waiting on both client and server
sides is to ensure that the generated noise traffic is
well distributed to look more realistic. This generated
cover traffic can achieve better performance in terms
of obfuscating the overall traffic collected by a website
fingerprinting attacker.

The user can choose as a parameter, the size of
the cover traffic, CoverTrafficLoadRatio, s. Since the
cover traffic mimics the websites that the user has
previously visited, the bandwidth used will be doubled.
To minimize the bandwidth overhead, each train size
could be reduced by a factor of s. If the factor s is 0.5,
the incoming train will thus have a total packet size
of 0.5 × Sin in time WTin. This reduces the bandwidth
overhead and generates fewer packets.

We emphasize that the cover traffic is only between
the client’s webbrowser and the cover traffic webserver
through Tor. The only data sent are padded data so
that the packets are of a pre-determined size. The cover
traffic generated will look realistic as it is traffic that was
generated by the user. This recorded network traffic is
only stored locally on the browser.

We expect our algorithm to effectively mitigate
website fingerprinting attack since it has already been
shown that cover traffic is effective. We expect that
our algorithm will have lower bandwidth overhead
since the amount of noise generated can be modified.
Moreover, there is no extra latency added as no network
delay is introduced. Our algorithm only generates cover
traffic to another website.

7 EAI Endorsed Transactions on
Security and Safety

01 2019 - 04 2019 | Volume 6 | Issue 20 | e2

Weiqi Cui et al.

Traffic Train ID Time and Packets
1 516:565
2 4904:565 4905:1448 4905:1448 4907:1448 4907:1448 4908:1448 4931:705
3 4956:565
4 4981:1130
5 5017:565 5018:1448 5018:1448 5019:1448 5020:1448 5022:1448 5022:1448

5024:1448 5024:1448
6 5042:1448 5044:651
7 5073:1448 5073:1448 5074:1448 5075:1448 5075:1448 5079:1448 5079:1448

5098:422
8 5130:1448 5130:1448 5133:1448 5155:476
9 5367:565
10 5388:1448 5388:1448 5391:1448 5395:988
11 5479:565
12 5505:1130

Table 3. The parsed incoming traffic train set.

5. Simulations
5.1. Setup
We utilized the dataset from [18], which consists of
1, 125 webpages and 40 instances of each webpage.
Each instance contains the timestamp of each packet
with the packet sizes (negative packet sizes indicate
outgoing packet). We implemented the noise generation
algorithm described in Section 4.

We use the standard Weka [49] tool and experimented
with the Random Forest classification algorithm. The
classification features used in our experiments are the
same as those used in [18]. The first four features are:
total size of outgoing packets, total size of incoming
packets, total number of outgoing packets, and total
number of incoming packets. The remaining features
are the sampled cumulative representation of packet
size. There are two ways to calculate the cumulative
packet size: c is the cumulative size of packets size
where an outgoing packet has a negative packet size
and a is the cumulative size of packets size where both
outgoing and incoming packet sizes are denoted as
positive numbers. The number of samples used n can
be varied and will be taken at equidistant points in
the packet trace. For example, if there are 75 packets
and n = 100, a sample is taken every 0.75 packet. To
determine the packet size of the 0.75th packet, the
linear interpolation is calculated. If the 0th packet size
was 10 and the 1st packet size was 20, the cumulative
packet size for 0 is 10 and the cumulative packet size
for 1 is 20 + 10 = 30. The 0.75th packet size is thus
(0.75 ∗ (30 − 10)) + 10 = 25.

We compared our proposed cover traffic algorithm
with the basic cover traffic scheme. The latter works as
follows. When a user visits a website, the basic scheme
will randomly pick another website to also visit. As

shown by [19], having two simultaneous website visits
significantly lowers website fingerprinting accuracy.

The original dataset contained 1, 125 webpages, many
from the same website. We filtered out webpages of the
same website and used 91 websites as our base training
dataset 2. The dataset [18] contained timestamps and
packet sizes. Merging the original website packet trace
with the noise packet trace is relatively straightforward.
Since there are 40 instances of each website, we
randomly picked one instance as the noise data to
merge with the original packet trace.

We considered two different basic cover traffic
algorithms as a comparison. The first one always picks
the same webpage (but possibly different instances).
The second one randomly picks from a set of 10
webpages, different from the 91 previously selected.
The second case provides a more diverse set of
webpages and noise to be added.

Our noise generation algorithm “learning” dataset
consists of a further 10 webpages where the packet
traces are recorded. As the noise is learned from the
users’ network traffic, in the simulation, we ran our
algorithm to generate one packet trace of noise for each
of the original 91 webpages and merge that trace with
the original webpage packet trace.

5.2. Results
The accuracy of the Random Forest classification
algorithm including either features c or features a and
c is 81.77% and 81.88% respectively. The first four
features are always included. Adding features a, the
cumulative total of the absolute value of all packet sizes,

2Note that since each webpage is a unique website, we used webpage
and website interchangeably from now on.

8 EAI Endorsed Transactions on
Security and Safety

01 2019 - 04 2019 | Volume 6 | Issue 20 | e2

Efficient, Effective, and Realistic Website Fingerprinting Mitigation

does not improve the accuracy of website fingerprinting
attacks by much. The sample size n was set to the
recommended 100 from [18]. We only considered set of
features c from now.

Figure 5. The accuracy using the Random Forest algorithm when
varying the sample size. Note the y-axis does not start at 0.

Figure 6 shows the classification accuracy for varying
amount of noise added to original traces. Figure 7 shows
the bandwidth overhead in % of the extra network
traffic generated. The two basic cover traffic algorithms
are indicated by k = 1 for adding the same one website
as noise each time and by k = 10 for randomly adding
one of ten websites as noise. The x-axis indicates the
amount of noise s added. When s = 1.0, this means the
whole packet trace is added as noise. When s = 0.5,
only half of the packet trace is added as noise, that is,
every other packet is added as noise to preserve the
time intervals. For the basic cover traffic cases (k = 1
and k = 10), we are “simulating” the noise generated;
in a real-world setting, this would be hard to achieve
without controlling the server – in this case, the browser
could send random packets. We show different values
of s to compare with our algorithm. As more noise is
added (s increases), the accuracy decreases, as expected.
Similarly, the bandwidth overhead also increases as
more noise is added. Our proposed noise generation
algorithm achieves the same accuracy regardless of the
amount of noise; this is because we are generating
realistic noise that can more effectively hide a user’s
real traffic rather than generating random noise. Our
algorithm’s bandwidth overhead is the same as the basic
cases. However, even with s = 0.25, the overhead is 20%
and the accuracy is 14%. Since our proposed algorithm
generates random packet traces based on real recorded
network traffic, we ran our experiments five times;
the graphs show the average of the five experiments.
For these experiments, the training dataset used in
the Random Forest classification algorithm is the

original 91 webpages and the testing dataset is the new
webpages with noise added.

Figure 6. The accuracy using the Random Forest algorithm when
introducing different kinds of cover traffic.

Figure 7. The bandwidth overhead when introducing different
kinds of cover traffic.

Intuitively, accuracy should decrease as more noise
is added. However, in Figure 6, we found that in our
algorithm, s = 0.25 has a lower accuracy than s = 0.5.
We hypothesized that this could be due to the features
being considered. Recall that two of the five features
are the total number of incoming packets and the total
size of incoming packets. When s is lower, the number
of incoming packets is lower. To verify our hypothesis,
we re-ran our algorithms without considering these
two features of incoming packets. Figure 8 shows the
result. It can be seen that without these two features,
accuracy decreases as noise generated increases, which
is expected. This shows that the attributes for total
size of incoming packets and total number of incoming
packets help the website fingerprinting adversary in
successfully identifying the correct website (increase in

9 EAI Endorsed Transactions on
Security and Safety

01 2019 - 04 2019 | Volume 6 | Issue 20 | e2

Weiqi Cui et al.

accuracy). Without these two features, our proposed
algorithm performs even better as the accuracy is
reduced to under 10% when s = 1.0. Previous work [19]
has shown that the number of incoming packets is one
of the most useful attributes in classification for website
fingerprinting. We also considered not including the
incoming packet features; the results are shown in
Figure 9. The results are expected as well but the
change in accuracy is not as obvious as Figure 8 since
the number of outgoing packets is about the same
regardless of the value of s.

Figure 8. The accuracy using the Random Forest algorithm when
considering the incoming packet features or not.

Figure 9. The accuracy using the Random Forest algorithm when
considering the outgoing packet features or not.

6. Real-World Experiment
6.1. Setup
We collected network traffic data for the top 100
web sites listed from Wikipedia. After we removed

duplicates (e.g. google.com and google.co.uk) and adult
websites, we were left with 75 websites. For each
website, we recorded 20 instances of network traffic
through Tor without noise and 20 instances of network
traffic through Tor including traffic from the noise
server. Each network traffic trace’s duration was two
minutes. We used Wireshark version 1.6.7 to capture
packets at the TCP level and TorBrowser version 6.5.2
as the web browser. The computers used were Dell
Optiplex with Intel i5 and 4GB of RAM. We note
that Wireshark cannot differentiate whether a packet
is from the noise server or from the webserver. All the
traffic looks like it originates from the Tor network.
The following steps outline how we record the network
traffic of a website.

1. Launch Wireshark to record network traffic

2. Launch TorBrowser and visit a webpage

3. Launch cover traffic client agent (only for the
experiments with noise)

4. Wait 2 minutes

5. Save network traffic to file

6. Shut down Wireshark and TorBrowser

The cover traffic server is deployed on a different
machine from the client. The cover traffic client
agent runs Tor version 0.2.2.35; all the cover traffic
are forwarded to the noise server through the Tor
client. The noise traffic consists of the network traffic
trace of the top 10 web pages; in reality, this would
be the traffic trace of websites visited by the user.
Each time the cover traffic client needs to generate
noise, it will randomly pick on these ten traces and
sends requests and receives responses from the noise
server as described in Section 4.3. In our experiments,
we set MinTimediffBtwRequests to 500 milliseconds,
MaxNumberOfRequest to 10, MaxNumberOfResponse to
10 and MinTimediffBtwResponses to 200 milliseconds.
Figure 1 illustrates how our experiments are set up.

6.2. Evaluation
We deployed our real-world experiments from May 13
to August 10. We visited 75 websites and collected data
for 20 instances of each of the 75 websites. This was
our training dataset. We then repeated the experiments
for the same websites and number of instances for
each website with cover traffic generated by the noise
server. This made up our testing dataset. Similar to the
simulations, we used the Random Forest classification
algorithm to perform the website prediction. Figure 10
shows the accuracy of website fingerprinting. When
no cover traffic is generated, the accuracy is 81.59%,
which is close to the 90% obtained in previous

10 EAI Endorsed Transactions on
Security and Safety

01 2019 - 04 2019 | Volume 6 | Issue 20 | e2

Efficient, Effective, and Realistic Website Fingerprinting Mitigation

Mitigation Accuracy (%) Latency Bandwidth
Overhead (%) Overhead(%)

No Defense 91% 0% 0%
CS-BuFLO [7] 22% 173% 130%
Tamaraw [4] 10% 200% 38%

WTF-PAD [44] 15% 0% 54%
Walkie-Talkie [45] 19% ∼ 44% 34% 31%

Our algorithm Simulation 14% 0% 20%
Our Real-world Experiment 16% 0% 20%

Table 4. Comparison of our algorithm’s accuracy and overhead with previous mitigation schemes. We showed the lowest accuracy
numbers for the other schemes, regardless of algorithms used. The table is based from [44].

research. However, when generating 10% cover traffic,
the accuracy decreases to 17.81% which shows that our
cover traffic algorithm is significantly impacting the
adversary’s ability to perform a website fingerprinting
attack. When generating 20% and 30% cover traffic, the
accuracy obtained is 16.37% and 10.72% respectively.
We also ran the k-nearest neighbors classifier as this
was used in previous research. The accuracy obtained is
similar to that obtained when using the Random Forest
algorithm.

Figure 10. The accuracy of the website fingerprinting attack for
real-world experiments with varying amounts of noise generated.
Classifier used was Random Forest.

7. Discussion and Future Work
We showed that our proposed cover traffic (noise
generation) algorithm mitigates website fingerprinting
attacks as effectively as current existing schemes.
However, the bandwidth overhead is only 20%, much
lower than existing schemes. The latency overhead
is also 0%. Our algorithm can also be configured to
utilize different amounts of bandwidth, which affects
the adversary’s accuracy.

Recording user’s browsing session: We emphasize that
the user’s webbrowsing session only need to be recorded
locally. This information is not shared. Moreover, only
the packet sizes and number of packets are recorded.
The server and actual contents are not recorded. The
information sent to the noise server is only the number
of packets to send back and their size. The contents of
the packets are random, not actual contents. Since the
packets are encrypted, an adversary cannot determine
that these packets are cover traffic. Since no actual
contents are sent, our scheme does not leak any
information to an eavesdropper.
Using a dedicated noise server: The cover traffic could
be sent to real webservers; however, this would put
extra strain on these servers. We, thus, decided to use
a dedicated noise server. Removing the noise server
will mean only outgoing cover traffic can be sent which
could be filtered out by an adversary. Multiple noise
servers, such as using Amazon cloud, could be used if
this scheme is deployed. Since Tor is used, it cannot
be determined whether the user is contacting a noise
server.

We plan to expand this work in considering more
webpages for both the training dataset and our learning
algorithm. A more detailed study on the different
classification algorithms and parameters used will also
be performed. Further improvements to our algorithm
can be made, such as, if a user has multiple tabs open
at the same time, no noise is needed. This would reduce
the bandwidth overhead.

Acknowledgment
The research results discussed in this publication were
made possible in total or in part by funding through
the Health Research award for project number HR13-
035, from the Oklahoma Center for the Advancement
of Science and Technology.

References
[1] Tor (2017), https://www.torproject.org/.

11 EAI Endorsed Transactions on
Security and Safety

01 2019 - 04 2019 | Volume 6 | Issue 20 | e2

Weiqi Cui et al.

[2] Hintz, A. (2003) Fingerprinting websites using traffic
analysis. In Proceedings of the 2Nd International Confer-
ence on Privacy Enhancing Technologies, PET’02 (Berlin,
Heidelberg: Springer-Verlag): 171–178. URL http://dl.

acm.org/citation.cfm?id=1765299.1765312.
[3] Cai, X., Zhang, X.C., Joshi, B. and Johnson, R.

(2012) Touching from a distance: Website fingerprinting
attacks and defenses. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security,
CCS ’12 (New York, NY, USA: ACM): 605–616.
doi:10.1145/2382196.2382260, URL http://doi.acm.

org/10.1145/2382196.2382260.
[4] Wang, T., Cai, X., Nithyanand, R., Johnson, R. and

Goldberg, I. (2014) Effective attacks and provable
defenses for website fingerprinting. In Proceedings of the
23rd USENIX Conference on Security Symposium, SEC’14
(Berkeley, CA, USA: USENIX Association): 143–157.
URL http://dl.acm.org/citation.cfm?id=2671225.

2671235.
[5] Nithyanand, R., Cai, X. and Johnson, R. (2014) Glove:

A bespoke website fingerprinting defense. In Proceedings
of the 13th Workshop on Privacy in the Electronic Society,
WPES ’14 (New York, NY, USA: ACM): 131–134.
doi:10.1145/2665943.2665950, URL http://doi.acm.

org/10.1145/2665943.2665950.
[6] Cai, X., Nithyanand, R., Wang, T., Johnson, R. and

Goldberg, I. (2014) A systematic approach to developing
and evaluating website fingerprinting defenses. In Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’14 (New York, NY,
USA: ACM): 227–238. doi:10.1145/2660267.2660362,
URL http://doi.acm.org/10.1145/2660267.2660362.

[7] Cai, X., Nithyanand, R. and Johnson, R. (2014) Cs-buflo:
A congestion sensitive website fingerprinting defense.
In Proceedings of the 13th Workshop on Privacy in the
Electronic Society, WPES ’14 (New York, NY, USA: ACM):
121–130. doi:10.1145/2665943.2665949, URL http://

doi.acm.org/10.1145/2665943.2665949.
[8] Cui, W., Yu, J., Gong, Y. and Chan-Tin, E. (2018)

Realistic cover traffic to mitigate website fingerprinting
attacks. In 2018 IEEE 38th International Conference
on Distributed Computing Systems (ICDCS): 1579–1584.
doi:10.1109/ICDCS.2018.00175.

[9] Sun, Q., Simon, D.R., Wang, Y.M., Russell, W.,
Padmanabhan, V.N. and Qiu, L. (2002) Statistical
identification of encrypted web browsing traffic. In
Proceedings of the 2002 IEEE Symposium on Security and
Privacy, SP ’02 (Washington, DC, USA: IEEE Computer
Society): 19–. URL http://dl.acm.org/citation.cfm?

id=829514.830535.
[10] Bissias, G.D., Liberatore, M., Jensen, D. and

Levine, B.N. (2006) Privacy vulnerabilities in
encrypted http streams. In Proceedings of the
5th International Conference on Privacy Enhancing
Technologies, PET’05 (Berlin, Heidelberg: Springer-
Verlag): 1–11. doi:10.1007/11767831_1, URL
http://dx.doi.org/10.1007/11767831_1.

[11] Liberatore, M. and Levine, B.N. (2006) Inferring the
source of encrypted http connections. In Proceedings of

the 13th ACM Conference on Computer and Communica-
tions Security, CCS ’06 (New York, NY, USA: ACM): 255–
263. doi:10.1145/1180405.1180437, URL http://doi.

acm.org/10.1145/1180405.1180437.
[12] Lu, L., Chang, E.C. and Chan, M.C. (2010) Website

Fingerprinting and Identification Using Ordered
Feature Sequences (Berlin, Heidelberg: Springer
Berlin Heidelberg), 199–214. doi:10.1007/978-3-
642-15497-3_13, URL http://dx.doi.org/10.1007/

978-3-642-15497-3_13.
[13] Herrmann, D., Wendolsky, R. and Federrath, H. (2009)

Website fingerprinting: Attacking popular privacy
enhancing technologies with the multinomial naïve-
bayes classifier. In Proceedings of the 2009 ACM Workshop
on Cloud Computing Security, CCSW ’09 (New York, NY,
USA: ACM): 31–42. doi:10.1145/1655008.1655013, URL
http://doi.acm.org/10.1145/1655008.1655013.

[14] Panchenko, A., Niessen, L., Zinnen, A. and Engel, T.

(2011) Website fingerprinting in onion routing based
anonymization networks. In Proceedings of the 10th
Annual ACM Workshop on Privacy in the Electronic
Society, WPES ’11 (New York, NY, USA: ACM): 103–
114. doi:10.1145/2046556.2046570, URL http://doi.

acm.org/10.1145/2046556.2046570.
[15] Gong, X., Borisov, N., Kiyavash, N. and Schear, N.

(2012) Website detection using remote traffic analysis.
In Proceedings of the 12th International Conference
on Privacy Enhancing Technologies, PETS’12 (Berlin,
Heidelberg: Springer-Verlag): 58–78. doi:10.1007/978-
3-642-31680-7_4, URL http://dx.doi.org/10.1007/

978-3-642-31680-7_4.
[16] Wang, T. and Goldberg, I. (2013) Improved website

fingerprinting on tor. In Proceedings of the 12th ACM
Workshop on Workshop on Privacy in the Electronic
Society, WPES ’13 (New York, NY, USA: ACM): 201–
212. doi:10.1145/2517840.2517851, URL http://doi.

acm.org/10.1145/2517840.2517851.
[17] Juarez, M., Afroz, S., Acar, G., Diaz, C. and

Greenstadt, R. (2014) A critical evaluation of website
fingerprinting attacks. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’14 (New York, NY, USA: ACM): 263–274.
doi:10.1145/2660267.2660368, URL http://doi.acm.

org/10.1145/2660267.2660368.
[18] Panchenko, A., Lanze, F., Zinnen, A., Henze, M.,

Pennekamp, J., Wehrle, K. and Engel, T. (2016) Website
fingerprinting at internet scale. In Proceedings of the 23rd
Internet Society (ISOC) Network and Distributed System
Security Symposium (NDSS 2016).

[19] Wang, T. and Goldberg, I. (2016) On realistically
attacking tor with website fingerprinting. In Privacy
Enhancing Technologies Symposium (PETS).

[20] Spreitzer, R., Griesmayr, S., Korak, T. and Mangard,

S. (2016) Exploiting data-usage statistics for website
fingerprinting attacks on android. In Proceedings of
the 9th ACM Conference on Security & Privacy in
Wireless and Mobile Networks, WiSec ’16 (New York, NY,
USA: ACM): 49–60. doi:10.1145/2939918.2939922, URL
http://doi.acm.org/10.1145/2939918.2939922.

[21] Hayes, J. and Danezis, G. (2016) k-fingerprinting:
A robust scalable website fingerprinting technique.

12 EAI Endorsed Transactions on
Security and Safety

01 2019 - 04 2019 | Volume 6 | Issue 20 | e2

http://dl.acm.org/citation.cfm?id=1765299.1765312
http://dl.acm.org/citation.cfm?id=1765299.1765312
https://doi.org/10.1145/2382196.2382260
http://doi.acm.org/10.1145/2382196.2382260
http://doi.acm.org/10.1145/2382196.2382260
http://dl.acm.org/citation.cfm?id=2671225.2671235
http://dl.acm.org/citation.cfm?id=2671225.2671235
https://doi.org/10.1145/2665943.2665950
http://doi.acm.org/10.1145/2665943.2665950
http://doi.acm.org/10.1145/2665943.2665950
https://doi.org/10.1145/2660267.2660362
http://doi.acm.org/10.1145/2660267.2660362
https://doi.org/10.1145/2665943.2665949
http://doi.acm.org/10.1145/2665943.2665949
http://doi.acm.org/10.1145/2665943.2665949
https://doi.org/10.1109/ICDCS.2018.00175
http://dl.acm.org/citation.cfm?id=829514.830535
http://dl.acm.org/citation.cfm?id=829514.830535
https://doi.org/10.1007/11767831_1
http://dx.doi.org/10.1007/11767831_1
https://doi.org/10.1145/1180405.1180437
http://doi.acm.org/10.1145/1180405.1180437
http://doi.acm.org/10.1145/1180405.1180437
https://doi.org/10.1007/978-3-642-15497-3_13
https://doi.org/10.1007/978-3-642-15497-3_13
http://dx.doi.org/10.1007/978-3-642-15497-3_13
http://dx.doi.org/10.1007/978-3-642-15497-3_13
https://doi.org/10.1145/1655008.1655013
http://doi.acm.org/10.1145/1655008.1655013
https://doi.org/10.1145/2046556.2046570
http://doi.acm.org/10.1145/2046556.2046570
http://doi.acm.org/10.1145/2046556.2046570
https://doi.org/10.1007/978-3-642-31680-7_4
https://doi.org/10.1007/978-3-642-31680-7_4
http://dx.doi.org/10.1007/978-3-642-31680-7_4
http://dx.doi.org/10.1007/978-3-642-31680-7_4
https://doi.org/10.1145/2517840.2517851
http://doi.acm.org/10.1145/2517840.2517851
http://doi.acm.org/10.1145/2517840.2517851
https://doi.org/10.1145/2660267.2660368
http://doi.acm.org/10.1145/2660267.2660368
http://doi.acm.org/10.1145/2660267.2660368
https://doi.org/10.1145/2939918.2939922
http://doi.acm.org/10.1145/2939918.2939922

Efficient, Effective, and Realistic Website Fingerprinting Mitigation

In 25th USENIX Security Symposium (USENIX
Security 16) (Austin, TX: USENIX Association): 1187–
1203. URL https://www.usenix.org/conference/

usenixsecurity16/technical-sessions/

presentation/hayes.
[22] Perry, M. (2011), Experimental defense

for website traffic fingerprinting,
https://blog.torproject.org/blog/experimental-defense-
website-traffic-fingerprinting.

[23] Yu, J. and Chan-Tin, E. (2014) Identifying webbrowsers
in encrypted communications. In Proceedings of the
13th Workshop on Privacy in the Electronic Society,
WPES ’14 (New York, NY, USA: ACM): 135–138.
doi:10.1145/2665943.2665968, URL http://doi.acm.

org/10.1145/2665943.2665968.
[24] Eckersley, P. (2010) How unique is your web browser? In

Proceedings of the 10th International Conference on Privacy
Enhancing Technologies, PETS’10. URL http://dl.acm.

org/citation.cfm?id=1881151.1881152.
[25] Miller, B., Huang, L., Joseph, A.D. and Tygar, J.D.

(2014) I Know Why You Went to the Clinic: Risks and
Realization of HTTPS Traffic Analysis (Cham: Springer
International Publishing), 143–163. doi:10.1007/978-
3-319-08506-7_8, URL http://dx.doi.org/10.1007/

978-3-319-08506-7_8.
[26] Le Blond, S., Choffnes, D., Zhou, W., Druschel,

P., Ballani, H. and Francis, P. (2013) Towards
efficient traffic-analysis resistant anonymity networks. In
Proceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM. doi:10.1145/2486001.2486002, URL http:

//doi.acm.org/10.1145/2486001.2486002.
[27] Dyer, K.P., Coull, S.E., Ristenpart, T. and Shrimpton,

T. (2012) Peek-a-boo, I still see you: Why efficient traffic
analysis countermeasures fail. In Proceedings of the 2012
IEEE Symposium on Security and Privacy.

[28] Mittal, P., Khurshid, A., Juen, J., Caesar, M. and
Borisov, N. (2011) Stealthy traffic analysis of low-
latency anonymous communication using throughput
fingerprinting. In Proceedings of the 18th ACM conference
on Computer and Communications Security (CCS 2011).

[29] Tschantz, M.C., Afroz, S., Anonymous and Paxson, V.

(2016) SoK: Towards Grounding Censorship Circum-
vention in Empiricism. IEEE Symposium on Security and
Privacy .

[30] Wright, C., Coull, S. and Monrose, F. (2009) Traffic
morphing: An efficient defense against statistical traffic
analysis. In Proceedings of the Network and Distributed
Security Symposium - NDSS ’09 (IEEE).

[31] Houmansadr, A., Riedl, T.J., Borisov, N. and Singer,

A.C. (2013) I want my voice to be heard: Ip over voice-
over-ip for unobservable censorship circumvention. In
NDSS.

[32] Moghaddam, H.M., Li, B., Derakhshani, M. and
Goldberg, I. (2012) Skypemorph: Protocol obfuscation
for tor bridges. In Proceedings of the 19th ACM conference
on Computer and Communications Security (CCS 2012).

[33] Fifield, D., Hardison, N., Ellithorpe, J., Stark, E.,
Boneh, D., Dingledine, R. and Porras, P. (2012) Evad-
ing censorship with browser-based proxies. In Pro-
ceedings of the 12th International Conference on Pri-
vacy Enhancing Technologies, PETS’12 (Berlin, Hei-
delberg: Springer-Verlag): 239–258. doi:10.1007/978-
3-642-31680-7_13, URL http://dx.doi.org/10.1007/

978-3-642-31680-7_13.
[34] Wang, Q., Gong, X., Nguyen, G.T., Houmansadr, A.

and Borisov, N. (2012) Censorspoofer: Asymmetric
communication using ip spoofing for censorship-
resistant web browsing. In Proceedings of the 2012
ACM Conference on Computer and Communications
Security, CCS ’12 (New York, NY, USA: ACM): 121–132.
doi:10.1145/2382196.2382212, URL http://doi.acm.

org/10.1145/2382196.2382212.
[35] Holowczak, J. and Houmansadr, A. (2015) Cache-

browser: Bypassing chinese censorship without proxies
using cached content. In Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’15 (New York, NY, USA: ACM): 70–83.
doi:10.1145/2810103.2813696, URL http://doi.acm.

org/10.1145/2810103.2813696.
[36] Wang, L., Dyer, K.P., Akella, A., Ristenpart, T.

and Shrimpton, T. (2015) Seeing through network-
protocol obfuscation. In Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’15 (New York, NY, USA: ACM): 57–69.
doi:10.1145/2810103.2813715, URL http://doi.acm.

org/10.1145/2810103.2813715.
[37] Houmansadr, A., Brubaker, C. and Shmatikov, V.

(2013) The parrot is dead: Observing unobservable
network communications. In Proceedings of the 2013
IEEE Symposium on Security and Privacy, SP ’13
(Washington, DC, USA: IEEE Computer Society): 65–
79. doi:10.1109/SP.2013.14, URL http://dx.doi.org/

10.1109/SP.2013.14.
[38] Geddes, J., Schuchard, M. and Hopper, N. (2013)

Cover your acks: Pitfalls of covert channel censorship
circumvention. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security,
CCS ’13 (New York, NY, USA: ACM): 361–372.
doi:10.1145/2508859.2516742, URL http://doi.acm.

org/10.1145/2508859.2516742.
[39] Diaz, C. and Preneel, B. (2004) Taxonomy of mixes and

dummy traffic. In Proceedings of I-NetSec04: 3rd Working
Conference on Privacy and Anonymity in Networked and
Distributed Systems.

[40] Mallesh, N. and Wright, M. (2007) Countering
statistical disclosure with receiver-bound cover traffic. In
Biskup, J. and Lopez, J. [eds.] Proceedings of 12th European
Symposium On Research In Computer Security (ESORICS
2007) (Springer), Lecture Notes in Computer Science 4734:
547–562.

[41] Simon Oya, C.T. and Pérez-González, F. (2014) Do
dummies pay off? limits of dummy traffic protection in
anonymous communications. In Proceedings of the 14th
Privacy Enhancing Technologies Symposium (PETS 2014).

[42] Howe, D. and Nissenbaum, H. (2008) Trackmenot:
Resisting surveillance in web search. On the Identity
Trail: Privacy, Anonymity and Identify in a Networked

13 EAI Endorsed Transactions on
Security and Safety

01 2019 - 04 2019 | Volume 6 | Issue 20 | e2

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/hayes
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/hayes
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/hayes
https://doi.org/10.1145/2665943.2665968
http://doi.acm.org/10.1145/2665943.2665968
http://doi.acm.org/10.1145/2665943.2665968
http://dl.acm.org/citation.cfm?id=1881151.1881152
http://dl.acm.org/citation.cfm?id=1881151.1881152
https://doi.org/10.1007/978-3-319-08506-7_8
https://doi.org/10.1007/978-3-319-08506-7_8
http://dx.doi.org/10.1007/978-3-319-08506-7_8
http://dx.doi.org/10.1007/978-3-319-08506-7_8
https://doi.org/10.1145/2486001.2486002
http://doi.acm.org/10.1145/2486001.2486002
http://doi.acm.org/10.1145/2486001.2486002
https://doi.org/10.1007/978-3-642-31680-7_13
https://doi.org/10.1007/978-3-642-31680-7_13
http://dx.doi.org/10.1007/978-3-642-31680-7_13
http://dx.doi.org/10.1007/978-3-642-31680-7_13
https://doi.org/10.1145/2382196.2382212
http://doi.acm.org/10.1145/2382196.2382212
http://doi.acm.org/10.1145/2382196.2382212
https://doi.org/10.1145/2810103.2813696
http://doi.acm.org/10.1145/2810103.2813696
http://doi.acm.org/10.1145/2810103.2813696
https://doi.org/10.1145/2810103.2813715
http://doi.acm.org/10.1145/2810103.2813715
http://doi.acm.org/10.1145/2810103.2813715
https://doi.org/10.1109/SP.2013.14
http://dx.doi.org/10.1109/SP.2013.14
http://dx.doi.org/10.1109/SP.2013.14
https://doi.org/10.1145/2508859.2516742
http://doi.acm.org/10.1145/2508859.2516742
http://doi.acm.org/10.1145/2508859.2516742

Weiqi Cui et al.

Society .
[43] Peddinti, S. and Saxena, N. (2010) On the privacy

of web search based on query obfuscation: A case
study of trackmenot. In Atallah, M. and Hopper, N.

[eds.] Privacy Enhancing Technologies (Springer Berlin
Heidelberg), Lecture Notes in Computer Science 6205, 19–
37. doi:10.1007/978-3-642-14527-8_2, URL http://dx.

doi.org/10.1007/978-3-642-14527-8_2.
[44] Juarez, M., Imani, M., Perry, M., Diaz, C. and Wright,

M. (2016) Toward an efficient website fingerprinting
defense. In ESORICS.

[45] Wang, T. and Goldberg, I. (2017) Walkie-talkie:
An efficient defense against passive website
fingerprinting attacks. In 26th USENIX Security
Symposium (USENIX Security 17) (Vancouver, BC:
USENIX Association): 1375–1390. URL https:

//www.usenix.org/conference/usenixsecurity17/

technical-sessions/presentation/wang-tao.
[46] Wright, C., Coull, S. and Monrose, F. (2009) Traffic

morphing: An efficient defense against statistical traffic
analysis. In Proceedings of the Network and Distributed
Security Symposium - NDSS ’09 (IEEE).

[47] Weinberg, Z., Wang, J., Yegneswaran, V., Briesemeis-
ter, L., Cheung, S., Wang, F. and Boneh, D. (2012)
StegoTorus: A camouflage proxy for the Tor anonymity
system. In Proceedings of the 19th ACM conference on
Computer and Communications Security (CCS 2012).

[48] Dingledine, R., Mathewson, N. and Syverson, P. (2004)
Tor: The second-generation onion router. In Proceedings
of the 13th USENIX Security Symposium.

[49] Weka (2017), http://www.cs.waikato.ac.nz/ml/

weka/.

14 EAI Endorsed Transactions on
Security and Safety

01 2019 - 04 2019 | Volume 6 | Issue 20 | e2

https://doi.org/10.1007/978-3-642-14527-8_2
http://dx.doi.org/10.1007/978-3-642-14527-8_2
http://dx.doi.org/10.1007/978-3-642-14527-8_2
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-tao
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-tao
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-tao
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/

	Efficient, Effective, and Realistic Website Fingerprinting Mitigation
	Recommended Citation

	1 Introduction
	2 Related Work
	3 Background
	3.1 Website Fingerprinting
	3.2 Classification
	3.3 Mitigations
	3.4 Threat Model

	4 Proposed Noise Algorithm
	4.1 Overview
	4.2 Pseudocode for Algorithm
	4.3 Implementation Details
	4.4 Example

	5 Simulations
	5.1 Setup
	5.2 Results

	6 Real-World Experiment
	6.1 Setup
	6.2 Evaluation

	7 Discussion and Future Work

