CDSSs FOR CVD RISK MANAGEMENT: AN INTEGRATIVE REVIEW

A Scholarly Project Proposal

Submitted to the

Faculty of Liberty University

In partial fulfillment of

The requirements for the degree

Of Doctor of Nursing Practice

By

Elisabeth Mary Campbell, BSN, RN

Liberty University

Lynchburg, VA

August 2020

CDSSs FOR CVD RISK MANAGEMENT: AN INTEGRATIVE REVIEW

A Scholarly Project Proposal

Submitted to the

Faculty of Liberty University

In partial fulfillment of

The requirements for the degree

Of Doctor of Nursing Practice

By

Elisabeth Mary Campbell, BSN, RN

Liberty University

Lynchburg, VA

August 2020

Scholarly Project Chair Approval:

19 Aug 2020

Dorothy Murphy, DNP, FNP-BC

Date

Table of Contents

Abstract	5
ACKNOWLEDGEMENTS	6
List of Tables and Figures	7
List of Abbreviations	8
Formulating the Review Question	9
CPG Compliance	
Meaningful Use	
CDSS	
Rationale for Conducting the Review	13
Review Questions	14
Formulation of Inclusion and Exclusion Criteria	14
Methods	15
Conceptual Framework	15
Problem Identification Stage	16
Literature Search Stage	17
Data Evaluation Stage	17
Data Analysis Stage	17
Presentation Stage	19
Comprehensive and Systematic Search	
Search Strategy, Terminology, and Study Selection	19
Quality Appraisal	21
Sources of Bias	21
Appraisal Tools	22
Data Analysis Synthesis	22
Data Analysis Methods	22
Descriptive Results	23
Synthesis	24
Adherence to CPGs	24
CVD Risk Related Outcomes	33
Satisfaction and Preferences	34
Implications for Practice	

Areas for Future Research	37
Ethical Considerations	37
References	39
Appendix A	50
Appendix B	79

Abstract

Cardiovascular disease (CVD) is a preventable disease affecting almost half of adults in the United States (U.S.) and can have significant negative outcomes such as stroke and myocardial infarction, which can be fatal. Utilizing clinical decision support systems (CDSSs) in the primary care and community health setting can improve primary prevention of CVD by supporting evidence-based decision making at the point of care. This integrative review synthesizes the most up-to-date literature on the use of clinical decision support (CDS) tools to support guideline-based management of CVD risk. Using Whittemore and Knafl's framework for integrative reviews, a systematic search of CINAHL, Cochrane, and Medline and ancestry search vielded 492 results; 17 articles were included in the final review after applying inclusion and exclusion criteria. Evidence-based CDSSs for CVD prevention improved guideline-based initiation and intensification of pharmacological treatment, increased frequency and accuracy of CVD risk screening, and facilitated shared decision-making discussions with patients about CVD risk; however, they were not effective in promoting smoking cessation and only sometimes effective in improving blood pressure (BP) control. This integrative review supports future evidence-based practice projects implementing CDSSs designed to improve guideline-based primary prevention of CVD as an, albeit partial, solution to improving prevention of CVD in the U.S. and globally.

Keywords: Clinical decision support system, cardiovascular disease, prevention

ACKNOWLEDGEMENTS

I would like to acknowledge my sister and roommate Ana for being the Samwise Gamgee on my journey through the Mountains and Moria and even the gates of Mordor itself. She fed me Lembas and cheered me on when I felt like I couldn't take another step. She couldn't carry the ring of DNP, but she carried me. I would like to thank Dr. Murphy for being the Lady Galadriel of this quest, providing vision and perspective each time my project changed course. A special thanks to Dr. Goodrich, who has been the Gandalf of my nursing journey, always ready with some timeless wisdom, humor, and encouragement to keep my spirits up and my feet on the right path. A huge thank you to Legolas (Sommer) for helping me reach my destination. Finally, to my friends Merry (Joanna) and Pippin (Cristina) who shined like the Phial of Galadriel in the throes of Mordor, I will forever be indebted to you for inspiring me with your courage, cheering me with your wit, and joining your swords with me in this sacred and enduring Fellowship.

List of Tables and Figures

Table 1	14
Figure 1	
Table 2	

List of Abbreviations

ACC:	American College of Cardiology
AHA:	American Heart Association
ASCVD:	Atherosclerotic Cardiovascular Disease
BMI:	Body Mass Index
BPA:	Best Practice Alert
CDC:	Centers for Disease Control and Prevention
CDS:	Clinical Decision Support
CDSS:	Clinical Decision Support System
CITI:	Collaborative Institutional Training Initiative
CMS:	Centers for Medicare and Medicaid
CPG:	Clinical Practice Guideline
CPSTF:	Community Preventive Services Task Force
CVA:	Cerebral Vascular Accident
CVD:	Cardiovascular Disease
DBP:	Diastolic Blood Pressure
EHR:	Electronic Health Record
NASSS:	Non-Adoption, Abandonment, Scale-Up, Spread, and Sustainability
NCCDPHP:	National Center for Chronic Disease Prevention and Health Promotion
PCP:	Primary Care Provider
PICO:	Population Intervention Comparison Outcome
RCT:	Randomized Control Trial
SBP:	Systolic Blood Pressure
SimCard:	Simplified Cardiovascular Management
TeleHAS:	Tele-Hipertensão Arterial Sistêmica
TORPEDO:	Treatment of Cardiovascular Risk using Electronic Decision Support
U.S.:	United States

CDSSs for CVD Risk Management: An Integrative Review

Cardiovascular disease is a preventable, yet highly prevalent disease and is the leading cause of death worldwide (World Health Organization, 2020). In the U.S., atherosclerotic cardiovascular disease (ASCVD) affects 48.0% of adults ≥20 years old (Benjamin et al., 2019; Blackwell & Villarroel, 2018). Two potential consequences of ASCVD are cerebral vascular accidents and myocardial infarctions, which incur significant morbidity and mortality (Benjamin et al., 2019). Claiming more lives than cancer and chronic lung disease combined, CVD accounted for 360,000 deaths in the U.S. in 2016 alone (Benjamin et al., 2019).

Despite the availability of well-established clinical practice guidelines for the primary prevention of CVD, implementation of evidence-based guidelines remains low globally (Arnett et al., 2019; Bonner et al., 2019; Chalasani et al., 2017; Grundy et al., 2018; Tian et al., 2015). Evidence-based CDSSs targeted at managing CVD risk factors have been associated with decreased CVD risk, improved blood cholesterol control, and enhanced CVD management (Devarajan et al., 2016; Gill et al., 2019; Njie et al., 2015; O'Connor, 2018; Sperl-Hillen et al., 2018). Thus, guideline based CDSSs have the potential to improve primary prevention of CVD.

Formulating the Review Question

Though CVD is largely preventable, heart disease is still the leading cause of death in the U.S., and strokes are the fifth leading cause of mortality in the U.S. per the National Vital Statistics Reports (Kochanek, et al., 2019). Heart disease affects 28.2 million U.S. adults, and 795,000 people in the U.S. are estimated to have a stroke each year (Centers for Disease Control and Prevention [CDC], 2017a; CDC, 2017b). Stroke prevalence is projected to increase to 3.4 million U.S. adults by the year 2030 (Benjamin et al., 2019).

CPG Compliance

Though there are established guidelines for the primary prevention of CVD, implementation of these guidelines remains modest (Arnett et al., 2019; Bonner et al., 2019; Chalasani et al., 2017; Grundy et al., 2018; Pokharel et al., 2017; Tian et al., 2015). This may be due to time constraints placed on PCPs and the overwhelming volume of CPGs that are indicated for the management of patients with multiple comorbidities (Bucher et al., 2017; Yarnall et al., 2003). Depending on patient comorbidity burden, annual time required to provide recommended preventive services to a single patient can range from 9.7 to 26.4 minutes per year (Bucher et al., 2017). Another study estimated that 7.4 hours per workday would be required to provide all the preventive services recommended by the United States Preventive Services Task Force to a patient panel of 2,500 patients (Yarnall et al., 2003).

Increasing time pressures placed on providers in primary care can impede the implementation of some aspects of CVD primary prevention CPGs. For example, current American Heart Association (AHA)/American College of Cardiology (ACC) guidelines for CVD primary prevention and blood cholesterol management require 10-year ASCVD risk calculation in order to determine eligibility for statin therapy for patients without clinical CVD, but this risk assessment may only be done 20% of the time (Arnett et al., 2019; Goff et al., 2014; Grundy et al., 2018; Meschia et al., 2014; Sekaran et al., 2013). This is a significant practice gap in primary prevention since the ACC/AHA guidelines recommend estimating 10-year ASCVD risk for patients 40-79 years old every four to six years (ACC/AHA COR IIa, ACC/AHA LOE B) (Arnett et al., 2019; Goff et al., 2014; Grundy et al., 2018; Meschia et al., 2019; Goff et al., 2014; Grundy et al., 2018; Meschia et al., 2019; Goff et al., 2014; Grundy et al., 2018; Meschia et al., 2019; Goff et al., 2014; Grundy et al., 2018; Meschia et al., 2014).

Another study found that 80% of surveyed providers believe that coronary heart disease risk assessment is useful, but only 41% of providers reported using coronary heart disease risk

assessments in practice, which means 59% were not performing this risk assessment essential to identifying patients at high CVD risk (Shillinglaw et al., 2012). The time-consuming nature of CVD risk calculation and the fact that it is not part of a streamlined workflow have been cited as barriers to completing these risk assessments and discussing lifestyle modification in practice; however, automating risk calculations using a CDSS is one way to overcome these barriers and improve adherence to CPGs (Foraker et al., 2016; North et al., 2016; Shillinglaw et al., 2012).

Attitudinal factors can impact the implementation of CPGs in practice. For instance, provider attitudes toward CPG recommendations for statin therapy vary across the spectrum from acceptance to hesitancy and may be influenced by negative media coverage (Abimbola et al., 2019; Housholder-Hughes et al., 2017; Setia et al., 2015). Even in some cardiology practices, adoption of the 2013 AHA/ACC Cholesterol Management Guidelines was found to be modest at best (Pokharel et al., 2017). One survey of providers found that the majority agreed with the recommendations of the 2013 AHA/ACC Adult Cholesterol Guideline, yet only 67% of patients with established coronary artery disease were receiving appropriate high-intensity statin therapy for secondary prevention (Housholder-Hughes et al., 2017). In a different study, 68% of patients with high CVD risk were not prescribed statins even though these are recommended by CPGs (Hennessy et al., 2016). This highlights the discrepancy that can sometimes exist between intention to treat and prescriptions for statin-eligible patients (Housholder-Hughes et al., 2017)

Low implementation of CPGs has resulted in practice gaps in primary and secondary prevention of CVD (Hennessy et al., 2016; Housholder-Hughes et al., 2017; Sekaran et al., 2013; Shillinglaw et al., 2012). This highlights the need to develop timesaving, evidence-based strategies to close practice gaps related to guideline-based primary CVD prevention and support clinician decision making at the point of care. One of the key outcomes this integrative review examines is how CDSSs can close the gap between intention to treat and actual prescriptions for preventive medications like antihypertensives and statins.

Meaningful Use

Given the burden of CVD in the U.S. population, the Million Hearts initiative was established by United States Department of Health and Human Services to promote compliance with evidence-based CPGs aimed at improving primary and secondary prevention of CVD through the focus on Aspirin when appropriate, BP control, cholesterol management, and smoking cessation (Million Hearts, n.d.-a). This initiative partnered with Centers for Medicare and Medicaid to align meaningful use criteria with these objectives; cholesterol management, for example, is addressed in the CMS Quality Payment Program under quality ID 438 (CMS, 2018; Million Hearts, n.d.-b). Thus, implementing CDSSs aimed at improving guideline-based primary prevention of CVD has the potential to increase reimbursement as a meaningful use of health information technology by increasing the proportion of patients receiving appropriate statin therapy per CPG recommendations (CMS, 2018; Foraker et al., 2016; Grundy et al., 2018). For example, integrating the AHA-ASCVD Risk Estimator paired with a CDS tool into the EMR at Mayo Clinic increased the accuracy of provider ASCVD 10-year risk calculations and selection of guideline-based treatments from 60.61% to 100% (Scheitel et al., 2017).

CDSS

Clinical decision support systems provide pertinent information to aid provider decision making and are frequently built to fit into the provider workflow (Agency for Healthcare Research and Quality, 2019; Hopkins & Community Preventive Services Task Force [CPSTF], 2015; Njie et al., 2015). Examples of CDSSs include order sets and best practice alerts (BPAs) about dangerous situations or recommended preventative health interventions (Agency for Healthcare Research and Quality, 2019). Many CDSSs designed to support primary prevention of CVD do not require the provider to query the system but are instead "'system-initiated'" and provide recommendations automatically (Hopkins & CPSTF, 2015, p. 797; Njie et al., 2015). Examples of CDSSs for CVD prevention include automatically calculated CVD risk estimates, alerts when CVD risk factors are uncontrolled or when labs are missing, evidence-based recommendations for treatment initiation or intensification, and reminders to educate patients about lifestyle modification (e.g. smoking cessation, exercise, and sodium intake moderation) (Hopkins & CPSTF, 2015). A systematic review by Njie et al. (2015) found the most successful CDSSs for CVD prevention were locally developed and tailored to meet practice needs.

Clinical decision support systems are typically computer-based tools which analyze data within the electronic health record (EHR) and can generate evidence-based alerts to remind providers to implement CPG recommendations regarding cardiovascular health (National Center for Chronic Disease Prevention and Health Promotion [NCCDPHP], 2018). The third domain of NCCDPHP's (2020) *Best Practices for Cardiovascular Disease Prevention Programs* is health care system level interventions. Because guideline-based CDSS tools are health system-level interventions, CDSS tools that support PCP evidence-based decision making for CVD prevention align with the third domain in NCCDPHP's (2020) approach to chronic disease prevention.

Rationale for Conducting the Review

A systematic review by Njie et al. (2015) is the most recent review this writer was able to locate on this topic; Njie et al.'s (2015) review used a sample of articles published between 1975 and 2011. Since health information technology is continuously evolving, this integrative review is needed to synthesize the most up-to-date evidence using peer-reviewed articles published in the last five years. This integrative review will answer the population intervention comparison

outcome (PICO) question: How do CDSS tools support primary prevention of CVD in primary care? This integrative review's results will help guide future evidence-base practice initiatives.

This integrative review synthesizes the extant literature on the use of CDSSs in the primary care setting for primary prevention of CVD. Enhancing CVD primary prevention is significant as both stroke and myocardial infarction can cause considerable morbidity and mortality (Benjamin et al., 2019). Actions targeted at improving modifiable risk factor management through implementation of CDS tools in primary care can, therefore, improve population health by preventing CVD and CVD events. Thus, this integrative review aims to evaluate how CDSS tools support primary prevention of CVD in primary care.

Review Questions

This integrative review seeks to answer the following PICO question:

How do CDSS tools support primary prevention of CVD in primary care? Questions to help guide and focus this integrative review include:

- 1. How do CDSS tools affect adherence to CPGs for primary prevention of CVD?
- 2. How do CDSS tools impact CVD risk factors such as hypertension and smoking?
- 3. What design features are preferred by clinicians and improve satisfaction with CDSS tools?

Formulation of Inclusion and Exclusion Criteria

Separate inclusion and exclusion criteria were used for the database-assisted and ancestry searches. Table one represents inclusion and exclusion criteria applied to the articles obtained in the database search. The inclusion and exclusion criteria for the ancestry search are the same except with a narrower date range (one year vs. five-year date range).

Table 1

Database Search Inclusion and Exclusion Criteria

Inclusion Criteria	Exclusion Criteria
Original quantitative or qualitative research studies,	Published before January 1,
systematic reviews, or theoretical literature or framework	2015
Examines the use of CDSSs in the primary care setting to	Not available in full text
support provider decision making regarding primary	
prevention of CVD	
Published in a peer-reviewed journal in English	The study/clinical trial is
	ongoing, and no results are
	reported

Note: These inclusion and exclusion criteria apply to the database and hand searches.

This writer completed an ancestry search, also known as reference search, by examining the titles of sources cited in the reference lists of articles included in the final sample obtained using the above database search (Toronto & Remington, 2020; Whittemore & Knafl, 2005). Articles in the ancestry search were included if they met the following criteria: 1) original quantitative or qualitative research studies, systematic reviews, or theoretical literature or framework, 2) examines the use of CDSSs in the primary care setting to support provider decision making regarding primary prevention of CVD, and 3) published 01/01/2019-05/01/2020. Articles were excluded if not available in full-text and in English.

Methods

Conceptual Framework

Whittemore and Knafl's (2005) model guided the data collection and literature synthesis of this integrative review. This model builds on the integrative review framework pioneered by Cooper (1998) and is made up of four stages: 1) problem identification, 2) literature search, 3)

data evaluation, and 4) data analysis. Built upon the foundation laid by Cooper's (1998) framework, the Whittemore and Knafl (2005) model further delineates methods for data analysis into four steps: 1) data reduction, 2) data display, 3) data comparison, and 4) conclusion drawing and verification.

Problem Identification Stage

As described above, providers who deliver primary care to adult patients at high risk for CVD are faced with increasing pressures caused by the sheer volume of guideline-based recommendations indicated for patients with multiple comorbidities (Bucher et al., 2017; Yarnall et al., 2003). This is further complicated by high overhead and shrinking margins in a pay-for-performance reimbursement system which cause providers to allot shorter time slots for annual and periodic disease management visits in order to increase patient volume and meet the demands of practice quotas. As the central touchpoint for patient care coordination, the PCP plays a vital role in disease management but also primary prevention of conditions such as CVD. Thus, supporting CVD primary prevention in primary care is vital to decreasing the burden of disease in the U.S. and globally.

Currently, implementation of CPGs for primary and secondary prevention of CVD remains suboptimal (Hennessy et al., 2016; Shillinglaw et al., 2012). Thus, there is an opportunity for improvement, which may be accomplished through the application of healthcare information technology (Scheitel et al., 2017). Evidence-based CDSSs may be able to improve adherence to CPGs for CVD primary prevention, CVD risk factors, and clinician satisfaction with the process of applying CVD primary prevention CPGs in practice.

Literature Search Stage

Following the Whittemore and Knafl (2005) framework, this writer assembled and vetted relevant empirical and theoretical literature related to CDSSs used to support primary prevention of CVD in primary care and community health settings. This DNP systematically searched the literature using a combination of computer-assisted database and ancestry searches as recommended by Whittemore and Knafl (2005). Multiple methods were chosen for the literature search since database searches may only yield ~50% of relevant articles; thus, broadening this search helped maximize the inclusion of applicable primary sources for this integrated review (Whittemore & Knafl, 2005). Using robust methods for article selection helped minimize bias and allow for greater confidence in the results and conclusions. Using robust literature searching methods helped strengthen the evidence regarding implementation of CDSS tools for primary prevention of CVD in primary care and community health settings.

Data Evaluation Stage

Systematically evaluating article quality is vital to weighing the strength of the evidence (Whittemore & Knafl, 2005). This integrative review included empirical research with diverse methodologies and settings as well as theoretical literature. This DNP student evaluated the quality of the included articles using Melnyk's (2016) levels of evidence and the SIGN tools which provide critical appraisal notes and checklists for various research methodologies (Healthcare Improvement Scotland, n.d.). These tools were used to evaluate each article individually and identify strengths and limitations, which are summarized in the results section. *Data Analysis Stage*

Whittemore and Knafl's (2005) model "requires that the data from primary sources are ordered, coded, categorized, and summarized into a unified and integrated conclusion about the

research problem" (p. 550). In the Whittemore and Knafl (2005) model for integrative reviews, the four steps of data analysis are data reduction, data display, data comparison, and conclusion drawing and verification. Following the Whittemore and Knafl (2005) framework for integrative reviews, this writer extracted the data from primary sources and organized them into their respective categories. She then displayed data in matrices created in Microsoft Excel® and compared the extracted data to identify patterns and themes. After drawing conclusions, this DNP student verified that these conclusions aligned with original articles by comparing them to the primary sources.

Data Reduction. Data from each article was extracted using the Whittemore and Knafl (2005) model and organized into three outcome categories: 1) adherence to clinical practice guidelines for primary prevention of CVD, 2) impact on BP and smoking cessation, 3) clinician satisfaction with and preferences for CDSS design and implementation. The evidence for each of these outcome categories were subclassified based on type of research and level of evidence (Whittemore & Knafl, 2005). Thus, this writer used Melnyk's (2016) levels of evidence to evaluate the quality of primary sources and organize data in matrices (Whittemore & Knafl, 2005).

Data Display. This writer used MS Excel® to manage citations and organize the data extracted from primary sources into matrices to facilitate data analysis (Whittemore & Knafl, 2005). Data extracted from primary sources were assembled into an article matrix and organized by level of evidence (Whittemore & Knafl, 2005). Using this matrix allowed detailed representation of the data and eased the process of interpretation (Whittemore & Knafl, 2005).

Data Comparison. Relationships between variables were identified and displayed using handwritten notes. This allowed the DNP student to identify themes among the data and draw

comparisons (Whittemore & Knafl, 2005). Visualizing the data allowed the writer to recognize patterns during the data analysis process (Whittemore & Knafl, 2005).

Conclusion Drawing and Verification. In the final step of data analysis, this writer subsumed particulars from individual sources into the general, describing patterns identified in the above steps and summarizing themes at a higher level of abstraction (Whittemore & Knafl, 2005). The summary of patterns and themes was compared to the primary sources from which they were extracted to verify accuracy (Whittemore & Knafl, 2005). Verifying the accuracy of conclusions also involved identifying conflicts between primary sources and possible confounding factors that may be contributing to the conflict (Whittemore & Knafl, 2005). After resolving conflicts where possible, the writer described the results in a broad summary of findings (Whittemore & Knafl, 2005).

Presentation Stage

In the final stage of the Whittemore and Knafl (2005) model, the results of an integrated review are presented and disseminated. Key findings of this integrative review are summarized in a table at the end of this manuscript; see Appendix A. This writer may submit an abbreviated description of this integrated review to the Sigma Theta Tau Publication: *WORLDViews on Evidence-Base Nursing*.

Comprehensive and Systematic Search

Search Strategy, Terminology, and Study Selection

A systematic search of the literature was completed by this researcher May 25, 2020 through July 10, 2020 using computer-assisted searches of CINAHL, Cochrane, and Medline with Full Text using the search terms: (clinical decision support OR CDSS OR CDS OR informatics) AND (card* disease OR atherosclerotic cardiovascular disease OR ASCVD OR CVD) AND (primary) AND (prevent*) and an ancestry search of included articles. A university librarian specializing in nursing research topics was consulted and confirmed that the search terms were appropriate and comprehensive. Articles in the data-based assisted search were selected based on the inclusion and exclusion criteria listed in Table 1; ancestry and database search inclusion and exclusion criteria are described above.

The database search generated 474 results and the ancestry search 18 results. This writer reviewed titles and abstracts of 492 articles for relevance and excluded 427 articles based on the inclusion and exclusion criteria listed previously. After eliminating 12 duplicates, 31 articles were evaluated through in-depth evaluation of contents and aims; articles were excluded if they did not report original results or did not evaluate CDSSs targeted at providers. Fourteen articles were excluded after this evaluation, which left 17 articles in the final integrative review sample. See the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Flowchart in Figure 1 for article selection.

Figure 1

Literature Search Flow Diagram

Note: Adapted from Moher et al. (2009).

Quality Appraisal

Sources of Bias

Publication bias and selective reporting are two potential sources of bias that may have affected the articles included in this integrative review as researchers tend to be more motivated to publish successful outcomes than negative ones (Toronto & Remington, 2020). A common limitation of these studies was lack of random sampling methods (Bonner et al., 2019; Chaudhry et al., 2019; DeJonckheere et al., 2018; Patel et al., 2019; Raghu et al., 2015; Williams et al., 2016; Ye et al., 2018). Many studies used a sample size with less than 100 participants (Bonner et al., 2019; Chaudhry et al., 2019; DeJonckheere et al., 2018; Raghu et al., 2015; Silveira et al., 2019; Williams et al., 2016; Ye et al., 2018). Nevertheless, several of these studies used large sample sizes with 1,000-38,725 participants (Chalasani et al., 2017; Patel et al., 2019; Peiris et al., 2015, 2019; Sperl-Hillen et al., 2018; Tian et al., 2015).

Appraisal Tools

Melnyk (2016) levels of evidence was used to differentiate types of research. The SIGN checklist was used to critique each randomized control trial (RCT) for its strengths and weaknesses and methodological integrity; unfortunately, SIGN checklists were not available for other types of evidence included in this review: quasi-experimental, mixed methods, and qualitative research (Healthcare Improvement Scotland, n.d.). To promote the internal validity of this review, this writer evaluated each study for limitations and methodological flaws; see Appendix A (Toronto & Remington, 2020). Overall, the quality of the 17 included articles was good, and the five RCTs included in this review were evaluated to be high quality using the SIGN checklists.

Data Analysis Synthesis

Data Analysis Methods

Data from each study was analyzed and categorized into broad categories based on the three outcomes of interest and then subcategorized based on themes identified in the literature. Results in each outcome category were analyzed and compared in order to identify patterns and themes. Conclusions were verified by comparing results to primary sources. This data analysis process aligns with the Whitmore and Knafl (2005) methodology.

Descriptive Results

This literature search focused on how CDSS tools support primary prevention of CVD in the primary care setting. Of the 17 studies included in the final review, five were RCTs (Level II Evidence) (Chalasani et al., 2017; Peiris et al., 2015, 2019; Sperl-Hillen et al., 2018; Tian et al., 2015). Four of the included studies were quasi-experimental (Level III Evidence) (Alameddine et al., 2020; Patel et al., 2019; Persell et al., 2020; Ye et al., 2018). One was a cohort study (Level IV evidence) (Bonner et al., 2019). Three were descriptive studies (Level VI Evidence) (Raghu et al., 2015; Silveira et al, 2019; Williams et al., 2016). Three qualitative studies were also included (Level VI Evidence) (Abimbola et al., 2019; Chaudhry et al., 2019; DeJonckheere et al., 2018). Lastly, one described the development of a framework and was included because it qualified as theoretical literature (Level VII Evidence) (Benson, 2019). A detailed summary of these articles is provided in Appendix A.

Articles included in this integrative review were up-to-date and representative of CDSSs implementation efforts in low-, middle-, and high-income countries. Articles included in this review showed how CDSSs can be implemented in diverse settings with variations in availability of resources. Resource-limited settings were more likely to implement mobile-based CDSSs on a tablet or smart phone device; some, but not all, of these apps interfaced with a server connecting patient data to an EHR system (Patel et al., 2019; Peiris et al., 2019; Raghu et al., 2015; Silveira et al., 2019; Tian et a., 2015). In these resource-poor settings, Wi-Fi and EHRs were not always available, so researchers leveraged the wide dissemination of smart devices in these regions to

promote cardiovascular health (Patel et al., 2019; Peiris et al., 2019; Raghu et al., 2015; Silveira et al., 2019; Tian et a., 2015).

Of the 17 included articles, six were set in the United States, four in Australia, two in rural India, one in China and India, one in Indonesia, one in Brazil, one in Lebanon, and one in the United Kingdom. Most articles included in the final sample were published recently with 70% (12/17) published in the last two and a half years (2018 to present) (Abimbola et al., 2019; Alameddine et al., 2020; Benson, 2019; Bonner et al., 2019; Chaudhry et al., 2019; DeJonckheere et al., 2018; Patel et al., 2019; Persell et al., 2020; Peiris et al., 2019; Silveira et al, 2019; Sperl-Hillen et al., 2018; Ye et al., 2018). Thus, included studies provided the most up-todate evidence and included data collected from multiple countries around the world.

Synthesis

After analyzing the results reported in the literature included in this integrative review, the first outcome category, adherence to CPGs, was broken down into three outcome subcategories: CVD risk screening, appropriate CVD prevention prescriptions, and CVD risk discussions with patients. The second outcome for this integrative review, patient outcomes, was subcategorized into the following patient parameters: BP and smoking cessation. Finally, the third outcome included factors that impacted provider satisfaction and provider preferences for CDSS design and implementation. Results are discussed below subcategorized by outcome and in descending order of level of evidence based on Melnyk's (2016) pyramid.

Adherence to CPGs

Implementation of evidence-based CDSSs for prevention and management of CVD in primary healthcare and community healthcare settings led to statistically and clinically significant increases in the frequency and accuracy of CVD risk screenings in the majority of included studies (Bonner et al., 2019; Chalasani et al., 2017; Peiris et al., 2015; Sperl-Hillen et al., 2018). Impact of evidence-based CDSSs on prescriptions for appropriate preventative therapy was mostly positive with clinical but not always statistical significance (Alameddine et al., 2020; Abimbola et al., 2019; Bonner et al., 2019; Chalasani et al., 2017; Patel et al., 2019; Peiris et al., 2015, 2019; Persell et al., 2020; Tian et al., 2015). Thus, evidence-based CDSSs can help support adherence to CPGs when they are carefully aligned with guideline recommendations.

CVD Risk Screening. In most included studies, implementation of a CDSS for CVD prevention and management led to statistically and clinically significant increases in CVD risk screening completed in primary care and community health settings (Bonner et al., 2019; Chalasani et al., 2017; Peiris et al., 2015; Sperl-Hillen et al., 2018). In the Treatment of Cardiovascular Risk using Electronic Decision Support (TORPEDO) study involving 60 Australian primary healthcare clinics (n=38,725 patients), implementation of CDSS and audit and feedback tools led to statistically and clinically significant improvements in CVD risk screening; 62.8% of patients randomized to intervention clinics were screened for CVD risk factors compared to 53.4% in the usual care group (p=0.02) (Chalasani et al., 2017; Peiris et al., 2015). This represents a statistically significant difference of 9.4% (p=0.02) (Level II Evidence) (Chalasani et al., 2017; Peiris et al., 2015).

In the TORPEDO study, the intervention group had a statistically significant higher recording of high-density lipoproteins (HDL) and total cholesterol in the last 24 months in the EHR, 75.5% vs. 66.5% (p=0.02) (Peiris et al., 2015). While the percentage of patients having a systolic BP (SBP) recorded in the previous 12 months was higher in the intervention group, the difference was not statistically significant, 84.8% vs. 80.6%, p=0.09 (Peiris et al., 2015). In

contrast, there was neither a clinically or statistically significant difference in the recording of smoking status, BMI, albuminuria, and estimated glomerular filtration rate between intervention and usual care arms of this study (Peiris et al., 2015). While the CDSS significantly improved appropriate screening for CVD risk factors (62.8 vs 53.4%, p=0.02), this was mainly driven by increased recording of SBP and cholesterol levels (Level II Evidence) (Peiris et al., 2015).

Another RCT by Sperl-Hillen et al. (2018) involving 20 U.S. primary care clinics (n=7,914 patients) randomized intervention clinics to have access to an EHR-integrated, webbased CDSS that was co-designed with input from PCPs and nurse leaders to match clinic workflow (Sperl-Hillen et al., 2018). This CDSS provided personalized and prioritized recommendations targeted at patients and providers (Sperl-Hillen et al., 2018). During the "vanguard" phase of this study, rooming nurses were responsible for triggering the CDSS printout; in this phase, rooming staff only triggered the CDSS for 20% of study eligible, high CVD risk patients (Sperl-Hillen et al., 2018, p. 1140).

In the second phase, the CDS BPA automatically fired and then required only two clicks for rooming staff to print the lay and professional versions of the CDS tool (Sperl-Hillen et al., 2018). The lay version was given to the patient with instructions to discuss with their provider, and a more detailed version was given to providers with specific recommendations based on patient's calculated CVD risk and clinical data (Sperl-Hillen et al., 2018). At the 18-month follow-up, 73% of providers in the CDS arm reported they often use calculated CVD risk while seeing patients compared to 25% in the usual care group (p=0.006) (Sperl-Hillen et al., 2018). This represents a statistically and clinically significant difference of 48% (p=0.006) (Level II Evidence) (Sperl-Hillen et al., 2018). A potential explanation for magnitude of the improvement in CVD screening observed in the Sperl-Hillen et al. (2018) RCT may be related to the fact that it engaged several levels of the healthcare team—the nurse, provider, and patient—whereas the intervention in the TORPEDO trial by Peiris et al. (2015) was aimed chiefly at the provider.

A mixed methods study used in resource-limited primary care clinics in Brazil evaluated the feasibility, utility, and usability of a mobile-based CDSS for the management of hypertension (Silveira et al., 2019). In contrast to the more successful studies mentioned above, in this pilot study only three out of 10 providers who piloted the CDSS used the tool to calculate cardiovascular risk using the 10-year global risk score chart (Silveira et al., 2019). Nevertheless, the TeleHAS (tele-hipertensão arterial sistêmica which translates to arterial hypertension) tool had other functions that supported hypertension management and was used with 535 patients in a total of 632 patient encounters (Silveira et al., 2019). Physician surveys indicated that this tool caused delays in care due to the work duplication it required and would have been more helpful if it could have been auto populated with patient data (Level VI Evidence) (Silveira et al., 2019). This was not possible due to the lack of EHRs and Wi-Fi in these clinics (Silveira et al., 2019).

In a cohort study by Bonner et al. (2019), a web-based CDS with a built-in CVD risk calculator was linked to an existing audit and feedback tool to support provider implementation of Australian CVD prevention guidelines and facilitate provider-patient CVD risk discussions. Bonner et al. (2019) used a five-stage, iterative process informed by the Behaviour Change Wheel framework to develop a web-based tool integrating the Framingham 5-year CVD risk calculator with an audit and feedback and guideline-based decision aid. After providers trialed the final product in the fifth phase of the study, providers' ability to accurately identify patients at high CVD risk significantly increased compared to baseline without the use of the CDS (Bonner et al., 2019). Correct identification of low risk patients increased by 16% (95% confidence interval 0-32%), moderate risk patients by 32% (95% confidence interval 6-57%),

and high-risk patients by 50% (95% confidence interval 35-65%) (Level IV Evidence) (Bonner et al., 2019). As patients at high CVD risk are the most likely to benefit from primary prevention medications, it is significant that the magnitude of improvement from baseline was highest in identifying patients at highest risk, 50% improvement compared to 16% and 32% improvements in in the low- and moderate-risk patient categories, respectively (Bonner et al., 2019).

While the accuracy of screening increased in this pilot, there was no increase in selfreported use of CVD risk calculators by providers post-intervention (Bonner et al., 2019). This may be because there was a relatively high proportion of providers (95%) who reported using other absolute CVD risk calculators at baseline (Bonner et al., 2019). However, this CDSS used a risk calculator and decision support functions uniquely designed to support implementation of Australian guidelines, a function not provided by other available tools (Bonner et al., 2019).

Pharmacological Prevention. In the TORPEDO RCT, 60 Australian primary healthcare clinics were cluster randomized to receive either usual care or a combination of quality improvement interventions (Chalasani et al., 2017; Peiris et al., 2015). Baseline data was collected for 53,164 patients and follow-up data extracted for 38,725 patients (Chalasani et al., 2017; Peiris et al., 2015). Practices in the intervention group had access to a guideline-based screening and algorithm for management of CVD, chronic kidney disease, BP, and cholesterol through a CDSS that pulled patient data from within the EHR to prepopulate the tool and generate point-of-care recommendations based on patient's absolute CVD risk as well as a software to generate site-specific audits and performance feedback for providers (Chalasani et al., 2017; Peiris et al., 2015).

These quality improvement interventions led to clinically but not always statistically significant differences in appropriate prescriptions in the intervention group compared to usual

care (Chalasani et al., 2017). There was only a 5.6% net increase in appropriate prescriptions for high CVD risk patients in the intervention group compared to usual care (56.8% vs. 51.2%, p=0.09) (Peiris et al., 2015). Compared to usual care, the intervention improved escalation of antiplatelet and lipid-lowering therapy by 15.4% and 16.5% (p=<0.001), respectively (Peiris et al., 2015).

Clinically significant improvements were observed in appropriate prescriptions for antihypertensives and combination therapy (at least 1 antihypertensive + statin for high CVD risk patients and at least 1 antihypertensive, a statin, and antiplatelet medication for patients with CVD diagnosis), but they were not statistically significant (Peiris et al., 2015). When compared with baseline levels for each group, there was no statistically significant increase in the prescription of appropriate medications for patients at high risk of CVD (Peiris et al., 2015). There were, however, statistically significant increases in individual medication intensification (Peiris et al., 2015).

A different RCT by Peiris et al. (2019) implemented the SMARTHealth India Android app (available in Telugu and English) used by community health workers in 18 rural, resourcelimited Indian villages using a stepped-wedge approach. The app incorporates 10-year CVD risk assessment and lifestyle modification education that were executed by community health workers as well as a version with pharmacological decision support for physicians (Peiris et al., 2019). Seventy percent of patients identified by community health workers as high risk for CVD received physician follow-up, and, at follow up, there was a significant improvement in patients reporting taking antihypertensives, from 47.9% in the control to 54.3% in the intervention group (p=0.02) (Level II Evidence) (Peiris et al., 2019).

Increases in prescriptions of antihypertensive and aspirin medications were seen in a similar cluster RCT using a mobile-based CDS in villages in Tibet, China and Haryana, India called the Simplified Cardiovascular Management (SimCard) study (Level II Evidence) (Tian et al., 2015). In China, the CDS tool was used by non-physician "village doctors" who had basic medical training and prescriptive authority and by volunteer community health workers in India who did not have prescriptive authority but were able to send recommendations to physicians for prescriptions (Tian et al., 2015, p. 816). There were increases in anti-hypertensive medication prescriptions in both the intervention and control groups in both China and India with a net differences between intervention and control groups which were statistically significant for both countries: 24.4% in China (p=<0.001) and 26.6% in India (p=0.02) (Tian et al., 2015). Finally, improvements were seen in patient-reported aspirin use in the last month with a net increase of 24.5% in Chinese intervention group (p=<0.001) and 9.8% net increase in Indian intervention group (p=0.003) (Tian et al., 2015).

Another mobile-based CDSS was used by community health workers (*kaders*) in four intervention villages in rural Indonesia and compared to usual care in four control villages in a quasi-experimental study by Patel et al. (2019). High CVD risk patients were referred for either nurse or physician follow-up (Patel et al., 2019). At follow-up, 15.5% of patients identified by researchers as high risk for CVD in the intervention villages were receiving appropriate preventive treatment compared to 1.0% in the control villages (p=<0.001), 56.8% were receiving antihypertensives compared to 15.7% in the control group (p=<0.001), 19.9% were receiving lipid-lowering medications vs. 2.4% in the control (p=<0.001), and 24.6% of patients with established CVD were receiving antiplatelet medications vs. 12.7% in the control (p=0.06) (Level III Evidence) (Patel et al., 2019).

A quasi-experimental study in Lebanon by Alameddine et al. (2020) used a phased approach to evaluate effects of different ways of displaying ASCVD risk scores on provider behaviors. The first phase involved displaying the patient's ASCVD risk score passively in the vital signs section of the EHR; this resulted in no significant improvement in statin prescriptions for high-risk patients (9.1% to 11.1%) (Level III Evidence) (Alameddine et al., 2020). In contrast, the second phase requiring nurses to manually calculate ASCVD risk and write a nurse's note visible to physicians stating the patient's risk and evidence-based recommendations resulted in initiation of statin therapy for 33.3% of moderate-risk patients (compared to 0% prescriptions at baseline) and statin prescriptions for 28.6% high risk patients (compared to 9.1% at baseline and 11.1% after the first intervention) (Level III Evidence) (Alameddine et al., 2020). Major limitations of this study were that patient ASCVD risk had to be manually calculated and methodology may have allowed for selection bias by nurses (Alameddine et al., 2020).

Overall, implementation of CDSSs for primary prevention of CVD led to improved statin prescribing for moderate- and high-risk patients (Alameddine et al., 2020; Chalasani et al., 2017; Patel et al., 2019; Peiris et al., 2015; Persell et al., 2020). While not all included studies reported the effect of CDSS implementation on statin prescribing, all studies which reported this outcome demonstrated clinically significant and mostly statistically significant increases in lipid-lowering prescriptions (Alameddine et al., 2020; Chalasani et al., 2017; Patel et al., 2019; Peiris et al., 2015; Persell et al., 2020). Nevertheless, these CDSSs did not completely close the gap between guideline recommendations for statin therapy and practice (Alameddine et al., 2020; Chalasani et al., 2017; Patel et al., 2019; Peiris et al., 2015; Persell et al., 2020). Outside factors may have negatively affected guideline-based statin prescribing in these studies. Using the non-adoption, abandonment, scale-up, spread, and sustainability (NASSS) framework to retrospectively analyze the TORPEDO program, Abimbola et al. (2019) noted that the degree of improvement in statin prescriptions observed in this RCT may have been less than it could have been since providers reported reducing statin prescriptions at the same time as this study due to negative media coverage of statins (Abimbola et al., 2019).

Finally, in all of the included studies CDSSs resulted in clinically, and sometimes statistically, significant improvements in antihypertensive prescriptions compared to usual care or control groups (Chalasani et al., 2017; Patel et al., 2019; Peiris et al., 2015, 2019; Persell et al., 2020; Tian et al., 2015). The CDSS implemented in the cohort study by Bonner et al. (2019) resulted in improved recognition of patients who would benefit from antihypertensive and anti-lipid prescriptions; this is significant since recognition of patients at risk for CVD risk is a key step in closing this practice gap in preventive care for patients at risk for CVD. Finally, this cohort study noted that this increased recognition of patients who would benefit from preventive medications did not result in increases in overtreatment of low-risk patients, which helps relieve concerns that these CDS tools will result in inappropriate treatment of patients not likely to benefit from pharmacological treatment (Bonner et al., 2019).

CVD Risk Discussions. Guidelines from the AHA and ACC recommend providers use shared decision making to guide prescribing of statins (Grundy et al., 2018). A CDSS tool which automatically provides the patient's individualized 10-year ASCVD risk provides a piece of information vital to this conversation (Ye et al., 2018). The cluster RCT by Sperl-Hillen et al. (2018) demonstrated that providing PCPs with automatically calculated individualized patient CVD risk combined with treatment recommendations resulted in twice as many providers in the intervention group reporting they often discuss CVD risk reduction with patients compared to usual the care group (60% vs. 30%, p=0.06) at the 18-month follow-up (Level II Evidence).

A U.S. quasi-experiment study by Ye. et al. (2018) evaluated the effect of an EHR-based CDS tool that automatically calculates 10-year ASCVD risk combined with physician education on the Mayo Clinic Statin Choice decision aid. While providers' self-evaluations of shared decision-making competence increased after education on the statin decision aid at the three-month follow-up, providers attitudes did not change on shared decision making and utilization of the Mayo Clinic Statin Choice decision aid tool only increased from 3.4 to 5.2 times per 1,000 patient visits (p=0.002) after the intervention (Ye et al., 2018). While this is statistically significant, it is unclear how clinically significant this increase is since patient demographics and who would have benefited from a shared decision-making conversation were not reported along with the results. Nevertheless, implementation of CDSS tools seems to help providers initiate more CVD risk discussions, facilitate shared decision making, and improve provider confidence with shared decision-making conversations (Sperl-Hillen et al., 2018; Ye et al., 2018).

CVD Risk Related Outcomes

Clinical decision support tools for CVD prevention and management had mixed effects on BP in the studies included in this review. Evidence-based CDSSs did not mediate improvements in mean BP in the majority of RCTs included in this review (Level II Evidence) (Peiris et al., 2015, 2019; Tian et al., 2015). However, in the RCT by Tian et al. (2015) the mobile-based CDSS intervention mediated a decrease in mean SBP in the Chinese intervention group with a net difference of -4.1 mm Hg (p=0.006) but no improvement in the Indian intervention group, which may stem from the higher prevalence of hypertension in the Chinese cohort (51%) at baseline compared to the Indian cohort (25%) (Level II Evidence). Also, in the Peiris et al. (2015) RCT, 61.0% of patients in the intervention group achieved BP goals compared to 55.0% in the usual care group (p=0.05) (Level II Evidence). Finally, in Patel et al.'s (2019) quasi-experimental study, the mobile-based CDSS was associated with clinically and statistically significant improvements in achievement of BP targets among high CVD risk patients and mean reductions in SBP and diastolic BP (DBP) in the intervention group compared to the control (Level III Evidence).

In the RCTs included in this integrative review, evidence-based CDSSs for CVD management and prevention had little to no effect on smoking cessation (Level II Evidence) (Peiris et al., 2019; Sperl-Hillen et al., 2018; Tian et al., 2015). Modest improvement was seen in the quasi-experimental study by Patel et al. (2019) as evidenced by 16.0% of Indonesian patients in the intervention group who were smoking at follow-up compared to 18.4% in the control (Level III Evidence). Clearly, other interventions are needed to increase smoking cessation among patients, especially those at high risk for CVD.

Satisfaction and Preferences

Overall, surveys and interviews with end-users found that CDSSs helped support evidence-based practice, preventative management and control of CVD risk factors, and provider thought processes and decision making (Chaudhry et al., 2019; Silveira et al., 2019; Sperl-Hillen et al., 2018). While end-users of the CDSS used in the Sperl-Hillen et al. (2018) RCT believed it saved time calculating risk, providers in the mixed methods study by Silveira et al. (2019) believed that using TeleHAS tool led to delays in care. In the Sperl-Hillen et al. (2018) trial, printing the CDSS only required two clicks by rooming nurses; in contrast, the CDSS used in the Brazilian study required providers to manually enter data into the app loaded on an Android device, which caused work duplication in a health system where Brazilian physicians already had an "excessive workload" (Silveira et al., 2019, p. 9). Qualitative research indicates that clinicians prefer accurate, simple, and straightforward prompts that are arranged logically and support evidence-based statin prescribing with the option to dismiss the prompt if it is inaccurate or irrelevant (Level VI Evidence) (DeJonckheere et al., 2018). Interviews with providers also indicated a preference for clear and direct language, easyto-use formatting, and a CDSS that would improve efficiency (DeJonckheere et al., 2018). Referring to the calculation of 10-year ASCVD risk, one participant in the study by DeJonckheere et al. (2018) stated, "'If the reminder already calculated the risk, I'd love that. I hate having to go to the internet, or look on my smartphone, so I think the ideal reminder would calculate the risk for you" (p. 6).

Feedback from end-users indicated that they preferred CDSSs to be integrated into the EHR or, if this was not possible, for patient data from the EHR to auto-populate the CDSS and also flow back into the EHR from the CDSS (Abimbola et al., 2019; Bonner et al., 2019). If neither were possible, providers requested data to flow from one section of the CDSS to another and for the CDSS to require minimal data entry and not force providers to fill out every field (Bonner et al., 2019; Silveira et al., 2019; Williams et al., 2016). Issues like system bugs and glitches, lack of technical support at the clinic or system level, and time-consuming processes were predictors of increased frustration and decreased uptake and sustainability of CDSSs in the studies included in this review (Abimbola et al., 2019; Raghu et al., 2015; Silveira et al., 2019).

Taking a theory-informed approach, Abimbola et al. (2019) applied the NASSS framework to retrospectively interpret data collected in each phase of the TORPEDO program as well as new qualitative data gleaned from interviews with researchers. Using the seven domains of the NASSS framework, Abimbola et al. (2019) were able to identify key facilitators and barriers to multi-site implementation of CDS tools. Major barriers to implementation included lack of access to technical support to work through system glitches and no financial incentive to perform cardiovascular assessments in the Australian health system (Abimbola et al., 2019). Clinics enrolled in the TORPEDO program also varied widely in their ability and desire to innovate (Abimbola et al., 2019).

Finally, Abimbola et al. (2019) suggest that task-sharing with non-physician healthcare workers, such as nurses or community health workers, may alleviate the burden on providers. The successes of this type of task-sharing are highlighted above in the studies by Patel et al. (2019), Sperl-Hillen et al. (2018), and Tian et al. (2019). These studies demonstrate how existing primary and community health care infrastructures can be leveraged to promote cardiovascular health at the population level (Patel et al., 2019; Sperl-Hillen et al. 2018; Tian et al., 2019).

Implications for Practice

There is clear support for the application of CDSSs in practice to improve adherence to clinical practice guidelines for primary prevention of CVD (Alameddine et al., 2020; Bonner et al., 2019; Chalasani et al., 2017; Patel et al., 2019; Peiris et al., 2015, 2019; Persell et al., 2020; Sperl-Hillen et al., 2018; Tian et al., 2015; Ye et al., 2018). In the U.S., utilizing CDS tools to support primary prevention of CVD can increase reimbursement if certain quality goals are met as this qualifies as a meaningful use of health information technology (Centers for Medicare and Medicaid, 2018; Million Hearts, n.d.-a; Million Hearts, n.d.-b). Practices considering integrating the use of a CDSS into their workflow would do well to consider the technical expertise that will be required as lack of technical support can contribute to reduced long-term sustainability and uptake among providers (Abimbola et al., 2019). Seeking input from end-users in the planning, implementation, and evaluation stages will also likely yield valuable insights into provider needs
and how the technology can be tailored to fit the clinic's workflow (Bonner et al., 2019; Sperl-Hillen et al., 2018; Williams et al., 2016).

Areas for Future Research

The significant practice gaps that were noted in the initial review of the literature were only partially closed by implementation of a CDSS in the included studies. Further research is needed to determine what quality improvement measures can further close these gaps in primary prevention of CVD in the U.S. and worldwide. Specifically, more research is needed to delineate how technology can be leveraged to facilitate motivational interviewing and utilization of the five A's (Ask, Advise, Assess, Assist, and Arrange) to promote patient smoking cessation as this patient outcome was not significantly impacted by CDSSs in this review (Dart, 2011; Fiore et al., 2008; Patel et al., 2019; Peiris et al., 2019; Sperl-Hillen et al., 2018; Tian et al., 2015). Similarly, since improvements in BP control were inconsistent between studies, further research is needed to determine how CDS tools can be better utilized to address this complex issue and guide intensification of antihypertensive therapy (Peiris et al., 2015, 2019; Tian et al., 2015).

Ethical Considerations

Since this DNP scholarly project does not involve human subject research and instead examines the extant literature on the topic of interest, this project did not require approval from Liberty University's or any other organization's institutional review board. The project leader has completed ethics training from the Collaborative Institutional Training Initiative (CITI) on the protection of privacy and confidentiality of human subjects. See Appendix B for this student's CITI Social and Behavioral Research training certificate. The project chair has also completed CITI training on protection of human subjects.

Conclusion

Overall, CDSSs were successful in improving the provision of evidence-based care to patients; however, they offer only a partial solution to the issue of inadequate compliance with CVD prevention guidelines since significant practice gaps remained even after implementation of CDSSs designed to promote evidence-based CVD prevention (Alameddine et al., 2020; Chalasani et al., 2017; Patel et al., 2019; Peiris et al., 2015, 2019; Persell et al., 2020; Sperl-Hillen et al., 2018; Tian et al., 2015). Though CDSSs mediated improvements in CVD risk screening and prescriptions for CVD prevention and treatment, there remained a significant gap between guideline-based recommendations and actual prescriptions in these studies (Alameddine et al., 2020; Chalasani et al., 2017; Patel et al., 2019; Peiris et al., 2015, 2019; Persell et al., 2020; Sperl-Hillen et al., 2018; Tian et al., 2015). Improvements in BP mediated by CDSS implementation was patchy in the included studies, and CDSSs showed minimal to no effect on smoking cessation (Patel et al., 2019; Peiris et al., 2015, 2019; Tian et al., 2015). The CDSSs evaluated in each study varied in delivery and capability; however, tools that were co-designed with end-users to fit workflows and save time were more likely to be accepted and successfully implemented than tools which caused provider frustration through work duplication and system glitches (Bonner et al., 2019; Silveira et al., 2019; Sperl-Hillen et al., 2018). In summary, welldesigned, evidence-based CDSSs offer a potential, albeit partial, innovative solution to improving prevention of CVD in the U.S. and globally.

References

- Abimbola, S., Patel, B., Peiris, D., Patel, A., Harris, M., Usherwood, T., & Greenhalgh, T.
 (2019). The NASSS framework for ex post theorisation of technology-supported change in healthcare: Worked example of the TORPEDO programme. *BMC Medicine*, *17*(1), 1–17. https://doi-org.ezproxy.liberty.edu/10.1186/s12916-019-1463-x
- Agency for Healthcare Research and Quality. (2019, June). *Clinical decision support*. https://www.ahrq.gov/cpi/about/otherwebsites/clinical-decision-support/index.html
- Alameddine, R., Seifeddine, S., Ishak, H., & Antoun, J. (2020). Improving statin prescription through the involvement of nurses in the provision of ASCVD score: A quality improvement initiative in primary care. *Postgraduate medicine*, 1–6. https://doi.org/10.1080/00325481.2020.1755146
- Arnett, D. K., Blumenthal, R. S., Albert, M. A., Buroker, A. B., Goldberger, Z. D., Hahn, E. J., Himmelfarb, C. D., Khera, A., Lloyd-Jones, D., McEvoy, J. W., Michos, E. D., Miedema, M. D., Muñoz, D., Smith, S. C., Jr., Virani, S. S., Williams, K. A., Sr., Yeboah, J., & Ziaeian, B. (2019). 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: A report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. *Circulation*. doi:10.1161/CIR.00000000000678
- Benjamin, E. J., Muntner, P., Alonso, A., Bittencourt, M. S., Callaway, C. W., Carson, A. P.,
 Chamberlain, A. M., Chang, A. R., Cheng, S., Das, S. R., Delling, F. N., Djousse, L.,
 Elkind, M. S. V., Ferguson, J. F., Fornage, M., Jordan, L. C., Khan, S. S., Kissela, B. M.,
 Knutson, K. L., & Kwan, T. W. (2019). Heart disease and stroke Statistics—2019 update:

A report from the American Heart Association. *Circulation, 139*(10), e56-e66. doi:10.1161/CIR.0000000000659

- Benson, T. (2019). Digital innovation evaluation: User perceptions of innovation readiness,
 digital confidence, innovation adoption, user experience and behaviour change. *BMJ Health & Care Informatics, 26*(1), 0.5-0. doi:10.1136/bmjhci-2019-000018
- Blackwell, D. L., & Villarroel, M. A. (2018). Tables of summary health statistics for U.S. adults:
 2017 national health interview survey. Centers for Disease Control and Prevention.
 https://ftp.cdc.gov/pub/Health Statistics/NCHS/NHIS/SHS/2017 SHS Table A-1.pdf
- Bonner, C., Fajardo, M. A., Doust, J., McCaffery, K., & Trevena, L. (2019). Implementing cardiovascular disease prevention guidelines to translate evidence-based medicine and shared decision making into general practice: Theory-based intervention development, qualitative piloting and quantitative feasibility. *Implementation Science*, 14(1), 86. https://doi-org.ezproxy.liberty.edu/10.1186/s13012-019-0927-x
- Bucher, S., Maury, A., Rosso, J., de Chanaud, N., Bloy, G., Pendola-Luchel, I., Delpech, R.,
 Paquet, S., Falcoff, H., Ringa, V., & Rigal, L. (2017). Time and feasibility of prevention
 in primary care. *Family Practice*, 34(1), 49-56. doi:10.1093/fampra/cmw108
- Centers for Disease Control and Prevention. (2017a, January 19). *Heart disease*. https://www.cdc.gov/nchs/fastats/heart-disease.htm
- Centers for Disease Control and Prevention. (2017b, September 6). *Stroke facts*. https://www.cdc.gov/stroke/facts.htm
- Centers for Medicare and Medicaid. (2018). *Quality ID #438: Statin therapy for the prevention* and treatment of cardiovascular disease – National quality strategy domain: Effective clinical care. Quality Payment Program.

https://qpp.cms.gov/docs/QPP_quality_measure_specifications/Claims-Registry-Measures/2018_Measure_438_Registry.pdf

- Chalasani, S., Peiris, D. P., Usherwood, T., Redfern, J., Neal, B. C., Sullivan, D. R., Colagiuri, S., Zwar, N. A., Li, Q., &Patel, A. (2017). Reducing cardiovascular disease risk in diabetes: A randomised controlled trial of a quality improvement initiative. *Medical Journal of Australia*, 206(10), 436-441. doi:10.5694/mja16.00332
- Chaudhry, A. P., Samudrala, S., Lopez-Jimenez, F., Shellum, J. L., Nishimura, R. A., Chaudhry,
 R., Liu, H., & Arruda-Olson, A. M. (2019). Provider survey on automated clinical
 decision support system for cardiovascular risk assessment. *AMIA Joint Summits on Translational Science*, 64–71.
- Community Preventive Services Task Force. (2013, April). *Cardiovascular disease: Clinical decision-support systems (CDSS)*. The Community Guide. https://www.thecommunityguide.org/findings/cardiovascular-diseaseclinical-decision-support-systems-cdss.
- Cooper, H. (1998) Synthesizing research: A guide for literature reviews (3rd ed.). Sage Publications.
- Dart, M. A. (2011). *Motivational interviewing in nursing practice: Empowering the patient*. Jones and Bartlett.

DeJonckheere, M., Robinson, C. H., Evans, L., Lowery, J., Youles, B., Tremblay, A., Kelley, C., & Sussman, J. B. (2018). Designing for clinical change: Creating an intervention to implement new statin guidelines in a primary care clinic. *Journal of Medical Internet Research*, 20(4), e19-e19. doi:10.2196/humanfactors.9030

Devarajan, R., Singh, K., Kondal, D., Shivashankar, R., Narayan, K., Prabhakaran, D., Tandon, N., & Ali, M. (2016). PT316 associations between blood pressure- and lipid-lowering medications use and cardiac risk factor control: Findings from the Carrs trial. *Global Heart, 11*(2), e179-e179. doi:10.1016/j.gheart.2016.03.633

Fiore, M. C., Jaén, C. R., Baker, T. B., Bailey, W. C., Benowitz, N. L., Curry, S. J., Dorfman, S.
F., Froelicher, E. S., Goldstein, M. G., Healton, C. G., Henderson, P. N., Heyman, R. B.,
Koh, H. K., Kottke, T. E., Lando, H. A., Mecklenburg, R. E., Mermelstein, R. J., Mullen,
P. D., . . . Wewers, M. E. (2008). Treating tobacco use and dependence: 2008 update.
Retrieved from
https://www.ahrq.gov/sites/default/files/wysiwyg/professionals/cliniciansproviders/guidelines-

recommendations/tobacco/clinicians/update/treating_tobacco_use08.pdf

C. Tracy Orleans,

- Foraker, R. E., Shoben, A. B., Kelley, M. M., Lai, A. M., Lopetegui, M. A., Jackson, R. D., Langan, M. A., & Payne, P. R. O. (2016). Electronic health record-based assessment of cardiovascular health: The stroke prevention in healthcare delivery environments (SPHERE) study. *Preventive Medicine Reports, 4*, 303–308. https://doiorg.ezproxy.liberty.edu/10.1016/j.pmedr.2016.07.006
- Gill, J., Kucharski, K., Turk, B., Pan, C., & Wei, W. (2019). Using electronic clinical decision support in patient-centered medical homes to improve management of diabetes in primary care: The DECIDE study. *Journal of Ambulatory Care Management, 42*(2), 105–115. https://doi-org.ezproxy.liberty.edu/10.1097/JAC.00000000000267

Goff, D. C., Lloyd-Jones, D. M., Bennett, G., Coady, S., D'Agostino, R. B., Gibbons, R.,
Greenland, P., Lackland, D. T., Levy, D., O'Donnell, C. J., Robinson, J. G., Schwartz, J.
S., Shero, S. T., Smith, S. C., Sorlie, P., Stone, N. J., & Wilson, P. W. F. (2014). 2013
ACC/AHA guideline on the assessment of cardiovascular risk: A report of the American
College of Cardiology/American Heart Association task force on practice guidelines. *Circulation, 129*(25, Suppl 1), S49-S73. doi:10.1161/01.cir.0000437741.48606.98

Grundy, S. M., Stone, N. J., Bailey, A. L., Beam, C., Birtcher, K. K., Blumenthal, R. S., Braun,
L. T., de Ferranti, S., Faiella-Tommasino, J., Forman, D. E., Goldberg, R., Heidenreich,
P. A., Hlatky, M. A., Jones, D. W., Lloyd-Jones, D., Lopez-Pajares, N., Ndumele, C. E.,
Orringer, C. E., Peralta, C. A., Saseen, J. J., Smith, S. C. Jr., Sperling, L., Virani, S. S., &
Yeboah, J. (2018). 2018

AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: A report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. *Circulation*, 139(25), e000–e000. doi:10.1161/CIR.000000000000625

Hennessy, D. A., Tanuseputro, P., Tuna, M., Bennett, C., Perez, R., Shields, M., Tu, J., & Manuel, D. G. (2016). Population health impact of statin treatment in Canada. *Health Reports*, 27(1), 20.

http://liberty.summon.serialssolutions.com/#!/search?bookMark=ePnHCXMwbV1da8Iw FC2i4Jz-

BQkbCD50LInNmscxJvoyBH0PaZqIL5va7f_vXBOLBZ9K4CSQ3HBzDr0fo6wP3ep70 DmCKu1LBUkEIkdR5oXQw9ZL6hIqaSgUhbNx_ZCpTduxisUcQBYTBdlPYJRdc_hm bfA1w-CSvm_H2SDAUH6Svo_Zbvm5-1jlqZdAvifGkCuvytrV2gVdc $54 BVojsAFV8GChObSrQOxlRYT7VTpZ1L4og_DwBcIGamb0HJe9OmyTbN0Y_kZZ$ $FhLUC6iniCLvbuiK_J6tc8fDySwgLST9hgPo5Q7IpnB4nB1VZDLvtxPmnQkUxA7Pvb$ d_TWPW268udnaDjefYXuIucJo2dHl3zTEWtzBXg8h_lzeE3A

- Housholder-Hughes, S. D., Martin, M. M., McFarland, M. R., Creech, C. J., & Shea, M. J.
 (2017). Healthcare provider compliance with the 2013 ACC/AHA adult cholesterol guideline recommendation for high-intensity dose statins for patients with coronary artery disease. *Heart & Lung*, 46(4), 328-333. doi:10.1016/j.hrtlng.2017.03.005
- Kochanek, K. D., Murphy, S. L., Xu, J., & Arias, E. A. (2019). Deaths: Final data for 2017. National Vital Statistics Reports, 68(9).

https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf

- Kessler, M. E., Carter, R. E., Cook, D. A., Kor, D. J., McKie, P. M., Pencille, L. J., Scheitel, M. R., & Chaudhry, R. (2017). Impact of electronic clinical decision support on adherence to guideline-recommended treatment for hyperlipidaemia, atrial fibrillation and heart failure: Protocol for a cluster randomised trial. *BMJ Open*, *7*(12), e019087. doi:10.1136/bmjopen-2017-019087
- Healthcare Improvement Scotland. (n.d.). Critical appraisal notes and checklists. https://www.sign.ac.uk/checklists-and-notes
- Melnyk, B. M. (2016). Level of evidence plus critical appraisal of its quality yields confidence to implement evidence-based practice changes: Editorial. *Worldviews on Evidence-Based Nursing*, 13(5), 337-339. doi:10.1111/wvn.12181
- Meschia, J. F., Bushnell, C., Boden-Albala, B., Braun, L. T., Bravata, D. M., Chaturvedi, S.,Creager, M. A., Eckel, R. H., Elkind, M. S.V., Fornage, M., Goldstein, L. B., Greenberg,S. M., Horvath, S. E., Iadecola, C., Jauch, E. C., Moore, W. S., & Wilson, J. A. (2014).

Guidelines for the primary prevention of stroke: A statement for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke*, *45*(12), 3754-3832. doi:10.1161/STR.00000000000046

- Million Hearts. (n.d.-a). *About Million Hearts*®. https://millionhearts.hhs.gov/about-millionhearts/index.html
- Million Hearts. (n.d.-b). *Clinical quality measures*. https://millionhearts.hhs.gov/files/MH_CQM.pdf
- Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The PRISMA Group (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA Statement. *PLoS Med*, 6(7), e1000097. doi:10.1371/journal.pmed1000097
- National Center for Chronic Disease Prevention and Health Promotion. (2018, March 22). *Implementing clinical decision support systems*. Centers for Disease Control and Prevention. https://www.cdc.gov/dhdsp/pubs/guides/best-practices/clinical-decisionsupport.htm
- National Center for Chronic Disease Prevention and Health Promotion. (2020). *About the best practices guide*. Centers for Disease Control and Prevention. https://www.cdc.gov/dhdsp/pubs/guides/best-practices/about.htm#About-Domain3
- Njie, G. J., Proia, K. K., Thota, A. B., Finnie, R. K. C., Hopkins, D. P., Banks, S. M., Callahan, D. B., Pronk, N. P., Rask, K. J., Lackland, D. T., & Kottke, T. E. (2015). Clinical decision support systems and prevention: A community guide cardiovascular disease systematic review. *American Journal of Preventive Medicine*, 49(5), 784-795. doi:10.1016/j.amepre.2015.04.006

- O'Connor, P. J. (2018). Prioritized clinical decision support (CDS) to reduce cardiovascular risk. Clinical Trials. https://clinicaltrials.gov/ct2/show/study/NCT01420016
- Patel, A., Praveen, D., Maharani, A., Oceandy, D., Pilard, Q., Kohli, M. P. S., Sujarwoto, S., & Tampubolon, G. (2019). Association of multifaceted mobile technology-enabled primary care intervention with cardiovascular disease risk management in rural Indonesia. *JAMA Cardiology*, 4(10), 978–986. https://doi-

org.ezproxy.liberty.edu/10.1001/jamacardio.2019.2974

- Peiris, D., Praveen, D., Mogulluru, K., Ameer, M. A., Raghu, A., Li, Q., Heritier, S., MacMahon, S., Prabhakaran, D., Clifford, G. D., Joshi, R., Maulik, P. K., Jan, S., Tarassenko, L., & Patel, A. (2019). SMARTHealth India: A stepped-wedge, cluster randomised controlled trial of a community health worker managed mobile health intervention for people assessed at high cardiovascular disease risk in rural India. *PloS One, 14*(3), e0213708. doi:10.1371/journal.pone.0213708
- Peiris, D., Usherwood, T., Panaretto, K., Harris, M., Hunt, J., Redfern, J., Zwar, N., Colagiuri, S., Hayman, N., Lo, S., Patel, B., Lyford, M., MacMahon, S., Neal, B., Sullivan, D., Cass, A., Jackson, R., & Patel, A. (2015). Effect of a computer-guided, quality improvement program for cardiovascular disease risk management in primary health care: The treatment of cardiovascular risk using electronic decision support cluster-randomized trial. Circulation. *Cardiovascular Quality and Outcomes*, 8(1), 87-95. doi:10.1161/CIRCOUTCOMES.114.001235
- Persell, S. D., Liss, D. T., Walunas, T. L., Ciolino, J. D., Ahmad, F. S., Brown, T., French, D. D., Hountz, R., Iversen, K., Lindau, S. T., Lipiszko, D., Makelarski, J. A., Mazurek, K., Murakami, L., Peprah, Y., Potempa, J., Rasmussen, L. V., Wang, A., Wang, J., ... Kho,

A. N. (2020). Effects of 2 forms of practice facilitation on cardiovascular prevention in primary care: A practice-randomized, comparative effectiveness trial. *Medical Care, 58*(4), 344–351. https://doi-org.ezproxy.liberty.edu/10.1097/MLR.00000000001260

- Pokharel, Y., Tang, F., Jones, P. G., Nambi, V., Bittner, V. A., Hira, R. S., Nasir, K., Chan, P. S., Maddox, T. S., Oetgen, W. J., Heidenreich, P. A., Borden, W. B., Spertus, J. A., Petersen, L. A., Ballantyne, C. M., & Virani, S. S. (2017). Adoption of the 2013 American College of Cardiology/American Heart Association cholesterol management guideline in cardiology practices nationwide. *JAMA*, 2(4):361-369. doi: 10.1001/jamacardio.2016.5922.
- Raghu, A., Praveen, D., Peiris, D., Tarassenko, L., & Clifford, G. (2015). Engineering a mobile health tool for resource-poor settings to assess and manage cardiovascular disease risk:
 SMARTHealth study. *BMC Medical Informatics & Decision Making*, 15(1), 36. https://doi-org.ezproxy.liberty.edu/10.1186/s12911-015-0148-4
- Scheitel, M. R., Kessler, M. E., Shellum, J. L., Peters, S. G., Milliner, D. S., Liu, H., Elayavilli, R. K., Poterack, K.A., Miksch, T. A., Boysen, J. J., Hankey, R. A., & Chaudhry, R. (2017). Effect of a novel clinical decision support tool on the efficiency and accuracy of treatment recommendations for cholesterol management. *Applied Clinical Informatics*, 26(1), 124-136. doi:10.4338/ACI-2016-07-RA-0114
- Sekaran, N. K., Sussman, J. B., Xu, A., & Hayward, R. A. (2013). Providing clinicians with a patient's 10-year cardiovascular risk improves their statin prescribing: A true experiment using clinical vignettes. *BMC Cardiovascular Disorders*, 13, 90. https://doiorg.ezproxy.liberty.edu/10.1186/1471-2261-13-90

- Setia, S., Fung, S. S., & Waters, D. D. (2015). Doctors' knowledge, attitudes, and compliance with 2013 ACC/AHA guidelines for prevention of atherosclerotic cardiovascular disease in Singapore. *Vascular Health and Risk Management, 11*, 303–310. doi:10.2147/VHRM.S82710
- Shillinglaw, B., Viera, A. J., Edwards, T., Simpson, R., & Sheridan, S. L. (2012). Use of global coronary heart disease risk assessment in practice: A cross-sectional survey of a sample of U.S. physicians. *BMC Health Services Research*, *12*(1), 20-20. doi:10.1186/1472-6963-12-20
- Silveira, D. V., Marcolino, M. S., Machado, E. L., Ferreira, C. G., Alkmim, M. B. M., Resende,
 E. S., Carvalho, B. C., Antunes, A. P., & Ribeiro, A. L. P. (2019). Development and
 evaluation of a mobile decision support system for hypertension management in the
 primary care setting in Brazil: Mixed-Methods field study on usability, feasibility, and
 utility. *JMIR MHealth and UHealth*, 7(3), e9869. https://doiorg.ezproxy.liberty.edu/10.2196/mhealth.9869
- Sperl-Hillen, J. M., Crain, A. L., Margolis, K. L., Ekstrom, H. L., Appana, D., Amundson, G., Sharma, R., Desai, J. R., & O'Connor, P. J. (2018). Clinical decision support directed to primary care patients and providers reduces cardiovascular risk: A randomized trial. *Journal of the American Medical Informatics Association*, 25(9), 1137–1146. doi:10.1093/jamia/ocy085
- Tian, M., Ajay, V. S., Dunzhu, D., Hameed, S. S., Li, X., Liu, Z., Li, C., Chen, H., Cho, K., Li,
 R., Zhao, X., Jindal, D., Rawal, I., Ali, M. K., Eric D. Peterson, E. D., Ji, J., Amarchand,
 R., Krishnan, A., Tandon, N., . . . Yan, L. L. (2015). A cluster-randomized, controlled
 trial of a simplified multifaceted management program for individuals at high

cardiovascular risk (SimCard trial) in rural Tibet, China, and Haryana, India. *Circulation, 132(*9), 815-824. doi:10.1161/CIRCULATIONAHA.115.015373

Toronto, C. E., & Remington, R. (2020). A step-by-step guide to conducting an integrative review. Springer.

Williams, P. A., Furberg, R. D., Bagwell, J. E., & LaBresh, K. A. (2016). Usability testing and adaptation of the pediatric cardiovascular risk reduction clinical decision support tool. *JMIR Human Factors*, 3(1), e17. https://doi-

org.ezproxy.liberty.edu/10.2196/humanfactors.5440

- Whittemore, R., & Knafl, K. (2005). The integrative review: Updated methodology. *Journal of Advanced Nursing*, 52(5), 546-553. doi:10.1111/j.1365-2648.2005.03621.x
- World Health Organization. (2020). *Cardiovascular disease*. Retrieved from https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab 1
- Yarnall, K. S., Pollak, K., Østbye, T., Krause, K. M., & Michener, J. L. (2003). Primary care: Is there enough time for prevention? *American Journal of Public Health*, 93(4), 635-641.
 doi: 10.2105/ajph.93.4.635
- Ye, S., Leppin, A. L., Chan, A. Y., Chang, N., Moise, N., Poghosyan, L., Montori, V. M., & Kronish, I. (2018). An informatics approach to implement support for shared decision making for primary prevention statin therapy. *MDM Policy & Practice*, 3(1), 2381468318777752. https://doi-org.ezproxy.liberty.edu/10.1177/2381468318777752

Appendix A

Evidence Table

Name: Elisabeth Campbell

Clinical Question: How do CDSS tools support primary prevention of CVD in primary care?

Article reference	Level of Evidence	SIGN Form Rating	Study Purpose/ Objectives	Design, Sampling Method, & Subjects	Interventions & Outcomes	Adherence to CPGs	Patient Outcomes:	Clinician Satisfaction/ Preferences:	Study Strengths & Limitations
Chalasani, S., Peiris, D. P., Usherwood, T., Redfern, J., Neal, B. C., Sullivan, D. R., Colagiuri, S., Zwar, N. A., Li, Q., & Patel, A. (2017). Reducing cardiovascular disease risk in diabetes: A randomised controlled trial of a quality improvement initiative. <i>Medical</i> <i>Journal of</i> <i>Australia, 206</i> (10), 436-441. doi:10.5694/mja1 6.00332	II: RCT	++	To compare effect of quality improvement interventions including audit and feedback and CDSS tools on cardiovascular risk screening and primary preventive treatment of diabetic and non-diabetic patients.	The TORPEDO study was a parallel arm cluster randomized trial with a final sample of 60 Australian primary healthcare clinics (1 small size practice withdrew early in the trial); final sample: 30 in each study arm. Baseline data was collected for 53,164 patients and follow up data was extracted for 38,725 patients. Patients were included based on the following	Guideline-based screening and algorithm for management of CVD, chronic kidney disease, BP, and cholesterol were implemented through a CDSS that pulled patient data from within the EHR to prepopulate the tool and generate point-of- care recommendations based on patient's absolute CVD risk; a risk communication tool was used to guide patient-provider conversations about individualized risk. Practices in the intervention group also used a software to generate site- specific audits and performance feedback for providers. These	Primary outcomes: 1) proportion receiving appropriate screening for CVD risk factors - 62.8% in the intervention group vs. 53.4% in the usual care group (p=0.01); 2) high CVD risk patients receiving appropriate prescriptions - 56.8% in the intervention group vs. 51.2% in the usual care group (p=0.10). Secondary outcomes: increased antiplatelet therapy - 17.8% in intervention group vs. 2.7% in usual care (p=0.08), increased lipid-lowering therapy 19.2% in treatment group vs. 4.7% (p=0.08), and increased BP-lowering therapy 23.3% vs 12.1% in the intervention vs control, respectively. See Table 3 for corresponding P	Not evaluated	Not evaluated	The sites spread out and were representative of the geographic region of Australia under investigation. Relying on EHR data limited the ability to account for clinical judgement in treatment decisions, and the type of diabetes mellitus was not distinguished in the analysis.

Peiris D. Praveen	II: RCT	To determine	criteria: attended the practice ≥3x in the previous 24 months and at least once in the previous 6 months and Aboriginal and Torres Strait Islander people ≥35 years and all others ≥45 years which aligns with the Australian guideline vascular risk screening guidelines.	QI interventions were supplemented by clinical workforce training and IT support for the tools being used in the intervention arm of the study. Primary outcomes: 1) proportion receiving appropriate screening for CVD risk factors and 2) proportion of patients deemed high CVD risk when baseline data was collected and were receiving appropriate treatment at follow up (median follow up=17.5 months). Secondary outcomes: 1) individual CVD risk factor measurements (smoking status, BP, lipid levels, body mass index [BMI], estimated glomerular filtration rate, and albuminuria), 2) escalation of pharmacological therapies, and 3) BP and serum lipid levels	values. The intervention was only effective for the initiation and intensification of medications for patients undertreated at baseline and was not influenced by diabetes status: 38.4% in the intervention group vs 20.9% in the usual care group, p=0.28. The intervention was only partially effective in closing the significant gap between guideline- based recommendations and actual prescriptions.	There was not a	Not evaluated	Both
D., Mogulluru, K., Ameer, M. A., Raghu, A., Li, Q., Heritier, S., MacMahon, S., Prabhakaran, D.,		if a mobile- based CDSS implemented by non- physician community	stepped- wedge, cluster randomized, control trial had a final sample of 18	intervention using a stepped-wedge approach. For the first six months, data was collected by independent	discordance between identification of high- risk individuals between the independent research team and community	clinically or statistically significant difference in the proportion of patients achieving BP targets (SBP <140 mm Hg) between the		independent researchers collecting data and statisticians were blinded

	h lub			le e al tale conservation de la tale t	a sector al secol	4
Clifford, G. D.,	health	villages which	researchers to	health workers; this	control and	to village
Josni, K., Maulik,	workers in	were selected	establish baseline	was mostly attributable	intervention groups,	allocation. As
P. K., Jan, S.,	rural India	using a	outcome measures	to variations in BP	confirming the null	discussed
Tarassenko, L., &	would	combination of	and determine	readings between	hypothesis. There was	previously,
Patel, A. (2019).	increase the	cluster	qualifying patient	evaluations. This led to	an increase in self-	seasonal
SMARTHealth	proportion of	randomization	population and	some patients	reported physical	fluctuations
India: A stepped-	high-risk	and	sample. In six month	identified at baseline as	activity in the	may have
wedge, cluster	patients	stratification	increments for the	high risk by	intervention group	influenced the
randomised	achieving	based on	following year and a	independent	(42.1% intervention vs	null hypothesis
controlled trial of	guideline-	village size and	half, two primary	researchers not being	39.0% control, p=0.10);	outcome;
a community	recommended	association	health centers (6	identified at risk by	patients reporting an	however, a
health worker	BP levels.	with a primary	villages) were	community health	active lifestyle	national
managed mobile		health center.	incrementally	workers and vice versa.	increased from 25.9%	initiative was
health		Criteria for	randomized to receive	Factors that may have	to 27.7% post-	strengthened
intervention for		inclusion were	the intervention until	led to this discordance	intervention (p=0.23)	during the
people assessed at		age of ≥40	all villages were	was normal variation	and a minimally active	study period
high		years,	receiving the	with regression to the	lifestyle from 35.5% to	which gave
cardiovascular		requiring	intervention in the	mean; extremely high	38.8% (p=<0.01), and	patients in
disease risk in		antihypertensi	final 6-month period.	temperatures (48	reports of an inactive	Andhra
rural India. PloS		ve medication	The intervention had	degrees Celsius or 118	lifestyle decreased from	Pradesh region
One, 14(3),		based on	multiple components	degrees Fahrenheit)	36.6% to 33.5% (p value	new access to
e0213708.		guidelines, and	including:	during the second step	not reported). There	a mobile
doi:10.1371/iourn		high CVD risk	implementation of the	of the trial when one	was no statistically or	health service
al.pone.0213708		defined as the	SMARTHealth India	group was receiving the	clinically significant	and free access
- F		presence of at	Android app (available	intervention and the	differences in mean	to
		least one of	in Telugu and English)	other two groups were	BPs. CVD risk factors	medications.
		the following:	which incorporates	in the control. Since	(i.e. BMI, smoking	This may have
		diagnosis of	10-vear CVD risk	extreme temperatures	status, and self-	contributed to
			assessment and	can cause decreases in	reported dietary	natients in the
		mm Hg or DBP	lifestyle risk reduction	BP researchers	intake) difference in	control group
		>100 mm Hg	strategies education	hypothesized this could	quality of life measured	receiving
		10-year CVD	that can be executed	have been the	by EuroOol quality of	antihynertensi
		rick >20% or a	hy community health	ovplanation for the	lifo	vo
		10 year CVD	workers as well as a	12 68 mm Hg dogroopso	inctrument (EQ ED)	ve
		rial 20 20%	workers as well as a	in CDD emens	and difference in	hluming the
		risk 20-29%	version with	In SBP among	and difference in	biurring the
		and a SBP >140	pharmacological	untreated patients and	reported new CVD	overall picture
		mm Hg).	aecision support for	14.6 mm Hg decrease in	events.	of effect.
			physicians; community	SBP overall. Patients		
			health workers were	who would have been		
			able to make referrals	previously identified as		
			to physicians based on	high risk at baseline,		
			risk assessments	when exposed to the		

		completed during	intervention, had		
		home visits; there was	reciprocal decreases in		
		also a computer-based	estimated CVD risk or		
		system to support	no longer met criteria		
		tracking and	for antihypertensive		
		prioritizing patient	treatment.		
		follow-up; alerts were	Nevertheless, there was		
		designed to remind	a significant		
		community health	improvement in high-		
		workers to follow-up	risk patients reporting		
		with high-risk	taking		
		patients: and	antihypertensives, from		
		automated telephone	47 9% in the control vs		
		messages were used	54 3% in the		
		to remind patients of	intervention group		
		follow-up visits and	(n=0.02) Also 70% of		
		promote medication	natients determined to		
		adherence The	he at high risk hy		
		nrimary outcome was	community health		
		the difference in	workers received		
		proportion of patients	nhysician follow-un		
		achieving BP targets	physician follow-up.		
		(SPD < 140 mm Hg)			
		(SBP <140 IIIII Hg)			
		intervention and			
		control periods.			
		Secondary outcomes			
		Included difference in			
		mean BPs, difference			
		in reported use of BP			
		medications,			
		difference in CVD risk			
		factors (i.e. BMI,			
		smoking status, self-			
		reported dietary			
		intake and exercise),			
		difference in quality of			
		life measured by			
		EuroQol quality of life			
		instrument (EQ-5D),			
		and difference in			
		reported new CVD			

					events. Outcome measures were evaluated by both community health workers delivering the intervention and independent researchers using the same equipment and CDSS tool as the community health workers.				
Peiris, D., Usherwood, T., Panaretto, K., Harris, M., Hunt, J., Redfern, J., Zwar, N., Colagiuri, S., Hayman, N., Lo, S., Patel, B., Lyford, M., MacMahon, S., Neal, B., Sullivan, D., Cass, A., Jackson, R., & Patel, A. (2015). Effect of a computer-guided, quality improvement program for cardiovascular disease risk management in primary health care: The treatment of cardiovascular risk using electronic decision support cluster- randomized	II: RCT	++	To determine the effect of quality improvement interventions including audit and feedback and CDSS tools on screening of cardiovascular risk factors and appropriate prescriptions for primary or treatment of CVD.	The TORPEDO study was a parallel arm cluster randomized trial with a final sample of 60 Australian primary healthcare clinics (1 small size practice withdrew early in the trial); final sample: 30 in each study arm. Outcomes were evaluated for 38,725 patients with 10,308 patients defined as high CVD risk at baseline. Patients were included based on the	Guideline-based screening and algorithm for management of CVD, chronic kidney disease, BP, and cholesterol were implemented through a CDSS that pulled patient data from within the EHR to prepopulate the tool and generate point-of- care recommendations based on patient's absolute CVD risk; a risk communication tool was used to guide patient-provider conversations about individualized risk. Practices in the intervention group also used a software to generate site- specific audits and performance feedback for providers. These Ql interventions were	Primary outcomes: proportion receiving appropriate screening for CVD risk factors - 62.8% in the intervention group vs. 53.4% in the usual care group (p=0.02); high CVD risk patients receiving appropriate prescriptions - 56.8% in the intervention group vs. 51.2% in the usual care group (p=0.09). Secondary outcomes: no statistically significant difference in the recording of smoking status, BMI, albuminuria, and estimated glomerular filtration rate between intervention and usual care arms (see Figure 2 on p. 92); however, there were clinically significant increases in recording of SBP in previous 12 months (84.8% vs. 80.6%,	Not evaluated	Not evaluated	The sites spread out and were representative of the geographic region of Australia under investigation. Relying on EHR data limited the ability to account for clinical judgement in treatment decisions, and the type of diabetes mellitus was not distinguished in the analysis.

trial. Circulation.		following	supplemented by	p=0.09) and total and		
Cardiovascular		criteria:	clinical workforce	HDL cholesterol		
Quality and		attended the	training and IT support	recorded in previous 24		
Outcomes, 8(1),		practice ≥3x in	for the tools being	months (75.5 vs. 66.5%,		
87-95.		the previous	used in the	p=0.02); escalation of		
doi:10.1161/CIRC		24 months and	intervention arm of	antiplatelet therapy -		
OUTCOMES.114.0		at least once in	the study. Primary	17.8% in intervention		
01235		the previous 6	outcomes: 1)	group vs. 2.7% in usual		
		months and	proportion receiving	care (p=<0.001);		
		Aboriginal and	appropriate screening	escalation of lipid-		
		Torres Strait	for CVD risk factors	lowering therapy 19.2%		
		Islander people	and 2) proportion of	in treatment group vs.		
		≥35 years and	patients deemed high	4.7% (p=<0.001); and		
		all others ≥45	CVD risk when	increased BP-lowering		
		years which	baseline data was	therapy 23.3% vs 12.1%		
		aligns with the	collected and were	(p=0.42) in the		
		Australian	receiving appropriate	intervention vs control,		
		guideline	treatment at follow up	respectively; current		
		vascular risk	(median follow	prescription for at least		
		screening	up=17.5 months).	one BP med and statin		
		guidelines.	Secondary outcomes:	for high CVD risk		
			1) individual CVD risk	patients - 58.3% in		
			factor measurements	intervention vs 54.1% in		
			recorded (i.e. smoking	usual care (p=0.16);		
			status, BP, lipid levels,	prescriptions for at		
			BMI, estimated	least one BP		
			glomerular filtration	medication, statin, and		
			rate, and	antiplatelet medication		
			albuminuria), 2)	for patients with CVD		
			escalation of	diagnosis - 55.3% in		
			pharmacological	intervention vs 48.4% in		
			therapies (i.e. BP,	usual care (0.10).		
			lipid-lower, and	Hence, the intervention		
			antiplatelet	was effective		
			medications), 3)	appropriate screening		
			current prescription	for CVD risk factors		
			for at least one BP	(62.8 vs 53.4%, p=0.02),		
			med and statin for	which were mainly		
			high CVD risk patients,	driven by increased		
			and 4) prescriptions	recording of SBP and		
			for at least one BP	cholesterol levels.		
			medication, statin,	When compared with		

					and antiplatelet medication for patients with CVD diagnosis.	baseline levels for each group, there was no statistically significant increase in the prescription of appropriate medications for patients at high risk of CVD; however, there were statistically significant increases in individual medication intensification; see above. No statistically significant differences were seen in mean SBP or cholesterol levels; however, more patients in the intervention group achieved BP goals compared to the usual care group			
Sperl-Hillen, J. M., Crain, A. L., Margolis, K. L., Ekstrom, H. L., Appana, D., Amundson, G., Sharma, R., Desai, J. R., & O'Connor, P. J. (2018). Clinical decision support directed to primary care patients and providers reduces cardiovascular risk: A randomized trial. Journal of the American Medical	II: RCT	++	To determine if a CDSS implemented in primary care clinics can reduce patient CVD risk.	This RCT established two levels of strata based on practice size and number of providers who agreed to participate at individual sites. Pairs of matched clinics were randomized to either CDS arm or usual care arm based on which clinic	This EHR-integrated, web-based CDSS was designed with input from PCPs and nurse leaders to match clinic workflow and provides personalized and prioritized recommendations targeted at patients and providers. Rooming staff were responsible for triggering the CDSS printout in the "vanguard" phase of the project (p. 1140). In the second phase,	p=0.05) During the initial "vanguard" phase of the project, staff were responsible for triggering the CDSS printout but only printed for 20% of study-eligible patients who could have benefited (p. 1140). At 12-month follow-up for the second phase of the study, patients in the CDS group had 2.2% lower 10-year CV risk compared to the usual care group (p=<0.001). Decreases in CV risk	Per Table 1 on page 1143, there was either no improvement or only modest improvement on patient risk factors such as smoking status and LDL cholesterol levels at follow-up. P values were not provided for the effect on clinical patient factors, making statistical significance unclear from results.	Of surveyed providers, 98% responded that they either agreed or strongly agreed that the CDS improved CV risk factor control in patients, 93% that the CDS saved time during CV risk reduction discussions, 90% that it efficiently elicited patient preferences for treatment, 95% that it was useful for shared decision making, 94% that the	P-values for patient clinical outcomes were not included, limiting the ability to interpret the results.

Informatics	was assigned	the CDS BPA	were greatest in	CDS help initiate CV	
Association, 25(9),	the highest	automatically fired	patients in the 40-60th	risk discussions, 89%	
1137-1146.	random	and then required	percentile and 60-80th	that it influenced	
doi:10.1093/jamia	number.	only two clicks for	percentile risk	treatment	
/ocy085	Providers who	rooming staff to print	categories. Providing	recommendations,	
	achieved a CDS	the lay and	automated clinic- and	and 85% that	
	print rate of at	professional versions	provider-specific	patients liked the CV	
	least 80%	of the CDS tool. The	monthly CDS use	Wizard (the CDSS).	
	within 3	lay version was given	reports to clinic		
	months of	to the patient with	leadership had a		
	rollout were	instructions to discuss	significant impact on		
	compensated	with their provider the	CDS use, increasing		
	\$500. Patients	fields that had the	from ~62% to 72-77%		
	were included	most caution symbols	(See Figure 6). At 18-		
	based on the	next to it, and a more	month follow-up, 60%		
	following	detailed version was	of surveyed providers		
	criteria: visit	given to providers	in the CDS group		
	during index	with specific	reported they often		
	period and	recommendations	discuss CV risk		
	post-index visit	based on patient's	reduction with patients		
	during 14-	calculated risk and	compared to 30% in the		
	month follow-	clinical data. The web-	usual care group		
	up period;	based CDSS interfaced	(p=0.06); 73% of		
	aged 18-75	with the EHR and used	providers in the CDS		
	years old; non-	several firewalls to	arm reported they		
	diabetic; no	protect confidential	often use calculated CV		
	history of CVD,	patient information.	risk while seeing		
	no hospice	Outcomes examined	patients compared to		
	care, current	for this study include	25% in the usual care		
	cancer	print rates over the	group (p=0.006). 98% of		
	therapies, or	course of the study,	providers in the CDS		
	pregnancy in	provider satisfaction,	group felt well		
	the last 12	provider perception of	prepared to discuss CV		
	months; high	patient satisfaction,	risk reduction priorities		
	CVD risk at	change in 10-year CVD	with patients compared		
	index visit (i.e.	risk, and effect on	to 78% in the usual care		
	potential for a	provider behaviors	group (p=0.03), and		
	reduction of	related to CVD	75% believed they were		
	≥10% if	primary prevention.	able to provide		
	uncontrolled		accurate advice on		
	CVD risk		aspirin for primary		
	factors were		prevention in the CDS		

			controlled to optimal levels) or one of the following: SBP ≥140 mm Hg, LDL cholesterol ≥130 mg/dl, or current tobacco smoker.		group vs. 48% in the usual care group (p=0.02).			
Tian, M., Ajay, V. II: RCT S., Dunzhu, D., Hameed, S. S., Li, (., Liu, Z., Li, C., Chen, H., Cho, K., .i, R., Zhao, X., Iindal, D., Rawal, ., Ali, M. K., Eric D. Peterson, E. D., Ji, ., Amarchand, R., (rishnan, A., Fandon, N., Yan, L. L. (2015). A cluster- randomized, controlled trial of a simplified multifaceted management orogram for individuals at high cardiovascular risk (SimCard trial) in rural Tibet, China, and Haryana, India. <i>Circulation</i> , 132(9), 815-824. doi:10.1161/CIRC ULATIONAHA.115. 015373	++	To determine if a mobile CDS tool would be effective in improving preventative care for patients in rural India and China at high risk for CVD.	The SimCard study is cluster- randomized, controlled trial stratified villages at the country level and, in China, at the county and township level. After stratification, 47 villages (27 Chinese villages and 20 Indian villages) were either randomized to the intervention or control group (n=2,086). Twenty-three villages were randomized to the intervention group, 14 from China and 9 from India; 24 villages were	Intervention groups had access to and were trained on the use of an Android- powered mobile- based CDS tool that could be implemented in house or clinic visits to screen patients for CVD risk and make recommendations based on a 2+2 model; this model focus on two domains: pharmacological and lifestyle interventions. Pharmacological interventions involved an antihypertensive (low-dose hydrochlorothiazide in China and 2.5-5 mg calcium channel- blocker in India) for patients at high risk for CVD and 75-100 mg aspirin for patients with established CVD or diabetes diagnosis without contraindications (e.g. bleeding diatheses or	There were increases in anti-hypertensive medication prescriptions in both the intervention and control groups in both China and India with a net difference between intervention and control groups which was statistically significant for both countries: 24.4% in China (p=<0.001) and 26.6% in India (p=0.02). Net increase in patient- reported aspirin use in the last month was 24.5% in Chinese intervention group (p=<0.001) vs. 9.8% in Indian intervention group (p=0.003); however, both represent statistically significant improvements.	There was a clinically and statistically significant decrease in mean SBP in the Chinese intervention group with a net difference of -4.1 mm Hg (p=0.006); this was no improvement in the mean SBP in the Indian intervention group which may be due to the fact that fewer patients in the Indian cohort (25%) had hypertension at baseline compared to the Chinese cohort (51%). In both countries, the intervention was neither effective for decreasing proportion of current smokers in the intervention groups nor improving awareness of high salt diet.	Not evaluated	The results in India may be less statistically significant since there was a greater than four-fold increase from baseline (3.9% antihypertensi ve prescription at baseline and 17.9% at follow-up) in the control group which is likely due to the screening done at baseline and the access to free calcium- channel blockers in this subsample of the study. While this made results less statistically significant, it represents an increase in

		randomized to	SBP ≥160 mm Hg). The		access to care
		the control	second domain		for the control
		group, 13 from	focused on modifiable		group which
		China and 11	risk factors: smoking		reaps a public
		from India.	cessation and		health benefit
		Intention to	reducing sodium		to the rural
		treat analysis	intake. The		Indian
		utilized data	intervention was		community.
		for 1,095	delivered by		
		patients in the	community health		
		intervention	workers who were a		
		group and 991	part of an established		
		patients in the	public and community		
		control.	health system in rural		
		Inclusion	China and India.		
		criteria were	Community health		
		age ≥40 years	workers in China were		
		with SBP ≥160	non-physician "village		
		mm Hg or self-	doctors" who had		
		reported	basic medical training		
		history of one	and prescriptive		
		of the	authority; in India,		
		following:	community health		
		coronary	workers were		
		artery disease.	volunteers and did not		
		stroke. or	have prescriptive		
		diabetes	authority but were		
		mellitus.	able to send		
		Patients were	recommendations to		
		excluded if	physicians for		
		they met any	prescriptions (Tian et		
		of the	al., 2015, p. 816)		
		following	Physicians in India		
		criteria:	nroviding		
		presence of	prescriptions to		
		CVD	narticinants had		
		complications	access to a desktop		
		not amonable	version of the CDS		
		to	tool		
		10 management	1001.		
		in primary			
		in primary			
		care,			

				malignancy, life- threatening disease, bed- ridden status, participating in another clinical trial, and not living in one village for ≥8 months/year. The last criteria led to the exclusion of nomadic tribes people residing in China.					
Alameddine, R., Seifeddine, S., Ishak, H., & Antoun, J. (2020). Improving statin prescription through the involvement of nurses in the provision of ASCVD score: A quality improvement initiative in primary care. <i>Postgraduate</i> <i>medicine</i> , 1–6. https://doi.org/10 .1080/00325481.2 020.1755146	III: Quasi- experim ental	No SIGN form this level	To compare the effects of different ways of displaying patient CVD risk scores on provider behaviors.	This quasi- experimental study used random sampling to select 162 out of 547 eligible charts for chart review. Patients were eligible for inclusion if they met the following criteria: non- diabetic, aged 40-75 with recent low- density lipoprotein level, not on a statin at baseline, and without history of clinical CVD	In the first phase of the study, the researchers manually calculated ASCVD risk score which was displayed in the vital signs section of the EHR. In the second phase of the study, nurses calculated the ASCVD risk score, populated the ASCVD field, and wrote a nurse's note visible to physicians stating the risk score and evidence-based recommendations based on the value.	Passively displaying the ASCVD risk score had no effect on appropriate statin treatment. After the collaborative intervention, appropriate statin initiation for the moderate ASCVD risk (5-7.5%) group increased from 0% at baseline and after the first intervention to 33.3%. Changes in appropriate statin prescribing for patients in the high-risk category were less significant, from 9.1% at baseline, 11.1% after the first intervention, and 28.6% after the second intervention.	Not evaluated	Not evaluated	This study demonstrates a low-cost method that could generate high yield benefits for practices with low-tech EHR systems such as the Lebanese family medicine clinics in this quasi- experimental study. Drawbacks for the second intervention are that it can be tedious and labor intensive which may

Patel A Prayeen			To determine	This quaci-		At follow-up, 409 of	Patient outcome: How	Not evaluated	incentivize nurses to only assess ASCVD risk of patients which are perceived to be at highest risk based on patient characteristics; authors theorize that this was the underlying reason why only 10 risk scores were calculated by nurses in the three months following the second intervention. This required extending the follow-up period to 9 months after the second intervention; the profiles of patients whose ASCVD risk seems to suggest that patient selection may not have been random.
									random.
Patel A Prayeen		No	To determine	This quasi-	The intervention	At follow-up 409 of	Patient outcomes: How	Not evaluated	Non-random
Patel, A., Plaveell,	ni. Oversi		if a makila	nins quasi-		Actonow-up, 409 01	de CDCC te cle invest	Notevaluateu	
D., Maharani, A.,	Quasi-	SIGN	if a mobile	experimental	consisted of a mobile-	patients identified by	do CDSS tools impact		sample frame
Oceandy, D.,		form	CDSS would	study	based CDSS	researchers as high risk	ASCVD risk related		was used;

Pilard, Q., Kohli,	experim	for	improve	evaluated	implemented by an	for CVD in the	quality outcomes such	baseline
M. P. S.,	ental	this	preventive	outcomes for	existing public health	intervention villages	as cholesterol levels,	preventative
Sujarwoto, S., &		level	drug	four	infrastructure	were receiving	BP, hemoglobin A1c,	treatment
Tampubolon, G.			treatment of	intervention	consisting of	appropriate preventive	weight loss, and	levels were
(2019).			patients with	and four	community health	treatment (15.5%)	smoking cessation?	better in the
Association of			high CVD risk	control villages	workers (kaders),	compared to 25 (1.0%)	Baseline CVD risk	intervention
multifaceted			in rural	that were	nurses, and	in the control villages	factors were similar	villages than
mobile			Indonesia.	selected based	physicians. Patients	(p=<0.001), 56.8% were	between intervention	the control.
technology-				on access to	were screened using	receiving BP-lowering	and control groups. At	Villages were
enabled primary				technologies	the mobile CDSS	medications compared	follow-up, 31.0% of	selected based
care intervention				that would	during home visits and	to 15.7% in the control	patients at high CVD	on the
with				support	referrals were made	group (p=<0.001),	risk in the intervention	community
cardiovascular				intervention	to nurses and	19.9% were receiving	group achieved BP	health
disease risk				implementatio	physicians for further	lipid-lowering	targets compared to	workers'
management in				n; 11,647	evaluation based on	medications vs. 2.4% in	22.2% in the control	evaluation of
rural				patients were	patient's estimated	the control (p=<0.001),	group (p=<0.001), 17.2	the feasibility
Indonesia. JAMA				included in the	CVD risk. Nurses were	and 24.6% of patients	mm Hg decrease in	of the
Cardiology, 4(10),				intervention	given the ability to	with established CVD	mean SBP in the	intervention in
978–986.				villages and	order	were receiving	intervention group	specific
https://doi-				10,988	antihypertensives in	antiplatelet	compared to 9.2 mm	villages. Field
org.ezproxy.liberty				patients in the	this study; it is unclear	medications vs. 12.7%	Hg decrease in the	researchers
.edu/10.1001/jam				control	how much physician	in the control (p=0.06).	control group	collecting
acardio.2019.2974				villages.	oversight there was	The first two outcomes	(p=<0.001), and 8.3 mm	outcome data
				Control villages	for this activity.	showed a statistically	Hg decrease in DBP in	were blinded
				were matched		and clinically significant	the intervention group	to village
				to intervention		improvement in the	compared to 5.0 mm	allocation.
				villages based		intervention group and	Hg decrease in the	
				on population		borderline statistically	control group	
				demographics		significant	(p=<0.001). 16.0% of	
				and care		Improvement in the	patients in the	
				access to		final outcome, yet	Intervention group	
				provide		there remains a large	were smoking at follow-	
				consistency		gap in the achievement	up compared to 18.4%	
				Detween pairs.			in the control (p value	
				considered for		in this rural independent	Not available). There	
				inclusion based		nonulation	offect on RML at follow	
				on the			un: change in PMI was	
				following			0.0 in the control and	
				characteristics			0.3 in the intervention	
				age >10 years			g_{roun} (n=0 /0)	
				age 240 years			group (p=0.49).	
				olu allu lligit				

				estimated 10- year ASCVD risk defined as: a) previously diagnosed CVD, b) SBP >160 mm Hg or DBP > 100 mm Hg, c) 10-year estimated CVD risk of \geq 30%, or d) 10-year CVD risk of 20-29% and SBP >140 mm Hg. Median follow- up for this study was 12.2 months.					
Persell, S. D., Liss, D. T., Walunas, T. L., Ciolino, J. D., Ahmad, F. S., Brown, T., French, D. D., Hountz, R., Iversen, K., Lindau, S. T., Lipiszko, D., Makelarski, J. A., Mazurek, K., Murakami, L., Peprah, Y., Potempa, J., Rasmussen, L. V., Wang, A., Wang, J., Kho, A. N. (2020). Effects of 2 forms of practice facilitation on cardiovascular prevention in primary care: A practice-	III: Quasi- experim ental	No SIGN form this level	To compare facilitation of two combinations of quality improvement strategies for preventative cardiovascular care.	Quasi- experimental design, practices were randomized to two intervention groups to compare effectiveness. While 226 practices agreed to participate, only 179 practices provided follow-up data.	Both intervention arms received one-on- one coaching from a quality improvement facilitator who made several visits to the practice during the 12- month intervention period. The two arm intervention groups were 1) point-of-care study arm and 2) point-of-care + population management group. Practices were given the autonomy to pick which interventions to implement and when. Intervention choices in the point-of-care category included adding CDS, modifying	The mean in achievement of quality outcome measures increased in both intervention groups. With a P value of < 0.001 for each, increases for each category are as follows "Aspirin 0.04 (95% confidence interval: 0.02–0.06), Blood pressure 0.04 (0.02– 0.06), Cholesterol 0.05 (0.03–0.07), Smoking 0.05 (0.02–0.07)" (p. 344). Increases from baseline between the two study arms were similar except the increase for the cholesterol measure was somewhat higher	Not evaluated	Not evaluated	While the study did not achieve the sample size intended, there were still 179 small and mid-sized primary care practices included in the final sample. Limitations: lacked control, 20% of clinics did not provide follow-up data (47/226 practices).

randomized,	workflows, giving for the point-of-care +
comparative	provider performance population
effectiveness	feedback, and management arm
trial. Medical	improving patient different of 0.03, 95%
Care, 58(4), 344–	education. The second confidence interval
351. https://doi-	intervention group 0.01-0.07, P=0.055; this
org.ezproxy.liberty	were also encouraged difference may have
.edu/10.1097/ML	to search the EHR for been more clinically
R.00000000001	patients with medical significant had the
260	gaps in care and sample size been larger.
	follow up to address
	these gaps and were
	given the opportunity
	to use a CDSS which
	autogenerated
	personalized referrals
	to community
	resources such as
	smoking cessation.
	Outcomes were
	evaluated at baseline.
	12 months, and 18
	months and were
	hased on the Million
	Hearts Campaign ABCS
	measures: "(Aspirin)
	Aspirin/antiplatelet
	therapy for ischemic
	vasculai disease (Pleed
	usease, (block
	pressure) Controlling
	High Blood Pressure,
	Inerapy for the
	Prevention and
	CardiovasCular Disease and
	Disease, and
	(Smoking) Tobacco
	Use: Screening and
	Cessation
	Intervention,

					and the Change Process Capability Questionnaire" (p. 344).				
Ye, S., Leppin, A. L., Chan, A. Y., Chang, N., Moise, N., Poghosyan, L., Montori, V. M., & Kronish, I. (2018). An informatics approach to implement support for shared decision making for primary prevention statin therapy. <i>MDM</i> <i>Policy &</i> <i>Practice, 3</i> (1), 238146831877775 2. https://doi- org.ezproxy.liberty .edu/10.1177/238 1468318777752	III: Quasi- experim ental	No SIGN form this level	To evaluate the effect of an EHR tool that automatically calculated 10- year ASCVD risk and educating providers regarding the Mayo Clinic Statin Choice decision aid on utilization of the decision aid tool and provider attitudes toward shared patient- provider decision making and confidence with shared decision- making conversations.	This quasi- experimental study utilized convenience sampling and used participants pre- intervention survey responses and tool utilization as the comparison group. Initial surveys had a response rate 30.6% (70 out of 229 family and internal medicine attendings and residents invited to participate). Only 60 physicians completed both surveys. Respondents were more likely to be female (70%), aged 20-39 years old (70%), and be internists (73%).	An easy-to-use EHR tool was designed to automatically calculate patient's individualized 10-year ASCVD risk, which could be used to facilitate share decision-making conversations using the Mayo Clinic Statin Choice decision aid already developed prior to the roll out of this EHR tool. Outcomes examined included provider attitudes toward shared decision making and self- reported and quantitative measurement of the shared decision- making tool's utilization. Data were extracted over the three months preceding and three months after the intervention.	The CDSS tool which automatically provides the patient's individualized 10-year ASCVD risk is a piece of information vital to this conversation which can be facilitated by the Mayo Clinic Statin Choice decision aid. This study was not able to directly measure how many times these shared-decision making conversations were occurring pre- and post- intervention; however, utilization of the Mayo Clinic Statin Choice decision aid tool increased from 3.4 to 5.2 times per 1,000 patient visits (p=0.002) after the intervention. While this is statistically significant, it is unclear how clinically significant this increase is since patient demographics and who would have benefited from a shared decision- making conversation were not reported along with the results. Provider surveys demonstrated modest increases in self-	Not evaluated	Not evaluated	Lacked randomization; utilized pre- post study design which means participants acted as their own control. The sample of included providers did not include any advanced practice providers such as nurse practitioners or physician assistants, which may make the sample less representative of United States providers which frequently include these professionals on the interdisciplinar y team. Conducted at one location so may lack external

						reported usage of Mayo Clinic Statin Choice; surveyed providers reporting occasional use of this shared decision-making tool increased from 17% to 28% post intervention and routine use from 2% to 8% use post intervention (p=<0.001).			validity; however, authors provided detailed information about data mapping and decision- support logic within the EHR so that the automated 10- year ASCVD risk calculator CDSS tool could be replicated in other clinics.
Abimbola, S., Patel, B., Peiris, D., Patel, A., Harris, M., Usherwood, T., & Greenhalgh, T. (2019). The NASSS framework for ex post theorisation of technology- supported change in healthcare: Worked example of the TORPEDO programme. <i>BMC</i> <i>Medicine</i> , <i>17</i> (1), 1–17. https://doi- org.ezproxy.liberty .edu/10.1186/s12 916-019-1463-x	VI: Qualitati ve Study	No SIGN form for this level	To describe the application of the NASSS framework to retrospective data set from the Treatment of Cardiovascular Risk using Electronic Decision Support (TORPEDO) research program and new qualitative data extracted from primary interviews	This article applies the NASSS framework retrospectively to data included in previous reports on the TORPEDO program and new data gathered from interviews with researchers. Multiple theories were also used to complement the NASSS framework and interpret	Abimbola et al. (2019) conducted interviews with researchers to clarify questions centered around the following domains within the NASSS framework: condition, technology, value proposition, adopters, organizations, wider system, and embedding and adaptation over time.	NASSS Framework: Condition - Management of cardiovascular disease is more straightforward than the nuanced evaluation and treatment of high cardiovascular risk. The Intended Adopters - Negative media coverage of statins in the news led to changes in providers' prescribing habits that may have negatively affected the results of the TORPEDO program.	Not evaluated	NASSS Framework: Technology - System glitches and bugs led to provider frustration and decreased uptake and satisfaction with the tool; furthermore, providers wanted the information to flow both directions, both into HealthTracker from the EHR but also back into the EHR desktop tool. Lack of technical support as a part of clinic infrastructure was a major barrier, especially for smaller clinics. Value - In the setting of a fee-for-	Abimbola et al. (2019) suggest that there may have been a greater magnitude of effective if the program had taken an iterative quality improvement approach, tailoring the intervention to the needs of each site; this, however, would decrease the level of evidence by trading off the

		with TORPEDO	the primary		service market which	RCT study
		program staff.	and secondary		did not incentivize	design for a
			data sets.		quality of care	quality
					outcomes like	improvement
					cardiovascular risk	approach.
					screening.	Recall bias may
					HealthTracker had a	, have affected
					perceived negative	the results of
					financial value due to	the primary
					technical issues that	data set since
					took up valuable	researchers
					provider time.	were asked to
					Organizations - Wide	discuss their
					variation in the	impressions of
					capacity of individual	the issues with
					clinics to innovate	the TORPEDO
					made the application	program which
					of a standardized	they had
					intervention	already
					notentially less	completed
					effective: key	completed
					influencers on the	
					routinization of	
					HealthTracker use	
					included	
					organizational	
					mission, history,	
					leadership, team	
					dynamics, and	
					technical support.	
					Wider System - Lack	
					, of financial	
					incentives for	
					performing	
					cardiovascular risk	
					assessment may also	
					have negatively	
					affected uptake.	
					Adaptation Over	
					Time - Task sharing	
					might help alleviate	
					the burden on	

								providers and help the issue of high turnover among providers and the need to continuously training providers on HealthTracker use; this could be accomplished by expanding the application of the tool to include community health workers who have long-term relationships with patients from vulnerable populations.	
Bonner, C., Fajardo, M. A.,	IV: Cohort	No SIGN	To develop, pilot, and	This mixed methods study	The first phase of this process was part of	Stage 1 results: in order to address the	Not evaluated	Stage 3 results: comments from	Because the goal of several
Doust, J.,	Study	form	evaluate a	details the	another study and	psychological		providers who trialed	of the
McCattery, K., &		for	new website	theory-	methods were	capability, physical		the tool were overall	qualitative
Trevena, L. (2019).		this	linking risk	itorativo	detailed in a previous	opportunity, and		positive and written	stages of the
cardiovascular		level		nrocess used	researchers. In the	components of the		an average score of	study was to
disease			and feedback	to develop a	second phase of this	Change Wheel		8 4/10 for overall	the changes
prevention			tools with a	web-based	research two groups	Framework the CDSS		acceptability Stage 4	suggested by
guidelines to			decision aid to	tool integrating	of providers meeting	will need to combine		results: Feedback	end-users.
translate			help providers	the	at the "Ask Share	CVD risk calculation		from think-aloud	formal
evidence-based			identify	Framingham 5-	Know: Rapid Evidence	with evidence-based		interviews led to	qualitative
medicine and			pharmacologic	year CVD risk	for General Practice	management		changes to design	thematic
shared decision			al and	calculator with	Decisions (ASK-GP)	algorithms to help		and presentation of	analysis was
making into			nonpharmacol	an audit and	Centre of Research	providers identify risk		the tool to be black	not completed.
general practice:			ogical	feedback and	Excellence Clinical	category guidelines;		and white printer	For the
Theory-based			recommendati	guideline-	Laboratory'" discussed	shared decision making		friendly and readable	quantitative
intervention			ons based on	based decision	the tool and provided	can be supported by		for those with visual	portion of the
development,			Australian	aid. The study	suggestions as part of	personalized patient		impairments. Stage 5	study, a pre-
qualitative piloting			CVD	was divided	the co-design process;	decision aids showing		results: Baseline	post design
and quantitative			prevention	into the	aiscussions were	the effect of		open teedback from	was used to
reasibility. Implem			guidelines and	following	audio recorded in	priarmacological,		that the most	maximize user
entation			facilitate	stages: 1)	order to clarity field	nonpharmacological,		that the most	input and

Science, 14(1), 86.		provider-	Development	notes as necessary	and complimentary	common suggestion	turnaround
https://doi-		patient	of the	(Bonner et al., 2019, p.	treatments. Stage 2	was improving access	time for
org.ezproxy.liberty		communicatio	intervention	4). In the third phase,	results: feedback from	through integration	changes.
.edu/10.1186/s13		n.	based on	the tool was piloted at	providers led to	with the EHR was t	Finally, the tool
012-019-0927-x			Behaviour	a conference and data	development of the	(48%, n=21), the	was designed
			Change Wheel	was collected from	content of the online	second being	to support the
			process and	discussions with	CDSS tool including 5-	formatting changes	Australian CVD
			data extracted	providers who tried	year CVD risk	(29%, n=13), closely	prevention
			from the	the tool in the	, calculator, decision aid	followed by content	guidelines
			Healthy Heart	researcher's booth as	to support patient-	change suggestions	specifically, not
			Study	well filled out a brief	provider conversations	(23%, n=10). Follow-	other national
			, (n=1,000, with	feedback form. In the	on risk, and information	up had similar	or
			400 providers	fourth phase, think-	on benefits/harms of	suggestions for	international
			and 600	aloud interviews were	pharmacological	changes: formatting	guidelines.
			patients/consu	conducted via Skype	management and	(58%, n=23),	0
			mers), 2)	with patients and	lifestyle modification.	improving access	
			Design content	providers who trialed	Stage 5: using the	(40%, n=41), and	
			with providers	the tool to provide	online CDSS	changing content	
			(convenience	insight on content and	significantly increased	(20%, n=8). Three	
			sample of n=18	design. In the final	accurate identification	suggestions which	
			providers), 3)	phase of this study,	of high CVD risk	were not actionable	
			Feedback from	providers trialed the	patients and	for this study due to	
			providers on	final product for 1	appropriate	scope and funding	
			web tool	month to assess the	antihypertensive and	include making the	
			prototype	feasibility of using the	cholesterol medications	risk calculation and	
			(convenience	tool in practice using	for hypothetical patient	decision aid available	
			sample of	one of nine	scenarios; correct	to patients prior to	
			conference	hypothetical patients	identification of low	the visit (provider	
			attendees,	that the provider was	risk patients increased	and patient	
			n=25 tested	allowed to select;	by 16% (95%	suggestion,	
			the prototype,	outcomes for this	confidence interval 0-	improving	
			n=16 of those	phase included intent	32%), moderate risk	efficiency/speed of	
			filled out	to use the tool and	patients by 32% (95%	calculation by auto-	
			written	accuracy of risk	confidence interval 6-	populating tool from	
			feedback	calculations and	57%), and high risk	EHR (provider	
			form), 4)	treatment decisions.	patients by 50% (95%	suggestion), and	
			Patient and		confidence interval 35-	making low-literacy	
			provider think-		65%). Using the tool	version of decision	
			aloud		was associated with	aid for patients with	
			interviews		increased identification	low health literacy.	
			provided		of either		
			feedback on a		antihypertensive or		

				C 1					
				functional version of the website (convenience sample n=19, 10 providers and nine patients), and 5) 1-month study of feasibility based on provider use over the same time period (baseline data from n=123, follow-up data from n=98).		cholesterol medication or both as appropriate treatment for high risk patients; fortunately, this did not increase inappropriate overtreatment of low risk patients; 19% of providers indicated they would prescribe CVD preventative medications for low risk hypothetical patient cases at baseline vs. 22% post-intervention. There was no increase in self-reported use of risk calculators post- intervention. This may be because there was a relatively high proportion of providers who were using other risk calculators at baseline; however, this tool was uniquely designed to support the implementation of Australian guidelines since there was no other available tool to serve this purpose.			
Chaudhry, A. P., Samudrala, S., Lopez-Jimenez, F., Shellum, J. L., Nishimura, R. A., Chaudhry, R., Liu, H., & Arruda- Olson, A. M. (2019). Provider survey on	VI: Qualitati ve	No SIGN form for this level	To evaluate providers opinions on CDSS used in an old EHR system in order determine if something similar would	Qualitative study which used convenience sampling and emailed 279 providers in the Mayo Clinic health system who provided	Nine-question provider survey evaluated if the CDSS for cardiovascular prevention available in the old EHR system was user-friendly, supported provider decision making, and if it should be added to	Not evaluated	Not evaluated	Survey results indicated that 96.0% of providers felt that the CV risk profile tool supported their thought processes at the point of care and 86.5% felt it was easy to use. These survey results were	As a qualitative study, it can only be applied to the specific context under analysis; however, the article provides insights into what elements

automated clinical decision support system for cardiovascular risk assessment. AMIA Joint Summits on Translational Science, 64–71.			be useful as is or with modifications. The tool in question displayed patient information: risk factors, body mass, vascular health, metabolic syndrome, CV mortality risk, lifestyle risk factors, recommendati ons, and follow-up.	cardiovascular care to patients. With a response rate of 35.8%, 100 providers responded to the survey. Of these 48 providers indicated that they had not used the CDSS for CV risk assessment in the old EHR system and were, thus, not able to finish the survey. Of the 52 providers who remained, 14 were fellows, 7 were NPs/PAs, and 31 were staff physicians or PhD exercise physiologists.	the new system with the same features or more features.			supplemented by a query of the system which revealed that the tool had been used heavily by providers with 39,396 reports generated by 282 users over a 12-year period.	of a CDSS providers see as helpful.
DeJonckheere, M., Robinson, C. H., Evans, L., Lowery, J., Youles, B., Tremblay, A., Kelley, C., & Sussman, J. B. (2018). Designing for clinical change: Creating an intervention to implement new	VI: Qualitati ve Study	No SIGN form for this level	To describe determinants of provider uptake of new statin guidelines and use provider feedback to develop a multicompone nt guideline implementatio	This qualitative study used audiotaped interviews with Veterans Affairs clinicians to obtain input into their preferences for the design of a CDSS tool for	This qualitative study used feedback obtained in semi- structured interviews with providers to ascertain provider knowledge, attitudes, and behaviors related to implementation of the statin guidelines. Information elicited in provider interviews	Not evaluated	Not evaluated	Clinicians prefer accurate, simple, and straightforward prompts that are arranged logically and support evidence-based statin prescribing with the option to dismiss the prompt if it is inaccurate or irrelevant. Interviews	As a qualitative study, it naturally follows a non- experimental design and uses a small sample size of providers; as a result, results may not be generalizable

statin guidelines in a primary care clinic. <i>JMIR</i> <i>Human</i> <i>Factors, 5</i> (2), e19. https://doi- org.ezproxy.liberty .edu/10.2196/hu manfactors.9030			n intervention (i.e. provider opinions on new statin guidelines, CDSS, audit and feedback) to support provider statin prescribing within a Veterans Affairs medical center.	statin prescribing which would later be developed for a quality improvement project. Semi- structured interviews were conducted with a convenience sample of 13 PCPs and two clinical pharmacists working in primary care at a Veterans Affairs facility.	was used to develop a user-centered CDSS designed to support provider evidence- based statin prescribing.			also indicated a preference for clear and direct language, easy-to-use formatting, and a CDSS that would improve efficiency. Referring to the calculation of 10-year ASCVD risk, one participant stated "If the reminder already calculated the risk, I'd love that. I hate having to go to the internet, or look on my smartphone, so I think the ideal reminder would calculate the risk for you" (p. 6).	to other Veterans Affairs facilities or other non- Veterans Affairs health systems. One strength of this study is it highlights design factors that influence the uptake of guideline- based CDSSs.
Raghu, A., Praveen, D., Peiris, D., Tarassenko, L., & Clifford, G. (2015). Engineering a mobile health tool for resource-poor settings to assess and manage cardiovascular disease risk: SMARTHealth study. <i>BMC</i> <i>Medical</i> <i>Informatics &</i> <i>Decision</i> <i>Making, 15</i> (1), 36. https://doi- org ezoroxy liberty	VI: Descrip- tive Study	No SIGN form this level	To describe the development and pilot testing of a mobile health solution which provides CDS for CVD primary prevention in rural India.	This pilot study uses a convenience sample of 11 non-physician village health workers to field test the SMARTHealth mobile-based CDS. This all- female workforce provides community health outreach in rural areas of India where the physician	The SMARTHealth mobile app was field tested by 11 community health workers called Accredited Social Healthcare Activists (ASHAs) during home visits to members of their communities. Outcomes of interest included the number of patients who were screened and proportion who were at high CVD risk per screening, system efficiency, user variability, usefulness of noint-of-care	Of the 227 patients screened, 57% (n=128) were identified to be at high risk of CVD, which resulted in physician referrals for either high CVD risk (n=88) or impaired fasting glucose (n=40). This intervention was, therefore, useful for identifying high risk individuals in the community and facilitated appropriate referrals for physician follow-up.	Not evaluated	As the field testing progressed, the time required to complete the CVD screening using the tool decreased as the users became more comfortable and proficient with the tool. Questionnaires designed to evaluate community health workers' opinion on the tool's usability after each use found that the tool was perceived as easy to use for the screening procedure 72% of	Lacked randomization and control group; there was no data to compare the number of patients who received CVD screening prior to field testing in the villages.
.edu/10.1186/s12 911-015-0148-4	to pa is 1:2 (com the u of 1:	atient ratio recommendations, 20,000 usability, and CVD npared to referrals. urban ratio :2,000).							
--	---	--	--	--	---				
Marcolino, M. S., Descrip- Machado, E. L., tive f Ferreira, C. G., Study f Alkmim, M. B. M., Resende, E. S., Carvalho, B. C., Antunes, A. P., & Ribeiro, A. L. P. (2019). Development and evaluation of a mobile decision support system for hypertension management in the primary care setting in Brazil: Mixed-Methods field study on usability, feasibility, and utility. <i>JMIR</i> <i>MHealth and</i> <i>UHealth, 7</i> (3), e9869. https://doi- org.ezproxy.liberty .edu/10.2196/mh ealth.9869	SIGN the feasibility, meth form utility, and study for usability of a exam this mobile deve level technology of a d based CDSS called for the (tele- management hiper of arter hypertension sistêd in primary whic care clinics in trans Brazil. arter SBrazil. arter bype Prior testin CDSS evalu smal expe cons five p three two card in or obta samp provi the 8 phys Mon Brazi	InterceIntercertas (tele-whods fieldhipertensão arterialdysistêmica whichmines thetranslates to arterialelopmenthypertension) wasCDSSdeveloped based oned TeleHASevidence-basede-practice guidelinesand the latestavailable researchemicasupporting bestchpractices; the tooluses the Cockcroft-ertension).estimate glomerularrialGault formula toertension).estimates CVD riskbluated by abased on theull panel ofFramingham score;ertsthis in addition tosisting ofpatient data enteredphysicians:into the CDSSee PCPs andgenerates evidence-basedreatment. The toolviders fromwas designed to88operate without Wi-Fisicians insince no clinics in thesicians insince no clinics in thethe Claros,sample had access tocil,Wi-Fi due to highcarcherscosts. Outcomes offield testing wereevaluated at 3 and at	ten providers used to tool to calculate cardiovascular risk using the 10-year global risk score chart.	expert panel provided suggestions for revision but also indicated that they believed it would support implementation of evidence-based practice in the Brazilian primary care context. Providers in the field- testing group used the TeleHAS database with 535 patients and used it in 632 patient encounters. The main criticism of the tool was that it caused work duplication by requiring providers to enter patient data into the Android powered tablet device. Because of lack of Wi-Fi and EHRs at these clinics, a CDSS that automatically populated patient data was not feasible; however, authors concluded that a CDSS which	not quantify the effects on actual provider practice or adherence to guidelines; however, based on provider feedback, the authors suggest that an ideal CDSS would be integrated into an EHR (something not available in this district of Brazil) and would decrease not add to provider workload in order to support best practices of providers who already have an "excessive workload" (Silveira et al., 2019, p. 9). While this tool did support				

	lecture on	6 months post-		required minimal	practice, it left
	hypertension;	intervention and		data entry by	providers
	of 63	included providers'		providers would be	feeling
	physicians who	perceptions of		ideal. Providers in	frustrated by
	attended, 51	feasibility, usability,		the sample did not	the duplication
	agreed to	and utility of the tool;		have previous	of efforts
	participate in	these domains were		experience with	which, unless
	field testing,	measured using semi-		CDSS, and many	addressed, wil
	and 10 were	structured interviews		indicated on surveys	likely limit
	randomly	and 5-point Linkert		that they felt that	uptake and
	selected for	scale surveys.		training was essential	scalability in
	inclusion.			to use this tool even	other regions
	Participants			though the designers	of Brazil.
	were			had felt the tool	
	predominantly			navigation was	
	young,			intuitive. Overall, the	
	inexperienced			tool was rated as	
	female			feasible to use in the	
	physicians (<5			Brazilian primary	
	years of			care setting (100%),	
	experience).			easy to incorporate	
				into clinic or home	
				visits (80%);	
				nevertheless, 70%	
				indicated the time to	
				fill out the	
				application cause	
				significant delays in	
				service. Eighty	
				percent indicated the	
				tool was good, 100%	
				that the tool was	
				user-friendly and had	
				the potential to	
				improve patient's	
				treatment. Finally,	
				90% indicated that	
				the tool gave them	
				access to new	
				knowledge about	
				CVD risk and	
				hypertensive	

								treatment and believed it promoted preventive treatments and management.	
Williams, P. A., Furberg, R. D., Bagwell, J. E., & LaBresh, K. A. (2016). Usability testing and adaptation of the pediatric cardiovascular risk reduction clinical decision support tool. <i>JMIR Human</i> <i>Factors, 3</i> (1), e17. https://doi- org.ezproxy.liberty .edu/10.2196/hu manfactors.5440	VI: Descrip- tive Study	No SIGN form for this level	To examine the usability of the mobile- based CDS tool being developed: Pediatric Cardiovascular Risk Reduction CDS Tool.	Snowball recruiting was used to obtain the sample of five providers for the first phase of this study; this convenience sample of providers was obtained from two universities in Raleigh- Durham, North Carolina. In the first phase, five clinicians performed in- person testing of the app with a "think-aloud" approach without any assistance from the researchers; providers tested the CDS using test cases; provider's verbal feedback were audio-recorded for later	The mobile-based CDSS was designed as applications (apps) for Apple iOS and Android and provides recommendations based on national guidelines for cardiovascular health and risk reduction in pediatrics. Outcomes of interest were provider's feedback (positive, negative, and suggestions) in both phases of the study; user experience was quantitatively evaluated using the SUS questionnaire in the final stage.	Not evaluated	Not evaluated	Overall feedback from providers on the second iteration of the mobile-based CDS was positive. Users preferred apps to present data in a streamlined manner and highlight critical results. Providers requested recommendations to be succinct and tailored to patients based on risk factors. Based on provider feedback, the final product allowed providers to enter as much or as little information as they chose in order to obtain the information they required; providers were not forced to enter all data fields and data flowed between different sections of the CDS to avoid redundancy in entering information.	The study did not evaluate the effect of the tool on frequency of provider CVD risk discussions and adherence to evidence- based guidelines. One strength of this study is that it demonstrates how a user- centered mobile-based CDS can be developed using an iterative process informed by end-users.

				analysis. In the second stage, 14 pediatricians tested the CDS in the clinic with real patient encounters. Provider feedback in this two-week study period was elicited via unstructured comments received via email, telephone, or short message service as well as user experience quantified using the 10- item System Usability Scale (SUS) questionnaire.					
Benson, T. (2019). Digital innovation evaluation: User perceptions of innovation readiness, digital confidence, innovation adoption, user experience and behaviour change. BMJ Health & Care	VII: Expert Opinion	No SIGN form for this level	To describe a framework designed to understand why healthcare innovations do or do not spread within a system or across systems.	This article describes the design principles followed and iterative process Benson (2019) completed to develop the surveys which evaluate: innovation	Benson (2019) describes the coherence of the five tools developed from various models with the NASSS framework.	Not evaluated	Not evaluated	Not evaluated	This paper describes the development of five measures that users can answer to self- evaluate their readiness for innovation and the likelihood that the innovation

ASCVD RISK ESTIMATOR INTEGRATION INTO AN EMR

Informatics, 26(1), 0.5-0. doi:10.1136/bmjh ci-2019-000018	readiness, digital confidence, innovation adoption, user satisfaction, and behavior change.		wi ma Th we the fra Be ad mo to wi ap va ev ap Sir the ba ide ap CV pre CL cli is i ch les ad an cli fra sor to ba sor to ba sor to ba sor to to sor to to to to to sor to to to sor to to to to to to to to to to to to to	th be aintained. e measures are linked to e NASSS amework but enson (2019) mits that the easures need be tested th real-world plication for lidation and aluation of uplicability. nce one of e major rrriers entified in uplication of /D evention DSSs in the nical setting resistance to ange and ass than 100% loption nong nicians, this amework ings context the problem of possible lutions by alping to entify oviders who
			so he ida pr fea co wi te	lutions by lping to entify oviders who el less imfortable ith chnology and

ASCVD RISK ESTIMATOR INTEGRATION INTO AN EMR

													may benefit
													from additional
													support.
NT /	CICNI C		0 11	 1 • 1	1.1	 1 1 1	1.	1.0	•	. 11	T 11 '	. 11 1	1

Notes: SIGN form ratings are as follows ++ = high quality, + = acceptable, - = low quality, and 0 = reject/unacceptable. Table is sorted by level

of evidence in descending order and then by author last name in alphabetical order.

Appendix B

Collaborative Institutional Training Initiative (CITI) Certificate

	Completion Date 28-Aug-2019 Expiration Date 27-Aug-2022 Record ID 22479221
This is to certify that:	
Elisabeth Campbell	
Has completed the following CITI Progra	am course:
Social & Behavioral Research - Basi	c/Refresher (Curriculum Group)
Social & Behavioral Researchers 1 - Basic Course	(Course Learner Group) (Stage)
Under requirements set by:	
Liberty University	
	Collaborative Institutional Training Initiative