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Abstract

Background: A crucial task in metagenomic analysis is to annotate the function and taxonomy of the sequencing
reads generated from a microbiome sample. In general, the reads can either be assembled into contigs and searched
against reference databases, or individually searched without assembly. The first approach may suffer from fragmentary
and incomplete assembly, while the second is hampered by the reduced functional signal contained in the short reads.
To tackle these issues, we have previously developed GRASP (Guided Reference-based Assembly of Short Peptides),
which accepts a reference protein sequence as input and aims to assemble its homologs from a database containing
fragmentary protein sequences. In addition to a gene-centric assembly tool, GRASP also serves as a homolog search tool
when using the assembled protein sequences as templates to recruit reads. GRASP has significantly improved recall rate
(60–80% vs. 30–40%) compared to other homolog search tools such as BLAST. However, GRASP is both time- and space-
consuming. Subsequently, we developed GRASPx, which is 30X faster than GRASP. Here, we present a completely
redesigned algorithm, GRASP2, for this computational problem.

Results: GRASP2 utilizes Burrows-Wheeler Transformation (BWT) and FM-index to perform assembly graph generation,
and reduces the search space by employing a fast ungapped alignment strategy as a filter. GRASP2 also explicitly
generates candidate paths prior to alignment, which effectively uncouples the iterative access of the assembly
graph and alignment matrix. This strategy makes the execution of the program more efficient under current computer
architecture, and contributes to GRASP2’s speedup.
GRASP2 is 8-fold faster than GRASPx (and 250-fold faster than GRASP) and uses 8-fold less memory while maintaining
the original high recall rate of GRASP. GRASP2 reaches ~ 80% recall rate compared to that of ~ 40% generated by
BLAST, both at a high precision level (> 95%). With such a high performance, GRASP2 is only ~3X slower than BLASTP.

Conclusion: GRASP2 is a high-performance gene-centric and homolog search tool with significant speedup compared
to its predecessors, which makes GRASP2 a useful tool for metagenomics data analysis, GRASP2 is implemented in C++
and is freely available from http://www.sourceforge.net/projects/grasp2.
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Introduction
Metagenomics is a culture-independent approach for
studying the genomic content of a given microbial com-
munity. In a typical metagenomics study, the DNA of
the microbes from an environmental sample is extracted
and sequenced using next-generation sequencing (NGS)
technologies. Analysis of metagenomics data derived
from medium- or high-complexity microbial communities
is challenging due to the high taxonomic and genomic di-
versity of the constituent microbes, and also often due to
insufficient and/or uneven sequencing coverage. De novo
assembly (that aims at reconstructing individual microbial
genomes from the sequencing reads) of such data sets is
often incomplete and fragmentary, hampering downstream
functional and taxonomic analysis. For example, the
MetaHIT (Metagenomics of the Human Intestinal Tract)
project data assembly resulted in a contig N50 of only 2.2
kb and left over 53% of the reads unassembled [1].
Assembly-independent analysis methods directly an-

notate individual reads by searching for them against
available databases. These databases may contain fully
sequenced genomes, proteins and protein domains, as
well as marker genes with annotated taxonomy. Signifi-
cant hits against the databases suggest homology be-
tween the reads and sequences in databases, allowing us
to infer the function and taxonomy of the individual
reads and subsequently predict the function of the entire
community. However, this approach relies heavily on the
completeness of the existing databases. In practice, such
databases are rarely available, except for simple and
well-studied communities, with microbial diversity in most
environments not being sufficiently well-characterized or
sequenced. In this case, most database searches involve
moderate- or remote-homology detections, which are more
challenging compared to close-homology detection. Such
homolog searches are further confounded by the short
length of the reads, which contain only a limited amount of
functional and taxonomic signal.
We attempted to tackle this issue by overlapping the

reads to make them longer and reconstruct the lost
functional and taxonomic signal. The read-overlap
detection is similar to those employed in de novo
assembly. However, we did not perform excessive
error correction and aggressive graph filtering and
pruning as most assemblers do, which allows us to
retain most polymorphisms from low-abundant genomes.
Furthermore, we performed read overlap detection on the
short-peptide sequences translated from the nucleotide
reads (using FragGeneScan [2]); this approach has been
shown to more effectively reconstruct protein sequences
due to the collapse of synonymous mutations in the
amino-acid space [3]. Based on such an intuition, we previ-
ously developed a simultaneous alignment and assembly al-
gorithm called GRASP (Guided Reference-based Assembly

of Short Peptides), that aims to find paths corresponding to
homologs of a query/reference protein in the conceptual
overlap graph [4]. In this sense, GRASP can be used as
a gene-centric assembly tool that reconstructs homolo-
gous protein sequences of the reference. It can also be
used as a homolog-search tool to recruit individual
homologous reads, by using the assembled contigs as
templates. Benchmark data showed that GRASP had
improved the recall rate of existing homolog search
tools from ~ 40% to ~ 60% without loss of precision [4].
Recently developed homolog search tools, such as RAP-
Search [5] and DIAMOND [6] focused on improving
computational efficiency, and have lower performances
in recall rate. Hence, although many efficient homolog
search tools are available, GRASP remains the one with
the highest recall rate and overall performance.
However, due to de novo assembly performed in

GRASP, it is much slower than traditional read-based
homolog search tools such as BLAST. Furthermore,
GRASP also requires a large amount of memory to store
a suffix array data structure used for assisting with the
assembly step. Hence, GRASP had only been applied to
relatively simple and small metagenomic data sets such
as those generated from the human oral environment.
To extend GRASP’s practical utility, we developed a new
simultaneous alignment and assembly algorithm called
GRASPx [7]. GRASPx improves the speed of GRASP by
~30X without compromising the original performance
of GRASP. GRASPx also uses a similar amount of mem-
ory as GRASP. Despite significant performance improve-
ment, GRASPx requires more time and space than other
homolog search tools.
In this article, we present a completely redesigned

simultaneous alignment and assembly algorithm called
GRASP2 to further improve the computational and space
efficiency upon GRASPx. We benchmark GRASP2 against
a set of homolog search algorithms including GRASPx,
BLAST, PSI-BLAST, and FASTM. The benchmark results
show that GRASP2 is 8-fold faster than GRASPx and uses
8-fold less memory for both of its indexing and assembly/
search phases. GRASP2 has the same high performance
compared to GRASPx; and GRASP2 has significantly out-
performed the other homolog search tools. These results
suggest our novel algorithm can effectively reduce the
running time and space requirement of the simultaneous
alignment and assembly algorithms. The resulting soft-
ware GRASP2 has great application potential for its high
performance and significantly improved computational
efficiency.

Methods
The original GRASPx algorithmic framework
We first summarize the GRASPx’s algorithmic frame-
work to identify its limitations that have been further
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improved here. GRASPx contains two main stages, i.e.,
the indexing stage for building a suffix array from the
entire read set to facilitate efficient overlap detection,
and the assembly/search stage that searches the concep-
tual overlap graph for paths that correspond to homo-
logs of the reference protein.
In its indexing stage, GRASPx uses extension links to

represent the read overlap information [7]. An extension
link exists between a source read and a target read, if
the suffix of the source and the prefix of the target share
a common l-mer. The extension links are built by a
linear scan of the suffix array constructed from the
entire read set to identify intervals that share a common
prefix of length longer than l (set to 10 amino acids for
both GRASPx and GRASP2 as default). It implies that
all reads whose suffixes are included in such intervals
share a common l-mer, thus allowing us to build the
corresponding extension links. There are four limitations
of the extension link representation. First, GRASPx
requires the construction of a suffix array from the
entire read set, which may not fit into memory when the
dataset is huge. Second, GRASPx linearly scans the con-
structed suffix array, which is typically implemented as a
single-threaded program to effectively use the pre-fetch
feature of modern computer architectures. Therefore,
GRASPx’s indexing phase has low multithreading scal-
ability. Third, the extension link is added between two
reads as long as they share a common l-mer, ignoring
whether the two reads indeed overlap. This formulation
is equivalent to the construction of assembly de Bruijn
graph [8], which is not read coherent and may include
false overlap information between reads [9]. Finally, the
extension links that correspond to a single, unbranched
path in assembly graphs are redundant. These extension
links should be contracted to reduce the number of
extensions and save memory space.
GRASPx’s assembly/search phase involves iterative

assembly and alignment similar to GRASP. GRASPx
first identifies a seed read, which shares a common
k-mer (set to 6 for both GRASPx and GRASP2 as de-
fault) with the reference protein. The seed read is used
to initialize an open contig, which is defined as a contig
that can be potentially extended. In the assembly step,
GRASPx extends the open contig by following the ex-
tension links incident from the last read of the open
contig. (GRASPx also symmetrically extend the open
contig from the C-terminal to N-terminal.) In the align-
ment step, GRASPx aligns the reference protein with the
newly extended open contig. Extended open contigs
remain open if the resulting alignment score with the
reference protein is higher than a threshold; otherwise,
they are closed to terminate further extensions. The
algorithm terminates when all contigs are closed, and
outputs all paths that result in significant alignment

scores with the reference protein. This approach, however,
does not effectively utilize the pre-fetch feature of modern
computer architecture. The alignment step often keeps a
two-dimensional dynamic programming table in cache,
and it flushes the information pre-fetched from the exten-
sion link table away from the cache/main memory. Exten-
sion links thus need to be reloaded for the next assembly
step. Similarly, the assembly step loads in the extension
links and flushes out the dynamic programming table, re-
quiring the algorithm to reload the dynamic programming
table for the next alignment step.
The redesigned GRASP2 algorithm improves GRASPx in

the following aspects. To improve the memory consump-
tion of GRASPx’s indexing phase, GRASP2 uses a more
memory-efficient data structure, i.e. Burrows-Wheeler
Transformation (BWT) and FM-index [10] to replace the
original suffix array data structure for read indexing.
GRASP2’s indexing phase also strictly require read overlap
rather than k-mer sharing during the read overlap phase.
GRASP2 generates the assembly string graph during its
index phase, which is read-coherent and contains no false
positive edges compared to de Bruijn graphs. To improve
GRASPx’s assembly/search phase, GRASP2 decomposes
the assembly and alignment steps into two independent
components to allow more efficient pre-fetch. GRASP2’s
assembly/search phase only requires the string graph as
input, which correspond to contracted extension links;
therefore, it is also more memory efficient than GRASPx.

GRASP2: assembly string graph creation
GRASP2 aims at generating the complete string graph
from the read set. Although existing assemblers are cap-
able of generating the assembly graphs as intermediate
results, those graphs are often extensively processed or
pruned (e.g., bubble removal, tip trimming, repeat copy
number prediction). The processed assembly graphs
often suffer from information loss, especially SNPs or
small indels from low-abundance genomes. Direct use of
the processed graph as output by existing assemblers
will render low homolog search recall rate. Hence,
GRASP2 generates its own SNP-aware string graph dir-
ectly from raw sequencing reads.
String graph generation has been introduced in [9].

The computational bottleneck of this algorithm is over-
lap detection. A linear-time overlap detection algorithm,
using BWT and the FM-index, has been previously pro-
posed [11]. GRASP2 adopts a modified version of this
algorithm to detect read overlaps, and subsequently con-
struct the string graph (Fig. 1a). To consider large data
sets, GRASP2 partitions the raw read set into smaller
blocks and constructs BWT for each block. The size of
each data block is a tunable parameter, which allows the
user to control the memory consumption of the index-
ing stage. For each read, GRASP2 then searches for all
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BWT blocks to identify the read’s overlapping neighbors.
Note that the final set of overlapping neighbors of the
read is not a simple union of the ones detected from the
BWT blocks, because contained reads may fail to be
identified if they are partitioned into different BWT
blocks. However, simple union of overlapping neighbors
is computationally efficient; therefore, GRASP2 adopts
this approach initially and subsequently rectifies the
resulting errors after the graph is constructed.
Specifically, let r be the current read being processed,

and rA be an overlapping read identified form data block A
and rB be one identified from data block B. If rA is not con-
tained in rB (as a substring) nor vice versa, rA and rB can
be directly connected with r because they correspond to
different paths in the assembly graph. On the other hand,
assume (without loss of generality) that rA is contained in
rB, r should only be overlapped with rB. Two scenarios are
possible. First, rA and rB may subsequently both overlap
with another read r′. Because we only consider overlaps
with maximum lengths [9], overlap between rA and r′ also
implies overlap between rB and r′, and vice versa. In this
case, two identical paths exist, i.e., (r, rA, r

′) and (r, rB, r
′),

which correspond to a bubble in the assembly graph. Be-
cause the two paths are identical, one needs to be removed
to reduce redundancy of the assembly graph. To remove
the bubble, for each node v in the graph, we extend it in
both directions up to a certain depth (tunable parameter).
Then, for each node u that have been visited during the
extension, we also extend it in both directions to check
whether there exists another alternative v − u path. If yes,
the sequences of the two v − u paths are then aligned. One
of the v − u path is eliminated from the assembly graph
only if the corresponding two sequences are identical; in
this case, our algorithm can retain polymorphism informa-
tion derived from low-abundant genomes.

In the second scenario, rB overlaps with r′, but because
rA is contained in and is shorter than rB, rA does not
overlap with r′ for a length that larger than the required
overlap length l. In this case, the path (r, rA) is termi-
nated and corresponds to a tip in the assembly graph.
Clearly, the tip (r, rA) is redundant since the correspond-
ing sequence information is already contained in the
path (r, rB, r

′). We first identify tips from the assembly
graph as terminating nodes (or beginning nodes by sym-
metry) whose corresponding path contains only two
nodes, with one being the tip itself and the other con-
necting to other longer paths (contain at least three
nodes or more). Note that orphan two-node paths, i.e.
those without at least one node connecting to a longer
path, are retained. Similar to the bubble removal step,
the sequence of the tip is also compared with all neigh-
bors of its connecting node to the major path; the tip
node is removed only when the tip sequence is found to
be contained in other paths. We summarize the bubble
removal and tip trimming steps as Fig. 1b (nodes con-
nected by red edges). After bubble and tip removal, the
remaining graph is simplified by collapsing nodes from
unbranched paths [9] (Fig. 1c). The sequences repre-
sented by the condensed edges are correct and are guar-
anteed to be present in any assembly of the read set; the
sequences are hereafter referred to as unitigs.

GRASP2: novel algorithm for simultaneous alignment and
assembly
The assembly/search stage of GRASP2 aims at searching
the string graph to identify paths (as a concatenation of
multiple unitigs) whose corresponding sequences are
homologous to the reference protein. These paths are
called homologous paths. The algorithmic design of
GRASP2 aims at uncoupling the string graph access and

Fig. 1 Overview of the GRASP2 algorithm. a The reads are overlapped to construct an assembly string graph. b Bubbles and tips are identified
and subsequently removed from the assembly graph. c Unbranched paths are collapsed into single edges. Each collapsed edge is considered as
a unitig and receives an arbitrary label. d Ungapped alignment is performed between the reference protein sequence and each of the unipath. e
High-scoring unipaths are treated as anchors to initialize gapped alignments. f Candidate paths are generated based on the identified anchor
unipaths. Gapped alignment is performed between the reference protein sequence against the candidate paths to recruit homolog paths

Zhong et al. BMC Bioinformatics 2019, 20(Suppl 11):276 Page 10 of 103



alignment to reduce page faults and achieve speedup
over GRASPx. The first step of GRASP2’s assembly/
search algorithm is to identify candidate unitigs (Fig. 1c,
unitigs are labeled arbitrarily to ease algorithm presenta-
tion) that are likely contained in homologous paths. Simi-
lar to BLAST, GRASP2 performs ungapped extension (or
alignment) based on seed pairs identified between the ref-
erence protein and the unitigs (Fig. 1d, unitigs 1 through
14). Because all k-mers have already been identified during
the previous indexing stage, the ungapped alignment step
is very efficient. Unitigs that receive ungapped alignment
scores higher than a threshold are retained as anchors for
candidate homologous path identification (Fig. 1e, purple
edges; we assume that the ungapped alignments between
the reference and the unitigs 6 as well as 12 result in high
ungapped score).
The second step of GRASP2’s assembly/search stage is

to identify all candidate homologous paths, defined as
paths that contain at least one anchor. GRASP2 first
sorts the anchors in descending order based on their
ungapped alignment scores (in Fig. 1e, we assume the
score for unitig 6 is higher than the score for unitig 12).
Then, based on the highest-ordered anchor in the list,
GRASP2 performs depth-first search (DFS) towards both
the N-terminal and C-terminal to exhaustively identify
all candidate homolog paths. The DFS is initialized
based on the position of the ungapped alignment, and
its depth is determined to make the constructed candi-
date paths match the length of the reference protein
sequence. During graph traversal, the DFS may reach
unitigs that are also in the anchor list; these unitigs are
subsequently removed from the anchor list to avoid
redundant traversal of the same regions in the string
graph. The DFS may also reach unitigs that are previ-
ously included in other candidate homolog paths; further
extensions from the visited unitigs are also prohibited
for a similar reason. For example, in Fig. 1, the DFS
based on the anchor unitig 6 will result in a candidate
path (3, 6, 9), and the DFS based on the anchor unitig 12
will result in candidate path (9,12,14), (4,12,14), and
(7,12,14). However, because the unitig 9 is already in-
cluded in the candidate path (3, 6, 9), the candidate path
(9,12,14) is considered as redundant because it also con-
tains the unitig 9 (Fig. 1f, only three candidate path re-
main). Because the anchor unitigs are sorted based on
the ungapped alignment score at the beginning (i.e. the
anchor unitig 6 has a higher ungapped alignment than
12), anchors that have higher ungapped sequence simi-
larity also have higher priority when recruiting its neigh-
bor unitigs to form candidate paths.
The third step is to perform gapped alignment be-

tween the reference protein and the identified candidate
homologous paths to generate accurate alignment scores
and detailed alignments (Fig. 1f ). Because each candidate

homologous path may contain multiple anchor unitigs,
there could exist multiple seed pairs identified between
the reference protein and the candidate homolog path.
Hence, instead of extending the alignment from each
seed pair, GRASP2 directly performs Smith-Waterman
local alignment [12] between the reference protein and
the candidate homologous paths. In addition, because
the candidate homologous paths are identified to match
the length of the reference protein, the highest-score
match is expected to come from the diagonal of the
alignment matrix. This intuition allows us to apply a
banded version of the Smith-Waterman algorithm for
speedup. We note that the Smith-Waterman algorithm
is more sensitive than extending the alignment from
each seed pair because the later approach fixes the align-
ment between the seeds, and partly contributes to the
higher recall rate of GRASP2. The candidate homolo-
gous paths that receive high local alignment scores are
output as homologous contigs of the reference protein.
The last step of GRASP2 is similar to that of GRASPx,

which uses the assembled homologous contigs as tem-
plates to recruit the original short-peptide reads. This
step allows GRASP2 to be used as a homolog search tool
in additional to a gene-centric assembly tool. This map-
ping step adopts traditional read-mapping algorithms
that utilize BWT, for example those implemented in
BWA [13] and Bowtie [14], with the only difference that
GRASP2 operates on amino acid alphabet rather than
nucleotide alphabet.
We note that GRASP2’s assembly/search algorithm ef-

fectively uncouples string graph access and alignment.
The first ungapped alignment step requires no information
from the string graph and only scans through the unitig
database. The second candidate homologous path identifi-
cation step operates on the string graph, but performs no
alignment and therefore does not require access to the read
sequences nor the dynamic programming tables. The third
step (Smith-Waterman banded alignment) and the fourth
step (read mapping) require no string graph information
and directly work on sequence alignments. Therefore,
GRASP2 more effectively reduces page faults.

Benchmark data set creation
We constructed a simulated marine metagenomic data
set using fully sequenced bacterial genomes. We selected
20 marine microbial genomes included strains of Candida-
tus pelagibacter, Prochlorococcus marinus, Synechococcus,
Flavobacteriales, Nitrosococcus oceani, Vibrio, Photobacter-
ium, Erythrobacter, Alteromonas, Roseobacter and Shewa-
nella. The detailed genome accession IDs and their relative
abundances can be found from the Supplementary Table 1
of [3]. These selected fully sequenced genomes are referred
to as core genomes. We used WGSIM [15] to generate
simulated reads from the core genomes at 10X coverage,
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with a read length of 100 bp and an error rate of 1% (for
Illumina technology). We then used FragGeneScan [2] to
call short peptides from the simulated reads, which resulted
in 6,273,043 short peptide reads in our final simulated data
set.
We then generated the ground-truth homology anno-

tation for each read in the simulated data set as follows.
Given a reference protein, we searched the protein
against the core genomes using TBLASTN [16] and col-
lected identified genomics regions with an E-values cut-
off of 10−3. We call these regions homolog regions. Then,
we treated all reads that were derived from the homolog
regions as homologous reads; and those that were not as
non-homologous reads. For reads that lie on the bound-
aries of the homologous regions (referred to as boundary
reads), we considered them as neither homolog nor
non-homologous reads. This is because the boundary
reads only contains partial homolog sequences. Treating
the boundary reads as homologous reads is unfair for
the BLAST suite and FASTM, because these methods
may perform poorly in identifying extremely short
homolog sequences; while treating the boundary reads
as non-homologous reads is unfair for GRASP2 and
GRASPx, because these reads indeed contain partial
homolog sequences that can be identified based on the
read-overlapping information that is available from the
reconstructed string graph. We constructed two sets of
references protein sequences. The first set contains 198
marker protein sequences identified from Dehalococ-
coides sp. CBDB1 by the Amphora2 database [17] (we
refer to this reference protein set as the marker gene ref-
erence set). The second set contains all annotated pro-
tein sequences (1442 in total) in the Dehalococcoides sp.
CBDB1 genome (we refer to this reference protein set as
the whole genome reference set). Note that D. sp. CBDB1
is not a core genome for generating the simulated data-
set; the average sequence similarity between D. sp.
CBDB1. and the selected marine microbial genomes is
76.9% (with min 75.1% and max 78.7%).

Results
De novo assembly fails to recruit the majority of homolog
reads
We benchmarked the performance for the strategy of
using de novo nucleotide assembly tools to assist homo-
log detection. Given the above set of simulated nucleo-
tide reads, SOAPdenovo2 [18] and SPAdes [19] were
used to assemble the simulated reads using an in-house
server equipped with two Intel Xeon X5687 CPUs and
96GB of RAM. Both assemblers were run with default
parameters. Then, each protein sequence within the
marker gene reference set was searched against the con-
tigs to identify homolog regions using TBLASTN under
E-value cutoffs ranging from 106 to 10−10. In a contig

interval is aligned with multiple queries, the interval is
assigned to the query that resulted in the most signifi-
cant E-value. Then, to assign the individual reads to
queries, we mapped the reads against the assembled
contigs using BWA [13] with default parameters. Indi-
vidual reads aligned within (or have > 60% of their over-
all lengths overlap with) homolog contig intervals were
then assigned to the corresponding queries.
We defined TP (true positive) as the homologous

reads that are identified, FP (false positive) as the
non-homologous reads that are identified, and FN (false
negative) as the homologous reads that are not identi-
fied. Correspondingly, we computed the recall and preci-
sion rates using the below formula:

recall ¼ TP
TP þ FN

; precision ¼ TP
TP þ FN

:

We observed that the homolog-search performances
of this strategy is low in both recall and precision rates.
Specifically, the best F-measure of the de novo assembly
strategy using SOAPdenovo2 is achieved at the E-value
cutoff of 10−4, with a recall rate of 3.90%, a precision
rate of 6.39%, and a F-measure of 4.84%. Similarly, for
using SPAdes, the best F-measure is achieved at the
E-value cutoff of 10−4, with a recall rate of 3.93%, a pre-
cision rate of 6.41%, and a F-measure of 4.87%. The rea-
son for such low performances is due to de novo
nucleotide assembly being a very challenging problem,
impacted a great deal by nucleotide polymorphisms.
Reliable assemblies also depend on the availability of
high-quality and high-coverage sequencing data. For our
simulated data set, although the target coverage was set
to 10X at the beginning, WGSIM considers sequencing
coverage bias during the simulation, rendering uneven
coverage for different genomic regions. Low-coverage re-
gions are difficult to assemble, leading to fragmentary
assemblies for both assemblers. Specifically, SOAPde-
novo2 has an N50 of 43,607 bp and SPAdes has an N50
of 83,315 bp. The total length of all 20 reference
genomes is 73,392,806 bp, while the total length of
the contigs generated by SOAPdenovo2 is 4,570,376 bp (~
6.23% genome coverage) and that generated by SPAdes is
4,704,253 bp (~ 6.40% genome coverage). The low
reference-genome coverage rate leads to low recall rates, as
the majority of the genomes are not assembled. In
addition, the assemblies are also found to be chimeric. We
counted the number of different genomes whose reads are
involved in each single contigs. For SOAPdenovo2, each
contig involves reads from 8.45 genomes on average, and
for SPAdes each contig involves reads from 7.80 genomes
on average. The high chimera rate leads to low precision,
as each contig interval could potentially involve false posi-
tive reads that were originally derived from other reference
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genomes. In consequence, de novo assembly may not be
an ideal strategy to annotate individual reads based on
homolog search.

Benchmark of GRASP2 with other homolog search tools
We benchmarked the performance of GRASP2 with
GRASPx [7], BLASTP [16], PSI-BLAST [16], and
FASTM [20]. The version of BLAST in use is NCBI
version 2.3.0. The version of FASTM in use is version
36. We did not include GRASP into this benchmark
since it is too slow, and its performance is similar to
that of GRASPx [7]. GRASP2, GRASPx, and BLASTP
were executed with the default set of parameters, and
PSI-BLAST was run with three iterations. For FASTM,
we use the “-BP62” option to specify the use of the
BLOSUM62 scoring matrix, which is also used by the
other software tested here. An E-value cutoff range
from 106 to 10−10 were applied to all programs to meas-
ure their performances under different cutoff stringen-
cies. All experiments were performed on an in-house

server equipped with two Intel Xeon X5687 CPUs and
96GB of RAM. We then used the recall and precision
measured on different E-value cutoffs to generate the
ROC (Receiver Operating Characteristics) curves for
each software.
The performance benchmark results are summarized

in Fig. 2 (for marker gene reference set) and Fig. 3 (for
whole genome reference set). While searching with the
marker gene reference set (Fig. 2), GRASP2 and
GRASPx have the highest performances among all pro-
grams that have been tested. At a high-precision level
(~ 90% precision rate, E-value cutoff 10−1), GRASP2 and
GRASPx have respectively 78.7 and 76.8% recall rate,
compared to 21.2% of PSI-BLAST (the best among the
rest of the tested programs). Similarly, while searching
with the whole genome reference set (Fig. 3), GRASP2
and GRASPx also have the highest performances. At a
high-precision level (~ 90% precision rate, E-value cutoff
10−1), the recall rate of GRASP2, GRASPx, and PSI-BLAST
is 60.4, 63.1, and 9.2%, respectively. For both reference sets,

Fig. 2 The Receiver Operating Characteristic (ROC) curves for the performances of GRASP2, GRASPx, BLASTP, PSI-BLAST, and FASTM on the marker
gene reference set. GRASP2 and GRASPx have the highest performance among all programs that have been benchmarked. The dotted lines
correspond to extrapolated performances
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the recall rate of BLAST, PSI-BLAST, and FASTM cannot
be further improved even with extremely high E-value cut-
off (106), suggesting that no seed pairs may be identified be-
tween the reference protein and those missed homologous
reads. GRASP2 and GRASPx were able to detect these
reads because these reads may be overlapped with other
reads that contain one or more seeds. Overall, GRASP2
and GRASPx have similar performances, which suggest
that the completely redesigned GRASP2 algorithm is cap-
able of retaining the original high performance with mem-
ory reduction and speedup.
The wall-clock run times of the software is summa-

rized in Fig. 4 (for marker gene reference set) and Fig. 5
(for whole genome reference set). For the indexing step
(that is independent of the reference set), GRASP2 is the
fastest software (excluding FASTM that does not per-
form indexing), and is 6.6-fold faster than GRASPx (139
s vs. 918 s) and 1.5-fold faster than the BLAST suite
(139 s vs. 213 s). Note that GRASP2’s indexing step was
run with 8 threads. GRASP2’s indexing step includes

overlap detection among all input reads, which can be eas-
ily parallelized to reduce the actual running time. The other
software, including GRASPx, BLAST, and PSI-BLAST,
cannot make use of multiple threads for indexing (the
corresponding indexing programs “graspx-build” and
“makeblastdb” do not contain options to allow executions
in multi-threaded mode) and thus were run under a
single-threaded mode.
For the assembly/search step, all programs were run

with 8 threads. When searching the marker gene refer-
ence set (Fig. 4), GRASP2 is 8.1-fold faster than
GRASPx (238 s vs. 1924 s) and 3.9-fold faster than
PSI-BLAST (238 s vs. 936 s). GRASP2 is also 3.2-fold
slower than BLASTP (238 s vs. 75 s). FASTM has signifi-
cantly longer running time (15,681 s) compared to the
other software, potentially because it does not employ
an indexing step to speed up the actual alignment. A
similar pattern is also observed while searching with the
whole genome reference set (Fig. 5). GRASP2 is
11.2-fold faster than GRASPx (1587 s vs. 17,800 s) and

Fig. 3 The Receiver Operating Characteristic (ROC) curves for the performances of GRASP2, GRASPx, BLASTP, PSI-BLAST, and FASTM on the whole
genome reference set. GRASP2 and GRASPx have the highest performance among all programs that have been benchmarked. The dotted lines
correspond to extrapolated performances
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4.5-fold faster than PSI-BLAST (1587 s vs. 7148 s).
GRASP2 is also 3.8-fold slower than BLASTP (1587 s vs.
413 s). However, we also note that GRASP2 assigns the
search of each reference protein to a dedicated thread,
and thus has high scaling efficiency when run with more
computing resources. The extra running time required
by GRASP2 can easily be ameliorated by introducing
more computing nodes.
Finally, the peak memory consumption of the software

is summarized in Fig. 6 (for marker gene reference set)
and Fig. 7 (for whole genome reference set). The mem-
ory consumption for all software primarily comes from
holding the target dataset in memory, and remains rela-
tively invariant even with a reference set with a much
larger size. In both cases (Fig. 6 and Fig. 7), GRASP2

and GRASPx have higher memory requirement, because
they perform de novo assembly of the reads and need to
construct and/or retain the assembly graph in memory.
When searching the marker gene reference set (Fig. 6),
GRASP2 has significantly reduced the memory con-
sumption of both GRASPx’s indexing step (8.9-fold,
2.8GB vs. 25.0GB) and GRASPx’s assembly/search step
(4.5-fold, 3.1GB vs. 13.9GB). Overall, the peak memory
consumption for the entire GRASPx pipeline including
both the indexing and the assembly/search stages has
been reduced by 8.1-fold (3.1GB vs. 25.0GB). Similar
memory consumption can also be observed when
searching the whole genome reference set (Fig. 7). In
practice, GRASP2 requires ~3G RAM to index and as-
semble/search ~ 6 million reads (as in the benchmark).

Fig. 5 Running time comparison (for both the indexing and assembly/search steps) among GRASP2, GRASPx, BLASTP, PSI-BLAST, and FASTM on
the whole genome reference set

Fig. 4 Running time comparison (for both the indexing and assembly/search steps) among GRASP2, GRASPx, BLASTP, PSI-BLAST, and FASTM on
the marker gene reference set
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Such a lower memory requirement makes possible the
analysis of metagenomic data sets with medium or
medium-high complexity (e.g., human gut metagenomics
data that contains ~ 100–200 million reads can be ana-
lyzed using ~500GB-1TB RAM).

Discussions
In this article, we present a novel simultaneous align-
ment and assembly algorithm called GRASP2. The com-
pletely redesigned GRASP2 algorithm makes it 8-fold
faster and uses 8-fold less memory than its predecessor
GRASPx. GRASP2 is only three times slower than the
popular homolog search tool BLAST, but can generate
much higher quality results that have 20–40% higher

recall rate at the same precision level. The improved
computational efficiency and reduced memory con-
sumption, together with its high recall and precision,
make GRASP2 a potentially useful tool for metage-
nomics data analysis.
For future work, we plan to further improve GRASP2’s

efficiency using the following strategies. First, GRASP2
employs the reduced protein alphabet that is currently
used in RAPSearch [5] for seeding. The seeds correspond
to traditional k-mers that are consecutive in sequence. We
will further explore the use of spaced seeds [21]. The
spaced seed strategy has been implemented in DIAMOND
[6] to increase its search speed without losing sensitivity.
Second, GRASP2 implements thread-level parallelism that

Fig. 6 Peak memory consumption comparison (for both the indexing and assembly search steps) of GRASP2, GRASPx, BLAST, PSI-BLAST, and
FASTM on the marker gene reference set

Fig. 7 Peak memory consumption comparison (for both the indexing and assembly search steps) of GRASP2, GRASPx, BLAST, PSI-BLAST, and
FASTM on the whole genome reference set
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performs assembly/search simultaneously on multiple
threads. We plan to further explore data-level parallel-
ism using the SIMD (Single Instruction Multiple Data)
scheme for speeding up the Smith-Waterman alignment
stage. SIMD has been implemented in DIAMOND and
HMMER3 [22], and well-implemented SIMD libraries for
Smith-Waterman algorithm are available [23]. Finally, we
will explore DIAMOND’s strategy of indexing both the
reference proteins and the read set (called double index-
ing). The double indexing strategy will further improve
the speed of GRASP2 when a large reference protein data-
base (e.g., the NCBI NR database) is used to query a meta-
genomics data set. We anticipate further running time
improvement of GRASP2 when these strategies are imple-
mented and optimized with the existing GRASP2 algorith-
mic framework.

Conclusions
The main contribution of this work is the development
of the GRASP2 algorithm, which is a computation- and
memory-efficient redesign over its predecessor GRASPx.
In addition, we demonstrate here the possibility of
improving all simultaneous alignment and assembly
algorithms using the “filter, traverse, then align” strategy
as implemented in GRASP2. For example, this strategy
could be directly applied to improve protein-family
homolog search with profile-HMM. We anticipate that
GRASP2 will be used in more metagenomic sequencing
data analysis projects to produce highly sensitive and
accurate functional annotation. GRASP2, implemented
in C++, is open-source and freely available from http://
www.sourceforge.net/projects/grasp2.
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