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Abstract

The lung is the organ with the highest vascular density in the human body. It is therefore perceivable that the
endothelium of the lung contributes significantly to the circulation of extracellular vesicles (EVs), which include
exosomes, microvesicles, and apoptotic bodies. In addition to the endothelium, EVs may arise from alveolar
macrophages, fibroblasts and epithelial cells. Because EVs harbor cargo molecules, such as miRNA, mRNA, and
proteins, these intercellular communicators provide important insight into the health and disease condition of
donor cells and may serve as useful biomarkers of lung disease processes. This comprehensive review focuses on
what is currently known about the role of EVs as markers and mediators of lung pathologies including COPD,
pulmonary hypertension, asthma, lung cancer and ALI/ARDS. We also explore the role EVs can potentially serve as
therapeutics for these lung diseases when released from healthy progenitor cells, such as mesenchymal stem cells.

Extracellular vesicles
Cell-to-cell communication is essential for nearly all
physiologic and metabolic processes. This intercellular
conveyance is achieved through receptor ligands, signal-
ing molecules, hormones, and extracellular vesicles
(EVs). Historically, secretion of the cell in the form of
EVs was considered as unimportant waste material, cel-
lular “garbage bags,” or dust particles [1–5]. However, in
recent years, this so-called “waste” is now known to be
of profound importance in various biological systems,
creating a boon in their exploration across the scientific
community.
Lipid bilayer membrane-enclosed vesicles are secreted

by both prokaryotic and eukaryotic cells [4–9]. Al-
though, the term “extracellular vesicle” is sometimes
used in reference to exosomes, it is actually a very broad
term that encompasses all different types of vesicles

secreted outside the cells [10]. Regardless, the function
of all these vesicles appears to be all the same: commu-
nication between the cells within an organism or be-
tween species [11, 12]. In addition, it is not necessary
that all vesicles secreted from cells are functional or have
any role in some kind of biological process. Sometimes,
they just act as “dustcart” to remove the waste from cells
[13]. Of note, there have been discrepancies in the classi-
fication of these vesicles in the literature. Some studies
divide EVs into two major categories: I) exosomes, de-
fined as vesicles released by exocytosis of the multivesi-
cular bodies; and II) ectosomes, defined as the vesicles
which are assembled and released by the plasma mem-
brane [14]. However, most recent studies categorize EVs
as either exosome, microvesicles, microparticles, or
apoptotic bodies based on vesicle size and how they are
formed [15–21] (Fig. 1).

Exosomes
Exosomes are small EVs with sizes ranging between 30
and 150 nm in diameter that originate from the internal
vesicles of multivesicular bodies (MVB) of nearly all cell
types. Exosomes originating from different cell types
have different composition; however, there are certain

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: ndhillon@kumc.edu
1Division of Pulmonary and Critical Care Medicine, Department of Internal
Medicine, University of Kansas Medical Center, Mail Stop 3007, 3901 Rainbow
Blvd, Kansas City, KS 66160, USA
5Department of Molecular & Integrative Physiology, University of Kansas
Medical Center, Kansas City, Kansas, USA
Full list of author information is available at the end of the article

Mohan et al. Respiratory Research          (2020) 21:175 
https://doi.org/10.1186/s12931-020-01423-y

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/344444116?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s12931-020-01423-y&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:ndhillon@kumc.edu


Fig. 1 (See legend on next page.)
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characteristics, which are common to all exosomes re-
gardless of their source. They usually sediment between
~ 70,000–200,000 x g and their molecular cargo consists
of proteins, lipids and nucleic acid molecules [22–24].
There are two basic mechanisms reported for the forma-
tion of MVBs and intraluminal vesicles (ILVs) leading to
exosome generation: I) ESCRT-dependent [24] [23]; and
ii) ESCRT-independent [25, 26]. Details of these mecha-
nisms have been explained previously in multiple publi-
cations [26–36].
A typical exosome is surrounded by a phospholipid

membrane that contains lipids characteristic of their cel-
lular origin [37, 38] with high levels of cholesterol,
sphingomyelin, and ceramide and detergent-resistant
membrane domains (lipid rafts) [39, 40]. Also present
are proteins associated with lipid rafts, such as
glycosylphosphatidylinositol-anchored proteins and flo-
tillin [39, 41]. Some lipids are present in greater amounts
in exosomes compared to their parent cells, thus im-
proving the rigidity of the exosomal membrane [42, 43].
Components of the ESCRT complex, such as Alix and
tumor susceptibility gene 101 (TSG101), involved in
MVB biogenesis [44] [45] [46], are distinguishing pro-
teins present on exosomes [47, 48]. Another distinguish-
ing feature of exosomes is the presence of tetraspanins,
including CD9, CD63, CD81 and CD82 [49]. Other pro-
teins present in exosomes includes cytosolic proteins,
such as Rabs, which are involved in promoting exosome
docking and membrane fusion events [50, 51], as well as
annexins, which are proteins believed to regulate mem-
brane cytoskeleton dynamics and membrane fusion
events [50]. Myriad studies have shown the presence of
nucleic acid cargo [49, 52–54] within exosomes that are
functionally active when released in the recipient cells.
This nucleic acid cargo may include a variety of non-
coding RNAs including microRNA and long non-coding
RNA (lncRNA), tRNA fragments, small-interfering
RNAs, structural RNAs, small RNA transcripts and
RNA-protein complexes. Other than different RNA spe-
cies, exosomes also contain DNA which could represent
the entire genome as well as the genomic mutations,
making them excellent biomarkers [55–58]. In addition
to chromosomal DNA, mitochondrial DNA has also
been reported [59, 60].

Microvesicles
Microvesicles (MVs), or microparticles (MPs) (50–1000
nm), are secreted by direct outward budding of the
plasma membrane of living cells with release of

membrane microvilli [61, 62]. These vesicles are gener-
ally larger in size up to ~ 1000 nm [18], but smaller vesi-
cles (~ 50 nm) also bud from the plasma membrane [63].
Microvesicles have also been reported in various shapes.
Typical markers used for detecting MVs are integrins,
selectins, and CD40 [62]. However, various other
markers may be used dependent on the cell type from
which they are secreted. Studies also suggest that the
vesicles which sediment at ~ 10,000–20,000 x g repre-
sent microvesicles [16, 64, 65]. Since microvesicles are
shed by the budding of the plasma membrane, their
composition is same as that of plasma membrane, except
that the lipid composition is uniformly distributed across
the bilayer membrane of the microvesicles, in contrast
to the asymmetrical distribution present on the two leaf-
lets of the plasma membrane [66–68]. Although the
shedding of MVs from cells takes place at resting state,
some cells release MVs based upon the stimulant they
receive. Purinergic receptors, P2Y receptors, phorbol es-
ters, and calcium have been reported to be involved in
the robust release of MVs [69–73].

Apoptotic bodies
Apoptotic bodies (also referred to as “apoptotic blebs” or
“apoptotic vesicles”) represent type of EVs released by
the outward budding, blebbing, or fragmentation of the
plasma membrane during the apoptosis of cells. These
vesicles are generally larger in size, ranging from 50 nm
to 3 μm [62], with some studies suggesting sizes ranging
from 1 to 5 μm [24, 65, 74–76]. The content of apoptotic
bodies released from plasma membranes differs depend-
ing on cellular origin, but has been shown to contain
DNA fragments and histones [65]. Apoptotic bodies ori-
ginating from the endoplasmic reticulum are devoid of
DNA and histones, but contain immature glycoepitopes
[65, 77, 78]. When these vesicles are taken up by
antigen-presenting or neighboring cells, it may lead to
anti-inflammatory or tolerogenic response [1, 79, 80].
With the exponential growth of EV research in recent

years, this review attempts to comprehensively update
and highlight the importance of EVs with regard to vari-
ous pulmonary complications and disease states.

Role of EVs in the pathogenesis of lung diseases
Chronic obstructive pulmonary disease (COPD)
Chronic obstructive pulmonary disease is characterized
by severe airway inflammation and subsequent damage
of the lung parenchyma. This hyper inflammatory re-
sponse leads to destruction of the alveolar wall and

(See figure on previous page.)
Fig. 1 Biogenesis of various forms of extracellular vesicles from a eukaryotic cell. Exosomes are generated through multivesicular bodies (MVB)
and intraluminal vesicles (ILV) formation whereas microvesicles/microparticles and apoptotic bodies are vesicles generated through blebbing of
plasma membrane
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rarefaction of the alveolar sacs, causing difficulty in
breathing and reduced pulmonary function, measured by
total lung capacity and forced expiratory volume (FEV)
[81]. The inflammatory response is most commonly in-
cited by inhalation of toxic particles, chemical and radio-
logical irritants, or cigarette smoke. Infections, which
activate the toll like receptors (TLRs) present on resident
lung cells, including alveolar macrophages, dendritic
cells, alveolar epithelial cells and endothelial cells, may
also contribute by stimulating the release of cytokines
and chemokines [82]. Aside from the inflammatory

processes of COPD, cells undergo senescence and aging
(contributing to the senescence associated secretory
phenotype [SASP]) [83] and release EVs that further
contribute in the pathogenesis and progression of the
disease. Additionally, high number of microparticles de-
rived from platelets, red blood cells and leukocytes are
also associated with chronic COPD [84, 85] (Table 1).
Multiple studies have described mononuclear/macro-

phage-derived EVs rich in inflammatory effector mole-
cules like cytokines, chemokines, adhesion molecules
and proteases to cause alveolar wall destruction and

Table 1 Potential extracellular vesicle markers in various lung complications

Disease subtype EV Source Biomarkers Ref.

COPD

Plasma ↑E-selectin-, VE-cadherin, PECAM positive MPs [84–89]

Plasma Ceramide levels in EMPs [90]

Plasma ↑Platelet derived LMPs and EMPs [85]

Pulmonary Hypertension

Group I PAH (Idiopathic /Heritable/
connective tissue associated PAH)

Plasma ↑CD39 expression and ATPase/ADPase activity [91]

Plasma Translationally controlled tumor protein (TCTP)
in endothelial derived EVs

[92]

Plasma ↑Endothelium derived exosomes [93]

Plasma ↑EMPs (CD31+ & CD41-),
Small Platelet derived MPs(CD31+/CD41+)

[94]

Plasma ↑EMPs and LMPs [95]

Plasma ↑CD62e + EMPs associated with adverse outcome [96]

Urine EMPs [97]

Group III PH Plasma ↑Tissue factor and endoglin in EMPs [98]

Group IV PH Plasma ↑Tissue factor and endoglin in EMPs [98]

Plasma ↑PMPs, LMPs and EMPs [99]

Asthma

Blood ↑Eosinophil derived exoxomes [100, 101]

BALF ↑ CD63 and CD81+ exosomes carrying leukotrienes
biosynthesis enzymes

[102]

BALF ↑Mitochondria/mitochondrial DNA in exosomes [103]

BALF ↓Phosphatidylglycerol, ceramide-phosphates, and
ceramides

[104]

↑Sphingomyelin in exosomes

Lung cancer

Late stage human lung cancer Serum ↑Vimentin in exosomes [105]

Non-small Cell Lung Cancer ↑lncRNA MALAT-1 in exosomes [106]

ALI/ARDS/ Pulmonary Sepsis

ARDS BALF /plasma ↑LMPs associated with better survival [107]

ARDS Plasma ↑Gasdermin D in MPs [108]

ALI Serum Apoptosis-associated speck-like protein containing
a caspase-recruiting domain (ASC) in EVs

[109]

ARDS Pulmonary edema fluid Tissue Factor in MPs [110]

Sepsis / Community-acquired pneumonia -sepsis Plasma ↑Alpha-2-macroglobuin in MVs/MPs correlates with survival [111, 112]

Endothelial derived MPs (EMPs), Platelet-derived MP (PMPs), Leukocyte derived MPs (LMPs)
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emphysema, the hallmark pathological features of COPD
[113–115]. Cigarette smoke exposure causes increased
release of tissue factor (TF)-positive microvesicles with
high pro-coagulant activity from human macrophages
[115]. These EVs also carry MMP14 that is responsible
for promoting lung emphysema via its collagen degrad-
ation and gelatinolytic properties [116]. Another study
described increased release of macrophage-derived EVs
containing IL-8, MCP-1 and ICAM-1 pro-inflammatory
molecules on the activation of monocytes by cigarette
smoke exposure [114].
A recent study suggested that the COPD pathogenesis

is promoted via neutrophil elastase coated exosomes re-
leased by activated but not quiescent polymorphonuclear
leukocyte neutrophils. The neutrophil elastase linked to
exosomes destroys the extracellular matrix proteins of
the alveoli leading to the development of COPD like
characteristics [117].
Chronic obstructive pulmonary disease is also charac-

terized by endothelial cell damage due to increased
apoptosis. Microparticles containing endothelial
markers, such as CD31, CD62E (E-selectin), CD143, and
CD105, are differentially released from these apoptotic
endothelial cells based on the pathophysiological stage
of the disease [84, 116] (Table 1). These microparticles
are believed to promote progression of COPD by caus-
ing apoptosis of neighboring healthy endothelial cells
upon delivery of inflammatory cargo [116]. Chronic

obstructive pulmonary disease is also one of the major
secondary complications that arise in human immuno-
deficiency virus (HIV)-infected patients [118]. Interest-
ingly, it has recently been reported that EVs isolated
from bronchoalveolar lavage (BAL) fluid of HIV-positive
patients carry HIV-Nef protein that induces endothelial
cell apoptosis, which may be responsible in promoting
emphysema and pulmonary vascular changes observed
during COPD [118]. As such, further research into the
role of EVs as mediators of the chronic pulmonary com-
plications of HIV infection appears to be well warranted.
Cigarette smoke exposure also leads to increased re-

lease of microparticles from mouse and human micro-
vascular and pulmonary arterial endothelial cells [90].
These microparticles are enriched in ceramides and
phosphatidyl serine due to high sphingomyelinase activ-
ity in endothelial cells, crucial for stress induced apop-
tosis [90]. These endothelial-derived microparticles
(EMPs) circulate in the blood and can act as a biomarker
to assess the severity of the disease condition [90, 119]
(Table 1). Serban et al. reported a greater number of
EMPs in plasma of COPD patients who were cigarette
smokers as compared to healthy non-smokers [90].
These cigarette smoke-associated EMPs had high levels
of miRNAs such as let-7d, miR− 126, − 125-5p, and − 22
that have been known to promote angiogenesis, airway
inflammation, cancer progression, cell cycle arrest, and
apoptosis [90] (Fig. 2). Direct exposure of cigarette

Fig. 2 Illustration showing release of various types of extracellular vesicles and their miRNA content released from different cell types/body fluids
in various lung complications
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smoke on primary human microvascular endothelial
cells led to release of microparticles that were reported
to impair macrophage efferocytosis (clearance of apop-
totic cells), thus exacerbating the inflammation and
endothelial injury [90]. In another study carried out on
COPD patients, the number of CD31+ EMPs suggestive
of endothelial apoptosis was found to be elevated in
plasma of patients with mild COPD that also exhibited
emphysema [86]. Furthermore, in patients with severe
COPD, CD62+ EMPs were found to be increased due to
endothelial activation during severe form of disease [86].
A subsequent study elaborated on the exaggerated re-
lease of CD31+ EMPs in the plasma of cigarette smokers
with COPD or no COPD, in comparison to non-
smokers [87]. As COPD patients undergo excessive
levels of lung endothelial damage and persistent endo-
thelial stress with no improvement in lung function, ces-
sation of smoking did not change the plasma CD31+

EMPs levels in smokers with COPD patients, whereas
reduction in the release of EMPs was observed in
smokers without COPD [87]. In another prospective
study of COPD patients in Japan, the number of VE-
cadherin (CD144+) EMPs, CD31+ EMPs, and E-selectin
(CD62+) EMPs were evaluated in blood samples and cor-
related with FEV over 1 s (FEV1) changes in the lung
[88]. It was shown that an increase in circulating VE-
cadherin EMPs positively correlated with FEV decline in
these patients, suggesting endothelial injury to be a
prominent factor in the development of COPD [88]. In
another study, increased levels of CD31+, CD62+ and
CD144+ EMPs were found in the blood of COPD pa-
tients as compared to healthy controls [89]. Specifically,
circulating E-selectin and VE-cadherin EMPs were found
to be associated with increased exacerbation susceptibil-
ity and decline in FEV and total lung capacity in severe
COPD patients [89] (Table 1). Finally, in a study by Liu
et al., rats exposed to cigarette smoke for 2–6months
showed elevated levels of circulating CD31+ and
CD62E+ EMPs in the blood plasma. The elevated level
of EMPs was found to be proportional to lung destruc-
tion and corresponded to a decrease in pulmonary func-
tion parameters such as forced vital capacity and total
lung volume [119].
In COPD induced by cigarette smoke exposure, alveo-

lar macrophages and alveolar epithelial cells are directly
exposed to the toxic components of cigarette smoke
[120]. The role of lung epithelial cell-derived EVs in the
pathogenesis of COPD has also been well reported
[120]. Cigarette smoke exposure leads to exaggerated re-
lease of exosomes from damaged epithelial cells and pro-
motes emphysema [120]. It has been shown that human
bronchial epithelial cells (BEAS-2B) exposed to cigarette
smoke demonstrate increased Rab27A-dependent release
of EVs [121]. Cigarette smoke exposure in bronchial

epithelial cells also stimulates release of full-length
CYR61/CTGF/NOV family1 (flCCN1)-enriched EVs
which mediate IL-8 induced inflammation, but also
helps maintain lung homeostasis by increasing the levels
of vascular endothelial growth factor (VEGF) [121].
However, prolonged cigarette smoke exposure causes
cleavage of flCCN1 to form CCN1 in the extracellular
matrix, thereby promoting the release of MMPs and re-
duced VEGF, causing epithelial cell damage and devel-
opment of emphysema [121]. A recent study by Fujita
et al. demonstrated that cigarette smoke extract induced
human bronchial epithelial cell-derived EVs promote
myofibroblast differentiation of the lung fibroblasts,
leading to the development of fibrosis [122]. The bron-
chial epithelial cell-derived EVs carry miR-210 that regu-
lates autophagy by directly targeting Atg7 [122].
Reduction in autophagy by miR-210 mediated Atg7 in-
hibition leads to differentiation of lung fibroblasts into
myofibroblasts [122]. Furthermore, lung fibroblasts iso-
lated from COPD patients demonstrate decreased au-
tophagy and fibroblast differentiation [122]. Epithelial-
derived exosomes following cigarette smoke exposure
are also known to carry pro-inflammatory cytokines and
Wnt-5a that are delivered to neighboring and far away
cells via circulation [120].

Pulmonary hypertension (PH)
Pulmonary hypertension is a chronic progressive disease
that leads to right ventricular failure and ultimately
death. The prime pathological feature of the pulmonary
hypertension is vascular remodeling in lungs leading to
the loss of endothelial integrity and proliferation of vas-
cular smooth cells [123, 124]. The resulting increase in
the thickness and stiffness of blood vessels leads to
chronic increase in mean pulmonary artery and right
ventricular systolic pressures, ultimately resulting in
right ventricular failure [123, 124]. Lately, a number of
studies have demonstrated the pivotal role EVs serve in
the progression and prevention of PH, as well as useful
biomarkers of the disease.
An early study published by Bakouboula et al. in 2008

showed an increase in endothelium-derived CD105 mi-
croparticles in pulmonary arterial blood from patients
with pulmonary arterial hypertension (PAH) or Group 1
PH [98]. Another study shortly thereafter reported an in-
crease in the levels of microparticles positive for endo-
thelial PECAM and VE-cadherin (but not E-selectin) in
the plasma samples from PAH patients compared to
controls [95]. This increase in EMPs was found to be
correlated with the increase in mean pulmonary arterial
pressure, pulmonary vascular resistance, and mean right
arterial pressure [95]. The same group later demon-
strated higher number of circulating CD62e + EMPs in
the plasma of PH patients [96] (Table 1).
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Later Diehl et al. observed that the platelet activation
and inflammation during thromboembolic PH results in
increased levels of platelet and leukocyte-derived micro-
particles in blood [99]. Furthermore, increased levels of
circulating EMPs were observed in these patients due to
enhanced endothelial apoptosis indicative of thrombo-
embolic complications and PH progression [99]. Add-
itionally, the circulating platelet- and endothelial-derived
microparticles from plasma of idiopathic PAH patients
(IPAH) showed the presence and increased expression
of CD39 and ATPase/ADPase activity compared to those
from healthy controls [91]. CD39 (ENTPD1), an ectonu-
cleotidase responsible for extracellular dephosphoryla-
tion of ATP to ADP and AMP, leads to activation of
purinergic cell signaling pathways involved in PAH
pathogenesis [91]. Further research found increased
levels of small platelet-derived microparticles (PMP) and
EMPs in plasma from patients with either IPAH, herit-
able PAH or PAH associated with connective tissue dis-
eases, suggesting a common phenomenon of
inflammation and vascular dysfunction occurs in the
progression of all forms of PAH [94]. Moreover, an in-
creased level of endothelial, CD31+ derived exosomes in
the plasma of patients with idiopathic PAH was also
found [93] (Table 1). The study also noted an important
observation that the exosomes released by human
pulmonary artery endothelial cells in response to inflam-
mation and hypoxia, when administered to human pul-
monary arterial smooth muscle cells (HPASMCs),
induce proliferation in these recipient cells [93]. Among
the PAH patients with other complications such as
transfusion-dependent β-thalassemia and hemoglobin E
thalassemia, the presence of increased phosphatidylser-
ine (PS)-containing red blood cell- and platelet-derived
EVs were found [125].
Among the various pre-clinical animal model stud-

ies, the pathological role of EV was beautifully de-
scribed in the mice model of monocrotaline-induced
PAH (MCT-PAH) by Aliotta et al. They reported that
the injection of lung- and plasma-derived small-sized
EVs (30–400 μm) isolated from the diseased mice is
able to develop PAH in the healthy mice [126]. They
reported increased levels of miRs-19b,-20a,-20b, and −
145 known to be targeting BMPR signaling, apoptosis
and cell proliferation in the exosomes from MCT
mice and IPAH patients [126] (Fig. 2). In the same
mice model, it was demonstrated that EVs from bone
marrow, lung, and plasma reduced apoptosis of pul-
monary vascular endothelial cells (PVECs) [127].
Hypoxia-induced miR-107, responsible for decreasing
pro-apoptotic signal, was increased in these cells after
treatment with the EVs from the PAH mice model
[128]. Not only this, EVs released by PVECs from
MCT-PAH mice can convert healthy bone marrow

derived endothelial progenitor cells into a pathological
progenitor phenotype [129]. When injected into the
lungs of healthy mice, these pathological progenitors
cause pulmonary vascular remodeling [129].
Circulating platelet and erythrocyte-derived MPs from

hypoxic rats are known to decrease nitric oxide produc-
tion and increase xanthine oxidase and mitochondrial
reactive oxygen species (ROS) in pulmonary arterial
endothelial cells, further contributing to their dysfunc-
tion [130]. This is executed via MP-driven reduction in
endothelial nitric oxide synthase (eNOS) activity highly
specific to pulmonary ECs [130]. Moreover, endoglin
positive MPs from the blood of the Sugen-hypoxia rat
model of severe PAH induced the expression of inflam-
matory adhesion molecule-1 (ICAM-1) only in pulmon-
ary artery endothelial cells, but not pulmonary
microvascular endothelial cells (PMVECs) [131]. This
suggests that MPs from severe PAH contribute to pul-
monary vascular lesion formation by specifically target-
ing pulmonary arteries [131].
Both protein and nucleic acid EV cargo have been sug-

gested to play roles in the pathogenesis of PAH. Transla-
tionally controlled tumor protein (TCTP), known to be
associated with heritable PAH, was found to be highly
expressed in exosomes released from blood outgrowth
endothelial cells (BOECs) with BMPR-2 mutation, [92]. In
addition, TCTP in BOEC-derived exosomes is able to get
transferred to PASMCs leading to SMC proliferation [92].
Furthermore, miR-143-3p induces migration and pro-

liferation of pulmonary arterial endothelial cells (PAECs)
upon its delivery via PASMC-derived exosomes, there-
fore contributing to PAH [132]. In a recent study from
our lab, we have shown that extracellular derived vesi-
cles obtained from HIV-infected monocyte-derived mac-
rophages (MDMs) exposed to drugs of abuse like
cocaine are able to induce human pulmonary arterial
smooth muscle cell (HPASMC) proliferation [133]. We
reported that these EVs carry miR-130 that target PTEN,
thereby activating PI3/AKT signaling in HPASMCs lead-
ing to hyperproliferation [133]. Furthermore, disrupted
signaling between pericytes and neighboring pulmonary
microvascular endothelial cells (PMVECs) suggested in
PAH [134] was recently reported to be associated with
the reduced levels of Wnt5A ligand in exosomes se-
creted by PMVECs in PAH patients [135]. Overall, the
EVs have the ability to induce the disease phenotype in
healthy cells through regulation of various pathological
pathways on transfer of its cargo.
Another potential of EVs as biomarker was supported

by a study demonstrating reduced levels of miR-150 in
whole plasma and plasma-derived MVs of PAH patients,
which were associated with reduced survival of these pa-
tients [136]. This study highlighted the utility of plasma
and plasma-derived MVs miR-150 levels as potentially
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clinically useful biomarkers for PAH prognosis [136].
Rose et al. showed that endothelial cell-derived MPs can
act as biomarkers for right ventricular function in PAH
patients, wherein the number of these particles in urine
was found to be increased in PAH patients compared to
healthy controls [97] (Table 1). A correlation between
these urine MP biomarkers and tricuspid annular plane
systolic excursion (TAPSE) was observed in PAH pa-
tients [97].

Asthma
Asthma is an inflammatory disorder characterized by
pulmonary obstruction and difficulty in breathing due to
airway hyper responsiveness (AHR) and airway remodel-
ing. AHR that precedes the inflammatory response [137]
is characterized by abnormal narrowing of airways due
to smooth muscle hypertrophy, increased angiogenesis
and fibrosis [138–142]. Broadly on the basis of inflam-
matory trigger, asthma could be divided into two types-
extrinsic/allergic and intrinsic asthma. In extrinsic
asthma, the inflammatory response is usually triggered
by allergens or air pollutants like smoke, dust, or pollens
[143]. However, intrinsic asthma is asthma caused by
anything else other than allergens and that could be due
to an internal infection, stress, exercise or weather con-
ditions [144, 145]. Also, intrinsic asthma could be more
severe compared to extrinsic asthma and may not re-
spond to the conventional therapies [146]. However, the
inflammatory response is almost same in both types of
asthma. Infiltration of eosinophils, mast cells, and Th2
cells in the airways and release of pro-inflammatory ef-
fector molecules like IL-4, IL-5 and IL-13 lead to prom-
inent structural changes and remodeling of the airways
[143, 147]. The lung epithelial cells, such as bronchial
epithelial cells, alveolar epithelial cells, and lung fibro-
blasts, maintain the structure of the airway and lung
homeostasis. These cells also respond to the allergens
and generate an inflammatory response by releasing cy-
tokines that further contribute to the progression of
asthma [148, 149]. This response, including secretion of
IL-6, also triggers the proliferation of smooth muscle
cells in the airways that causes pulmonary obstruction in
asthma [150]. One of the major reasons for severe
asthma are Th17 cell types which differentiate from
naive CD4+ cells on stimulation with IL-1β, IL-23, TGF-
β, and IL-6 [151–154]. Th17 cells release IL-17 and
other cytokines and chemokines reported to be present
in the BALF fluid of severe and moderate asthma pa-
tients [155, 156]. Binding of IL-17A on airway epithelial
cells lead to release of chemokine CXCL8 (IL-8) and col-
ony stimulatory factors (CSF), which further recruit and
activate neutrophils thus increasing inflammation in the
airway [151, 154, 157]. In addition, IL-17A also acts on
endothelial cells and fibroblast to secrete the IL-1β and

IL-6 for neutrophil recruitment [158]. Additionally, IL-
17F act on fibroblasts and increase the expression of
smooth muscle actin, thereby contributing to the remod-
eling of airways [153, 154]. Although severe asthma is
caused by both Th2 and Th17, it is the Th17 mediated
pathology which is mainly unresponsive to corticosteroid
therapy [159, 160]. Recent reports suggest that EVs re-
leased by all these cell types in lungs are involved in air-
way inflammation and may be involved in allergic
reactions through paracrine secretions [102, 161–174].
Pathogenic effect of EVs derived from Staphylococcus
aureus that is present in house dust, was shown to
stimulate Toll-like receptor-2 dependent Th1 and
Th17 induced airway inflammation and augment the
hypersensitivity response to the inhaled ovalbumin al-
lergen [175].
Extracellular vesicles released from B-lymphocytes carry

major histocompatibility complex (MHC) co-stimulatory
molecules, antigenic peptides, [167] and HSP70 [176]
which trigger inflammatory T cell responses. These EVs
can also stimulate antigen-presenting cells to generate
immune response by releasing Th2 inflammatory cyto-
kines that contribute to AHR, critical to the development
of asthma [167, 177]. Proteomic analysis of exosomes de-
rived from LPS-stimulated and unstimulated equine neu-
trophils suggested presence of proteins known to play
various roles in innate immunity, immune regulation, me-
tabolism, and membrane trafficking [178]. These analyses
also revealed the presence of chaperone proteins known
to be associated with asthma remodeling [178].
Neutrophil-derived exosomes were reported to be inter-
nalized into pulmonary smooth cells and release bio-
effector molecules that lead to their proliferation and pro-
mote airway remodeling and asthmatic progression [178].
Eosinophil-derived EVs have been shown to be re-

leased in high amounts in asthma patients that may be
involved in airway inflammation [100] (Table 1). These
EVs carry various proinflammatory molecules such as
interleukins, chemokines, chemotoxins like RANTES
and eotaxin-1, prostaglandins, and platelet activating
factors that are known to promote AHR and asthma
pathogenesis [162, 179, 180]. Another study demon-
strated that eosinophil-derived exosomes from the blood
of asthma patients induced apoptosis in primary alveolar
epithelial cells at 24 h and 48 h of exposure, via reduc-
tion in JAK/STAT signaling, and stimulating the release
of inflammatory mediators like TNF and CCL26 [101].
However, on further exposure, these EVs promote epi-
thelial proliferation by activating PI3/AKT signaling
[101]. Furthermore, eosinophil-derived EVs induce pro-
liferation of bronchial smooth muscle cells and increase
VEGF-A and CCR3 expression in these cells through ac-
tivation of ERK1/2 signaling, thus contributing to the fi-
brosis and remodeling observed in asthma [101].

Mohan et al. Respiratory Research          (2020) 21:175 Page 8 of 21



Extracellular vesicles released from alveolar epithelial
cells are reported to be higher in asthmatic mice as com-
pared to control mice [164]. In animal models, lung epi-
thelial cell-derived exosomes enhance the infiltration of
macrophages and production of IL-13, leading to the de-
velopment of asthma [164]. Another study demonstrated
that human tracheobronchial epithelial cells change their
protein and miRNA expression pattern after the uptake
of exosomes from alveolar epithelial cells with asthma
pathology, and may be responsible for higher mucin se-
cretion and airway remodeling [181]. The EVs isolated
from bronchial alveolar lavage fluid (BALF) have been
widely studied for its role in asthma. The role of BALF
EVs in the pathogenesis of asthma and allergic diseases
was first reported by Admyre et al. [182]. In BALF from
asthma patients, there is an increased production of EVs
that directly correlates with increased HLA-DR expres-
sion responsible for immune activation of lung cells dur-
ing the disease [102, 104] (Table 1). These exosomes
have also been demonstrated to carry high levels of
functional proteins involved in leukotriene production
[102]. Additionally, an increased level of BALF EVs
among asthmatics is positively correlated with eosinophil
and IgE levels in blood along with more CD54+ EVs for
cell adhesion [104]. Further, when these BALF exosomes
were exposed to bronchial epithelial cells, they induced
production of IL-8 and leukotrienes, potent proinflam-
matory mediators in the recipient cells [102]. Another
study showed that exosomes isolated from BALF of asth-
matic patients were positive for tissue factor VIII, an im-
portant factor that plays role in coagulation and
promoting angiogenesis [183].
Circulating EVs from BALF and plasma may also carry

miRNA cargo that may be contributing to the pathogen-
esis of asthma and also could serve as biomarkers for
the disease [184]. A study from Sweden characterized
miRNA content of the exosomes isolated from the BALF
of asthma patients [185]. These investigators found alter-
ation in the levels of 18 miRNAs in asthma patients
when compared with healthy controls, out of which 8
miRNAs (let-7a, miRNA-21, miRNA-658, miRNA-24,
miRNA-26a, miRNA-99a, miRNA-200c, and miRNA-
1268) showed significant alteration in expression [185]
(Fig. 2). A strong correlation was observed between the
expression profile of these altered miRNAs and FEV1
within the asthmatic patient group [185]. Let-7 family
miRNAs have been shown to be influential in respiratory
inflammation and AHR through regulation of IL-13 se-
cretion. Using an established murine model of allergic
airway inflammation, Kumar et al. showed significant re-
ductions in let-7 miRNAs in allergic inflammation lungs
compared to healthy controls. After uptake by let-7 miR-
NAs in the murine lung, significant reductions in IL-13
levels were observed in tissue, BALF, and serum. This

correlated with a significant reduction in AHR in re-
sponse to methacholine [186]. Therefore, let-7-miRNAs
delivered via EVs may serve as a potential therapeutic
strategy for AHR in asthma that warrants further re-
search. MicroRNA-21 has been shown to be induced by
IL-13, which is critically responsible for airway hyperre-
activity, in the ovalbumin (OVA) murine model of
asthma [187, 188]. MicroRNA-21 also contributes to
polarization of helper T cells toward a Th2 phenotype,
further supporting the important role of miR-21 in the
hyperinflammation characteristic of asthma [187]. Given
the influence of miR-21 in AHR and the pathogenesis of
asthma, future exploration of the role of exosomal miR-
21 as a biomarker for disease and FEV1 decline is war-
ranted [187, 189, 190]. MicroRNA-140-3p is an import-
ant regulator of expression of chemokines and CD38,
and appears to play an influential role in airway smooth
muscle cell hyperplasia [191–193]. Circulating exosomes
of patients with severe asthma exhibit significant upregu-
lation in miR-140-3p compared to patients with mild-to-
moderate asthma and healthy controls, suggesting that this
miRNA may serve as an important prognostic biomarker.
This study also demonstrated upregulation in miR-128,
miR-196b-5p, and miR-486-5p in severe asthma patients,
although the functional role of these miRNAs in the patho-
genesis of asthma has not yet been elucidated [194].
Recent study signifies the role of functional mitochon-

dria transfer via exosomes between different cell types in
the disease pathogenesis [103]. Hough et al. reported the
presence of mitochondria in the EVs from Bal fluid and
from MHC class II cell surface receptor positive (HLA–
DR+) myeloid-derived regulatory cells. The HLA–DR+

EVs isolated from asthmatic patients had increased
number of mitochondria and more amount of mito-
chondrial DNA within its cargo. Additionally, uptake of
these mitochondria carrying EVs by CD4+ T cells re-
sulted in the generation of ROS and increased T cell
proliferation.

Lung cancer
Extracellular vesicles have been implicated in mediating
intercellular communication responsible for lung car-
cinogenesis. Lung cancer is divided into two broad cat-
egories - small cell lung cancer (SCLC) and non–small
cell lung cancer (NSCLC). The NSCLC is further divided
to 3 subtypes: adenocarcinoma, squamous cell carcin-
oma, and large cell carcinoma [195]. The major reasons
for development of lung cancer are smoking [196], gen-
etic factors [197], toxic/carcinogen/environmental pol-
lutants exposure (such as dust, asbestos), gender [198],
and diet [199]. In addition, various types of bacterial and
viral infections including HIV-1 and HPV can lead to
the development of lung cancer [200, 201].
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The EVs may contribute to various cellular functions,
including epithelial-mesenchymal transition, angiogen-
esis, tumorigenesis and metastasis associated with lung
cancer [202, 203]. Further, exosome secretion and re-
lease within the tumor microenvironment changes the
levels of cytokines and growth factors such as TGF-β,
IL-10, IL-6, MCP-1 by activation of proliferative signal-
ing cascades like MAP kinases and NF-KB pathways and
are therefore instrumental in promoting lung tumor pro-
gression and metastasis [204–206]. Exosomes released
from metastatic small cell lung cancer cells carry in-
creased amounts of TGF-β and IL-10 and are able to in-
duce cancer cell proliferation and migration [205].
Tumor microenvironment derived exosomes also repro-
gram the metabolic machinery to provide metabolites
like amino acids, lipids, and respiratory cycle intermedi-
ates that can be utilized by cancer cells for their growth
and metabolism under nutrient-stress conditions [207].
Rab27a facilitates exosomes in carrying pro-
inflammatory cytokines and matrix metalloproteinases
(MMPs) responsible for tumor progression and cancer
cell metastasis [208]. Microvesicles derived from acti-
vated platelets can also cause metastasis of lung carcin-
oma. Additionally, exosomes have been shown to carry
enzymes which can synthesize their respective products
in the recipient cells and modify the cellular phenotype
[209]. The exosomes from the pleura exudates of lung
cancer patients showed the presence of leukotriene syn-
thesizing enzyme γ-glutamyl transpeptidase-1 which
synthesizes the pro- tumorigenic LTD4 leukotriene from
LTC4 produced by monocytes to support cell survival
and migration of tumor cells [209]. Platelet-derived MVs
contain integrin and matrix metalloproteinases that
cause hyperproliferation and enhanced migration of lung
cells, along with increased expression of angiogenic fac-
tors such as VEGF, MMP-9, and IL-8 [210]. These MVs
also lead to increase in metastasis and angiogenesis in
human syngeneic mice [210]. Platelet-derived MVs from
lung cancer patients are also able to induce metastasis
and promote tumor cell invasion by delivering miR-223
that targets tumor suppressor gene EPB41L3 (erythro-
cyte membrane protein band 4.1-like 3) [210]. Via
mRNA and miRNA, cargo of exosomes derived from
lung cancer cells can also stimulate the normal lung cells
to undergo epithelial-to-mesenchymal transition [105]
and induce migration and proliferation [206, 211].
Tumor cell-derived exosomes have been reported to
contain hTERT mRNA responsible for increased tel-
omerase activity within cells that causes uncontrolled
cell growth and malignancy [212]. This hTERT mRNA
gets transported via exosomes to non-cancer cells where
it induces cell proliferation and delayed senescence, pro-
ducing cancer-like characteristics [212]. Interestingly,
HIV-derived transactivation response element (TAR)

RNA has been known to activate proto-oncogenes and
TLR3 inducible genes, promote tumor growth and can-
cer cell progression [213]. It was observed that exosomes
from HIV-infected T cells carrying HIV TAR RNA enter
lung cancer cells through epidermal growth factor recep-
tor (EGFR), stimulating cell proliferation and migration
through activation of the ERK1/2 signaling pathway [213].
Exosomes derived from neoplastic transformed umbil-

ical vein endothelial cells can transfer miR-21 to normal
cells and lead to increased angiogenesis and malignant
transformation through increased activation of STAT3
signaling and VEGF levels [214]. miR21-5p also inhibits
PTEN in lung cancer cells to activate AKT signaling
pathway and promote tumor cell growth, cell prolifera-
tion, and epithelial-mesenchymal transition [215]. Exo-
somal miR-21 and miR-155 have been reported to be
more highly expressed in recurring lung cancer tumors
than primary tumors, suggesting that specific miRNA
signatures in exosomes derived from serum of lung can-
cer patients can serve as biomarkers for diagnosis of dis-
ease [215]. Hypoxic lung cancer cell-derived exosomes
carry high levels of miR-23 that targets prolyl hydroxy-
lase and zona occludens-1 in endothelial cells [216]. Dis-
ruption of tight junction proteins induces vascular
permeability, angiogenesis and trans-endothelial migra-
tion of cancer cells [216]. Tumor-derived exosomes in-
duce differentiation of fibroblasts to tumor-promoting
stromal fibroblasts by activation of TGF-β signaling
[217]. However, another study found that lung adenocar-
cinoma cell-derived EVs deliver miR-142-3p to endothe-
lial cells to promote angiogenesis, cell proliferation and
differentiate fibroblasts to cancer-associated phenotype,
independent of TGF-β signaling [218] (Fig. 2). Notably,
EVs derived from the fluid of pleural effusions in lung
cancer patients also exhibit alterations in miRNA cargo
[218]. One study reported the presence of miR205-5p
and miR-200b in high amounts in lung cancer patients
[219]. Another study demonstrated that patients with
malignant lung adenocarcinoma have high circulating
levels of miR-182 and miR-210 in pleural effusion, which
is noticeably absent in benign lung cancers suggesting
an involvement in lung cancer progression [220].
Serum-derived EVs from high-grade malignant lung can-
cer patients have high expression of miR-96, a tumor
promoter [221]. MiR-96 mainly acts by targeting LIM-
domain only protein 7 (LMO7) protein that helps in
maintaining alveolar architecture, actin cytoskeleton and
functions as tumor suppressor in lung cancer [221].
In addition to miRNA cargo, long non-coding (lnc)

RNAs are also carried by EVs which may contribute to
lung cancer progression and tumorigenesis. The lncRNA
MALAT-1 (metastasis associated lung adenocarcinoma
transcript-1) is found to be highly up-regulated in the
exosomes derived from serum of lung cancer patients
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and expression is also correlated with the metastatic
stage [106] (Table 1). MALAT-1 was also able to prevent
lung cancer cell apoptosis, alternatively leading to prolif-
eration, cell migration and invasion [106]. LncRNA H19
is highly expressed in geftinib- resistant lung cancer cells
and gets packaged into their exosomes [222]. Geftinib is
a tyrosine kinase inhibitor used as a therapy for highly
malignant non-small cell lung cancer (NSCLC) and
geftinib-resistance is one of the major obstacles in its
treatment [222]. In this study, it was shown that lncRNA
H19 is delivered to non-resistant cells via exosomes and
able to confer geftinib-resistance [222].

Acute lung injury (ALI), acute respiratory distress
syndrome (ARDS), and pulmonary Sepsis
Acute lung injury (ALI) and acute respiratory distress
syndrome (ARDS) is characterized by inflammation and
disruption of the endothelial and epithelial barriers of
the lung, leading to acute respiratory failure and a very
high mortality rate [223]. The most common cause of
ALI and ARDS is sepsis secondary to pulmonary infec-
tion [224]. Lately, there has been a profound increase in
reports demonstrating the influential role of EVs in
sepsis-induced and non-sepsis-induced ALI and ARDS.
Leukocyte-derived MPs circulating in BALF and blood
of ARDS patients appear to be associated with patient
survival [107] (Table 1). Additionally, endothelial cell-
derived MPs have also shown promise as biomarkers
and mediators of ALI and ventilator-induced lung injury
(VILI) [107]. In vitro and in vivo studies have shown in-
creased release of endothelial-derived microparticles
(EMPs) representative of cellular dysfunction, after ex-
posure to mechanical stress and endotoxin characteristic
of Gram-negative bacterial infection [225]. Mechanical
stress-derived EMPs were also able to develop inflamma-
tion and injury in lungs when injected in healthy mice
[225]. These EMPs have been reported to be released by
endothelial cells during ALI due to defects in cytoskel-
eton. Their increased levels were induced by external or
internal stimuli such as LPS which corresponded to the
decline in the surface area of plasma membrane and cell
volume, enlarging the intercellular gaps and junctions
[226]. Another study showed that IFN-α induced pul-
monary injury resulted in an increase in the number of
circulating EMPs in the blood, leading to cytoskeleton
rearrangement and endothelial cell apoptosis [227]. This
was prevented by inhibition of Rho-kinase activity and
targeting EMPs may be useful as well [227]. In an ARDS
rat model, Li et al. found no difference in total blood
MPs versus controls; however, the concentration of
leukocyte- and endothelium- derived MPs was higher in
ARDS, further demonstrating their influential role in the
pathogenesis of ARDS [228].

Encapsulated caspase-1 in monocyte-secreted MPs is
able to induce apoptosis of human pulmonary micro-
vascular endothelial cell (HPMVEC) in ALI/ARDS [108,
229]. These findings are in agreement with other reports
on traumatic brain injury (TBI) induced ALI/ARDS,
where higher levels of ASC (apoptosis-associated speck-
like protein containing a caspase-recruiting domain) in
the serum EVs led to the pyropotosis of endothelial cells
via activation of inflammasomes [109] [230]. EMPs have
also been shown to initiate a cascade of pulmonary and
systemic proinflammatory molecules leading to the de-
velopment of lung injury [231]. EVs released by lung epi-
thelial cells in the hyperoxia-induced ALI (HALI) animal
model were found to activate alveolar macrophages to
induce proinflammatory response in lung tissue upon
delivery of caspase-3 [232]. Another study showed the
role of MVs from BALF and lung epithelial cell-culture
media in HALI with significant alterations in the levels
of miR-320a and miR-221 responsible for proinflamma-
tory response via macrophage activation [233] (Fig. 2).
Studies involving LPS-induced ALI showed the rapid
production of pro-inflammatory MVs and exosomes
by lung macrophages, leading to lung injury [234,
235]. Also, endothelial and leukocyte-derived MPs in
blood from LPS-treated rats were shown to induce a
proinflammatory response and ARDS in healthy rats
[236, 237].
In influenza virus-induced ALI, EVs have been shown to

suppress antiviral factor and promote replication of influ-
enza virus through a miRNA-mediated mechanism in
lung epithelial cells [238]. In acid-induced ALI, the
elevated levels of miR-17 and 221 in lung epithelium-
derived MVs were found to be involved in the activation
and recruitment of macrophages [239]. Both sterile stimuli
(oxidative stress or acid aspiration) and infection (LPS/
Gram-negative bacteria) lead to increase in BALF EVs,
however, the source for these EVs differed [240]. BALF
EVs from sterile stimuli was mainly from alveolar type-І
epithelial cells, whereas infection-induced BALF EVs were
from alveolar macrophages (AMs). Nonetheless, both
kinds of EVs generated same kind of functional response
by promoting macrophage recruitment and generation of
inflammatory cascade in the lungs [240].
In addition to the pathways previously reviewed, aberra-

tions in coagulation and fibrinolysis also play pivotal roles
in inducing inflammatory responses in ALI and ARDS.
Tissue factor (TF), an initiator of the coagulation cascade,
is detected in high levels in patients’ lungs and can cause
deposition of fibrin in airspace [110]. MPs containing TF
are released by alveolar epithelium in response to pro-
inflammatory stimulus in ALI/ARDS lungs, therefore con-
tributing to coagulation [110] (Table 1).
Most studies analyzing EVs in patients with sepsis

have included those with undifferentiated sepsis due to
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multiple potential sources, making generalizability of
findings specific to pulmonary sepsis difficult. There is
some evidence to indicate differences in EV cargo exist
based on source of underlying sepsis. Researchers have
shown that plasma-derived MVs from patients with sep-
sis due to community-acquired pneumonia (CAP) have
higher expression of alpha-2-macroglobuin compared to
patients with sepsis due to fecal peritonitis [111]. Fur-
thermore, they demonstrated an association between
higher plasma alpha-2-macroglobulin positive MVs and
survival in patients with CAP [111]. This was consistent
with previous findings from the same group, in which
granulocyte-derived EVs carrying alpha-2-macroglobulin
were protective in patients with sepsis due to CAP [112]
(Table 1). These results are noteworthy in consideration
of the fact that the cecal ligation and puncture (CLP)
model is commonly used as a mouse model of sepsis
[241]. Results generated from CLP models may not be
generalizability to non-peritonitis subsets of sepsis, in-
cluding sepsis secondary to lung infections. Further re-
search on the dynamics of circulating EVs in patients
with sepsis and evaluation of differences based on source
of infection and causative pathogen are warranted.

Therapeutic potential of EVs in lung diseases
Though EVs are implicated in the pathogenesis of the
pulmonary complications, as we have reviewed; EVs also
may serve in a role as potential therapeutic agents
(Table 2) [161, 206, 261, 262]. Mesenchymal stem cells
(MSC) and the products released from these cells such
as MSC-derived extracellular vesicles (MSC-EVs) are be-
ing explored for their protective capabilities against lung
diseases [262–264].

COPD/asthma
When administered to activated alveolar macrophages,
MSC-EVs lead to reduction in the release of proinflam-
matory molecules, decrease the infiltration of neutro-
phils and lymphocytes in the BALF and airways, and
contribute to reducing the collagen content in the lung
parenchyma [253, 254, 263]. Overall, this leads to a pro-
tective effect against lung disease like COPD and ALI
[253, 254, 263]. Moreover, MSC-EVs are able to transfer
mitochondria to alveolar epithelial cells and macro-
phages to overcome oxidative stress characteristic of
lung diseases like COPD and ALI [253, 254].
MSC-derived EVs have been shown to exert immuno-

modulatory effects on PBMCs, including release of IL-10
and TGF-β, stimulating proliferation of T regulatory cells
(Tregs) and leading to immune suppression in asthmatic
patients [246]. Adipose tissue derived-mesenchymal stem
cells EVs (AD-MSC) reduce eosinophilic infiltration into
the lung tissue and parenchymal collagen content in
mouse models of asthma [247]. MSC-derived EVs have

also been found to abrogate inflammatory response by in-
creasing anti-inflammatory IL-10 and reducing Th2 and
Th17 associated cytokines [248]. Kim et al. prepared AD-
MSC-derived artificial nanovesicles that expressed similar
AD-MSC surface markers and growth factors such as
FGF2, important in lung regeneration [22]. These nanove-
sicles were able to induce epithelial cell proliferation via
FGF2-dependent pathway and inhibit emphysema in mice
model [22].Mast-cell derived exosomes exhibit FcξR1 re-
ceptors that trap free IgE and limit the effects of mast-cell
activation during asthma [172]. Another study showed
protective effects of EVs from human bone marrow de-
rived mesenchymal stem cells in preventing the develop-
ment of AHR, pulmonary inflammation and Th2 and
Th17 antigen dependent activity in the allergic response
to Aspergillus hyphal extract in immunocompetent mice
[248]. The therapeutic utility of human mesenchymal
stromal cells derived small EVs in reducing allergic airway
asthma was also demonstrated by their ability to lower the
levels of group 2 innate lymphoid cells (ILC2s), reduce
AHR and infiltration of inflammatory cells with decrease
in the levels of Th2 cytokines and mucus production in
lungs [250]. Furthermore, the inhibitory effect of exo-
somes isolated from Pseudomonas aeruginosa on the de-
velopment of AHR along with reduced inflammation in
the perivascular and peribronchial spaces in allergic
asthma model has also been reported. This inhibitory ef-
fect was attributed to the increased Treg and attenuated
Th2 responses on treatment with P· aeruginosa derived
exosomes [249].

PH
Mesenchymal stromal cell-derived exosomes were able
to cause reduction in right ventricle systolic pressure
and vascular remodeling in a mouse model of hypoxia-
PAH by inhibiting induction of proinflammatory and
pro-proliferative mediators and macrophage influx by
suppressing the hypoxic activation of STAT3 and miR-
17 super family [242]. In addition, these exosomes in-
creased the expression of anti-proliferative miR-204 in
lungs of PAH mice [242]. Similarly, MSC-derived MVs
were able to ameliorate PAH in the MCT-PAH rat
model via reduction in right ventricular hypertrophy,
mean right ventricular and mean pulmonary arterial
pressures, and decreased pulmonary arteriole remodeling
[243]. Mesenchymal stromal cells were able to promote
the mitochondrial function and led to increased expres-
sion of pyruvate dehydrogenase (PDH) and glutamate
dehydrogenase 1 (GLUD1), thus promoting the citric
acid cycle in pulmonary smooth muscle cells [265].
When injected to MCT-PAH mice, MSC-exosomes re-
duced and reverted PAH complications [126]. These
exosomes were rich in anti-inflammatory, anti-apoptotic,
and anti-proliferative miRNAs such as miR –34a, − 122,
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Table 2 Therapeutic role of extracellular vesicles in various lung complications

Disease EV source EV type Cargo molecule (s) Major effects /role Ref.

COPD Adipose-derived stem
cells

Artificial
nano-
vesicles

FGF2 Increase in epithelial cell proliferation, inhibition of emphysema and
regeneration of damaged lung of mice

[22]

PH Mesenchymal stromal
cell

Exosomes – Reduction in vascular remodeling and hypoxic PH, inhibition of pro-
proliferative STAT3 signaling in pulmonary arterial endothelial cells

[242]

Mesenchymal Stem Cells MVs – Reduction in mean pulmonary arterial pressures, right ventricle
hypertrophy in monocrotaline-PH rat model

[243]

Mesenchymal stromal
cell

Exosomes – Promoted mitochondrial function and TCA cycle in pulmonary artery
smooth muscle cells

[244]

Mesenchymal Stem Cells Exosomes miRs-34a, −122,
−124, and − 127

Reversed PH in monocrotaline mice model [126]

Mesenchymal Stem Cells EVs – Reversal of bone marrow endothelial progenitor cells (EPCs) mediated
PAH

[129]

Endothelial cells MPs Endoglin Improved survival and proliferation of pulmonary endothelial cells [245]

Asthma Mesenchymal Stem Cells Exosomes – Promoted proliferation and immune-suppression capacity of T regula-
tory cells

[246]

Adipose derived
Mesenchymal Stem Cells

EVs – Reduced airway remodeling and eosinophil counts in lung tissue and
BALF of ovalbumin mice.

[247]

Mesenchymal stromal
cells

EVs – Abrogated inflammatory response by increasing IL-10 and reducing
Th2 and Th17 associated cytokines in the mice model of asthma

[248]

Bone marrow derived
mast cells

Exosomes IgE receptors (FcξR1) Reduced IgE levels and mast cell activation in allergic asthma mouse
model

[172]

Human bone marrow
derived mesenchymal
stem cells

EVs – Prevent development of airway hyper responsiveness and pulmonary
inflammation in response to allergen

[248]

Pseudomonas aeruginosa Exosomes – Prevention of allergic reactions by increasingTreg and decreasing the
Th2 response.

[249]

Human mesenchymal
stromal cells

Small EVs miR-146a-5p Reduction in the infiltration of inflammatory cells, Th2 cytokines and
airway hyperresponsiveness

[250]

Lung
Cancer

Dendritic cell derived
exosomes (DEX)

Exosomes MAGE tumor antigen Modest stabilization of NSCLC patients in response to DEX
immunotherapy

[251]

ALI/
ARDS

Mesenchymal Stem Cells MVs Keratinocyte Growth
Factor mRNA

Reduction in pulmonary edema and influx of inflammatory cells in
BAL of E. coli endotoxin –induced ALI mice;

[252]

Mesenchymal Stem Cells Exosomes/
MVs

Mitochondria/
miRNA

MSC-MVs transfer depolarized mitochondria to macrophages and
increase macrophage bioenergetics; MSC-exosomes modulate TLR
signaling and cytokine release in macrophages

[253]

Mesenchymal stromal
cells

EVs Mitochondria Reduced inflammation and lung injury; enhanced oxidative
phosphorylation in macrophages

[254]

Mesenchymal Stem Cells EVs Runx1 p66 and p52 Enhanced junctional integrity of injured endothelial cells and
decreased lung pathology

[255]

Mesenchymal Stem Cells EVs – Modulated cytoskeletal signaling in endothelial cells and attenuated
lung vascular permeability

[256]

Mesenchymal Stem Cells MVs – Increased alveolar fluid clearance and reduced protein permeability
and inflammation; increased antimicrobial in ex-vivo perfused human
lung model of bacterial pneumonia

[257]

Umbilical cord
mesenchymal stromal
cells

Exosomes Angiopoietin 1 and
hepatocyte growth
factor

Restoring alveolar fluid clearance and protein permeability of
influenza virus infected alveolar epithelial cells

[258]

Endothelial progenitor
cells

Exosomes miR-126 Enhanced proliferation, migration of endothelial cells by promoting
RAF/ERK signaling, ameliorated LPS-induced lung injury

[259]

Inducible pluripotent
stem cells

Exosomes siRNAs against ICAM-
1

Successfully delivered siRNA into HMVECS and inhibited expression of
ICAM-1 and neutrophil adhesion

[260]
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− 124, and − 127 [126]. MSC-derived EVs have also
shown to reverse the effect of endothelial progenitor
cells from PAH mice in developing PAH in healthy mice
[129]. Increased levels of circulating endoglin+ endothe-
lial MPs in the plasma of chronic thromboembolic pul-
monary hypertension (CTEPH) patients improved the
survival and proliferation of recipient cultured primary
human pulmonary endothelial cells, thus demonstrating
a therapeutic role of these particles [245]. Apart from
MSCs, delivery of miR-195 to SMCs via endothelial-
derived exosomes was reported to prevent SMC prolifer-
ation and migration by inhibiting the expression of sero-
tonin transporters and thus may play a protective role in
PAH [266].

Lung Cancer
Exosomes isolated from dendritic cells called dexosomes
have successfully covered the journey from the animal
models in laboratory to patient bedside as an immune
system amplifying tool to treat NSCLC. The isolation of
dexosomes from patient blood and then loading them
with antigens, MHC I and II molecules and re-
administration to patients has proved to be a successful
way to stimulate naive dendritic cells (DCs) in patients
and boost up both innate and adaptive immune system
in fighting lung and other cancers [251, 267, 268]. In
addition, loading them with B and T cell epitopes en-
hances their immunogenicity [269]. Circulating tumor
EVs can also potentially act as carriers of anti-tumor
drugs, small interfering RNAs, and molecules like anti-
programmed cell death receptor 1 (PD-1) and anti-
programmed cell death ligand 1 (PD-L1) to prevent lung
cancer progression [270].

ALI/ARDS/pulmonary Sepsis
MSC-derived EVs from ARDS patients showed the pres-
ence of transforming growth factor-beta receptor I
(TβRI)/Alk5 and the Runx1 p66 and p52 transcription
factor that are crucial in protecting ARDS [255]. Import-
antly, higher Runx1p66/p52 ratio provided a survival ad-
vantage [255]. Runx1p66 from bone marrow-derived
MSC-EVs induces proliferation of LPS-treated ECs and
help to improve pathology of lung in LPS induced ALI
mice [255]. Bone marrow-derived mesenchymal stem
cell EVs induced cytoskeletal RhoA GTPase activity,
leading to a significant decrease in hemorrhagic shock-
induced lung vascular permeability in the hemorrhagic-
shock mice model of ARDS [256]. Human MSC-derived
EVs were also able to ameliorate ALI secondary to E.
coli bacterial pneumonia by reducing lung protein per-
meability and pulmonary edema and improving alveolar
fluid clearance, leading to a reduction in both bacterial
load and median pulmonary artery pressure [257]. In
addition, umbilical cord mesenchymal stromal cell-

derived exosomes were found to suppress influenza
virus-induced ALI by improving the clearance of alveolar
fluid and protein permeability of A(H5N1)-infected
human alveolar epithelial cells [258]. Another report
demonstrated transfer of functional mitochondria by
MSC derived EVs to the recipient macrophages [254].
These CD44 expressing MSC-derived EVs acted as a
successful therapy in the LPS model of lung injury by
suppressing cytokine production, inducing anti-
inflammatory response, and reducing lung pathology
through enhanced oxidative phosphorylation in macro-
phages [254]. Exosomes released from endothelial pro-
genitor cells (EPCs) have also been reported to improve
the injury in LPS-induced ALI rat model by regulating
integrity, migration, and proliferation of ECs. EPC exo-
somes mediated transfer of miR-126 to ECs targeting
the expression of SPRED1 and enhancing RAF/ERK sig-
naling pathways were primarily responsible for restoring
lung health in this model [259]. Human-induced pluri-
potent stem cell-derived exosomes have been used as de-
livery systems for siRNAs targeting ICAM-1 in human
primary pulmonary microvascular endothelial cells
(HMVECs), leading to obstruction of ICAM-1 protein
expression and inhibition of neutrophils-endothelium
adhesion induced by LPS, the primary features of ALI
[260].

Summary
In conclusion, EVs are emerging as vital components of
multiple pulmonary pathologies. It is highly apparent that
EVs represent a heterogeneous population that differs
substantially in composition and its cargo. Most of the
studies included in this review investigated the role of
miRNA cargo in the lung pathogenesis related to the re-
spective diseases (Fig. 2), however the role of other small
non-coding RNAs needs equal attention and should be
the focus of future investigations. Additionally, various
other EV content such as proteins, cytokines, enzymes are
equally important to be explored further. The study of
EVs is a rapidly evolving field and there remains a lack of
uniformity in methods used to isolate and categorize EVs.
Inconsistencies across studies may substantially influence
results, which limit the generalizability of any individual
study. Standardization of these methods and validation of
findings in multiple prospective longitudinal cohorts is es-
sential for the field to continue to move forward and posi-
tively impact patient care. Furthermore, pulmonary
diseases are physiologically complex and occur on a
spectrum of severity, which adds an additional layer of dif-
ficulty to generalize the findings from these studies. For
example, there are many subtypes of lung cancer that dif-
fer in underlying molecular pathology, treatment, and
prognosis [271]. This heterogeneity is true for nearly all
pulmonary diseases and future investigations evaluating
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EVs as biomarkers and therapeutics should clearly
account for these differences. Despite these limitations,
further identification of EVs and corresponding cargo has
the potential to aid in the discovery of clinically useful bio-
markers and the development of novel therapeutics for
lung pathologies. This promising area of research should
provide some hope to the millions of patients suffering
from lung diseases which are currently incurable by to-
day’s standard of care.
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