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Abstract

Integrin αIIbβ3, a transmembrane heterodimer, mediates platelet aggregation when it switches 

from an inactive to an active ligand-binding conformation following platelet stimulation. Central 

to regulating αIIbβ3 activity is the interaction between the αIIb and β3 extracellular stalks, which 

form a tight heterodimer in the inactive state and dissociate in the active state. Here, we 

demonstrate that alanine replacements of sensitive positions in the heterodimer stalk interface 

destabilize the inactive conformation sufficiently to cause constitutive αIIbβ3 activation. To 

determine the structural basis for this effect, we performed a structural bioinformatics analysis and 

found that perturbing intersubunit contacts with favorable interaction geometry through 

substitutions to alanine quantitatively accounted for the degree of constitutive αIIbβ3 activation. 

This mutational study directly assesses the relationship between favorable interaction geometry at 

mutation-sensitive positions and the functional activity of those mutants, giving rise to a simple 

model that highlights the importance of interaction geometry in contributing to the stability 

between protein−protein interactions.
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Integrin αIIbβ3 resides on the platelet surface in a regulated and finely tuned equilibrium 

between resting low-affinity and active high-affinity conformations that can be perturbed by 

bidirectional signal transduction.1 Crystal structures of resting αIIbβ3 have revealed that its 

extracellular domain has a bent conformation with its nodular ligand-binding headpiece 

oriented toward the cell surface2,3 and with contacts between the β3 and αIIb stalks forming 

a clasp that maintains its inactive state (Figure 1).4 Following platelet stimulation, αIIbβ3 

undergoes a global rearrangement5 in which its ligand-binding headpiece turns away from 

the cell surface and its transmembrane (TM) and stalk domains separate. This causes the 

integrin to shift to a fully extended conformation,6 exposing its ligand-binding site. In vivo, 

intracellular signals shift αIIbβ3 toward its high-affinity ligand-binding conformation 

(“inside-out signaling”).7 However, αIIbβ3 can also be experimentally shifted to its active 

conformation by replacing individual amino acids in its TM or membrane-proximal 

extracellular stalk domains, although the magnitude of the shift varies from replacement to 

replacement.

In this study, we characterized the αIIbβ3 stalk interface by introducing alanine 

replacements and measuring their effects on constitutive integrin activation. Protein−protein 

interfaces, such as the interface between the αIIb and β3 stalks, are usually large 

complementary surfaces with many intermolecular contacts.8 Nonetheless, as Clackson and 

Wells pointed out,9 a limited number of complementary side chain interactions in protein

−protein interfaces, termed “hot spots”, are disproportionately responsible for the strength of 

binding. Previously, we used the Rosetta alanine scanning algorithm to identify hot spots in 

the β3 stalk and found that replacing them with alanine was sufficient to activate both 

αIIbβ3 and αvβ3.10 However, while the alanine scanning algorithm successfully predicted 

mutations that destabilized the stalk interface, it did not correctly rank their functional 

effects, likely because the energetic effects of the alanine substitutions were weak and within 

the margin of error reported for this method.11

Here, we sought to identify hot spots in the αIIb stalk that are complementary to those we 

previously identified in β3. Initially, we scanned the αIIb Calf-1 and Calf-2 domains using 

the Rosetta-based alanine scanning algorithm and subsequently using the recently described 

Rosetta flex ddG protocol.12 The latter enables more accurate ΔΔG predictions by 

generating ensembles of models sampling different backbone conformations, whereas the 

former does not. However, neither method was able to accurately predict the relative 
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contribution of the identified hot spots to the stability of the αIIbβ3 stalk complex. 

Therefore, to more precisely map the αIIbβ3 stalk interface, we developed a structural 

bioinformatics method based on the premise that the detailed geometries of the most 

stabilizing intersubunit side chain−side chain interactions would be overrepresented in the 

Protein Data Bank (PDB). We used the results of this analysis to compute an interaction 

geometry score that was better able to rationalize the nature of destabilizing mutations in the 

stalk interface than the flex ddG protocol. In addition, we found that specific stalk domain 

hot spots are responsible for maintaining the inactive state of αIIbβ3. Because the stalks are 

present in an extracellular location, these results suggest that stabilizing the stalk 

heterodimers may be a way to allosterically attenuate αIIbβ3 function.

METHODS

Computational Alanine Scanning Using Rosetta-Based Scanning Algorithms.

For all of our computational analyses, we used chains A (residues 599–959) and B (residues 

483–690) from the αIIbβ3 crystal structure (PDB entry 3FCS).4 We initially used Rosetta 

interface alanine scanning, hosted on the Robetta server, to predict hot spots in the αIIb 

stalk.11,13 After completing the experimental aspects of this work, we repeated the 

computational alanine scanning mutagenesis using flex ddG, a recently developed method 

built within the Rosetta macromolecular modeling suite that provides more accurate ΔΔG 
predictions by generating ensembles of models that sample over different backbone and side 

chain conformations.12 ΔΔG predictions were calculated using the hyperparameters 

recommended in the flex ddG tutorial Github repository (https://github.com/Kortemme-Lab/

flex_ddG_tutorial). Briefly, ensembles of wild-type (WT) and alanine mutant models were 

generated by sampling 35000 backrub backbone perturbation (“backrub”) and minimization 

cycles. ΔΔG’s between WT and alanine mutants were calculated using Rosetta energy 

function terms that were reweighted to better fit experimental ΔΔG’s reported in the ZEMu 

protein−protein interaction benchmark set.12,14

Stable Expression of αIIbβ3 in Chinese Hamster Ovary (CHO) Cells.

Full-length cDNAs for human αIIb and β3 were inserted into pcDNA3.1(+) Neo and 

pcDNA3.1(+) Zeo (Invitrogen), respectively. Single-amino acid substitutions were 

introduced into the αIIb cDNA by polymerase chain reaction (PCR) using the QuickChange 

Site-Directed Mutagenesis Kit (Stratagene). The forward and reverse primers for the PCR 

are listed in Table S1. All mutated sequences were confirmed by DNA sequence analysis.

CHO cells were cultured in Ham’s F-12 medium (Gibco/ BRL) supplemented with 10% 

fetal bovine serum (Hyclone Laboratories). Plasmids containing cDNAs for WT and mutant 

αIIb and β3 were introduced into the CHO cells using FuGENE 6 according to the 

manufacturer’s instructions (Roche Molecular Biochemicals). Two days after being 

transfected, the cells were transferred to selection medium containing 500 μg/mL G418 

(Gibco/BRL) and 300 μg/mL Zeocin (Invitrogen). After selection for 3 weeks, αIIbβ3 

expression was assessed by flow cytometry using A2A9, a monoclonal antibody (mAb) that 

recognizes the human αIIbβ3 heterodimer.15 Transfected cells were then repeatedly sorted 

Tan et al. Page 3

Biochemistry. Author manuscript; available in PMC 2020 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/Kortemme-Lab/flex_ddG_tutorial
https://github.com/Kortemme-Lab/flex_ddG_tutorial


by fluorescence-activated cell sorting to obtain subclones expressing comparable high levels 

of WT and mutant αIIbβ3.

Fibrinogen Binding to CHO Cells Expressing αIIbβ3.

Fibrinogen binding to CHO cell subclones expressing comparable amounts of WT and 

mutant αIIbβ3 was measured as described previously.16 Briefly, CHO cells (2 × 106 

cells/mL) were incubated with the β3 mAb SSA6 conjugated to Alexa Fluor 647 

(Invitrogen) to label αIIbβ3 and freshly prepared 5 mM dithiothreitol (DTT) with or without 

2 mM EDTA for 15 min at 37 °C. The labeled cells were then incubated for 15 min at 37 °C 

with 200 μg/mL fibrinogen conjugated with Alexa Fluor 488 (Molecular Probes). Cells were 

washed, fixed with 4% paraformaldehyde in phosphate-buffered saline (PBS), and examined 

by two-color fluorescence-activated cell sorting analysis. Fibrinogen specifically bound to 

αIIbβ3 was defined as fibrinogen binding that was inhibited by EDTA. Statistical analyses 

of the fibrinogen binding data were performed using Microsoft Excel for Mac.

Specific fibrinogen binding data were used to calculate an αIIbβ3 activation index (AI), 

defined by eq 1:

AI = FBc − FBc+EDTA / FBDTT − FBDTT+EDTA (1)

where FBc represents fibrinogen binding to αIIbβ3 in the absence of an activating agent; 

FBDTT, fibrinogen binding to αIIbβ3 induced by 5 mM DTT; FBc+EDTA, constitutive 

fibrinogen binding to αIIbβ3 in the presence of 2 mM EDTA; and FBDTT+EDTA, fibrinogen 

binding to αIIbβ3 induced by 5 mM DTT in the presence of 2 mM EDTA. Because we 

extended our analysis to include the β3 stalk domain mutants we characterized in our 

previous work,10 to maintain consistency, we converted the fibrinogen binding data to the 

apparent free energy of fibrinogen binding (ΔGapp) as defined by eq 2:

ΔGapp = − RTln activation index
1 − activation index (2)

Database Curation of Nonredundant Protein Structures To Query Interaction Motifs.

To rationalize the strengths of αIIbβ3 mutant stalk interactions, we developed a structural 

bioinformatics analysis method based on the hypothesis that disrupting αIIb and β3 stalk 

interactions that are over-represented in the PDB17 would destabilize the resting αIIbβ3 

heterodimer and hence activate αIIbβ3. We curated a data set of crystallographic structures 

from the PDB (accessed February 7, 2018) with ≤30% sequence identity, ≤2 Å resolution, an 

R value of ≤0.3, and a MolProbity18 score of <2 to evaluate clashing and rotamer/ϕ/ψ 
geometry, resulting in a database of 8415 structures. Biological assemblies were then 

reconstructed using ProDy19 to maintain interactions across different monomers.

Decomposition of Hot Spot Interactions into Fragments for Database Searching.

Next, we discretized putative hot spot interactions into fragments to query our nonredundant 

PDB data set for the same interaction geometry between fragments. For each putative hot 

spot residue with experimentally derived functional data, we determined its opposite subunit 
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interacting fragments using the program Probe,20 first minimizing the αIIbβ3 crystal 

structure using Rosetta’s minimize_ppi application.21,22 Each intersubunit contact Probe 

classified as a hydrogen bond, close contact, or strong atomic overlap was discretized into 

fragments belonging to a single residue that could fall within a plane. Fragments from side 

chains with tetrahedral geometry were limited to three atoms if the fragment contained an 

sp3-hybridized carbon, while fragments could contain at least three atoms if one or more 

atoms were sp2-hybridized or aromatic. Fragments from a single residue could also arise 

from backbone atoms ([N, CA, C] or [CA, C, O]). For example, aspartic acid fragments 

could be [N, CA, C], [CA, C, O], [N, CA, CB], [C, CA, CB], [CA, CB, CG], or [CB, CG, 

OD1, OD2]. However, we evaluated the interaction geometry for backbone fragments only if 

they originated from a complementary subunit residue rather than a putative hot spot residue, 

because interactions from backbone fragments of a hot spot residue would not be eliminated 

upon mutating the hot spot residue to alanine.

Database Search for Geometric Matches of Integrin Interactions.

To determine the favorability of the intersubunit interactions, we searched the nonredundant 

protein data set for residue pairs that had fragments interacting in the same geometry as in 

the WT crystal structure (PDB entry 3FCS). For each interaction between a hot spot residue 

AAh and its complementary residue, AAi, we approximated the energetic contribution 

imparted by forming an interaction in that specific geometry as Geom(h). This term was 

defined as the observed fraction of database AAh interactions with AAi occurring in the 

same geometry as in the αIIbβ3 crystal structure, normalized by the expected fraction of 

residue AAh coming into contact with AAi if there were no geometrical preference for the 

interaction. The observed fraction of AAh interactions with AAi that were geometric 

matches to the αIIbβ3 crystal structure was defined as the number of database residue pairs 

whose fragments could be superimposed onto the interacting fragments in the αIIbβ3 crystal 

structure with a 0.5 Å root-mean-square deviation (M[fragαIIβ, fragβ3]integrin), normalized by 

the total number of AAh−AAi residue pairs in the database {N[AA(fragαIIβ),AA(fragβ3)]}. 

The expected frequency of this pairwise interaction, assuming no preference for geometry, 

was defined as the product of the independent frequencies of each amino acid occurring in 

the database (denominator in eq 3). To account for residue pairs that were in contact simply 

because of sequence proximity, and not necessarily because of favorable interactions, we 

included only residue pairs on the same chain if they were separated by at least 10 residues. 

Calculations were performed using the Python package NumPy,23 and plots were created 

using the Python package Matplotlib.24

Geom(ℎ) = ∑
fragglipfrag33

− RT

× ln
M fragcllp′fragβ3 integin/N AA fragaIIβ , AA fragβ3

f AA fragallβ f AA fragβ3

(3)

Molecular Model of the Distal αIIbβ3 Stalk.

The stalk domains of αIIbβ3were modeled using the molecular visualization tool PyMOL 

(The PyMol Molecular Graphics System, version 2.0, Schrödinger, LLC) and the X-ray 
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diffraction crystal structures of αIIbβ3 obtained from the RCSB Protein Data Bank [entry 

3FCS (https://www.ncbi.nlm.nih.gov/pubmed/19111664)]. The αIIbβ3 stalk domain model 

encompassed αIIb residues 599–959 and β3 residues 483–691.

RESULTS

Computational Alanine Scanning of the αIIb Calf-1 and Calf-2 Domains Identifies Mutation-
Sensitive Residues.

Crystal structures of the ectodomain of inactive αIIbβ3 revealed a large interface between 

the Calf-1 and Calf-2 domains of the αIIb stalk and the EGF-3, EGF-4, and βTD domains of 

the distal β3 stalk4,25 (Figure 1). Previously, we used the Robetta alanine scanning algorithm 

to predict destabilizing alanine replacements in the β3 stalk and found that introducing these 

replacements into full-length αIIbβ3 caused constitutive αIIbβ3 activation.10 Using the 

same method to determine hot spots in the αIIb stalk, we identified 12 alanine replacements 

with predicted ΔΔG’s ranging from 0.1 to 1.8 kcal/mol (Table 1). To determine which 

replacements destabilized the interface of the stalk sufficiently to cause αIIbβ3 activation, 

we introduced 10 of the replacements into full-length αIIb by site-directed mutagenesis, 

stably co-expressed the mutants with WT β3 in CHO cells, and measured both constitutive 

and dithiothreitol-induced fibrinogen binding to subclones selected by fluorescence-

activated cell sorting analysis for comparable expression of αIIbβ3. To ensure that results 

were not unique to a particular subclone, fibrinogen binding measurements were performed 

using two to six different subclones. To normalize the activity of the various αIIbβ3 

mutants, we calculated an αIIbβ3 activation index, the ratio of constitutive fibrinogen 

binding to αIIbβ3 to maximal fibrinogen binding induced by dithiothreitol. The R751A 

mutant was not expressed, implying that R751 may be important for either correct αIIb 

folding or correct αIIbβ3 assembly. Each of the other mutants was expressed to a 

comparable extent and caused a variable degree of constitutive αIIbβ3 activation, with 

αIIbβ3 activation indices ranging from 0.83 ± 0.12 for V760A to 0.17 ± 0.02 for H787A 

(Table 1).

Mapping Experimentally Determined Activation Indices onto the Structure of the αIIbβ3 
Stalk Reveals the Relative Positioning and Molecular Contacts of Hot Spot and Neutral 
Residues.

We then mapped the hot spots we identified in αIIb, and those we previously identified in 

β3,10 onto the model of the stalk heterodimer shown in Figure 2. Hot spot residues whose 

alanine mutants promoted αIIbβ3 activation were found to lie along a discontinuous strip 

running through the stalk interface. In the assembled stalk heterodimer, residues having high 

activation indices when replaced with alanine (i.e., ≥0.4) were flanked by hot spot residues 

whose alanine mutants activate αIIbβ3 to a lesser extent. By contrast, β3 residues D552 and 

H626, chosen as negative controls because they do not make intersubunit contacts with αIIb, 

were predicted to have no effect on αIIbβ3 heterodimer stability10 and did not cause 

constitutive αIIbβ3 activation (Table 1).
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Computational Alanine Scanning Algorithms Inaccurately Capture the Energetics of αIIbβ3 
Stalk Mutations.

As we previously observed for the β3 stalk,10 the Robetta alanine scanning algorithm did not 

correctly rank the functional importance of the hot spots it predicted in the αIIb stalk (Figure 

S1). Because the recently reported flex ddG algorithm calculates more accurate ΔΔG’s,12 we 

repeated the computational alanine scanning using the newer method. To comprehensively 

examine the whole stalk interface, we extended our analysis to include the β3 mutants 

characterized in our previous work.10 When we plotted the apparent free energy of binding 

(ΔGapp) of fibrinogen to mutant αIIbβ3 versus the ΔΔG’s predicted by flex ddG, we again 

found only a weak correlation (Figure 3A; R2 = 0.000), likely because the energetic 

differences between the integrin mutants are within a very small range. The largest and 

smallest activation indices for the αIIbβ3 mutants differ by a factor of only 4.8, 

corresponding to an energetic change of only 1−2 kcal/mol, close to the expected flex ddG 

error of ±0.96 kcal/mol.12

Hot Spot Residues with High Activation Indices Interact with Complementary Residues in 
Geometries That Are Prevalent in the PDB.

To more accurately assess the energetic contribution of individual αIIb and β3 residues to 

the stability of resting αIIbβ3, we investigated whether hot spot residues impart stability in a 

predictable manner that could be ascertained by evaluating their interaction geometry. For 

each αIIb or β3 residue whose alanine mutant was experimentally characterized, we 

identified the complementary residues with which it interacted and represented the 

interaction as single-residue fragment pairs so that we could query the nonredundant PDB 

for pairs of fragments that interact in the same geometry as in the αIIbβ3 crystal structure. 

The nonredundant data set was then searched for geometric matches to WT αIIbβ3, which 

we defined as residue pairs whose fragments had a low root-mean-square deviation (≤0.5 Å) 

with the interacting fragment pairs in the αIIbβ3 crystal structure.

As anticipated, hot spot residues with high activation indices interacted with complementary 

subunit residues in geometries that are highly represented in the nonredundant PDB. Details 

of these interactions are shown in Figure 4 and listed in Table S2. For example, the hot spot 

residues whose alanine mutants have the highest activation indices, β3 T603 and αIIb V760, 

have numerous geometric matches. T603, whose activation index is 0.86, has a total of 385 

geometric matches with six fragments on four αIIb residues. V760, whose activation index 

is 0.83, has 2940 geometric matches with one residue on β3. By contrast, αIIb residue I673, 

whose activation index is 0.23, has only 54 geometric matches. Mutants that do not cause 

integrin activation relative to WT (i.e., β3 D552A and β3 H626A) do not make any 

intersubunit interactions and have zero geometric matches in the PDB.

Figure 2. Mapping of functional hot spots identified by alanine scanning mutagenesis onto 

the structures of the αIIb and β3 stalk domains. The locations of residues in the distal αIIb 

and β3 stalk domains for which alanine replacements caused constitutive αIIbβ3 activation 

were mapped onto the structures for these domains and are color-coded according to the 

apparent free energy of fibrinogen binding (ΔGapp) οf their alanine replacement (Table 1), as 

shown in the heat map below the models.
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Quantitative Analysis of Interaction Geometry.

On the basis of our findings that frequently represented interaction geometries are present at 

the αIIbβ3 stalk interface, we developed a simple scoring function, Geom(h), to score the 

geometric interaction propensities of hot spot residue h (eq 3). We found a strong correlation 

between the Geom(h) score of a residue and the ability of its alanine replacement to cause 

αIIbβ3 activation. The Geom(h) scores for strongly activating β3 T603 and αIIb V760 were 

−3.75 and −2.91, respectively, while those for less activating αIIb residues I673 and N753 

were 0.16 and −1.87, respectively. When we examined the quantitative agreement between 

the Geom(h) scores and the apparent energies of binding to fibrinogen, we found the 

correlation coefficient to be 0.796 (Figure 3B).

Nonetheless, there were two notable discrepancies between the computational alanine 

scanning and the structural bioinformatics results. First, αIIb S758 makes no direct 

interchain contacts, but its alanine replacement has a high activation index of 0.64. However, 

the αIIbβ3 crystal structure is not well-resolved in this region, as evidenced by the side 

chains of Q954/L956 of αIIb and K612/K658 of β3 not being represented in the electron 

density maps. Moreover, there is unassigned density corresponding to two volumes that 

could potentially be in contact with S758, suggesting that there may be solvent-mediated 

interchain interactions for which the bioinformatics method does not account (Figure 4).

The second exception is β3 E534. Previously, using Robetta alanine scanning, we predicted 

that E534A was moderately destabilizing with a ΔΔG of 0.54 kcal/mol.10 On the basis of the 

crystal structure of inactive αIIbβ3, β3 E534A does not disrupt an interaction across the 

αIIbβ3 stalk interface. Rather, it disrupts a hydrogen bond between the β3 EGF-3 domain 

and the αIIb β-propeller located in the αIIb ectodomain (Figure 5), causing constitutive 

αIIbβ3 activation with an activation index of 0.76 ± 0.07. The structural bioinformatics 

analysis revealed that E534 interacts with β-propeller residue R402 with a Geom(h) score of 

−1.19, an intermediate degree of geometric favorability relative to the stalk mutants. 

However, E534A is more activating than its geometry score would suggest. Thus, while 

these results confirm that the structural bioinformatics method can describe favorable 

interaction geometries across different regions in multidomain proteins, it also cautions that 

without carefully training the model on a large database of interdomain interactions, we can 

rank only the favorability of those interactions within the same interface. E534 is also 

noteworthy because Zang and Springer had previously reported that mutating β2 residue 

Q535, analogous to β3 E534, as well as β2 V526, both located in the β2 EGF-3 domain, 

caused the activation of leukocyte integrin αxβ2 (CD11c/CD18) and postulated that an 

interaction between these residues and unidentified residues in αx restrained αxβ2 in its 

inactive state.25 Our results suggest that the inactive state of αxβ2 is stabilized through an 

interaction similar to the β3 E534−αIIb R402 interaction and further support the bent 

conformation as a biologically relevant state for this class of integrins.

DISCUSSION

Platelets circulate in a milieu that is rich in fibrinogen, the principal ligand for integrin 

αIIbβ3. Because binding of fibrinogen to activated αIIbβ3 causes platelet aggregation, 

αIIbβ3 on circulating platelets is held in an inactive state by an intramolecular clasp 
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composed of portions of its cytosolic, TM, and extracellular stalk domains to prevent the 

formation of intravascular platelet aggregates.26−28 At sites of vascular injury where rapid 

platelet aggregation is required to stop bleeding, platelet stimulation causes disruption of the 

clasp, followed by a global αIIbβ3 rearrangement during which its ectodomain extends and 

exposes its fibrinogen-binding site.5

In crystal structures2,3 and electron microscope images5,29 of the extracellular domain of 

inactive αIIbβ3, the lower leg of β3 is in the proximity of both the lower α leg and the 

integrin headpiece. One proposed trigger for the global rearrangement is the release of 

intersubunit contacts located in the stalk domain, thereby allowing the αIIb and β3 

components of the stalk to separate and the ectodomain to extend.30,31 Lending support for 

this mechanism, three families with the inherited bleeding disorder Glanzmann 

thrombasthenia have been reported in whom deletion of β3 residues D647−E68632 or β3 

residues D621−E660,33 containing the predicted β3 hot spots K658 and V644, caused 

constitutive αIIbβ3 activation. Previously, Kamata et al. also reported that swapping the 

Calf2 domains of αIIb and αv enhanced Mn2+-induced fibrinogen binding to αIIbβ3 but 

suppressed Mn2+-induced fibrinogen binding to αvβ3, suggesting that the interface between 

the αsubunit Calf-2 domain and the β3 EGF-4 and βTD domains regulates Mn2+-induced 

ligand binding to αIIbβ3 and αvβ3.34 Consistent with this conclusion, Mn2+-induced 

fibrinogen binding to αIIbβ3 was suppressed by an artificial disulfide bridge between the 

αIIb Calf-2 and β3 βTD domains. However, neither the Calf-2 domain swaps nor 

subsequent residue interchanges caused integrin activation in the absence of Mn2+. Mn2+ by 

itself is a weak integrin activator, and neither the αIIb Calf-2 nor the β3 EGF-4-βTD 

domains bind cations. Thus, it is likely that perturbations in the interface between the α-and 

β-subunit stalks introduced by the Calf-2 domain swaps potentiated an effect of Mn2+ 

elsewhere in the αIIbβ3 and αvβ3 molecules. It has also been proposed that in bent 

integrins, the CD loop of the β3 βTD domain contacts the β3 βA domain F/α7 loop, acting 

as a “deadbolt” to prevent the allosteric movement of the α7 helix that initiates opening of 

the integrin headpiece.35 However, neither deleting nor mutating the CD loop perturbs 

ligand binding to αIIbβ3,36 making it doubtful that these CD loop interactions regulate 

integrin function.

To identify hot spot interactions in the αIIb and β3 stalks that regulate αIIbβ3 function, we 

used the computational alanine scanning algorithm hosted on Robetta to predict interacting 

hot spots in the stalk heterodimer, initially identifying nine alanine replacements in β310 and 

then 12 alanine replacements in αIIb with predicted ΔΔG’s ranging from 0.06 to 2.89 kcal/

mol. Hot spots have been variably defined as residues whose replacement by alanine 

destabilizes a protein−protein interface by ΔΔG’s ranging from >1.0 to >4.0 kcal/mol.
8,9,11,37 It is noteworthy that only 8 of 21 alanine replacements had a predicted ΔΔG of >1.0 

kcal/mol (Table 1), a proposed threshold for a destabilizing alanine replacement.11,13 

Furthermore, there was only a weak correlation (R2 = 0.35) between the ΔΔG’s predicted by 

the Robetta algorithm and the extent of αIIbβ3 activation that occurred when the alanine 

replacement was introduced into αIIbβ3 (Figure S1).

The recently reported flex ddG protocol generates ensembles of structures using the 

“backrub” protocol in Rosetta, thereby accounting for mutation-induced local side chain and 
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backbone conformational changes. Flex ddG has been found to outperform other existing 

computational methods that also sampled conformational space, particularly for small to 

large mutations. Nonetheless, there still was only a weak correlation between flex ddG and 

the energy of fibrinogen binding to αIIbβ3 (Figure 3A) because the effects we measured 

were small and within the margin of error of flex ddG.

To better understand the structural basis for αIIbβ activation, we developed a structural 

bioinformatics approach to analyze functionally important contacts in both the αIIb and β3 

stalks. This approach was based on the hypothesis that functional groups have preferences in 

the relative position, orientation, and angles at which they interact, and these preferences are 

reflected in the PDB. Analyses of side chain interactions in the PDB have shown that 

propensities of these interactions deviate from the distributions expected from random 

packing, implying that side chain interactions are guided by directional preferences.38−40 

Taking this into account, we approximated the energetic contribution of a hot spot residue by 

identifying its interacting fragment pairs and querying the PDB for the prevalence of those 

interaction geometries. We found a strong correlation between our interaction geometry term 

and the binding energy of fibrinogen to αIIbβ3 (R2 = 0.796) (Figure 3B). Thus, this 

approach shows promise for analyzing putative hot spots identified by alanine scanning. 

However, a much larger data set would need to be examined, and the choice of molecular 

interaction fragments would likely need to be optimized to generalize this method over a 

wide range of molecular interactions. Nonetheless, the ability to assess favorable interaction 

geometry through a knowledge-based method precludes the need to directly model 

mutation-induced structural changes as well as the need to directly calculate energetic 

effects. Ultimately, the interaction geometry metric can be incorporated into Rosetta, 

facilitating analysis of interaction geometry for interface evaluation and design.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Model of αIIbβ3 undergoing a global conformational shift between its bent inactive and its 

extended ligand-binding states. The inset is a space-filling model of the distal αIIbβ3 stalk 

domains that encompasses αIIb resides 599−959 and β3 residues 483−6914 and is derived 

from the Xray crystal structures shown in Protein Data Bank entry 3FCS.
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Figure 2. 
Mapping of functional hot spots identified by alanine scanning mutagenesis onto the 

structures of the αIIb and β3 stalk domains. The locations of residues in the distal αIIb and 

β3 stalk domains for which alanine replacements caused constitutive αIIbβ3 activation were 

mapped onto the structures for these domains and are color-coded according to the apparent 

free energy of fibrinogen binding (ΔGapp) οf their alanine replacement (Table 1), as shown 

in the heat map below the models.
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Figure 3. 
Correlation between the apparent fibrinogen binding energy of the activating alanine 

replacements in the αIIb and β3 stalks and (A) the corresponding ΔΔG’s predicted by flex 

ddG or (B) the corresponding Geom(h) scores calculated from the structural bioinformatics 

analysis. The ΔΔG values predicted by flex ddG are shown in Table 1, and corresponding 

Geom(h) scores are listed in Table S2. Changes in the apparent energy of fibrinogen binding 

resulting from the scanning mutagenesis of the αIIbβ3 stalks with alanine replacements 

were calculated using eq 3. β3 residue E534A was excluded from the correlation because it 

is not located in the stalk domain interface.
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Figure 4. 
Favorability of the interaction geometry between αIIb and β3 stalk domains determined 

from knowledge-based structural bioinformatics. The αIIb stalk is colored orange, and the 

β3 stalk is colored cyan. Activation index values were derived from Table 1. αIIb or β3 

residues and their complementary interacting residues, as well as the number of geometric 

matches in the PDB, were determined using structural bioinformatics as described in 

Methods and are listed in Table S2.
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Figure 5. 
Alanine replacement of β3 residue E534 causes constitutive αIIbβ3 activation by disrupting 

the interaction of E534 with αIIb β-propeller residue R402. Replacing predicted β3 residue 

E534 with alanine causes robust αIIbβ3 activation with an AI of 0.76 (Table 1). However, 

E534 is not interfacial, but it is in direct contact with αIIb residue R402 located in the αIIb 

β-propeller domain.
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Table 1.

Comparison of Integrin αIIb and β3 Stalk Domain Hot Spots and the αIIbβ3 Activation Index

mutation subunit Robetta alanine scanning (kcal/mol) αIIbβ3 activation index Rosetta flex ddG (kcal/mol)

  F669A αIIb 0.88 − 0.65

  R671A αIIb 1.53 0.54 ± 0.03 1.72

  I673A αIIb 0.12 0.23 ± 0.03 0.23

  N691A αIIb 0.62 − 2.20

  R751A αIIb 1.49 − 0.65

  N753A αIIb 1.32 0.37 ± 0.03 0.80

  F755A αIIb 1.76 0.40 ± 0.13 1.08

  S758A αIIb 0.56 0.64 ± 0.10 −0.04

  V760A αIIb 0.71 0.83 ± 0.12 0.38

  E785A αIIb 1.20 0.47 ± 0.04 1.57

  H787A αIIb 0.06 0.17 ± 0.02 −0.06

  R900A αIIb 0.54 0.31 ± 0.06 1.49

  Q497A β3 1.98 − 1.86

  E534A β3 0.54 0.76 ± 0.07 0.76

  D552A β3 0 0.17 ± 0.04 0.03

  Y556A β3 0.40 − 0.05

  Y594A β3 0.60 0.42 ± 0.07 1.71

  T603A β3 2.89 0.86 ± 0.04 1.50

  D606A β3 0.71 − 0.42

  T609A β3 1.42 − 0.29

  H626A β3 0 0.19 ± 0.05 0

  K658A β3 0.63 0.61 ± 0.10 0.38

  V664A β3 0.34 0.55 ± 0.02 −0.09

Biochemistry. Author manuscript; available in PMC 2020 August 05.


	Abstract
	Graphical abstract
	METHODS
	Computational Alanine Scanning Using Rosetta-Based Scanning Algorithms.
	Stable Expression of αIIbβ3 in Chinese Hamster Ovary (CHO) Cells.
	Fibrinogen Binding to CHO Cells Expressing αIIbβ3.
	Database Curation of Nonredundant Protein Structures To Query Interaction Motifs.
	Decomposition of Hot Spot Interactions into Fragments for Database Searching.
	Database Search for Geometric Matches of Integrin Interactions.
	Molecular Model of the Distal αIIbβ3 Stalk.

	RESULTS
	Computational Alanine Scanning of the αIIb Calf-1 and Calf-2 Domains Identifies Mutation-Sensitive Residues.
	Mapping Experimentally Determined Activation Indices onto the Structure of the αIIbβ3 Stalk Reveals the Relative Positioning and Molecular Contacts of Hot Spot and Neutral Residues.
	Computational Alanine Scanning Algorithms Inaccurately Capture the Energetics of αIIbβ3 Stalk Mutations.
	Hot Spot Residues with High Activation Indices Interact with Complementary Residues in Geometries That Are Prevalent in the PDB.
	Quantitative Analysis of Interaction Geometry.

	DISCUSSION
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Table 1.

