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Abstract

Extracellular matrix (ECM) “raw materials” such as demineralized bone matrix (DBM) and 

cartilage matrix have emerged as leading scaffolding materials for osteochondral regeneration 

owing to their capacity to facilitate progenitor/resident cell recruitment, infiltration, and 

differentiation without adding growth factors. Scaffolds comprising synthetic polymers are sturdy 

yet generally lack cues for guiding cell differentiation. We hypothesized that opposing gradients of 

decellularized cartilage (DCC) and DBM in polymeric microsphere-based scaffolds would provide 

superior regeneration compared to polymer-only scaffolds in vivo. Poly(D,L-lactic-co-glycolic 

acid) (PLGA) microsphere-based scaffolds were fabricated, either with opposing gradients of 

DCC and DBM encapsulated (GRADIENT) or without DCC and DBM (BLANK control), and 

implanted into rabbit osteochondral defects in medial femoral condyles. After 12 weeks, gross 

morphological evaluation showed that the repair tissue in about 30% of the implants was either 

slightly or significantly depressed, hinting toward rapid polymer degradation in scaffolds from 

both of the groups. Additionally, no differences were observed in gross morphology of the repair 

tissue between the BLANK and GRADIENT groups. Mechanical testing revealed no significant 

differences in model parameter values between the two groups. Histological observations 

demonstrated that the repair tissue in both of the groups was fibrous in nature with the cells 
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demonstrating notable proliferation and matrix deposition activity. No adverse inflammatory 

response was observed in any of the implants from the two groups. Overall, the results emphasize 

the need to improve the technology in terms of altering the DBM and DCC concentrations, and 

tailoring the polymer degradation to these concentrations.
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INTRODUCTION

Cartilage injuries are difficult to treat because of the limited capacity of cartilage to heal. 

Even though the osteochondral tissue consists of dissimilar tissues, cartilage and bone, it is 

known that repair of cartilage is associated with the repair of subchondral bone.1 

Additionally, there are several advantages of growing cartilage and bone close to one 

another. Several biochemical and biomechanical cues involved in the commitment of 

progenitor cells to the osteogenic or chondrogenic phenotypes are related to each other.2 

Therefore, several regenerative medicine strategies for osteochondral repair are focused on 

regenerating both bone and cartilage simultaneously in a plethora of designs in which 

stratified and continuously graded designs have emerged as the frontrunners.3 Our research 

group has shown that microsphere-based scaffolds containing opposing gradients of 

bioactive cues can direct the differentiation of surrounding progenitor cells simultaneously 

and regionally toward osteogenesis and chondrogenesis.4 Moreover, we have demonstrated 

that these microsphere-based gradient scaffolds can lead to promising osteochondral repair 

when implanted in vivo in rabbits.5

In the past few years, there has been an increased interest in fabricating scaffolds from 

extracellular matrices (ECM) for regenerative medicine.6 For osteochondral regeneration, 

cartilage matrix and demineralized bone matrix (DBM) have widely gained attention 

because of their ability to influence resident cell behavior, such as migration, proliferation 
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and differentiation.7 Both cartilage matrix and DBM allow for constructive remodeling by 

providing tissue-specific raw materials (i.e., bioactive signals and building blocks).8 DBM is 

commonly used as a bone graft material and presently there are about 25 different DBM 

products commercially available in the market.9 Cartilage matrix, on the other hand, has 

started to gain considerable attention in the past few years for cartilage regeneration,10 with 

an emphasis on native tissue-derived, decellularized cartilage (DCC).11 Scaffolds derived 

from DBM and DCC have shown great promise within the field of osteochondral 

regeneration in part because of their ability to guide cell differentiation and provide raw 

materials for neo-tissue formation. However, various processing reagents used to obtain 

DBM or DCC often compromise their mechanical performance.7,8

The goal of the current study was to fabricate a scaffold that possesses instructive properties 

of ECM-based materials to guide cell differentiation and mechanical integrity of strong 

synthetic materials to support joint function during tissue regeneration. Furthermore, we 

have previously demonstrated that gradient microsphere-based scaffolds can influence cell 

behavior and stimulate them to secrete tissue-specific ECM for promoting osteochondral 

repair.4a,5,12 Our hypothesis was that microsphere-based scaffolds containing gradients of 

DBM and DCC would lead to regionalized tissue regeneration following in vivo 

implantation into rabbit osteochondral defects and outperform the “blank” (no DBM or 

DCC) microsphere-based scaffolds. To test our hypothesis, we fabricated poly(D,L-lactic 

acid-co-glycolic acid) (PLGA) microsphere-based scaffolds encapsulating DCC and DBM 

in opposing gradients, and grafted them into induced femoral condyle osteochondral defects 

in rabbit knees for 12 weeks. Additionally, PLGA-only microsphere-based scaffolds were 

also implanted into the contralateral knees of each rabbits as a control.

MATERIALS AND METHODS

Materials.

All chemicals for the decellularization process were obtained from Sigma–Aldrich (St. 

Louis, MO) unless otherwise specified. PLGA (50:50 lactic acid:glycolic acid ratio, acid end 

group) with an intrinsic viscosity (i.v.) of 0.37 dL/g, was procured from Evonik Industries 

(Essen, Germany). Human demineralized bone matrix (DBM) pellets were received from 

Biomet, Inc. (Warsaw, IN). Two porcine knees obtained from one Berkshire hog (castrated 

male, age around 7–8 months, and weight 120 kg) were bought from Bichelmeyer Meats, 

Kansas City, KS. Ten New Zealand White rabbits of age 6 months were obtained from 

Harlan Laboratories (Indianapolis, IN) following the University of Kansas IUCAC 

procedures (Protocol #175–21).

Cartilage Harvest and Decellularization.

Articular cartilage was harvested from hip and knee joints and stored overnight at −20 °C. 

The cartilage was later thawed, and coarsely cryo-ground into pellets. Decellularization of 

the cartilage pellets was performed using our previously described method.10c,13
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Microsphere Fabrication.

Prior to microsphere fabrication, both the decellularized cartilage (DCC) and DBM pellets 

were first ground into a fine powder using a freezer-mill (SPEX SamplePrep, Metuchen, 

NJ), freeze-dried, and then sifted through a 45 μm mesh (Thermo-Fisher Scientific, 

Waltham, MA). Three distinct kinds of microspheres were made: (i) PLGA-only 

microspheres (BLANK), (ii) DBM encapsulated PLGA microspheres (DBM), and (iii) DCC 

encapsulated PLGA microspheres (DCC). For fabricating DBM and DCC containing 

microspheres, 2% w/v DBM or DCC was added to 18% w/v PLGA dissolved in methylene 

chloride, respectively. Using the PLGA, PLGA-DBM, and PLGA-DCC emulsions, 

microspheres with mean diameters ranging from 240 to 270 μm were fabricated using a 

technology (Figure 1) we have previously described.4,5,12,13c,14

Scaffold Fabrication.

Two scaffold types were evaluated in the study and were labeled in accordance with their 

microsphere composition as BLANK and GRADIENT. The BLANK scaffolds were 

fabricated by stacking the “blank” (PLGA-only) microspheres into a cylindrical plastic mold 

(diameter ~3.6 mm) lined with a filter (particle retention >10 μm) at the bottom, followed by 

ethanol-acetone (95:5 v/v) sintering for 55 min.4,12a,c,13c,14b,c The gradient (“GRADIENT 

group) scaffolds were fabricated using the technology from our previous studies.4,5,12,14c,d 

The dimensions for both the BLANK and GRADIENT scaffolds were 3.5–3.6 mm × 2 mm 

(diameter × height). The BLANK scaffolds were homogenous whereas the profile for the 

GRADIENT scaffolds was linear, where the top quarter consisted of DCC microspheres (0.5 

mm), the middle quarter (0.5 mm) was a progression from DCC to DBM microspheres, and 

the bottom half (1 mm) comprising DBM microspheres (Figure 2). Preceding animal 

implantation, the scaffolds from both the groups were sterilized via exposure to ethylene 

oxide for 12 h.

Surgical Procedure.

All animal experiments were approved by the IACUC of the University of Kansas (protocol 

#175–21). Analgesic and antibiotic were administered preoperatively. Before the procedure, 

rabbits were also injected with lactated ringer or saline bolus (150–200 cc) subcutaneously 

at multiple injection sites around the neck and shoulders. Anesthesia was induced using a 

mixture of ketamine (40 mg/kg) and xylazine (5 mg/kg), and was maintained via 2–4% 

isoflurane inhalation throughout the surgical procedure.12b Aseptic techniques were used for 

the implantation procedures. A medial parapatellar approach was made, sufficient to allow 

exposure of the medial condyle. The patella was held laterally as the knee was hyperflexed. 

A pilot hole was drilled through the cartilage and the subchondral bone in the central load-

bearing region of the medial condyle using a 1.5 mm drill bit. A 3.5 mm drill bit with depth 

gauge was used to widen the defect to 3.5 mm diameter and 2 mm depth. Afterward, one of 

the two engineered plugs, either BLANK or GRADIENT, was press fitted into the defect 

(Figure S1).5b,12b Some plugs needed reasonable force to push them down into the defects 

because of dissimilarities in diameters of scaffolds and drill bits, culminating in some 

implant crumbling. Approximately 5% implant crumbling was noticed in both Rabbit 1 and 

Rabbit 6 right knees, and 10–15% implant crumbling in Rabbit 6 left knee. After press-
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fitting the implant, the joint was then irrigated with sterile saline, and the patella carefully 

reduced into the trochlear groove so as to avoid any disturbance to the implant. The knee 

arthrotomy was closed with an absorbable suture, and the skin bound with a nonabsorbable 

suture. Identical procedure was carried out on the contralateral knee but with the alternate 

plug implanted (Table 1). After both procedures were finished, rabbits were returned to their 

cages. Analgesics were administered as needed based on pain assessment. The animals were 

allowed unrestricted movement and weight-bearing postoperatively.

Gross Morphological Assessment.

After 12 weeks, all of the implants were graded blindly by three different coauthors based on 

the scoring criteria described previously.12b,d Thereafter, the joints were photographed and 

processed for mechanical testing or histology.

Mechanical Testing.

After retrieval, eight femurs (Table 1) were wrapped in gauze, soaked in a protease inhibitor 

solution,12d,15 and stored at −20 °C until the day of testing. At the day of the testing, the 

femurs were first thawed and then the medial femoral condyles (MFCs) were carefully 

separated from the rest of the tissue with a hand-held hacksaw. Each MFC was then glued to 

a stage, placed in a custom bath and later submerged in the protease inhibitor solution, 

which was maintained at 37 °C.12d Cartilage thickness measurement and unconfined 

indentation stress relaxation tests were performed using Instron 5848 Microtester (Canton, 

MA) as previously described.12d,16 For stress relaxation testing, central region of the graft 

site was compressed to 10% strain (at 0.1%/s) with a spherical stainless steel indenter 

(diameter 1.5 mm), and was later allowed to relax for 1000 s.12d

Finite Element Analysis.

The unconfined compression stress relaxation data was curve-fitted and the indenter-

cartilage contact was modeled using the open-source program FEBio.17 The cartilage was 

modeled as a biphasic material comprising of a porous extracellular matrix described by a 

solid mixture of a neo-Hookean ground matrix and a continuous, random distribution of 

fibril bundles.12d,18 The model consisted of five parameters: Elastic modulus (E) and 

Poisson’s ratio (ν), the fibril modulus (ksi), the power-law exponent (β), and the hydraulic 

permeability (k), out of which curve-fitting was performed on E, ν, ksi, and k as “β” was 

assigned a value of 2.12d,18a The indenter-specimen contact was modeled using an 

impermeable spherical indenter (diameter 1.5 mm) and a cylindrical disk of tissue (6 mm in 

diameter and 1 mm in height) as we have previously described in detail.12d The model tissue 

diameter was chosen to be 4 times the indenter diameter to simulate the indentation 

experiment where the cartilage radius is much larger than the indenter radius.

Histological and Immunohistochemical (IHC) Analyses.

Eight femurs (Table 1) were decalcified in 0.5 N HCl with 0.1% gluteraldehyde for 9 days at 

4 °C with the decalcification solution replaced every 48 h.19 The femurs were then rinsed 

and defatted in 70% and 100% ethanol for 24 h each.19 Thereafter, the femurs were 

cryoprotected in 5 and 10% sucrose in PBS for 2 h each, followed by 20% sucrose for 16 h 
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at room temperature.19 The femurs were then equilibrated in optimal cutting temperature 

embedding medium (OCT, Tissue-Tek, Torrance, CA) overnight at 37 °C and then frozen at 

−20 °C. The frozen tissue blocks were cut into 10 μm thick sections with a cryostat (Micron 

HM-550 OMP, Vista, CA). The sections were stained using hematoxylin (cell nuclei) and 

eosin (cytoplasm); safranin-O/fast green (glycosaminoglycans); and Sudan black for residual 

polymer. Histological scoring was carried out by three independent coauthors using a 

modified O’Driscoll scoring system.12d,20, The sections from all of the implants were 

stained for the presence of collagen types I & II via immunohistochemistry (IHC). IHC for 

one implant in the GRADIENT group was not performed, as an adequate number of sections 

could not be obtained. Mouse monoclonal primary antibodies (Thermofisher Scientific, 

Waltham, MA) against collagen type I (1:200 dilution) and collagen type II (1:250 dilution) 

were used for IHC. Following incubation with primary antibody, the tissue section was 

incubated with the biotinylated secondary antibody followed by the ABC complex (Vector 

Laboratories, Burlingame, CA). The antibodies were visualized with the diaminobenzidine 

(DAB) substrate according to the manufacturer’s protocol (Vector Laboratories).14c

Statistical Analyses.

An unpaired t test performed via GraphPad Prism 6 statistical software (GraphPad Software, 

Inc., La Jolla, CA) was used to compare the two study groups, where p < 0.05 was 

considered significant. All the quantitative results are reported as average ± standard 

deviation.

RESULTS

Tissue Decellularization.

The DNA amount of the native cartilage was lowered by 44% (p < 0.05) following 

decellularization. The GAG and hydroxyproline contents were both reduced by 23% (p < 

0.05).

Postsurgical Course.

One rabbit (with the BLANK implant in the right knee and the GRADIENT implant in the 

left knee) was euthanized prematurely at 2 weeks due to luxation at L6-L7 caused by sudden 

jumping in the cage. At 7 weeks, another rabbit (with the BLANK implant in the left knee 

and the GRADIENT implant in the right knee) was euthanized because of chronic lameness. 

The premature euthanasia of two rabbits brought the sample number down to n = 8 for gross 

morphological analysis, n = 4 for mechanical testing, and n = 4 for histology and IHC in 

both the BLANK and GRADIENT groups. All of the other rabbits continued to show 

normal behavior and movement during the 12-week period.

Gross Morphological Assessment.

Visual examination of the joint surface at the time of tissue retrieval revealed no signs of 

inflammation or infection in any of the rabbits. Additionally, the synovial fluid had a normal 

color and no signs of degeneration were noted on the opposing joint surfaces. Figure 3 

depicts the morphological scores and the amount of repair tissue present at the defect site in 

both the BLANK and the GRADIENT groups. Figure 4 shows the representative gross 
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morphological images of the implants receiving highest, mean, and lowest morphological 

scores in both the BLANK and the GRADIENT groups.

The average morphological score in the BLANK group was 6.0 ± 0.5 out of a maximum 

possible score of 10 with a highest score of 8.0 while the only BLANK implant that 

crumbled during implantation received a score of 3.3. All of the rabbits that received the 

BLANK implants had more than 80% of the defect area filled with repair tissue, except for 

two that had 63 and 55% of the defect area filled with the repair tissue. All of the animals 

receiving the BLANK implants (except for one) had intermediate smoothness of the repair 

tissue, with half of them showing complete edge integration with the native tissue. Six of the 

implants in the BLANK group had slightly depressed repair tissue, with one implant having 

completely flush and one having significantly depressed surface degree of filling. Seventy-

five percent of the animals in the BLANK group had translucent regenerated tissue, whereas 

the remaining 25% had an opaque appearance of the repair tissue.

The GRADIENT group average morphological score was 5.2 ± 0.8 out of 10, with the 

highest score being 8.7 in the group. The GRADIENT implants that crumbled during 

implantation received average scores of 3.3 and 1.3. The amount of repair tissue present in 

the GRADIENT group ranged from 7 to 100% with an average of 61 ± 11%. No statistically 

significant differences were observed in either the average morphological scores or the 

amount of repair tissue between the BLANK and the GRADIENT groups. Almost all of the 

animals in the GRADIENT group showed complete integration of the repair tissue with the 

native tissue, with two animals showing partial integration and one showing no integration at 

all. 63% of the rabbits receiving the GRADIENT implant had high or intermediate 

smoothness of the repair tissue, whereas the remaining 37% had a rough appearance of the 

regenerated tissue. Half of the animals in the GRADIENT group had either completely flush 

or slightly depressed regenerated tissue, whereas the other half had significantly depressed 

repair tissue. All the animals in the GRADIENT group had either translucent or opaque 

appearance of the repair tissue.

Mechanical Testing and Finite Element Analysis.

The elastic modulus (E), fiber modulus (ksi), permeability (k), and Poisson’s ratio (ν) are 

depicted in Figure 5. The average elastic moduli, obtained from curve fitting the indentation 

stress relaxation data, for the BLANK and GRADIENT groups were 0.53 ± 0.61 MPa and 

1.1 ± 1.8 MPa, respectively. The fiber moduli for the BLANK and the GRADIENT groups 

were found to be 1.1 ± 1.9 MPa and 0.53 ± 0.84 MPa, respectively. No statistically 

significant differences were observed in the elastic and fiber moduli between the BLANK 

and GRADIENT groups. The BLANK group had an average hydraulic permeability of 1.72 

± 1.09 × 10−15 m4/N.s and the GRADIENT group had a permeability of 1.74 ± 1.57 × 10−15 

m4/(N s). The Poisson’s ratios for the BLANK and GRADIENT groups were 0.17 ± 0.15 

and 0.043 ± 0.051, respectively. No statistically significant differences were observed in the 

hydraulic permeabilities and Poisson’s ratios between the BLANK and GRADIENT groups.
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Histology and Immunohistochemistry (IHC).

Both the BLANK and GRADIENT groups had an average histological score close to 10 (out 

of a maximum possible 28) with the BLANK group having a mean score of 7.6 ± 0.9 and 

the GRADIENT group having a mean score of 7.4 ± 0.6 (difference not statistically 

significant).

The representative histological and IHC images from the implants in the BLANK and 

GRADIENT groups are depicted in Figure 6, whereas images from all the implants in both 

the groups can be found within the Figure S2 and S3. The BLANK implant showed 

significantly depressed repair tissue at the defect site. The regenerated tissue largely 

resembled fibrous tissue with most of the cells having a flat appearance. A few cells at the 

surface of the defect site appeared to have chondroblastlike morphology. The regenerated 

tissue showed severe disruptions; however, no cysts were noted in the repair tissue. The 

defect site did not stain for Safranin-O while the surrounding native tissue showed slight 

Safranin-O staining. Toward the subchondral bone region, the defect area showed signs of 

osteoblastic activity with minimal bone regeneration and presence of some blood vessels. No 

adverse inflammatory response was observed in the defect area. The repair tissue stained 

positively for collagen I, whereas collagen II staining was predominantly absent from the 

repair tissue. The GRADIENT implant also possessed repair tissue that was significantly 

depressed compared to the native tissue. The repair tissue in the cartilage part of the defect 

area resembled fibrocartilage with the cells demonstrating good proliferative activity. The 

regenerated cartilage was partially bonded with the native tissue on one side of the defect. 

The adjacent native cartilage showed some signs of degenerative changes as indicated by 

moderate hypocellularity in the surrounding native cartilage. The defect area showed no to 

minimal signs of subchondral bone reconstruction, although some blood vessels were 

noticed in the region. A mild inflammatory response was also observed as indicated by the 

presence of a few giant multinucleated cells. The tissue in the defect area stained positively 

for collagen I. Slight collagen II staining was also observed in the areas adjacent to the 

defect edges.

Figure 7 shows the Sudan Black staining images for the implants that received the highest 

and lowest histological scores in both the BLANK and GRADIENT groups. Only a few 

areas of intense staining (depicted by arrow heads) were observed in all of the implants with 

most of the defect site showing no to mild staining.

DISCUSSION

The present study for the first time evaluated the in vivo response of microencapsulating 

demineralized bone matrix (DBM) and cartilage matrix in polymeric microsphere-based 

scaffolds toward osteochondral repair. Moreover, we are the first group to incorporate DBM 

in microsphere-based scaffolds for the bone region of the scaffold, whereas the other groups 

have banked on calcium phosphates for engineering the bone tissue.21

From the gross morphological evaluation, it was observed that in 50% of the total implants 

(both of the groups combined) about one-fourth of the defect area was empty. Additionally, 

5 out of the total 16 implants had either slightly or significantly depressed repair tissue. No 
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statistically significant differences were observed in the BLANK and GRADIENT groups in 

the amount of defect area fill; however, the average fill area in the GRADIENT group was 

lower than the average fill area in the BLANK group. Moreover, 50% of the implants in the 

GRADIENT group had significantly depressed regenerated tissue whereas the 

corresponding number in the BLANK group was 13%. The presence of empty area and the 

observance of depressed tissue might have resulted from the rapid degradation of polymer, 

with even faster degradation occurring in the GRADIENT group. Our prior work involving 

gradient microsphere-based scaffolds for osteochondral regeneration in rabbits with a 

comparable polymer (i.v. 0.34–0.36 dL/g) as we have used in the current study, showed a 

defect fill of more than 95% in all of the implants at 12 weeks.12b The amount of repair 

tissue present in defect site in the current study was about 80 and 60% for the BLANK and 

GRADIENT groups, respectively. Lower amounts of repair tissue in the current study most 

likely resulted from the rapid scaffold degradation, which is a direct consequence of polymer 

degradation. It is believed that DBM and DCC encapsulation might have affected 

microsphere morphology, which might have resulted in faster degradation of the polymer; 

however, no analysis was done to assess polymer degradation, which can be a subject matter 

for subsequent studies. We have formerly observed that encapsulation of raw materials such 

as chondroitin sulfate and DCC result in minute pores on the surface of PLGA microspheres 

that can accelerate polymer degradation.12a,c,13c,22

Increasing concentrations of raw materials on the one hand might accelerate but on the other 

might provide momentum to tissue regeneration for impeding the deleterious effects caused 

by rapid polymer degradation. Furthermore, it was observed that some of the implants 

crumbled during implantation that might have further accelerated scaffold degradation. The 

implants that crumbled in both of the groups received the lowest morphological scores; 

further suggesting that implant crumbling might have also affected scaffold degradation. The 

implant crumbling might have resulted due to slight mismatch between scaffold and defect 

diameters. The scaffold diameter was intentionally kept slightly larger than the defect 

diameter to allow for press-fitting of the implant.12b In addition, variations in force applied 

due to the manual press-fitting approach might have caused some implants to crumble, 

which can be avoided by using an automated approach (maybe a delivery device) for 

implanting the scaffold. The average morphological scores in the BLANK and GRADIENT 

groups were similar to each other, although there were some differences observed in the 

macroscopic properties of the repair tissue between the two groups. The repair tissue in the 

GRADIENT group had better edge integration with the peripheral native tissue than the edge 

integration observed in the BLANK group. On the other hand, the repair tissue smoothness 

in the BLANK group surpassed the smoothness of the repair tissue in the GRADIENT 

group.

The elastic moduli, fiber moduli, permeability, and Poisson’s ratio values of the repair tissue 

in the BLANK and GRADIENT groups fell within the previously reported values of these 

parameters.15,23 Julkunen et al.23 reported the elastic moduli, fiber moduli, and permeability 

values of healthy rabbit articular cartilage samples harvested from 0 to 18 month old female 

animals to be 0.66 ± 0.50 MPa, 19.6 ± 20.2 MPa, and 0.579 ± 0.319 × 10−15 m4/(N s), 

respectively. Athanasiou et al.15 reported the Poisson’s ratios of 0.197 ± 0.094 for rabbit 

articular cartilage. It was reported that the Poisson’s ratio of cartilage can be as low as 0.02 
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in unconfined compression, but never more than 0.5.18b,24 In the current study, the Poisson’s 

ratio values appeared to be lower in the GRADIENT group than those observed in the 

BLANK group, indicating higher apparent compressibility of the tissue and a propensity for 

more fluid transport in the GRADIENT group.15 However, no statistically significant 

differences were observed in the Poisson’s ratios between the BLANK and GRADIENT 

groups to support that claim.

The histological findings revealed no significant differences in the average histological 

scores between the BLANK and GRADIENT groups. The cellular morphology observed in 

the repair tissues in both of the groups resembled those of fibroblasts with the cells 

demonstrating significant proliferative activity. The defect site in both of the groups was 

largely filled with a vascularized loose connective tissue; however, some implants showed a 

presence of a fibrocartilage layer on the top. Additionally, both of the groups showed a mild 

inflammatory response in the subchondral bone region. The inflammatory response may 

have been a manifestation of tissue remodeling response that can have profound implications 

in clinical success of microsphere-based scaffolds.25 The presence of premature bone 

trabeculae in some of the implants in both the groups also hint toward the regeneration or 

remodeling response in the defect site. However, both the BLANK and GRADIENT groups 

showed void areas in the subchondral bone region, which indicate toward rapid polymer 

degradation that may have further led to depressed repair tissue overall in both the groups. 

Sudan black staining images revealed that the defect sites in both the groups were 

predominantly absent of residual polymer except for a few small dark-staining spots that 

indicated minimal leftover polymer or polymer degradation products. The absence of 

residual polymer in both the BLANK and GRADIENT groups further hint toward rapid 

polymer degradation in microsphere-based scaffolds that most likely adversely affected the 

regeneration of the tissue in the defect site.

Results from the current study underscore the significance of determining polymer and raw 

material concentrations that would further lead to comparable scaffold degradation and in 

vivo tissue regeneration rates. Even though the polymer selection in the current study was 

based on our prior in vitro12c and in vivo12b iterations with microsphere-based scaffolds, the 

rapid polymer degradation led to below average performance of these scaffolds in the current 

study. The rapid polymer degradation, more so in the GRADIENT group, could be ascribed 

to the encapsulated materials that can alter polymer degradation kinetics in vitro as we have 

observed previously.22b Monitoring changes to scaffold integrity, structure, and mass in vitro 

can provide useful information regarding scaffold degradation; however, degradation in vivo 

is more complicated than in vitro, and in vitro assays are seldom acceptable measures of in 

vivo scaffold behavior.26 Thus, it is to be emphasized that an iterative approach involving in 

vitro testing and empirical in vivo evaluation, as we have done here, is needed for assessing 

degradation of these microsphere-based scaffolds.

CONCLUSIONS

The current study demonstrated that structural integrity of microsphere-based scaffolds is an 

important parameter than can have significant impact on tissue regeneration. The polymer in 

both the BLANK and GRADIENT groups degraded quickly and induced a pro-
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inflammatory response, which further resulted in more of a fibrocartilage like repair tissue. 

The degradation of the polymer in the scaffolds will be vital to tissue regeneration in vivo, 

where extended degradation could become an obstacle to tissue regeneration and in contrast 

rapid degradation could have a damaging effect on the regenerating tissue, supposedly the 

cause of below par regeneration observed in the current study. Thus, we acknowledge that 

there should be a more detailed look at polymer degradation as a function of encapsulated 

raw materials for subsequent in vitro and in vivo studies to identify formulations that more 

closely approximate the tissue regeneration rate in animals and humans. Additionally, 

emphasis is laid on the need to better match scaffold dimensions with defect dimensions or 

perhaps employ a scaffold delivery device that can further minimize surgeon-to-surgeon 

variations during scaffold implantation. Nevertheless, the current study hints that employing 

gradients of DBM and DCC might be beneficial for osteochondral regeneration as indicated 

by better integration of the regenerated tissue with the peripheral native tissue, thus 

providing a motivation for further refining the technology by altering the concentrations of 

DBM and DCC, and attuning polymer degradation to these concentrations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

We gratefully acknowledge funding from the National Institute of Arthritis and Musculoskeletal and Skin Diseases 
of the National Institutes of Health (R01 AR056347). Any views, findings, and suggestions communicated in this 
article are those of the authors and do not necessarily represent the views of the National Institutes of Health. We 
also acknowledge funding from the Kansas Bioscience Authority Rising Star Award. In addition, we thank Biomet, 
Inc (Warsaw, IN) for the generous gift of human demineralized bone matrix pellets. We acknowledge Dr. Gerard 
Ateshian for his assistance with the finite element analysis. Furthermore, we are grateful to Dr. Neethu Mohan for 
her contributions to the morphological and histological scoring. Lastly, we thank Dr. Richard Galbraith for his 
valuable opinion on the histological images of the study implants.

REFERENCES

(1). Lu S; Lam J; Trachtenberg JE; Lee EJ; Seyednejad H; van den Beucken JJJP; Tabata Y; Kasper 
FK; Scott DW; Wong ME; Jansen JA; Mikos AG Technical Report: Correlation Between the 
Repair of Cartilage and Subchondral Bone in an Osteochondral Defect Using Bilayered, 
Biodegradable Hydrogel Composites. Tissue Eng., Part C 2015, 21 (12), 1216–1225.

(2). (a)de Vries–van Melle ML; Narcisi R; Kops N; Koevoet WJ; Bos PK; Murphy JM; Verhaar JA; 
van der Kraan PM; van Osch GJ Chondrogenesis of mesenchymal stem cells in an osteochondral 
environment is mediated by the subchondral bone. Tissue Eng., Part A 2013, 20 (1–2), 23–33. 
[PubMed: 23980750] (b)Gordeladze JO; Djouad F; Brondello J-M; Noël D; Duroux-Richard I; 
Apparailly F; Jorgensen C Concerted stimuli regulating osteo-chondral differentiation from stem 
cells: phenotype acquisition regulated by microRNAs. Acta Pharmacol. Sin 2009, 30 (10), 1369–
1384. [PubMed: 19801995] (c)RADIN EL; EHRLICH MG; Chernack R; Abernethy P; PAUL IL; 
ROSE RM Effect of repetitive impulsive loading on the knee joints of rabbits. Clin. Orthop. 
Relat. Res 1978, 131, 288–293.

(3). (a)Dormer NH; Berkland CJ; Detamore MS Emerging Techniques in Stratified Designs and 
Continuous Gradients for Tissue Engineering of Interfaces. Ann. Biomed. Eng 2010, 38 (6), 
2121–2141. [PubMed: 20411333] (b)Lopa S; Madry H Bioinspired Scaffolds for Osteochondral 
Regeneration. Tissue Eng., Part A 2014, 20 (15–16), 2052–2076. [PubMed: 24476065] 
(c)Shimomura K; Moriguchi Y; Murawski CD; Yoshikawa H; Nakamura N Osteochondral Tissue 
Engineering with Biphasic Scaffold: Current Strategies and Techniques. Tissue Eng., Part B 
2014, 20, 468–476.

Gupta et al. Page 11

ACS Biomater Sci Eng. Author manuscript; available in PMC 2020 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(4). (a)Dormer NH; Singh M; Wang L; Berkland CJ; Detamore MS Osteochondral interface tissue 
engineering using macroscopic gradients of bioactive signals. Ann. Biomed. Eng 2010, 38 (6), 
2167–2182. [PubMed: 20379780] (b)Singh M; Morris CP; Ellis RJ; Detamore MS; Berkland C 
Microsphere-based seamless scaffolds containing macroscopic gradients of encapsulated factors 
for tissue engineering. Tissue Eng., Part C 2008, 14 (4), 299–309.

(5). (a)Dormer NH; Busaidy K; Berkland CJ; Detamore MS Osteochondral interface regeneration of 
rabbit mandibular condyle with bioactive signal gradients. Journal of Oral and Maxillofacial 
Surgery 2011, 69 (6), e50–e57. [PubMed: 21470747] (b)Dormer NH; Singh M; Zhao L; Mohan 
N; Berkland CJ; Detamore MS Osteochondral interface regeneration of the rabbit knee with 
macroscopic gradients of bioactive signals. J. Biomed. Mater. Res., Part A 2012, 100 (1), 162–
170.

(6). (a)Boccafoschi F; Botta M; Fusaro L; Copes F; Ramella M; Cannas M Decellularized biological 
matrices: an interesting approach for cardiovascular tissue repair and regeneration. J. Tissue Eng. 
Regener. Med 2015, DOI: 10.1002/term.2103.(b)Hoshiba T; Lu H; Kawazoe N; Chen G 
Decellularized matrices for tissue engineering. Expert Opin. Biol. Ther 2010, 10 (12), 1717–
1728. [PubMed: 21058932] 

(7). Cheng CW; Solorio LD; Alsberg E Decellularized tissue and cell-derived extracellular matrices as 
scaffolds for orthopaedic tissue engineering. Biotechnol. Adv 2014, 32 (2), 462–484. [PubMed: 
24417915] 

(8). Benders KEM; van Weeren PR; Badylak SF; Saris DBF; Dhert WJA; Malda J Extracellular matrix 
scaffolds for cartilage and bone regeneration. Trends Biotechnol 2013, 31 (3), 169–176. 
[PubMed: 23298610] 

(9). Drosos GI; Kazakos KI; Kouzoumpasis P; Verettas D-A Safety and efficacy of commercially 
available demineralised bone matrix preparations: a critical review of clinical studies. Injury 
2007, 38, S13–S21. [PubMed: 18224733] 

(10). (a)Almeida HV; Liu Y; Cunniffe GM; Mulhall KJ; Matsiko A; Buckley CT; O’Brien FJ; Kelly DJ 
Controlled release of transforming growth factor-β3 from cartilage-extra-cellular-matrix-derived 
scaffolds to promote chondrogenesis of human-joint-tissue-derived stem cells. Acta Biomater. 
2014, 10 (10), 4400–4409. [PubMed: 24907658] (b)Badylak SF; Freytes DO; Gilbert TW 
Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 
2009, 5 (1), 1–13. [PubMed: 18938117] (c)Beck EC; Barragan M; Tadros MH; Kiyotake EA; 
Acosta FM; Kieweg SL; Detamore MS Chondroinductive Hydrogel Pastes Composed of 
Naturally Derived Devitalized Cartilage. Ann. Biomed. Eng 2016, 44, 1863–1880. [PubMed: 
26744243] (d)Garrigues NW; Little D; Sanchez-Adams J; Ruch DS; Guilak F Electrospun 
cartilage-derived matrix scaffolds for cartilage tissue engineering. J. Biomed. Mater. Res., Part A 
2014, 102 (11), 3998–4008.(e)Moradi A; Ataollahi F; Sayar K; Pramanik S; Chong P-P; Khalil 
AA; Kamarul T; Pingguan-Murphy B Chondrogenic potential of physically treated bovine 
cartilage matrix derived porous scaffolds on human dermal fibroblast cells. J. Biomed. Mater. 
Res., Part A 2016, 104 (1), 245–256.(f)Schwarz S; Koerber L; Elsaesser AF; Goldberg-Bockhorn 
E; Seitz AM; Durselen L; Ignatius A; Walther P; Breiter R; Rotter N Decellularized cartilage 
matrix as a novel biomatrix for cartilage tissue-engineering applications. Tissue Eng., Part A 
2012, 18 (21–22), 2195–2209. [PubMed: 22690787] 

(11). Sutherland AJ; Converse GL; Hopkins RA; Detamore MS The Bioactivity of Cartilage 
Extracellular Matrix in Articular Cartilage Regeneration. Adv. Healthcare Mater 2015, 4 (1), 29–
39.

(12). (a)Gupta V; Mohan N; Berkland CJ; Detamore MS Microsphere-Based Scaffolds Carrying 
Opposing Gradients of Chondroitin Sulfate and Tricalcium Phosphate. Front. Bioeng. Biotechnol 
2015, 3, 1–15. [PubMed: 25654078] (b)Mohan N; Dormer NH; Caldwell KL; Key VH; Berkland 
CJ; Detamore MS Continuous gradients of material composition and growth factors for effective 
regeneration of the osteochondral interface. Tissue Eng., Part A 2011, 17 (21–22), 2845–2855. 
[PubMed: 21815822] (c)Mohan N; Gupta V; Sridharan B; Sutherland A; Detamore MS The 
potential of encapsulating “raw materials” in 3D osteochondral gradient scaffolds. Biotechnol. 
Bioeng 2014, 111 (4), 829–841. [PubMed: 24293388] (d)Mohan N; Gupta V; Sridharan BP; 
Mellott AJ; Easley JT; Palmer RH; Galbraith RA; Key VH; Berkland CJ; Detamore MS 
Microsphere-based gradient implants for osteochondral regeneration: a long-term study in sheep. 
Regener. Med 2015, 10, 709.

Gupta et al. Page 12

ACS Biomater Sci Eng. Author manuscript; available in PMC 2020 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(13). (a)Converse GL; Armstrong M; Quinn RW; Buse EE; Cromwell ML; Moriarty SJ; Lofland GK; 
Hilbert SL; Hopkins RA Effects of cryopreservation, decellularization and novel extracellular 
matrix conditioning on the quasi-static and time-dependent properties of the pulmonary valve 
leaflet. Acta Biomater. 2012, 8 (7), 2722–2729. [PubMed: 22484150] (b)Sutherland AJ; Beck 
EC; Dennis SC; Converse GL; Hopkins RA; Berkland CJ; Detamore MS Decellularized 
Cartilage May Be a Chondroinductive Material for Osteochondral Tissue Engineering. PLoS One 
2015, 10 (5), e0121966–13. [PubMed: 25965981] (c)Sutherland AJ; Detamore MS Bioactive 
Microsphere-Based Scaffolds Containing Decellularized Cartilage. Macromol. Biosci 2015, 15 
(7), 979–989. [PubMed: 25821206] 

(14). (a)Dormer NH; Gupta V; Scurto AM; Berkland CJ; Detamore MS Effect of different sintering 
methods on bioactivity and release of proteins from PLGA microspheres. Mater. Sci. Eng., C 
2013, 33 (7), 4343–4351.(b)Dormer NH; Qiu Y; Lydick AM; Allen ND; Mohan N; Berkland CJ; 
Detamore MS Osteogenic differentiation of human bone marrow stromal cells in hydroxyapatite-
loaded microsphere-based scaffolds. Tissue Eng., Part A 2012, 18 (7–8), 757–767. [PubMed: 
21992088] (c)Gupta V; Lyne DV; Barragan M; Berkland CJ; Detamore MS Microsphere-based 
scaffolds encapsulating tricalcium phosphate and hydroxyapatite for bone regeneration. J. Mater. 
Sci.: Mater. Med 2016, 27 (7), 1–17. [PubMed: 26610924] (d)Singh M; Dormer N; Salash JR; 
Christian JM; Moore DS; Berkland C; Detamore MS Three-dimensional macroscopic scaffolds 
with a gradient in stiffness for functional regeneration of interfacial tissues. J. Biomed. Mater. 
Res., Part A 2010, 94 (3), 870–876.

(15). Athanasiou KA; Rosenwasser MP; Buckwalter JA; Malinin TI; Mow VC Interspecies 
comparisons of in situ intrinsic mechanical properties of distal femoral cartilage. J. Orthop. Res 
1991, 9 (3), 330–340. [PubMed: 2010837] 

(16). Roemhildt ML; Coughlin KM; Peura GD; Fleming BC; Beynnon BD Material properties of 
articular cartilage in the rabbit tibial plateau. J. Biomech 2006, 39 (12), 2331–2337. [PubMed: 
16168420] 

(17). Maas SA; Ellis BJ; Ateshian GA; Weiss JA FEBio: finite elements for biomechanics. J. Biomech. 
Eng 2012, 134 (1), 011005. [PubMed: 22482660] 

(18). (a)Ateshian GA; Mauck RL Sliding contact loading enhances the tensile properties of 
mesenchymal stem cell-seeded hydrogels. Eur. Cell Mater 2012, 24, 29–45. [PubMed: 22791371] 
(b)Ateshian GA; Rajan V; Chahine NO; Canal CE; Hung CT Modeling the Matrix of Articular 
Cartilage Using a Continuous Fiber Angular Distribution Predicts Many Observed Phenomena. J. 
Biomech. Eng 2009, 131 (6), 061003. [PubMed: 19449957] (c)Bonet J Nonlinear Continuum 
Mechanics for Finite Element Analysis; Cambridge University Press: Cambridge, U.K., 1997.
(d)Mow VC; Gibbs MC; Lai WM; Zhu WB; Athanasiou KA Biphasic indentation of articular 
cartilage-II. A numerical algorithm and an experimental study. J. Biomech 1989, 22 (8–9), 853–
861. [PubMed: 2613721] 

(19). Chevrier A; Rossomacha E; Buschmann MD; Hoemann CD Optimization of histoprocessing 
methods to detect glycosamino- glycan, collagen type II, and collagen type I in decalcified rabbit 
osteochondral sections. J. Histotechnol 2005, 28 (3), 165–175.

(20). (a)Frisbie D; Bowman S; Colhoun H; DiCarlo E; Kawcak C; McIlwraith C Evaluation of 
autologous chondrocyte transplantation via a collagen membrane in equine articular defects–
results at 12 and 18 months. Osteoarthritis and Cartilage 2008, 16 (6), 667–679. [PubMed: 
18042409] (b)O’Driscoll SW; Keeley FW; Salter RB Durability of regenerated articular cartilage 
produced by free autogenous periosteal grafts in major full-thickness defects in joint surfaces 
under the influence of continuous passive motion. A follow-up report at one year. J. Bone Jt. Surg 
1988, 70 (4), 595–606.

(21). (a)Cushnie EK; Khan YM; Laurencin CT Amorphous hydroxyapatite-sintered polymeric 
scaffolds for bone tissue regeneration: physical characterization studies. J. Biomed. Mater. Res., 
Part A 2008, 84 (1), 54–62.(b)Lv Q; Nair L; Laurencin CT Fabrication, characterization, and in 
vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-
based scaffolds for bone tissue engineering in rotating bioreactors. J. Biomed. Mater. Res., Part A 
2009, 91 (3), 679–691.(c)Tahriri M; Moztarzadeh F Preparation, Characterization, and In Vitro 
Biological Evaluation of PLGA/Nano-Fluorohydroxyapatite (FHA) Microsphere-Sintered 
Scaffolds for Biomedical Applications. Appl Biochem. Biotechnol 2014, 172 (5), 2465–2479. 
[PubMed: 24395697] (d)Xu W; Wang L; Ling Y; Wei K; Zhong S Enhancement of compressive 

Gupta et al. Page 13

ACS Biomater Sci Eng. Author manuscript; available in PMC 2020 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



strength and cytocompatibility using apatite coated hexagonal mesoporous silica/poly(lactic acid-
glycolic acid) microsphere scaffolds for bone tissue engineering. RSC Adv. 2014, 4 (26), 13495.

(22). (a)Alexis F Factors affecting the degradation and drug-release mechanism of poly(lactic acid) and 
poly[(lactic acid)-co-(glycolic acid)]. Polym. Int 2005, 54 (1), 36–46.(b)Sridharan B; Mohan N; 
Berkland CJ; Detamore MS Material characterization of microsphere-based scaffolds with 
encapsulated raw materials. Mater. Sci. Eng., C 2016, 63, 422–428.

(23). (a)Julkunen P; Harjula T; Iivarinen J; Marjanen J; Seppänen K; Närhi T; Arokoski J; Lammi MJ; 
Brama PA; Jurvelin JS; Helminen HJ Biomechanical, biochemical and structural correlations in 
immature and mature rabbit articular cartilage. Osteoarthritis and cartilage/OARS, Osteoarthritis 
Research Society 2009, 17 (12), 1628–1638.(b)Julkunen P; Harjula T; Marjanen J; Helminen HJ; 
Jurvelin JS Comparison of singlephase isotropic elastic and fibril-reinforced poroelastic models 
for indentation of rabbit articular cartilage. J. Biomech 2009, 42 (5), 652–656. [PubMed: 
19193381] 

(24). Wang CC; Deng J-M; Ateshian GA; Hung CT An automated approach for direct measurement of 
two-dimensional strain distributions within articular cartilage under unconfined compression. J. 
Biomech. Eng 2002, 124 (5), 557–567. [PubMed: 12405599] 

(25). Londono R; Badylak SF Biologic Scaffolds for Regenerative Medicine: Mechanisms of In vivo 
Remodeling. Ann. Biomed. Eng 2015, 43 (3), 577–592. [PubMed: 25213186] 

(26). Artzi N; Oliva N; Puron C; Shitreet S; Artzi S; Bon Ramos A; Groothuis A; Sahagian G; 
Edelman ER In vivo and in vitro tracking of erosion in biodegradable materials using non-
invasive fluorescence imaging. Nat. Mater 2011, 10 (9), 704. [PubMed: 21857678] 

Gupta et al. Page 14

ACS Biomater Sci Eng. Author manuscript; available in PMC 2020 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
A schematic representation of microsphere fabrication process. Demineralized bone matrix 

(DBM) or decellularized cartilage (DCC) encapsulating poly(D,L-lactic-co-glycolic acid) 

(PLGA) microspheres were fabricating with a DBM/DCC loading of 10 wt %.
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Figure 2. 
Schematic of scaffold fabrication process. Demineralized bone matrix (DBM) or 

decellularized cartilage (DCC) encapsulating poly(D,L-lactic-co-glycolic acid) (PLGA) 

microspheres were assembled to form continuously graded scaffolds containing opposing 

gradients of DCC and DBM.
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Figure 3. 
Gross morphological scores of retrieved joints 12 weeks postimplantation. (A) Average 

morphological score in the BLANK and GRADIENT groups, (B) average percentage of 

repair tissue present at the defect site in the BLANK and GRADIENT groups, (C) scatter 

plot showing total morphological score distribution in the BLANK and GRADIENT groups, 

and (D) scatter plot showing amount of repair tissue present in the defect site in the BLANK 

and GRADIENT groups. All values are expressed as the average + standard deviation (n = 

8). The maximum possible score was 10. No significant differences in gross morphological 

scores and amount of repair tissue present were observed between the two groups. The 

average morphological score in the BLANK group was 6.0 ± 0.5 with a highest score of 8.0, 

whereas the GRADIENT group average morphological score was 5.2 ± 0.8 with a highest 

score of 8.7 in the group.
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Figure 4. 
Representative images for gross morphology of the BLANK and GRADIENT groups at 12 

weeks postimplantation. The top row represents images from the implants that received the 

highest morphological score (BLANK, 8; GRADIENT, 8.7). The middle row represents 

images from the implants that received the mean morphological score (BLANK, 6; 

GRADIENT, 5.2). The bottom row represents images from the implants that received the 

lowest morphological score (BLANK, 3.3; GRADIENT, 1.3). The BLANK group performed 

better in percent defect fill, whereas the GRADIENT group performed better in edge 

integration with the native tissue. Scale bars: 1 mm.
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Figure 5. 
Mechanical testing results of repair tissue in the retrieved joints from the BLANK and 

GRADIENT groups at 12 weeks postimplantation. (A) Elastic modulus, (B) fiber modulus, 

(C) permeability, and (D) Poisson’s ratio. All values are expressed as the average + standard 

deviation (n = 4). No significant differences in any of the four model parameter values were 

observed between the two groups. The Poisson’s ratio for the BLANK group was 0.17 ± 

0.15 and the GRADIENT group Poisson’s ratio was 0.043 ± 0.051.
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Figure 6. 
Representative histological and immunohistochemical (IHC) staining images for the 

BLANK and GRADIENT groups. The sections were stained for hematoxylin and eosin, 

safranin-O, collagen I, and collagen II. Negative controls for IHC were also run with the 

primary antibody omitted. The boxes in the top row outline the defect area. The regenerated 

tissue in both of the groups was predominantly fibrous in nature with some evidence of 

cartilage repair and subchondral bone regeneration especially at the edges of the defect site. 

Scale bars: 500 μm.
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Figure 7. 
Sudan black staining images for the implants that received the highest and lowest 

histological scores in both the BLANK and GRADIENT groups. The defect sites in both of 

the groups demonstrated mild staining overall with a few dark-staining spots (arrows). Scale 

bars: 500 μm.

Gupta et al. Page 21

ACS Biomater Sci Eng. Author manuscript; available in PMC 2020 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gupta et al. Page 22

Table 1.

List of Implant Received by Each Animal and the Type of Analysis Performed for the Implants

animal
no. left knee right knee

time
(weeks) analysis

rabbit 1 BLANK GRADIENT 12 morphology & histology

rabbit 2 BLANK GRADIENT 12 morphology & histology

rabbit 3 BLANK GRADIENT 12 morphology & mechanical

rabbit 4
a BLANK GRADIENT 12 euthanized prematurely

rabbit 5 BLANK GRADIENT 12 morphology & mechanical

rabbit 6 GRADIENT BLANK 12 morphology & histology

rabbit 7 GRADIENT BLANK 12 morphology & histology

rabbit 8 GRADIENT BLANK 12 morphology & mechanical

rabbit 9 GRADIENT BLANK 12 morphology & mechanical

rabbit 10
b GRADIENT BLANK 12 euthanized prematurely

a
Euthanized prematurely because of chronic lameness.

b
Euthanized prematurely because of causes unrelated to the implant.
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