
TOMM40 ‘523 associations with baseline and longitudinal 
cognition in APOEε3 homozygotes

Amber Watts, PhDa,b,*, Heather M. Wilkins, PhDa, Elias Michaelis, MD PhDa,c, Russell H. 
Swerdlow, MDa,d,e,f

aUniversity of Kansas Alzheimer’s Disease Center, Kansas City, KS, USA;

bDepartment of Psychology, University of Kansas, Lawrence, KS, USA;

cDepartment of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA;

dDepartment of Neurology, University of Kansas Medical Center, Kansas City, KS, USA

eDepartment of Molecular and Integrative Physiology, University of Kansas Medical Center, 
Kansas City, KS, USA

fDepartment of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas 
City, KS, USA

Abstract

TOMM40 ‘523 is associated with Alzheimer’s disease (AD), but APOE linkage disequilibrium 

confounds this association. In 170 APOE ε3 homozygotes, we evaluated relationships between 

short and very long TOMM40 alleles and longitudinal declines in three cognitive domains 

(attention, verbal memory, and executive function). We used factor analysis to create composite 

scores from 10 individual cognitive tests, and latent growth curve modeling adjusting for clinical 

status (normal, amnestic mild cognitive impairment, or AD) to summarize initial performance and 

change over three years. Relative to individuals with two very long TOMM40 alleles, APOE ε3 

homozygotes with one or two short alleles showed lower baseline cognitive performance 

regardless of clinical status. The number of short or very long TOMM40 alleles was not associated 

with longitudinal cognitive changes. In APOE ε3 homozygotes from the KUADC cohort, an 

association between TOMM40 ‘523 and cognition is consistent with the possibility that TOMM40 
influences cognition independent of APOE.
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INTRODUCTION

After Schellenberg et al. [1] and Pericak-Vance et al. [2] established connections between 

Alzheimer’s disease (AD) risk and chromosome 19, Corder et al. [3] and Strittmatter et al. 

[4] concluded variants in the APOE gene, located at 19q13.32, were responsible. 

Specifically, the APOE ε2, ε3, and ε4 alleles were shown to respectively confer reduced, 

neutral, and increased late-onset AD risk. Subsequent studies generated or supported 

hypotheses that might explain the impact of APOE on AD, but mechanistic consensus 

remains elusive.

In 2010, Roses et al. [5] reported an association between AD risk and variation in a gene 

adjacent to APOE, TOMM40. The variant of interest is a variable poly-T repeat in intron 6 

that defines rs10524523 (‘523). Roses et al. used the ‘523 poly-T repeat length to designate 

three general alleles: a “short” allele of ≤19 poly-T’s, a “long” allele of 20–29 poly-T’s, and 

a “very long” allele of ≥ 30 poly-T’s. TOMM40 alleles form haplotypes with APOE, and in 

Caucasians the TOMM40 long allele forms a haplotype with APOE ε4. Therefore similar to 

APOE ε4, a strong statistical association between TOMM40 long and increased AD risk 

clearly exists.

Because of the tight linkage disequilibrium that occurs between TOMM40 long and APOE 
ε4 alleles in Caucasian populations, based purely on association it is difficult to conclude the 

extent to which each individual gene contributes to AD risk. Many investigators favor the 

view that APOE is solely responsible. Others speculate that TOMM40, which encodes a 

protein critical to mitochondrial function, the translocase of the outer mitochondrial 

membrane 40 kD protein, might independently affect AD risk through effects on 

mitochondrial function [6].

Consistent with this latter view, recent studies report the TOMM40 short and very long 

alleles variably influence AD risk, cognitive test performance, and changes in brain 

volumes. However, findings are not uniform and suggest published relationships may be 

context and methods-dependent. For example, two studies report contrasting findings among 

individuals homozygous for both TOMM40 short and APOE ε3 [7,8]. A longitudinal study 

by Yu et al. reported that among cognitively normal older adults, TOMM40 short 

homozygotes declined faster than other TOMM40 combinations, while a cross-sectional 

study by Laczo et al. reported that TOMM40 short homozygotes with amnestic mild 

cognitive impairment showed better cognitive performance and larger brain volumes.

In the present study, we tested whether TOMM40 ‘523 short and very long alleles were 

associated with cross sectional cognitive test performance and longitudinal stability in 

members of the University of Kansas Alzheimer’s Disease Center (KUADC) clinical cohort. 

We hypothesized that short and very long alleles would be differentially associated with 

cognitive performance and decline. Due to the highly mixed findings of previous studies, we 

did not have a basis for hypothesizing a direction of influence. Cognitively normal, amnestic 

mild cognitive impairment (aMCI), and AD participants were included in our analysis. To 

minimize the confounding effects of the APOE ε4-TOMM40 long linkage disequilibrium, 

we limited the analysis to APOE ε3 homozygotes.
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METHODS

Study Design

The Uniform Data Set (UDS) was created in 2005 to collect standard clinical data on 

subjects from the National Institute on Aging (NIA)-supported Alzheimer’s Disease Centers 

(ADCs). The UDS is administered to ADC clinical core participants on an approximately 

annual basis.

The KUADC collects longitudinal data on a clinical cohort that includes over four hundred 

individuals. The cohort includes participants with cognitive impairment as well as normal 

cognition. Cognitively normal individuals are included at age 60 and older, while individuals 

with AD are included at any age. It qualifies as a sample of convenience, with members 

recruited from the community via online, radio, and television advertisements; 

representation at community events; referrals from community partners; and word of mouth. 

The present study is a three-year longitudinal analysis of a subset of data collected from this 

clinical cohort. The first time point represents baseline and each additional time point 

represents follow up visits at approximately one year intervals.

Consent

Entry into the cohort requires written consent from each participant, as well as written 

consent from a study partner. The consent forms and process were approved by the 

University of Kansas Medical Center’s institutional review board and was conducted in 

accord with the Helsinki Declaration of 1975. The consent form and process specifies that 

cognitive and genetic data obtained from each participant will be included in studies 

pertinent to AD and brain aging.

Participants and Participant Selection

Participants and their study partners/informants annually undergo a Clinical Dementia 

Rating (CDR) interview. The participants additionally complete the UDS evaluation defined 

by the NIA ADC network, as well as additional cognitive tests (i.e., letter number 

sequencing, free and cued selective reminding test, Stroop test). At the time of cohort entry, 

APOE genotypes are determined, and TOMM40 ‘523 genotypes are identified through PCR 

with subsequent capillary gel electrophoresis. Poly-T lengths are used to classify each 

TOMM40 allele according to the short, long, and very long convention of Roses et al. [5,9].

Initial and subsequent annual CDR and neuropsychological test scores are reviewed at a 

weekly consensus diagnostic conference that includes clinicians, a neuropsychologist, 

psychometricians, and other staff who participate in the evaluation process. Participants with 

a CDR score of 0 and no demonstrable cognitive deficits are classified as cognitively 

normal. Demonstrable cognitive deficits are defined as scores less than 1.5 standard 

deviations below the mean on two or more tests based on data from the National 

Alzheimer’s Coordinating Center. Participants with a CDR score of 0.5 but no loss of 

functional independence, as well as demonstrable cognitive test deficits, receive a 

designation of MCI. MCI participants with deficits in cognitive tests that focus on the 

memory domain qualify for aMCI. Participants with a CDR score of 0.5 or higher, loss of 
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functional independence, cognitive test deficits, a primary etiology that is felt to include AD, 

and no likely explanation for their dementia other than AD are classified as having AD. 

Some KUADC clinical cohort participants do not fall into any of these diagnostic categories; 

for this study, only cognitively normal, aMCI, and AD participants were considered.

Participants categorized as having normal cognition, aMCI, or AD were included if they 

were assigned to those respective groups at each independent assessment for all evaluation 

waves or followed an expected progression from normal to aMCI, aMCI to AD, or normal to 

AD. We excluded cases in which a diagnosis of normal cognition was reported subsequent to 

a diagnosis of aMCI or AD, or cases in which individuals were diagnosed with another form 

of dementia as the primary etiology at another occasion. The designated primary etiology for 

all of the aMCI participants was “MCI due to AD,” and aMCI participants were included 

only if all further assignments were to aMCI or if their group assignment changed to AD. 

Finally, we excluded individuals who possessed an APOE ε4 or APOE ε2 allele.

Genotyping Procedures

APOE genotyping was performed by the National Cell Repository for Alzheimer’s Disease 

(NCRAD), with independent verification of selected samples by the KUADC Mitochondrial 

Genomics and Metabolism Core using a previously described allelic discrimination assay 

[10]. TOMM40 ‘523 genotyping was performed by Polymorphic DNA Technologies (PDT), 

with independent verification of selected samples by the KUADC Mitochondrial Genomics 

and Metabolism Core using a previously reported procedure [10]. Poly-T length 

reproducibility between the PDT and KUADC measurements was uniformly within 1 T.

Cognitive Tests

A standardized cognitive test battery was administered by a trained psychometrician, and 

included Logical Memory IA and IIA [11], selective reminding test [12], Digit Span forward 

and backward, letter number sequencing [13], Trail Making B [14], Category Fluency [15], 

the Digit Symbol Substitution Test [13], and the Stroop Test, Interference Condition [16]. 

For tests that changed from the UDS version 2.0 to the UDS version 3.0, we used the 

previously published “cross walk” scores that estimate the equivalent scores across the two 

versions of the test (i.e., Craft Immediate and Delayed Recall replaced Logical Memory IA 

and IIA, and number span forward and backward replaced digit span forward and backward) 

[17].

Covariates and Statistical Analysis

Age, sex, and years of education were treated as covariates. All cognitive tests were 

standardized using Z-scores relative to the mean of the cognitively normal group at baseline. 

Thus, scores can be interpreted as a difference from baseline in cognitively normal persons. 

We report findings from four waves of assessment, each one year apart.

We used Mplus to combine cognitive test scores into domain specific factor scores using 

Confirmatory Factor Analysis. Specific tests were organized by whether they primarily 

address attention, verbal memory, or executive function. Tests of attention included digits 

forward, digits backward, and letter-number sequencing. Tests of verbal memory included 
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immediate and delayed logical memory, as well as the sum of three selective reminding test 

trials. Tests of executive function assessed set maintenance and shifting and included 

category fluency (sum of animal and vegetable categories), Stroop color word interference, 

trailmaking test B, and the digit symbol substitution test. We included the combined 

cognitive test scores as outcomes in subsequent models.

We estimated latent growth curve models to describe the intercept and change in 

performance in these three cognitive domains over four waves of data collection. Latent 

growth curve models are advantageous because they allow estimation of error variance to be 

included in the model. We specifically considered the effect of TOMM40 ‘523 status on the 

cognitive parameters. The full model estimated the association of TOMM40 with the 

intercept and slope of cognitive decline adjusting for covariates (age, sex, education, clinical 

status). We also tested an interaction term (clinical status × TOMM40 allele status) that 

would allow us to investigate whether TOMM40 allele status influenced cognitive 

performance differently in individuals with normal cognition compared to those with aMCI 

or AD. We estimated change in R2 between models with and without TOMM40 allele status 

as a measure of effect size.

Missing data were accounted for using a full information maximum likelihood algorithm. To 

evaluate model fit we used Root Mean Squared Error of Approximation (RMSEA), a 

measure of the discrepancy between predicted and observed model values. Values closer to 0 

indicate better fit (preferred values are <0.09). We report a comparative fit index (CFI) that 

estimates the relative fit of a model compared to an alternative model, in which a CFI >0.90 

indicates good fit. Typically, these multiple fit indices are considered together, as opposed to 

relying on any one indicator by itself. We used structural equation modeling to estimate all 

the pathways simultaneously, which allowed us to avoid multiple testing-induced inflation of 

type 1 error. Monte Carlo simulation estimated that we have >.0.80 power to detect all 

significant estimates in the model.

RESULTS

We analyzed data from 173 KUADC clinical cohort participants. Because we excluded 

APOE ε4 carriers, we also filtered out all but three instances of the TOMM40 long allele. 

Among the TOMM40 alleles recorded, the various combinations of TOMM40 alleles were 

observed in the following frequencies: 29.2% short/short, <1% short/long, 47.6% short/very 

long, 0% long/long, 1.2% long/very long, and 21.4% very long/very long. We excluded the 

three individuals with a TOMM40 long allele from subsequent analyses for a final sample 

size of 170 at baseline. Due to attrition sample sizes were smaller at each subsequent wave 

of follow up (Wave 2 = 167, Wave 3 = 147, Wave 4 = 104).

Table 1 shows baseline participant characteristics. A three factor model of cognitive domains 

fit the data at all four waves (Wave 1 X2 (df) = 131.60 (30), RMSEA = .089, CFI = 0.97; 

Wave 2 X2 (df) = 98.47 (30), RMSEA = .074, CFI = 0.98; Wave 3 X2 (df) = 81.34 (30), 

RMSEA = .071, CFI = 0.98; Wave 4 X2 (df) = 74.20 (30), RMSEA = .081, CFI = 0.98). 

Table 2 shows the loadings of each cognitive test onto the factors at wave 1. Variables 

associated with baseline cognitive performance (intercept) and change across waves (slope) 
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were estimated using latent growth curve modeling. Table 3 shows the results of these 

models, which are adjusted for age, sex, education, and clinical status.

For all three cognitive domains, having a higher number of short TOMM40 alleles was 

associated with lower baseline performance (intercept) regardless of clinical status. This 

effect was statistically significant for attention and executive function, and was a non-

significant trend in the expected direction for verbal memory. Having a greater number of 

short alleles was not significantly associated with rates of cognitive decline over the 

longitudinal follow up. The pattern of declining performance by clinical status and 

TOMM40 length is represented visually in Figure 1 in a common format for presenting the 

results of growth curve models. For simplicity of presentation, only homozygotes (short/

short or very long/very long) are depicted in the figure. The lines represent the mean 

performance across waves by clinical status, TOMM40 genotype, adjusting for covariates in 

the model. The mean baseline cognitive scores split by TOMM40 allele combinations are 

depicted in Figure 2. As planned, we tested an interaction effect (clinical status × TOMM40 
allele status) that allowed us to investigate whether TOMM40 allele status influenced 

cognitive performance differently in individuals with normal cognition compared to those 

with aMCI or AD. We did not find this interaction effect to be statistically significant in any 

of the models (attention intercept β = −.089, p =.365; slope β = .371, p =.219; verbal 

memory intercept β = −.079, p =.274 slope β = .205, p =.264; executive function intercept β 
= −.130, p =.111 slope β = .267, p =.133). Finding no significant differences by dementia 

status, we present the means according only to TOMM40 genotype in Figure 2 for 

simplicity.

Table 4 shows the fit indices for the growth models and the exact R2 values for each model. 

Across the four waves, the amount of variance explained by TOMM40 genotype in the 

model ranged from R2 = 0.000 to 0.008 for attention, R2 = 0.007 to 0.021 for verbal 

memory, and R2 = 0.003 to 0.011 for executive function. We tested the change in variance 

explained with and without the TOMM40 allele parameter to estimate the degree of variance 

explained only by TOMM40 alleles (indicated in the table by ΔR2). The proportion of 

variance explained was small, but consistently around 1–2%.

DISCUSSION

Overall, KUADC clinical cohort participants with two TOMM40 short alleles showed lower 

baseline performance compared to those with two very long alleles, regardless of clinical 

status. TOMM40 allele status was not associated with the rate of longitudinal cognitive 

decline over a three-year follow-up period. Since individuals contributing data to this 

analysis were APOE ε3 homozygotes, the previously recognized linkage disequilibrium 

between TOMM40 long and APOE ε4 does not explain the observed relationship. Narrowly 

interpreted, these findings from APOE ε3 homozygotes suggest TOMM40 ‘523-defined 

alleles, to at least some extent, influence cognitive performance regardless of clinical status.

Three previous longitudinal studies also considered whether TOMM40 ‘523 genotypes 

affect cognition. These studies used different methodological approaches, and reached 

different conclusions [7,18,19]. Our study and that of Yu et al. [7] evaluated older adults 
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(mean age >70), and found TOMM40 short homozygotes had poorer cognitive function, and 

in the Yu et al. study, steeper rates of cognitive decline. Payton et al. [19] on the other hand, 

included a broader age range and concluded that TOMM40 short carriers had poorer 

baseline performance, but very long homozygotes had faster rates of decline. The Caselli et 

al. [18] study observed detrimental effects of TOMM40 very long over longitudinal follow 

up (i.e., a diminished test-retest effect) only in subjects younger than 60, and not in subjects 

over 60. These age differential results are consistent with the resource modulation 

hypothesis, which suggests the effects of genetic polymorphisms on cognition vary with 

advancing age, and change as cognitive performance declines from optimal levels [20]. In 

essence, this hypothesis proposes that genes may have a different impact on the relationship 

between age-related loss of brain resources and cognitive performance as neural reserve 

depletion occurs.

In contrast to the two longitudinal studies that focused on older adults, results of previous 

cross-sectional studies of TOMM40 ‘523 and cognitive performance mostly report 

TOMM40 short/short homozygotes have better cognitive outcomes than those with longer 

repeat lengths [8,21–23]. It is important to note, however, that cognitive abilities observed at 

a single time point may not predict rate of change over time, and that factors which 

influence performance at a single time point may differ from those that affect longitudinal 

course.

Our study and the aforementioned studies also differ in terms of duration. We followed 

subjects over a three-year period, while the longest longitudinal study spanned 14 years. 

Cognitive tests and the cognitive domains examined also varied across studies. As some 

cognitive domains tend to remain more stable over time than others, differences in test 

batteries may influence the ability to detect and track cognitive decline-related changes. The 

test battery we used was designed to follow decline in persons with dementia, and is less 

useful for monitoring age-related cognitive change in normal individuals. Caselli et al. [18] 

used only a single verbal memory test, while the other three studies used composite scores to 

summarize tests from a wider array of cognitive domains. The two studies that focused on 

older adults, the Yu et al. study and the present study, both reported detrimental effects of 

short TOMM40 alleles on memory performance. Payton et al. [19] reported statistically 

significant findings only in vocabulary, which tends to be quite stable across time, even in 

older age. Future research would benefit from harmonization of the cognitive domains 

studied, and more consistent methods of combining multiple tests scores to enable better 

comparisons.

Each of the previous longitudinal studies used a different approach to the inclusion or 

exclusion of individuals with cognitive impairment. In the present study, we included 

individuals who remained cognitively normal, converted from cognitively normal to 

cognitively impaired, or who remained cognitively impaired. Yu et al. [7] included only 

participants that were not impaired at baseline, but who may have converted to impairment 

over the longitudinal follow up. These differences may affect the trajectory of cognitive 

declines observed and their relationship to TOMM40 ‘523. Caselli et al. [18] included only 

individuals who were cognitively normal at all time points, whereas dementia status was not 

clearly determined in Payton et al. [19]. These differences in study design may have 
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important implications for interpretation of the effect of TOMM40 alleles on cognitive 

performance and decline. Few studies explicitly limit analyses to APOE ε3 homozygotes to 

differentiate the independent effects of TOMM40.

The KUADC clinical cohort is predominantly Caucasian. Because Caucasians show tight 

linkage disequilibrium between APOE ε4 and TOMM40 long alleles, excluding APOE ε4 

carriers from the analysis also eliminated most TOMM40 long carriers and we excluded the 

remainder from subsequent analyses. Our results do not directly address the question of 

whether TOMM40 long alleles influence AD risk independently of APOE ε4. From a strict 

epidemiologic and statistical perspective, at least in Caucasians, the relative contributions of 

APOE ε4 and TOMM40 long alleles to AD risk remains confounded.

Epidemiologic studies of African-descended populations may help resolve this confounding, 

as some of these populations do not show tight linkage disequilibrium between the APOE ε4 

and TOMM40 long alleles. Indeed, a second Yu et al. study [24] recently reported that in an 

African American cohort, slightly less than half of the identified APOE ε4 alleles presented 

within the context of an inferred APOE ε4-TOMM40 long haplotype. APOE ε3-TOMM40 
long haplotypes were rarely observed. The apparent APOE-TOMM40 haplotype status had a 

remarkable effect on incident dementia. African Americans who had neither an APOE ε4 

allele nor a TOMM40 long allele had an 8.4% risk of incident dementia. Those with 1 or 2 

APOE ε4 alleles, but no TOMM40 long alleles had a 10.8% risk of incident dementia. 

Those with 1 or 2 APOE ε4 alleles and at least 1 TOMM40 long haplotype had a 17.7% risk 

of incident dementia. We note that these results fail to take into account the dose-response 

relationship with 1 versus 2 APOE ε4 alleles, thus gene dosage could provide a potential 

explanation for those findings.

In general, the associations between cognitive performance and TOMM40 short alleles that 

were seen in our study suggest the TOMM40 gene is relevant to cognition independent of 

the effect of APOE. We cannot conclude the extent to which TOMM40 contributes, although 

the impact of a TOMM40 short versus TOMM40 very long allele appears quite limited. 

When it comes to relationships between single genes and behavior, though, small effect sizes 

are generally expected. Although APOE has a larger effect size by comparison, genes with 

effect sizes that are readily detectable by linkage are rarer [25]. This is sometimes called 

“the fourth law of behavior genetics” which describes that complex human behaviors are 

associated with many genetic variants, each of which accounts for a very small percentage of 

variability in the behavior [26]. Allelic association can detect genes that account for as little 

as 1% of the variance in a trait and most SNPs function in concert with other genes within 

qualitative trait loci (QTLs) which may interact in complex ways. Furthermore, behavioral 

traits are difficult to measure with accuracy compared to more objectively measured 

outcomes [25, 27].

The mechanistic connection between APOE and AD remains unresolved, partly because 

multiple viable mechanistic explanations currently exist. Potential scenarios include effects 

on beta amyloid trafficking, oxidative stress, lipid homeostasis, neuron plasticity, and 

mitochondrial function [28]. It is also possible to propose mechanisms through which 

TOMM40 might influence AD risk [6]. As TOMM40 encodes a critical mitochondrial 
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protein, a reasonable hypothesis would be that different ‘523 poly-T lengths ultimately affect 

mitochondrial function. While the effects of the different TOMM40 ‘523 alleles on 

mitochondrial function are currently unknown, it does appear that ‘523 poly-T length does 

influence TOMM40 transcription and, ultimately, protein levels [9,29].

Our study has limitations. Studies of genetic markers without replication lack empirical 

rigor. Given the paucity of available comprehensive comparison datasets in which to 

complete a replication, we can only rely on our comparison of our results to others in the 

literature. Our longitudinal follow-up period of three years is relatively short, and certainly 

shorter than the longitudinal follow-up periods in the other reports. A longer duration might 

have allowed us to detect the steeper declines suggested by Yu et al. Our sample size was 

considerably smaller than that of Yu et al. [7], and thus we had less statistical power to 

detect the small effects that allelic contributions typically have on complex behaviors. 

Unique contributions of the present study include exclusion of APOE ε4 alleles to facilitate 

decoupling of the APOE ε4-TOMM40 ‘523 linkage disequilibrium, a range of clinical 

cognitive status (that included cognitively normal, aMCI, and AD subjects), and multiple 

cognitive tests summarized into distinct cognitive domains.

In the decades since relationships between AD and APOE isoforms were first recognized, 

genome wide association studies have implicated numerous specific genes with AD risk. 

The odds ratios for these genes are frequently quite small, although the impact of these 

discoveries is amplified by the insight they provide into the functional biology that 

determines AD. Partly because of genetic association we now recognize roles for endosome 

function, immune function, cholesterol metabolism, and broader lipid metabolism [30]. Our 

findings from this study additionally support the increasingly accepted view that 

mitochondrial function also contributes to AD risk [31,32].
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Figure 1. 
Longitudinal cognitive change by clinical status and TOMM40 length. (A) Attention. (B) 

Verbal memory. (C) Executive function. To allow comparison across tests and participants, 

cognitive scores on the Y-axis are standardized to the baseline performance of the 

cognitively normal participants. Patterns of change for individuals with mean age and 

education representing each clinical status category and the short/short and very long/very 

long TOMM40 categories are illustrated. Solid lines represent short/short homozygotes, 

while dashed lines represent very long/very long homozygotes. Blue indicates cognitively 

normal subjects, green indicates aMCI subjects, and red indicates AD subjects. Though 

visually, the lines appear very close together, the difference at the intercept between the 

dotted lines and solid lines are statistically significantly different for (A) attention and (C) 

executive function at p <.05. The difference at the intercept between dotted lines and solid 

lines are not statistically significant for (B) verbal memory p = .09.
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Figure 2. 
Mean standardized baseline cognitive scores by number of TOMM40 genotype. (A) Mean 

baseline attention. (B) Mean baseline executive function. (C) Mean baseline verbal memory. 

Error bars indicate standard deviation.
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Table 1.

Baseline Participant Characteristics

Total Sample Cognitively Normal AD aMCI

N=170 N=114 N=38 N=18

M (SD) M (SD) M (SD) M (SD)

Age 72.34 (7.69) 72.09 (7.14) 73.61 (9.63) 70.83 (5.43)

Education (years) 16.79 (2.87) 17.02 (2.80) 16.20 (3.38) 16.94 (1.89)

N (%) N (%) N (%) N (%)

Female* 110 (64.0) 86 (75.4) 14 (36.8) 9 (50.0)

Male 62 (36.0) 28 (24.3) 24 (63.2) 9 (50.0)

Caucasian 164 (95.3) 109 (95.6) 35 (92.1) 18 (100.0)

African American 5 (2.9) 3 (2.6) 2 (5.3) 0 (0.0)

Asian 2 (1.2) 2 (1.8) 0 (0.0) 0 (0.0)

American Indian/Alaskan Native 1 (0.6) 0 (0.0) 1 (2.6) 0 (0.0)

TOMM 40 Genotype

Short/Short 49 (29.7) 37 (33.0) 8 (21.13) 3 (17.6)

Short/Very Long 80 (48.5) 51 (45.5) 16 (47.1) 12 (70.6)

Very Long/Very Long 36 (21.8) 24 (21.4) 10 (29.4) 2 (11.8)

*
Difference in number of males and females by clinical status was statistically significant p < .001
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Table 2.

Confirmatory Factor Analysis of Cognitive Domains at Baseline

Attention Verbal Memory Executive Function

λ p λ p λ p

Digits Forward .567 <.001

Digits Backward .695 <.001

Letter Number Sequencing .900 <.001

Immediate Recall .808 <.001

Delayed Recall .818 <.001

Selective Reminding .912 <.001

Category Fluency .805 <.001

Digit Symbol Substitution .864 <.001

Trailmaking Test B .864 <.001

Stroop Color Word Interference .823 <.001
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Table 4.

Growth Curve Fit Indices and Change in R2

Attention Verbal Memory Executive Function

Model Fit Indices

X2 (df) 34.483 (15) 48.165 (15) 51.126 (15)

RMSEA .089 .116 .122

CFI .976 .972 .971

Variance Accounted for R2, (Δ R2) p R2, (Δ R2) p R2, (Δ R2) p

Baseline .893, Δ=.001 <.001 .901, Δ=.021 <.001 .941, (Δ=.009) <.001

Year 1 .874, Δ=.005 <.001 .946, Δ=.008 <.001 .956, (Δ=.002) <.001

Year 2 .882, Δ=.000 <.001 .973, Δ=.009 <.001 .969, (Δ=.012) <.001

Year 3 .919, Δ=.008 <.001 .928, Δ=.011 <.001 .962, (Δ=.011) <.001
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