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ABSTRACT 23 

Flower evolution is characterized by widespread repetition, with adaptations to pollinator 24 
environment evolving in parallel. Recent studies have expanded our understanding of the 25 

developmental basis for adaptive floral novelties—petal fusion, bilateral symmetry, heterostyly, 26 

and floral dimensions. Here we highlight patterns of trait evolution and review developmental 27 
genetic mechanisms underlying floral novelties. We discuss the diversity of mechanisms for 28 

parallel adaptation, the evidence for constraints on these mechanisms, and how constraints 29 

help explain observed macroevolutionary patterns. We describe parallel evolution resulting from 30 
similarities at multiple hierarchical levels—genetic, developmental, morphological, functional—31 

which indicate general principles in floral evolution, including the central role of hormone 32 

signaling. An emerging pattern is mutational bias that may contribute to rapid patterns of parallel 33 
evolution, especially if the derived trait can result from simple degenerative mutations. We argue 34 

that such mutational bias may less likely govern the evolution of novelties patterned by complex 35 
developmental pathways. 36 

 37 

1. INTRODUCTION 38 
Angiosperms (flowering plants) began diversifying on the order of 140 million years ago 39 
(reviewed in Sauquet and Magallón 2018), and the diversity of flower form among extant 40 

species today is breathtaking. Current floral diversity reflects evolutionary optimization of 41 
reproductive output under variable environmental conditions. Reproductive success has been 42 
optimized through shifts in mating system, including shifts in biotic (animal) and abiotic (wind, 43 
water) pollination strategies (Stebbins 1970; Barrett 2002). Since the beginning of flowering 44 

plant diversification, much of the evolution of flowers has been linked to biotic pollination 45 
(Gottsberger 2016; Hu et al. 2008), and more than 85% of current species utilize animals for 46 

pollination services (Ollerton et al. 2011). Therefore, adaptive floral evolution that facilitates 47 
shifts to available pollinators, and enhances pollen transfer when animals visit, is ubiquitous 48 

(Faegri & van der Pijl 1979; Fenster et al. 2004; Ollerton et al. 2009). 49 

 50 

Adaptive floral evolution has resulted in massive floral trait convergence and parallelism that 51 
reveals repeated adaptive trait evolution in response to similar pollinator environments. For the 52 
most part, repeatedly-evolved traits discussed in this review are termed parallelisms (although 53 

similarity derived from different floral organs, e.g., some repeated origins of nectar spurs, may 54 
be more accurately described as convergences). Parallel floral trait evolution reflects 55 

developmental changes that increase complexity from the relatively simple ancestral 56 
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angiosperm flower, followed in some cases by reversals in complexity. Highlighted in this review 57 

are patterns of parallelism and developmental processes associated with transitions towards 58 
flower complexity including sympetaly (petal fusion), bilateral flower symmetry, initiation of 59 

nectar spurs and heterostyly (pollen- and ovule-bearing reproductive organs of different length 60 

to reduce self-pollination), as well as quantitative changes that enhance pollen transfer including 61 
evolutionary change in floral tube and nectar spur lengths. 62 

 63 

Our understanding of floral trait parallelism has been facilitated by advances in the flowering 64 
plant phylogeny onto which floral traits are now being extensively mapped, revealing patterns of 65 

parallel trait evolution (for example; Sauquet et al. 2017; Wessinger et al. 2019; Wu et al. 2018; 66 

Zhong et al. 2019). At the same time, recent work has led to an unprecedented understanding 67 
of developmental and genetic processes that shape diverse aspects of flower form (reviewed 68 
here, and recently by Kramer 2019; Moyroud & Glover 2017; Smyth 2018; Woźniak & Sicard 69 
2018). Through integration, we can begin to identify biologically meaningful connections 70 
between patterns of trait evolution and the developmental genetic processes that shape those 71 

traits. Our goal in this review is to begin answering three fundamental questions of floral trait 72 
evolution.  73 

 74 

To what extent do repeatedly evolved floral traits utilize similar developmental and genetic 75 
processes? Analogous to Abouheif’s hierarchical approach for integrating morphology with 76 
development and genes when considering trait homology (Abouheif 1997), we consider trait 77 

parallelism in the same hierarchical context. Parallelism can be identified in flower function (e.g., 78 
transitions to a specific pollinator), morphology (e.g., transitions to similar organ dimensions), 79 
development (e.g., transitions via similar cellular processes), genetic pathways, genes, and 80 

specific causal mutations. Here, we review examples where repeated floral trait evolution is 81 

coupled with parallel or divergent developmental and genetic processes, highlighting the utility 82 
of a hierarchical approach. 83 

 84 

What constraints direct floral trait evolution to follow parallel developmental genetic paths? Our 85 

review of a subset of well-studied floral traits emphasizes the fact that nearly all flower 86 

diversification requires one or both of the following processes: hormone signaling (usually auxin) 87 
to initiate patterns of cell proliferation, and modifications to patterns of cell division and/or cell 88 

expansion to achieve adaptive variation in floral organ dimensions. The gene regulatory 89 

networks that affect these processes are extremely complex, and divergent genetic changes are 90 
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often employed. Yet, despite diverse, and often divergent genetic mechanisms for parallel trait 91 

evolution, we identify some similarities at the level of hormone signaling. 92 

 93 

Are the patterns of floral trait evolution and genetic processes underlying trait evolution 94 

reciprocally illuminating? We discuss whether and how patterns of trait evolution are likely 95 
shaped by genetic mechanisms, such that a given pattern of trait evolution points to specific 96 

genetic mechanisms and, by extension, whether we may predict patterns of trait evolution from 97 

descriptions of genetic mechanisms. This concept seems to apply to traits produced by 98 
relatively simple genetic mechanisms. Evaluating whether this idea holds for floral traits 99 

produced through complex genetic pathways will require additional insights into both trait 100 

evolution and development. 101 

 102 

2. MACROEVOLUTIONARY PATTERNS OF FLORAL TRAIT EVOLUTION 103 

The flower itself is a complex novelty of plant evolution (Friedman 2009). The ancestral flower 104 
was likely quite simple compared to the flower complexity we see among extant species. The 105 

ancestral form is predicted to have been bisexual, with unfused sterile perianth organs of similar 106 
shape (radial symmetry) surrounding unfused reproductive organs (Sauquet et al. 2017). This 107 
represents the common ground plan that is retained in some lineages (e.g. the family 108 

Nymphaceae—water lilies and relatives), and on which all subsequent floral trait evolution is 109 
based (Smyth 2018). An emerging theme is the parallel evolution of a more complex floral form 110 
from this simpler ancestral condition. Many parallel transitions towards increased complexity 111 

occur at a broad taxonomic scale and characterize major flowering plant lineages. These 112 
include evolutionary transitions from free to fused floral organs, from radially to bilaterally 113 
symmetrical flowers, as well as the origins of nectar spurs and heterostyly. 114 

 115 

Floral organ fusion has given rise to a diversity of specialized floral traits. The most elaborate of 116 

these is arguably the specialized pollinaria of orchids and milkweeds which facilitate precise 117 

pollen movement between flowers. Pollinaria are derived from fusion between stamens and 118 
pistils, two different floral organ types (adnation). Examples of fusion between the same type of 119 

floral organ (connation) are common. For example, carpel to carpel fusion, leading to a single 120 

syncarpous ovary, evolved early in diversification of eudicots and monocots. Sympetaly has 121 
evolved multiple times (Reyes et al. 2018; Stull et al. 2018; Zhong & Preston 2015) leading to 122 

corolla tubes and keel petals (Fig. 1a. b), which define major flowering plant lineages (e.g., 123 
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Lamiales—snapdragon, sages and relatives; Fabaceae—peas, beans and relatives; 124 

Polygalaceae—milkworts and relatives, Zingiberales—banana, bird of paradise and relatives).  125 

 126 

During the diversification of flowering plants, bilateral flower symmetry has evolved well over 127 

100 times from an ancestral condition of radial symmetry (Reyes et al. 2016). These transitions 128 
represent the evolution of additional complexity, where the basic floral plan is elaborated to 129 

include distinct developmental fates for dorsal and ventral sides of flowers (Fig. 2a, b). Similar to 130 

organ fusion, the evolution of bilateral flower symmetry defines major lineages of flowering 131 
plants (e.g., Fabaceae, Lamiales, Zingiberales, Orchidaceae—the orchid family).  132 

 133 

Nectar spurs are tubular outgrowths of (usually) petal tissue that hold nectar for visiting 134 
pollinators (Fig. 3a). These novel structures represent evolutionary complexity since spurs 135 
represent a local region of differentiated petal tissue with a novel developmental fate. Unlike 136 

sympetaly and symmetry, nectar spurs do not define major lineages, but they have evolved 137 
many times during flowering plant diversification and are well studied in multiple groups, for 138 

example, Aquilegia (columbine), Delphinium (larkspur), Linaria (toadflax),  and Pelargonium 139 
(Cullen et al. 2018; Hodges 1997; Jabbour & Renner 2012; Puzey et al. 2012; Tsai et al. 2018).  140 

 141 

Sympetaly, bilateral symmetry and nectar spurs each function to filter pollinators with specific 142 

morphologies, and improve conspecific pollen transfer efficiency (Armbruster 2014; Endress 143 
2001; Fenster et al. 2004; Stebbins 1970; Thomson & Wilson 2008). Therefore, each of these 144 
traits is considered to be an adaptation to maximize outcross mating success. The advantages 145 
of outcrossing include the maintenance of heterozygosity, often associated with increased 146 

relative fitness, and the avoidance of inbreeding depression (Darwin 1876; Husband & 147 
Schemske 1996).  148 

 149 

Other evolutionary trends toward greater floral complexity involve the evolution of 150 

developmental polymorphisms, where alternative developmental fates, controlled by genetic 151 

polymorphism, are expressed in different individuals. Examples include the evolution of 152 
heterostyly and dioecy (separate sexes). In heterostyly, genotypic variation at causal loci 153 

controls alternate spatial arrangements of anthers and stigmas that reduce self-pollination and 154 

reinforce outcrossing (Fig. 4). Heterostyly occurs in at least 28 families, and is thought to have 155 

arisen at least 23 independent times (Barrett 2002; Barrett et al. 2009; Naiki 2012). Reciprocal 156 

placement of reproductive organs in heterostyly functions to promote outcrossing through 157 
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segregated pollen deposition on pollinators’ bodies (Kohn & Barrett 1992; Simon-Porcar et al. 158 

2015; Zhou et al. 2015). 159 

 160 

Following origins of floral complexity, reverse transitions towards simpler ancestral forms do 161 

occur, and are often clustered within lineages. Evolutionary patterns of gain and loss for these 162 
complexity traits represent the superimposition of these two processes. Reversals toward 163 

ancestral forms appear to occur on a more rapid timescale than gains. For example, a single 164 

origin of sympetaly in the ancestor of Lamianae (Lamiales, Solanales and allied orders) has 165 

been followed by at least five reversals to free petals (Stull et al. 2018). In Lamiales a single 166 

origin of bilateral symmetry has been followed by at least eight reversals to radial symmetry 167 

(Zhong et al. 2017). Likewise in Malpighiaceae, bilateral symmetry is a shared ancestral trait 168 
and at least four lineages have independently reverted to radial symmetry (Zhang et al. 2013). 169 

Once gained, nectar spurs can be lost (Ballerini et al. 2019; Fernández-Mazuecos et al. 2019; 170 

Hodges 1997), but assessment of the relative rate of gain versus loss requires further 171 
investigation. Losses of heterostyly are extremely common within heterostylous lineages and 172 
reflect selection for a highly selfing mating strategy. For example, a single origin of heterostyly in 173 

Primula is followed by several independent losses across the genus (de Vos et al. 2014; Mast et 174 
al. 2006; Zhong et al. 2019). A selfing strategy associated with loss of heterostyly can be 175 

favored when pollinators are rare or unreliable, and when inbreeding depression is minimal, 176 

allowing the transmission advantage associated with selfing to be realized (reviewed in Busch & 177 
Delph 2012).  178 

 179 

Not all floral parallelisms involve qualitative changes in complexity like those described above. 180 
Evolutionary transitions between quantitative aspects of floral organ dimensions (size and 181 

shape) are common. Changes in petal size, corolla tube and nectar spur length occur even 182 

within genera (Fig. 5a-c) and are frequently evolutionarily labile in multiple directions, without a 183 
clear bias in directionality. For example, in Linaria there have been repeated evolutionary 184 

transitions between narrow and wide corolla tubes and between shorter and longer nectar spurs 185 

(Cullen et al. 2018). Evolutionary changes in corolla tube, reproductive organ or nectar spur 186 
dimensions can facilitate pollen placement on co-adapted pollinators while excluding others, 187 

thereby promoting pollinator specialization as a mechanism to maximize outcross mating 188 

success. However, transitions to very small flowers reflect selection for a highly selfing mating 189 
strategy, and transitions to small selfing flowers are often asymmetric, with transitions back to 190 

large outcrossing flowers unlikely (e.g., Baldwin et al. 2011).  191 
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 192 

3. DEVELOPMENTAL TRANSITIONS TOWARDS FLOWER COMPLEXITY 193 

3a. The developmental basis of sympetaly 194 
Petal primordia initiate either in a spiral arrangement (e.g., magnolia flowers) or in the whorled 195 

arrangement common to most eudicot and monocot species. Sympetaly, forming corolla tubes 196 
or keeled petals, occurs on a floral ground plan in which petal primordia initiate in a whorled 197 

arrangement such that lateral petal boundaries are adjacent to one another, facilitating petal to 198 

petal fusion (Fig. 1). The initiation of flower organs, including petals, in either a spiral or whorled 199 
arrangement results from positional information established by early auxin foci on the floral 200 

meristem, reinforced by cytokinin signaling leading to localized cell proliferation (reviewed in 201 

Rast & Simon 2008; Smyth 2018). But exactly how evolutionary transitions between spiral and 202 
whorled arrangements occur remains largely a mystery.  203 

 204 

Sympetaly occurs by two primary processes—congenital and postgenital fusion (reviewed in 205 
Specht & Howarth 2015; Verbeke 1992; Zhong & Preston 2015). Petal primordia that undergo 206 

congenital fusion (e.g., Lamiales; Fig. 1a) are united through the connection and extension of a 207 
meristematic region underlying the already initiated petal primordia. In postgenital fusion (e.g., 208 
Fabaceae; Fig. 1b), petals develop from distinct primordia that merge through a process of 209 

epidermal union. Given these divergent processes, non-parallel genetic mechanisms may 210 
underlie independent transitions to sympetaly. Determining the genetic basis for petal fusion has 211 
largely focused on model species in the Lamiales and Solanales that show congenital fusion 212 

(e.g., Antirrhinum, Mimulus, Petunia), and emerging insights are beginning to suggest parallel 213 
genetic mechanisms. 214 

 215 

Characterization of Mimulus lewisii mutants with loss of petal fusion led Ding et al. (2018) to 216 
propose a compelling model for congenital sympetaly. The model centers on regulation of auxin 217 

at the inter-petal primordia boundaries (Fig. 1c). In species with free petals, auxin levels are low 218 

between initiating petal primordia (Heisler et al. 2005; Reinhardt et al. 2003), where an organ 219 
boundary genetic program that maintains distinction between adjacent petals is upregulated 220 

(reviewed in Rast & Simon 2008). In M. lewisii, formation of the corolla tube is associated with 221 

high levels of auxin between petal primordia, consistent with cell proliferation in the inter petal-222 
primordia region. 223 

 224 
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The M. lewisii loss-of-fusion mutants suggest that evolutionary changes in the organ polarity 225 

program lead to elevated auxin between petal primordia, resulting in corolla tube growth. The 226 
organ polarity program determines adaxial/abaxial (top/bottom) identity of laminar organs (e.g., 227 

leaves and petals) and regulates auxin for laminar growth. Within this program, AUXIN 228 

RESPONSE FACTOR (ARF) proteins, specifically Arabidopsis ARF3, are known to repress 229 
auxin accumulation (Simonini et al. 2017). In M. lewisii, negative regulation of ARFs by trans-230 

acting small-interfering RNAs (tasiRNAs) is associated with high levels of inter-petal auxin (Fig. 231 

1c). Mutants defective for tasiRNA processing have elevated ARF expression levels, reduced 232 
auxin levels between petal primordia, and reduced petal fusion (Ding et al. 2018). The 233 

hypothesis of Ding et al., that changes to inter-petal auxin levels mediated by the polarity 234 

program determine sympetaly, is consistent with petal loss-of-fusion mutants in Ipomoea 235 
(feathered; Iwasaki & Nitasaka 2006) and Petunia (maewest; Vandenbussche et al. 2009). Both 236 

these mutations occur in genes that are components of the adaxial/abaxial polarity program.  237 

 238 

Elevated auxin levels are hypothesized to negatively regulate the organ boundary program 239 

(Furutani et al. 2004; Vernoux et al. 2000; and reviewed in Rast & Simon 2008) allowing 240 
confluence between developing M. lewisii petals. The model postulating upregulation of auxin 241 
between petal primordia, leading to downregulation of the organ boundary program (Fig. 1c), is 242 

in line with results from Antirrhinum majus (snapdragon), which clearly show that where the 243 
corolla tube develops, the organ boundary gene CUPULIFORMIS (CUP) is downregulated 244 
(Rebocho et al. 2017). The CUP homolog in Petunia, NO APICAL MERISTEM (NAM), along 245 
with an additional organ boundary gene, HANABA TARATSU (HAN), has also been implicated 246 

in the development of fused petals (Preston et al. 2019; Souer et al. 1996; Zhong et al. 2016). 247 
However, recent results demonstrate a role for NAM and HAN in promoting organ fusion, not 248 

maintaining organ boundaries (Preston et al. 2019; Zhong et al. 2016).  249 

 250 

Because sympetaly has evolved multiple times, employing divergent developmental 251 
mechanisms (i.e., congenital and postgenital fusion), at first glance it would seem unlikely that 252 

parallel changes to auxin accumulation mediated by the polarity program evolve repeatedly. 253 
Tantalizingly, the tasiRNA-ARF pathway is implicated in formation of the legume keel (Yan et al. 254 
2010; Zhou et al. 2013), derived from postgenital fusion of two petals (Crozier & Thomas 1993; 255 

Fig. 1b). How the tasiRNA-ARF pathway affects the organ boundary pathway at late stages of 256 
petal development, after petal organ boundaries have been established, remains unknown. Still, 257 
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these studies from Lamiales/Solanales and Fabaceae point to parallel developmental genetic 258 

mechanisms leading to divergent forms of sympetaly.  259 

 260 

3b. The developmental basis of flower symmetry 261 

Breaking radial symmetry requires the evolution of distinct developmental trajectories on the 262 
dorsal versus ventral side of a developing flower (Fig. 2). Our understanding of the genetic 263 

control of dorsal and ventral identity in bilateral flower symmetry comes primarily from work in 264 

snapdragon (Lamiales). Early in snapdragon flower development, even before flower organ 265 
primordia are visible, the flower symmetry genes CYCLOIDEA (CYC) and DICHOTOMA (DICH) 266 

are expressed on the dorsal side of the developing flower meristem. This pattern of early  267 

dorsal-restricted expression has been identified in some, but not all species with radially 268 
symmetrical flowers (Busch et al. 2011; Cubas at al. 2001; Zhong and Kellogg 2015) leaving it 269 
unclear whether restricted expression predates the evolution of bilateral flower symmetry. In 270 
snapdragon flowers, expression persists in the developing dorsal organs through later stages of 271 
maturation (Luo et al. 1996; Luo, Da et al. 1999). Their dorsal-restricted expression sets in 272 

motion a cascade of genetic interactions (Fig. 2c) that lead to differential development of flower 273 
organs along the dorso-ventral flower axis affecting the petal, stamen and carpel whorls.  274 

 275 

CYC and DICH belong to the Class II lineage of TCP family transcription factors (Martín-Trillo & 276 
Cubas 2010) and are paralogs resulting from a gene duplication event that occurred much more 277 
recently than the origin of bilateral flower symmetry in the snapdragon lineage (Gübitz et al. 278 

2003; Hileman & Baum 2003). CYC and DICH positively regulate RADIALIS (RAD), a MYB 279 
family transcription factor. Like CYC and DICH, RAD expression is restricted to the dorsal flower 280 
meristem and developing dorsal organs (Corley et al. 2005). A key regulator of ventral petal 281 

identity is DIVARICATA (DIV) (Galego & Almeida 2002). DIV and RAD are paralogs of one 282 

another. DIV is expressed both ventrally and dorsally, but in order to exclude ventral identity 283 
from the dorsal side of the flower, dorsal-restricted RAD protein competitively excludes DIV 284 
protein interactions required for DIV function (Raimundo et al. 2013).  285 

 286 

Symmetry genes in snapdragon determine dorsal and ventral fates by affecting patterns of cell 287 

division and/or cell expansion (Cui et al. 2010; Green et al. 2010). TCP family genes are known 288 
to broadly affect patterns of cell division, expansion and differentiation (Martín-Trillo & Cubas 289 

2010) therefore CYC and DICH may determine dorsal patterns of division/expansion directly or 290 

indirectly via RAD. Recent work has begun to elucidate mechanisms for complex shape 291 
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formation of the snapdragon ventral lip (Fig. 2c). During stages of development when the ventral 292 

petal undergoes sharp curvature through localized cell proliferation, the following genes are 293 
expressed at the site of curvature: DIV (Galego & Almeida 2002), CUPULIFORMIS (CUP), 294 

YUCCA1 (Rebocho et al. 2017), and AINTEGUMENTA (ANT) (Delgado-Benarroch et al. 2009). 295 

YUCCA1 is an auxin biosynthetic gene associated with auxin accumulation and initiation of 296 
localized cell proliferation. ANT belongs to the AINTEGUMENTA-LIKE/PLETHORA (AIL/PLT) 297 

gene  family, known to be auxin responsive (Krizek 2011), potentially placing ANT downstream 298 

of YUCCA1. Rebocho et al. (2017) provide compelling evidence that YUCCA1 is positively 299 
regulated by CUP, and that CUP in turn is positively regulated by DIV. Together, these analyses 300 

begin to shed light on how symmetry genes may shape floral organ development across the 301 

dorso-ventral axis by affecting regulators of cell proliferation via auxin signaling. 302 

 303 

Functional data from across eudicots support parallel recruitment of a CYC-dependent program 304 
in multiple origins of bilateral flower symmetry. In the sunflower family (Asteraceae), bilaterally 305 
symmetrical ray flowers have evolved more than once (Panero & Funk 2008) and different CYC-306 

like paralogs appear to have been recruited independently to direct ray flower development 307 
(Broholm et al. 2008; Chapman et al. 2012; Fambrini et al. 2011, 2018; Garcês et al. 2016; Kim 308 
et al. 2008). In papilionoid legumes, three CYC-like genes are responsible for dorso-ventral 309 

flower patterning. In Lotus japonicus,CYC1 and SQUARE PETALS (SQU) function redundantly 310 
to pattern the dorsal banner petal while KEELED WINGS IN LOTUS (KEW) primarily functions 311 
to maintain identity of the lateral petals distinct from the ventral keel petals (Feng et al. 2006; 312 
Wang et al. 2008, 2010; Xu et al. 2013) (banner, lateral and keel petals of Pisum sativum, a 313 

close relative of Lotus japonicus, are labeled in Fig. 1b). In the Brassicaceae, a close relative of 314 
Arabidopsis, Iberis amara, develops bilaterally symmetrical flowers and the differential growth of 315 

dorsal compared to ventral petals results from dorsal-specific petal expression of the CYC-like 316 
gene, TCP1 (Busch & Zachgo 2007). In addition to these functional studies, research focusing 317 

on the spatial distribution of CYC-like gene expression in both monocots and eudicots supports 318 

independent recruitment of a CYC-dependent program for bilateral flower symmetry (e.g., 319 
Bartlett & Specht 2011; Citerne et al. 2017; Howarth et al. 2011; Jabbour et al. 2014; Preston & 320 

Hileman 2012; Zhang et al. 2010; Zhao et al. 2018).  321 

 322 

Independent recruitment of a CYC-dependent program to shape bilateral flower symmetry 323 
requires the program to be regulated such that CYC-like gene expression is restricted to the 324 

dorsal (or ventral) side of the developing flower. How CYC-like genes evolve restricted 325 
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expression along the dorso-ventral axis is not well understood. Only in snapdragon, through 326 

characterization of the backpetals mutant, do we know that CYC expression would be 327 
continuous across the flower except for a regulatory sequence in its promoter that negatively 328 

regulates CYC on the ventral side of the developing flower (Luo, Da et al. 1999). Whether 329 

similar mechanisms explain independent origins of restricted CYC-like expression remains 330 
unknown.  331 

 332 

Across multiple eudicots, genetic studies point to loss of dorsal-restricted CYC-like gene 333 
expression in independent reversals to radial flower symmetry. In Plantago, Callicarpa, Mentha, 334 

and Tengia (Lamiales), Microsteria, Psychopterys (Malpighiaceae), and Cadia (Fabaceae), 335 

reversals to radial symmetry are associated with expanded expression of CYC-like genes 336 
across the dorso-ventral floral axis (Citerne et al. 2006; Pang et al. 2010; Preston et al. 2011; 337 
Zhang et al. 2013; Zhong et al. 2017). In Callicarpa  and Mentha, this is accompanied by 338 
expanded or absent RAD-like gene expression, respectively (Zhong et al. 2017). A few 339 
additional independent reversals to radial symmetry in Malpighiaceae, as well as Bournea and 340 

Lycopus (Lamiales) are associated with conservation of dorsal-restricted CYC-like gene 341 
expression (Zhang et al. 2012, 2013; Zhong et al. 2017; Zhou et al. 2008). This suggests 342 
potentially more complicated mechanisms than simple loss of dorsal-specific regulation 343 

(reviewed in Hileman 2014). In Lycopus, radially symmetrical flowers seem to have evolved 344 
through loss of RAD-like gene expression (Zhou et al. 2008). 345 

 346 

3c. The developmental initiation of nectar spurs  347 
In their multiple origins, nectar spurs derive from a variety of floral tissues (Endress 2001). In 348 
Aquilegia (columbines, Ranunculaceae; Fig. 5c), Centranthus (Caprifoliaceae), and Linaria 349 

(Plantaginaceae), nectar spurs develop as tubular outgrowths from the laminar petal or corolla 350 

tube surface (Cullen et al. 2018; Damerval & Becker 2017; Mack & Davis 2015; Fig. 3). In 351 
Delphinium, nectar spurs are uniquely integrated into both inner and outer whorl sepals and 352 
petals (Jabbour & Renner 2012). Even in closely related Aquilegia, which has evolved nectar 353 

spurs independently from those in Delphinium, nectar spurs develop in just the inner whorl 354 
petals. Impatiens (Balsaminaceae) develops nectar spurs from outer whorl sepals (Young 355 
2008). Interestingly, in Pelargonium (Geraniaceae), nectar spurs develop from intercalary 356 

growth within the receptacle resulting in a long cavity that appears to be (but is not) a sepal-357 
derived spur fused to the pedicel (Tsai et al. 2018). The Initiation of tubular outgrowths requires 358 

a new signal on the laminar surface (e.g., developing petal or sepal) that leads to a focused 359 
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area of cell division (Fig. 3b). Once a nascent spur initiates, spur elongation may occur through 360 

processes of additional cell division and/or cell expansion. Variation in early cell division or late 361 
cell expansion may contribute to interspecific variation in spur length (see discussion below). 362 

Research focussed on a few model species representing independent origins of nectar spurs 363 

points to divergent developmental mechanisms. 364 

 365 

In Aquilegia, auxin signaling is implicated in the initiation of a discrete cell proliferation zone on 366 

the developing petal laminar surface that results in an out-pocket or cup, forming the nascent 367 
spur (Ballerini et al. 2019; Yant et al. 2015). Evidence supporting this model comes from gene 368 

expression studies showing that an Aquilegia homolog of a gene implicated in auxin 369 

biosynthesis, CYTOCHROME P450 FAMILY71A (CYP71A), is significantly upregulated at the 370 
earliest stages of localized spur initiation within the petal field. In addition, genes downstream in 371 
auxin signaling, including ARF3/ETTIN, ARF8, and SMALL AUXIN UPREGULATED RNA 372 
(SAUR), are upregulated at these same early stages. Notably, SAUR is implicated in promotion 373 
of cell expansion (Spartz et al. 2012), and cell expansion may be critical for spur elongation in 374 

Aquilegia (Puzey et al. 2012). 375 

 376 

Another group of genes implicated in spur development are KNOX genes. These genes are not 377 

upregulated in the Aquilegia spur, but instead appear to be important for nectar spur 378 
development in relatives of snapdragons. Snapdragon flowers do not develop nectar spurs, but 379 
do produce a nectar sac (gibba) at the proximal end of the ventral corolla tube. In close relatives 380 

(e.g. Linaria), the gibba develops into a nectar spur. Snapdragon mutants constitutively 381 
overexpressing STM-like class I KNOX genes produce a tubular outgrowth on the ventral petal 382 
that is reminiscent of Linaria spurs (Golz et al. 2002). These ectopic tubular outgrowths can be 383 

interpreted as a duplicated corolla tube or a spur-like structure, but either way suggest a 384 

divergent mechanism for spur initiation. This divergent mechanism requires ectopic expression 385 
on the already developing petal surface of a novel meristematic region from which spur 386 
outgrowth is organized, presumably initiated by a novel pattern of KNOX expression. In Linaria, 387 

homologs of these KNOX genes show a surprisingly broad pattern of expression in the 388 
differentiating dorsal and ventral petals, not perfectly, but somewhat overlapping with the zone 389 
of nectar spur development. In snapdragon on the other hand, KNOX genes exhibit the 390 

canonical expression pattern restricted to undifferentiated meristematic tissues (Box et al. 2011; 391 
Golz et al. 2002).  392 

 393 
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This class of KNOX genes has been recruited for compound leaf development (reviewed in 394 

Nikolov et al. 2019) indicating the potential for KNOX-driven developmental complexity outside 395 
of meristems. Notably, KNOX genes are not upregulated in the developing Aquilegia spur (Yant 396 

et al. 2015). That auxin-responsive proteins function to downregulate KNOX genes at meristem 397 

edges in order for differentiation to occur (Heisler et al. 2005) further supports the hypothesis 398 
that auxin-driven spur development (in Aquilegia) and KNOX-driven spur development (in 399 

Linaria) represent divergent developmental genetic mechanisms. While nectar spurs can be lost 400 

(e.g., in Aquilegia and Antirrhineae, the tribe in which Linaria belongs; Ballerini et al. 2019; 401 

Fernández-Mazuecos et al. 2019), the developmental basis for spur loss has not been 402 

extensively studied. 403 

 404 

4. DEVELOPMENTAL TRANSITIONS IN FLOWER DIMENSIONS WITH SHIFTS IN MATING 405 
SYSTEM AND PRIMARY POLLINATOR 406 

4a. Hormone-responsive pathways control floral organ size and shape 407 

Similar to the initiation of a petal lip or nectar spur, floral organ dimensions result from two 408 
primary phases of organ growth: an initial period of cell division, followed by a period of cell 409 

expansion. Whereas the initiation of floral organs centrally involves auxin signaling, the two 410 
phases of organ growth are influenced by multiple plant hormones, including auxin, and diverse 411 
genes in regulatory networks acting downstream of hormones (Fig. 5d). Details of these 412 

networks and candidate genes identified in the model species Arabidopsis and Antirrhinum have 413 
recently been extensively reviewed (e.g., Krizek & Anderson 2013; Moyroud & Glover 2017). It 414 
is clear that many genetic interactions contribute to the duration and rate of cell division and to 415 
the degree of cell expansion; therefore variation floral dimensions may often be polygenic.  416 

 417 

A few major themes emerge from genetic studies of floral organ size control. First, organ size is 418 

influenced by the intersection of several different plant hormones that, in combination, affect 419 
development (Fig. 5d). An illustrative case is the gene regulatory network involving ANT, which 420 

promotes cell division by positively regulating cell cyclin genes in Arabidopsis (Mizukami & 421 

Fischer 2000). Multiple regulators of ANT have been described, including AUXIN-REGULATED 422 

GENE INVOLVED IN ORGAN SIZE (ARGOS; Krizek 1999; Mizukami & Fischer 2000), ORGAN 423 

SIZE RELATED 1 (OSR1; Feng et al. 2011), and ARF2; Vert et al. 2008). Importantly, these 424 

ANT regulators are themselves regulated by diverse hormones: ARGOS is upregulated by auxin 425 
and cytokinin (Hu et al. 2003), OSR1 is upregulated by ethylene (Feng et al. 2011), and ARF2 is 426 

likely sensitive to brassinosteroids (BR) and auxin signals (Vert et al. 2008). This points to the 427 
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importance of flexible co-regulation of a single network by a variety of plant hormones during 428 

flower development. Second, specific hormones can be involved in both cell division and cell 429 
expansion processes, through different regulatory pathways. This is true at least for ethylene 430 

(Feng et al. 2011; van Es et al. 2018) and BR (Hu et al. 2006; Vert et al. 2008). Third, there are 431 

individual genes that affect both cell division and expansion processes (Fig. 5d; Feng et al. 432 
2011; Varaud et al. 2011; Xu & Li 2011). Finally, important mechanisms for limiting organ size 433 

include ubiquitin-mediated degradation of positive growth factors (Disch et al. 2006; Li et al. 434 

2008) or the action of TCP-family transcription factors that promote cell differentiation (Huang & 435 
Irish 2015). 436 

 437 

4b. The developmental basis for flower size transitions with selfing 438 
A model for studying developmental changes responsible for reduced flower size associated 439 
with self-pollination is Capsella rubella (Brassicaeae; Fig. 5a). This species has evolved flowers 440 
that are five-fold smaller than its outcrossing sister species, Capsella grandiflora, largely through 441 
reduced cell division in floral organs (Sicard et al. 2011). Fine-mapping of QTL in the 442 

interspecific cross has identified causal mutations at two loci contributing to differences in cell 443 
division. The first is a petal-specific enhancer of STERILE APETALA (SAP) which encodes an 444 
F-box protein component of an E3 ubiquitin ligase (Sicard et al. 2016). This ubiquitin ligase 445 

promotes cell division by targeting negative regulators of cell proliferation (Wang et al. 2016). 446 
Capsella rubella has acquired mutations to this enhancer that reduce SAP gene expression, 447 
resulting in reduced flower size. The second locus is CYP724A1, a gene in the BR-synthesis 448 
pathway (Fujikura et al. 2018). The C. rubella CYP724A1 allele has mutations conferring greater 449 

splicing efficiency resulting in higher gene expression, which in turn increases BR levels. This 450 
results in high BR levels that inhibit cell division and result in smaller flowers (Fujikura et al. 451 

2018). These data point to the precise regulation of cell division and cell expansion by 452 
hormones. Depending on the context, hormone increases may promote or inhibit cellular 453 

processes. The quantitative genetic basis of changes in overall size has also been studied in 454 

other species (e.g., Mimulus guttatus; Kelly and Mojica 2011), however the underlying 455 
developmental pathways have not yet been identified.  456 

 457 

4c. The developmental basis for flower dimension transitions with pollinator shifts  458 

The developmental basis of floral evolution associated with pollinator transitions has been 459 
investigated in several genera. In Petunia, flower shape evolution associated with adaptation to 460 

hawkmoth and hummingbird pollinators has occurred through changes to both cell division and 461 
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expansion. Hawkmoth-pollinated P. axillaris has evolved increased corolla tube length relative 462 

to bee-pollinated P. integrifolia through increased cell division and cell expansion (Stuurman et 463 
al. 2004). Elongated stamen filaments and styles in hummingbird-pollinated P. exserta have 464 

primarily involved cell division (Hermann et al. 2015). In Saltugilia (Fig. 5b), flower size variation 465 

associated with adaptation to different pollinators results primarily from differences in cell 466 
expansion (Landis et al. 2016), whereas in Lithospermum, flower size variation primarily 467 

involves changes to cell division (Cohen 2016). Candidate genes for these pollinator-associated 468 

evolutionary transitions have not been reported.  469 

 470 

Similar to corolla tube length, spur length evolves in response to specific pollinators. For 471 

example, hummingbird- and hawkmoth-pollinated species have longer spurs compared to bee-472 
pollinated relatives. Studies in different lineages point to divergent mechanisms underlying spur 473 
length differences among closely related species. Among closely related Linaria species, 474 
differences in cell division early in spur patterning explain most interspecific spur length variation 475 
(Cullen et al. 2018). However, among closely related Aquilegia species (Fig. 5c), differences in 476 

cell expansion at later stages of differentiation explain most interspecific variation in spur length 477 
(Puzey et al. 2012). In the unique spurs of Pelargonium, both cell division and cell expansion 478 
processes jointly determine interspecific spur length differences (Tsai et al. 2018). Given the 479 

developmental complexity of cell division and expansion networks in floral tissue (Fig. 5d), there 480 
are many target loci that could, in theory, generate adaptive variation in spur length. One 481 
appealing candidate for spur length variation due to cell expansion is the SAUR-dependent 482 
pathway, implicated in Aquilegia spur cell elongation (Yant et al. 2015). 483 

 484 

4d. The developmental and genetic basis of heterostyly 485 

Evolution of heterostyly requires complete linkage of major effect alleles causing reciprocal 486 

differences in reproductive organ length (Fig. 4). For example, with distyly, a major effect allele 487 
causing short styles is linked to a major effect allele at a second locus causing long stamen 488 
filaments. Often these loci are also linked to a self-incompatibility locus. The set of linked loci is 489 

termed the S-locus supergene and high linkage disequilibrium is maintained by suppressed 490 
recombination (Barrett & Shore 2008; Charlesworth 2016). In multiple genera, suppressed 491 
recombination results from S-locus hemizygosity, with S-locus genes present in one morph and 492 

completely absent in the other (Cocker et al. 2018; Kappel et al. 2017; Shore et al. 2019; 493 
Ushijima et al. 2012; Yasui et al. 2012). 494 

 495 
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In theory, major effect alleles for organ length polymorphism could arise in any of the diverse 496 

networks that affect floral organ cell division or cell expansion, as long as mutations can 497 
specifically affect a single floral whorl (e.g., styles but not stamen filaments). Only a small 498 

number of loci responsible for style and/or stamen length in heterostylous taxa have been 499 

identified, yet it is already clear that diverse loci are recruited into S-locus supergenes. In 500 
Primula, allelic differences causing style length variation via changes in cell expansion are 501 

caused by presence/absence of a CYP734A50 homolog in the S-locus (Huu et al. 2016; Li et al. 502 

2015; Nowak et al. 2015). CYP734A50 is known to function in BR degradation. Individuals with 503 
the S-locus haplotype containing CYP734A50 have short styles due to increased BR 504 

degradation causing reduced cell expansion in style tissue (Huu et al. 2016; Nowak et al. 2015). 505 

It is not yet known how this locus influences organ length in the style only. In Turnera, variation 506 
in style length is caused by the presence/absence of a BAHD acyltransferase homolog that 507 

likely functions to inactivate BRs (Shore et al. 2019). Interestingly, Primula and Turnera have 508 
functionally converged on BR-dependent mechanisms for style length polymorphism, albeit 509 
through distinct components of BR regulation. The loci affecting stamen length in Primula and 510 

Turnera have been identified as homologs of the B class organ identity gene GLOBOSA 511 
(Nowak et al. 2015) and of S-PROTEIN HOMOLOG 1 (Shore et al. 2019), 512 

respectively. However, it is currently unclear how allelic variation at these loci determines 513 

stamen length.  514 

 515 

Reversals from heterostyly to homostyly associated with transitions to selfing occur relatively 516 
rapidly (e.g., de Vos et al. 2014; Mast et al. 2006; Zhong et al. 2019). Homostyly can be caused 517 

by loss-of-function mutations to one or more genes in the hemizygous S-locus. In both Primula 518 
and Turnera, loss-of-function mutations at the style length loci (CYP734A50 or BAHD, 519 

respectively) inactivate their repressive effects, resulting in “long homostyle” phenotypes where 520 
style length is similar to stamen length (Huu et al. 2016; Shore et al. 2019). Accordingly, short 521 

homostyle mutants in these two systems result from loss-of-function mutations to the filament 522 

length loci (GLOBOSA or SPH1) (Li et al. 2016; Shore et al. 2019). 523 

 524 

5. CONSTRAINTS SHAPING PARALLEL AND DIVERGENT PROCESSES 525 
The floral traits reviewed here exhibit evolutionary parallelisms in the context of function, but 526 

often involve non-parallel changes to organ-level development. For example, sympetaly can be 527 
congenital or postgenital; bilateral flower symmetry can derive from developmental differences 528 

in the perianth, the stamen whorl, or both; and nectar spurs can be derived from different floral 529 
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organ tissues. In most cases, these novel traits require a signal establishing new patterns of cell 530 

proliferation. Sympetaly requires initiation of cell proliferation between otherwise distinct organs; 531 
spur development requires focused cell proliferation within a laminar surface. Data point to a 532 

parallel process of novel auxin foci as an initiating signal. This is not surprising since auxin 533 

accumulation is a primary mechanism by which organ out-growth occurs in plants and likely 534 
represents a significant constraint on patterning mechanisms. 535 

 536 

Once localized cell division is patterned, the input and interplay between cell division and cell 537 
expansion required to shape developing organs is complex (Fig. 5d). It is not surprising that 538 

studies point to multiple components of this pathway affecting organ dimensions. Which loci are 539 

the target of selection is likely constrained by potential pleiotropy, with genes already acting in 540 
an organ-specific manner reducing off-target effects (e.g., a GLOBOSA homolog in stamen-541 
length variation). However, many genetic changes channel response through the BR hormone 542 
pathway (e.g., petal size in Capsella; style length in Primula and Turnera). BR-dependent 543 
pathways may be particularly flexible targets for adaptive evolution of decreased floral organ 544 

length. Aside from being implicated in both cell division and expansion, BR-dependent 545 
mechanisms seem to be tightly controlled by hormone concentrations: either an increase or 546 
decrease in BR concentration inhibits organ growth (Fujikura et al. 2018). Therefore, multiple 547 

genetic mechanisms may result in reduced organ growth by disturbing BR levels away from 548 
levels that maximize cell division or expansion. Genes involved in the degradation of growth-549 
promoting factors (including BR) show a pattern of parallel recruitment, again pointing to the 550 
importance of the levels of critical growth-promoting factors. 551 

 552 

6. RECIPROCAL ILLUMINATION BETWEEN PHYLOGENETIC PATTERNS AND GENETIC 553 

MECHANISMS 554 

Adaptive transitions in floral traits are ultimately limited by the availability of suitable mutations. 555 
This can cause genetic constraints that shape patterns of trait evolution if mutations causing 556 
certain traits arise much more frequently than mutations causing transitions to other traits or 557 

reversals to the ancestral state. Such mutational biases may help explain the tempo and relative 558 
reversibility of parallel transitions. We see this relationship for two well-studied traits, each with a 559 
relatively simple genetic basis. First, the parallel evolution of self-compatible (SC) from self-560 

incompatible (SI) mating systems; second, the parallel evolution of red flowers from bluish 561 
ancestors associated with transitions from bee to hummingbird pollination. In both cases, we 562 

find lineages where parallel evolution in the forward direction (to SC or red flowers) is 563 
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significantly more common than reversals to the ancestral condition (SI or blue; Igic & Busch 564 

2013; Wessinger et al. 2019). SC and red flowers are often produced through loss-of-function 565 
(LOF) mutations to SI genes and anthocyanin pathway genes, respectively (reviewed in Shimizu 566 

& Tsuchimatsu 2015; Wessinger & Rausher 2012). The target size for mutations that disrupt 567 

gene function is much larger compared to mutations that can restore gene function to a 568 
degraded gene or pathway. Therefore, genetic constraints may contribute to the extreme 569 

asymmetry in transition rates between SI and SC, and between blue and red flowers. These 570 

represent additional constraints beyond those clearly imposed by selection from pollinator 571 
environment.  572 

 573 

It is less apparent that mutational biases, in addition to selective processes, contribute to 574 
phylogenetic patterns in floral traits reviewed here. These morphological traits are generated 575 
through developmental pathways that can be substantially more complex than for SI and flower 576 
color. With this additional complexity, we lack a clear expectation that certain transitions more 577 
reliably involve frequently-arising LOF mutations, or other types of mutations with relatively large 578 

target size. Naively, we might assume that, following the origins of additional morphological 579 
complexity (e.g., sympetaly, bilateral symmetry, or spurs), secondary reversals to the ancestral 580 
condition might involve LOF mutations that dismantle developmental complexity. We currently 581 

have limited information that this is the case.  582 

 583 

Reversals from bilateral to radial flower symmetry are common and may be coupled to LOF 584 

mutations at CYC regulatory sequences that eliminate dorsal-restricted expression, analogous 585 
to snapdragon backpetals (Luo, Da et al. 1999). However, some reversals rely on other genetic 586 
mechanisms that do not mimic backpetals, but may also have large target size (e.g., loss of 587 

floral RAD expression in Lycopus). Transitions between unfused and fused corollas, as well as 588 

spurred and unspurred flowers, seem to occur with appreciable frequency in certain angiosperm 589 
lineages (Ballerini et al. 2019; Hodges 1997; Reyes et al. 2018; Stull et al. 2018). However, we 590 
have a limited picture of phylogenetic patterns for these traits, making an assessment of relative 591 

reversibility difficult. In addition, we have scant information on the developmental bases for 592 
reverse transitions. Additional data on developmental mechanisms and macroevolutionary 593 
patterns for sympetaly and nectar spurs will allow further insights into the relationship between 594 

pattern and process. 595 

 596 
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For evolutionary transitions in floral dimension traits (e.g., flower and organ size), we expect 597 

minimal effects of mutational bias on patterns of trait evolution. Given the extremely complex 598 
regulatory networks involving both promotive and repressive pathways (Fig. 5d), frequently 599 

arising LOF mutations could lead to either increases or decreases in size. Thus, we expect any 600 

asymmetries in the rates of transitioning between different flower dimensions to be shaped 601 
primarily by selective constraints. For example, transitions towards, but not away from longer 602 

nectar spurs in Aquilegia are hypothesized to involve selective constraints imposed by moth 603 

pollinators (Whittall & Hodges 2007). An exception is the reversal from heterostyly to homostyly 604 
involving LOF mutations to hemizygous genes at the S-locus (Huu et al. 2016; Li et al. 2016; 605 

Shore et al. 2019). In this case, the evolution of a hemizygous S-locus in heterostyly acts as a 606 

simple genetic locus, easily disrupted by mutation, echoing the mechanism for transitions from 607 
SI to SC. These LOF mutations help explain the relatively rapid pace of transitions from 608 

heterostyly to homostyly and may generate a genetic constraint on reversals, helping to explain 609 
the asymmetric pattern of parallel transitions.  610 
  611 

7. SUMMARY 612 
Approaching parallel trait evolution through the hierarchical lens has proven useful for 613 

understanding which levels of organization and patterning exhibit similarity. While we identified 614 

examples of both parallel and divergent mechanisms from function through tissues to molecular 615 
changes, most revealing has been the central role of hormones in floral trait evolution. We see 616 

this both in the repeated establishment of novel floral traits and in evolutionary modifications 617 
associated with transitions to selfing and between pollinators. Traditionally, floral evo-devo 618 
research has focused on conservation and diversification of gene expression and function. Of 619 

course, identifying causal mutations for trait evolution is the holy grail, but the synthesis here 620 
suggests that research focused on the role of hormones in trait novelty will provide critical and 621 

novel insights. Genetic constraints not only shape the paths through which development 622 

proceeds, but also the macroevolutionary patterns of trait evolution. Traits with a simple genetic 623 

basis and that derive through LOF mutations provide a clear opportunity for reciprocal 624 

illumination. Whether these insights extent to more complex developmental patterning is less 625 

clear. What is clear is that when, as in the case of heterostyly, complex trait development is 626 
traced to simple genetic mechanisms, analogous to those underlying flower pigment evolution 627 

or the loss of self-incompatibility, reciprocal illumination is possible. 628 

 629 
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Figure 1 Examples and hypothesized developmental basis of sympetaly. (a) Mimulus lewisii 985 
flower with corolla tube formed by congenital petal fusion (white arrowhead). (b) Pisum 986 
sativum flower with keeled ventral petals formed by postgenital fusion (blue arrowhead). (c) A 987 
model for the developmental basis of petal fusion (Ding et al. 2018), whereby variation in 988 
regulation of the organ polarity program [e.g., AUXIN RESPONSE FACTOR (ARF)] regulated by 989 
trans-acting small interfering RNAs (tasiRNAs) affects interpetal levels of auxin (high levels in 990 
green, low levels in blue). High auxin levels are hypothesized to promote interpetal cell 991 
proliferation and negatively regulate the organ boundary genetic program [e.g., CUPULIFORMIS 992 
(CUP)].  993 
Figure 2 Examples of flower symmetry and developmental basis of bilateral symmetry in 994 
Antirrhinum majus (snapdragon). (a) Radially symmetrical flower of Crassula exilis. (b) 995 
Bilaterally symmetrical flower of Penstemon virgatus. (c) The developmental program that 996 
regulates bilateral symmetry in snapdragon. CYCLOIDEA (CYC), DICHOTOMA (DICH), and 997 
RADIALIS (RAD) determine dorsal flower development. DIVARICATA (DIV) determines ventral 998 
flower development. Ventral identity is precluded from the dorsal side by RAD protein 999 
competitively excluding DIV from interacting with DIVARICATA RADIALIS INTERACTING FACTORs 1000 
(DRIFs). DIV specifically affects ventral lip development by putatively altering cell proliferation 1001 
at the site of curvature through regulation of CUPULIFORMIS (CUP), YUCCA (YUC), and 1002 
AINTEGUMENTA (ANT). 1003 
Figure 3 Nectar spur initiation. (a) Pinguicula sp. (butterwort) with a petal-derived spur 1004 
(arrowhead). (b) Nectar spurs, regardless of tissue origin, require a localized zone of cell 1005 
proliferation to initiate outgrowth (red area). Elevated auxin and meristem identity have each 1006 
been implicated in establishing a focal region of cell proliferation. 1007 
Figure 4 Heterostyly dimorphism. Allelic variation across tightly linked genes at a single locus 1008 
determine stamen and style length dimorphism in heterostylous species. (a) L-morph flowers 1009 
have long styles and short stamens. (b) S-morph flowers have short styles and long stamens. 1010 
These alternative arrangements of reproductive organs (L- and S-morphs) promote outcrossing 1011 
and reduces self-pollination.    1012 
Figure 5 Evolution of flower dimensions through changes in cell proliferation and/or expansion. 1013 
(a) (top) Capsella grandiflora and (bottom) Capsella rubella differ in flower size as a result of 1014 
selection for selfing in C. rubella. (b) (top) Saltugilia australis and (bottom) Saltugilia splendens 1015 
differ in corolla tube length (and petal size) as a result of selection imposed by flower–1016 
pollinator interactions. (c) (top) Aquilegia brevistyla and (bottom) Aquilegia chrysantha differ in 1017 
nectar spur length as a result of selection imposed by flower–pollinator interactions. (d) The 1018 
genetic programs regulating the balance between cell proliferation and cell expansion are 1019 
complex and rely on hormone regulation. Some genes jointly affect both cell proliferation and 1020 
cell expansion (e.g., ARF8/BPEp and MED25). Hormones are in bold; genes and hormones 1021 
discussed in this review are in red. Abbreviations: ANT, AINTEGUMENTA; ARL, ARGOS-LIKE; ARF, 1022 
AUXIN RESPONSE FACTOR; BPE, BIG PETAL; BR, brassinosteroid; MED, Mediator of RNA 1023 
polymerase II; tasiRNAs, trans-acting small interfering RNAs. Photographs courtesy of (a) Adrien 1024 
Sicard, (b) Jacob Landis, and (c) Evangeline Ballerini. 1025 
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caused by possible color shift in print or on-screen display, and to illustrate di�erent shades of colors for our color blind 
readers and printing in black and white.    

Hence labels have been added, and where possible, verbal color descriptions have been removed from the captions.
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