Robert L. Brigden

A. B. College of Emporia, 1930

M. A. University of Kansas, 1931

Submitted to the Department of Psychology and the Faculty of the Graduate School of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Approved by

Qaumoned of wheeler
Instructor in charge

May 11934
$\frac{\text { Qaumand He Wheeler }}{\text { Chairman of Department }}$

The writer wishes to express his indebtedness to Dr. Raymond H. theeler for numer ous suggestions and criticisms, and enthusiastic assistance wi thout which this experiment would have been neither conceived nor executed. Gratitude is al so due the other members of the staff of the Psychology Department, to Robert Stephenson and the other students who contributed their time to the experiment.

2.

TABLE OF CONTENTS

Page

Introduction............................ 3
Purpose of the experiment........... 6
History*... 7
Methods.*...........*********.................. 13

D1s cussion............................... 39
Theoretical..............................4 49
Conclusions ****.................** 66
Appendix...............*********.* 71

Introduction

The science of Psychology aims to predict and control human behavior. In order to achieve these purposes, psychologists have approached the study of behavior in devious ways. Some have considered human activity the functioning of a machine, and attempted to understand it by investigating its isolated parts. Others have attempted to identify inculties which appeared to control behavior. Still others have regerded behavior as a series of reflex acts and as the unfolding of inherited patterns of response. These diverse approaches to the study of "human nature" have yielded such concepts as association, mental chemistry, attention, the act, the self, the conditioned reflex and many others. In spite of these numerous attempts, the goal of prediction has not been achieved. Some maintain that we must refine our techniques. Others are bold enough to assert that our presuppositions are incorrect and that our methods, as a result, are sterile.

To the latter group a new and apparently more fruitful methodology has been opened up by modern discoveries in the field of relativistic dynamics (11). Just as the conception of the universe as an organic system simplifies many of the problems of the astronomer and physicist, so to the psychologist, the conception of
behavior as the dynamic resultant of field forces offers a new and fruitful method of approximating the aims of prediction and control of that behavi or. $(30,31,17)$ The assumptions of this approach are: (1) natural phenomena are systems, organized in space and time, an assumption conceded by relativistic physics (21, 20). (2) Organization implies that the system is integrated toward some future or 'goal'. $(14,39,31)$ (3) The presence of future enas within the system demands that there will be activity, which will occur in the shortest (or longest) possible route toward that ond, as the system attempts to gain equilibrium. (4) A11 activity within the system will be controlled by the system as a whole, so that if the forces within the system are considered as vectors, the resulting activity wil1 be a resultant of those forces $(17,30)$. (5) Since the whole is organized it must have uniform, complementary Iaws. Thus the laws which apply to the activity of one part, will apply to the activity of any part. These are laws of dynamics given an organismic interpretation. (30)

Applying these implications to the study of behavior it becomes obvious that insofar as we are able to measure the forces (vectorial) determining behavior, we will achieve our goal of prediction, and insofar as we can control those forces, we will be able to control behavior. Hereln lies the purpose of the present study. The principles which are discovered under the present conditions
w111 be transposable, theoretically, to behavior in general, or to any particular example of behavior in which we ere interested.

Purpose of the Experiment.

The aim of the experiments herein reported is fur ther insight into the dynamics of gross human behavior, obtained from a functional analysis of walking.

Walking was selected as the means of achieving this purpose because:

1. It is one activity in which the entire organism is obviously involved. According to our assumptions, the entire organism is involved in every act, since the activity of any part of a systen affects the entire system (1).
2. The condi tions of walking can be easily controlled.
3. The form of the activity (the subject's course) can be objectively observed and studied. According to our assumptions all behavior is patterned in accordance with dynamic principles. (Law of least action, closure, symmetry, etc.) In this experiment we are standing outside of the responding organism and are observing the pattern of its behavior under different conditions of fleld structure.

History

A history of the problem falls naturally into two di visions; studies of walking and studies in dynaics.

A11 of the studies on walling have a common conclusion. If people walk, deprived of the ordinary means of orientation, they follow a spiral path. It is a common knowledge that a man lost in the woods, or in the dark or fog wil walk in circles until he regains his orientation. Similar behavior has been observed in protozoa (23), birds, mice (8), rabbits, kangaroos (23) and in numerous intermediary forms. One of the earliest studies of this phenomenon was made by $F \cdot O$. Guldberg (10) in Germany in 1897. He made his subjects walk through the wo ods, swim, and steer a boat in the dark. Under all of these conditions circular paths were followed. He belleved that the circularity resulted from structural asymmetry in the subjects, plus an instinct for circular movement. He concluded that circular movement was the basic movement of animal life.

In 1901, H. S. Jennings (13) remarked that in spite of the numerous reports of spiral movement in or ganisms, no adequate theory hed been advanced to explain the phenomenon. The theory which he advanced attributes the spiral path of organisms to struc tural asymmetries plus an attempt to compensate for them. For example, a paramecium is not bilaterally symetrical. If it simply swam forward, these
asymmetries would cause it to move in constant circles. To go beyond this restricted movement, the paramecium revolves on its long axis as it swims, with the result that its range of movement is greatly increased since the circling on the body axis compensates for its structural irregularities. The principle is the same as that followed by a rifle builet. Jennings believes that the relationship between the length of the organism and the frequency of its spiral bears out this hypothesis.

The most complete and systematic investigation of spiral movement in ocganisms was contributed by A. A. Schaeffer $(23,24,25,26)$ who studied the phenomenon for over six years in numerous animal forms from the ameba to man. His conclusion was that "no forward moving organism has yet been found that does not move in some form of spiral path when there are no orienting senses to guide 1t." In his experiments on man, schaeffer studied the paths of subjects who walked stral ghtaway blindfolded, drove an automobile blindfolded, walked around imagined circles, swam straightaway blindfolded, and walked around ifgure eights and squares. He also made comparative studies on mental defectives and normal subjects under the influence of a drug. Spiral paths resulted under all of these conditions. He next attempted to determine the mechanism which caused spiraling. Schaeffer rejected the theories based on physical asymmetries because such asym-
metries are permanent while the size of the spiral and its direction vary in the same individual. horeover, asymetry would not account for the spiral course in which a blindfolded subject drives a car. Another important consideration is that subjects who walked alternately backward and forward traced a spiral which was similar to those traced when they walked continually forward.

Schaeffer also rejects an explanation of spiraling on the basis of any localized structure such as the semicircular canals, because the spiraling is present in organIsms in which no such structure exists. "There is already enough evidence on hand to make it highly probable that the same mechanism is at work in man that operates in the ameba. And those anatomical structures of brain and muscle and sense organ which are peculiar to mammals or vertebrates cannot offhand be assumed to control a mechanism which functions perfectly in animals lacking these structures." Schaeffer's conclusion is that"the geth of man is the projection of a hellcal spiral on a plane surface." And, "the fundamental path followed by moving organisms is therefore a spiral, and it is only through the agency of orienting senses that oreanisms are able to change their direction of movement. The great diversity of form observed in organisms that move in spiral paths indicates that the automatic mechanism regulating the direction of the path is not dependent upon or connected with morphological structures,
but is much more fundamental in its nature affecting the protoplasm directly."

The conclusion which we will araw from these studies Is that spiral movement is a universal basic form of animal movement, which can not be considered caused by any local structure or form. We belleve that Schaeffer's experiments fustify this conclusion since spiral courses were followed by eninal forms in which organs of equilibrium were lacking. Morcover spiral movement can not be attributed to bodily asymmetry since it appeared in those cases in wich blindfolded swo jects instructed a driver where to steer an automobile.

Up to the present time, however, no satisfactory hypothesis that might account for this universal phenomenon has been proposed. Since spiral movement is so universal it would seem that it must also be a fundamental mode of activity, an understanding of which should add greatly to ow mastery of psychologlcal problems in general, especially all of those where motility is involved. Indeed, the thesis is here suggested, that, as a general problem in methodology, it would be fruitful to assume all motility to be modifications of some basic form of response. This basic form would seem to be spiral movement.

Our second historical approach is concerned with the dynamics of movement, and the determination of form. The
latter problem was considered by Theodore A, Cook in his book entitled the Curves of Iffe. His thesis was, that form is a diagram of the forces which have worked to produce an organism. He was particularly interested in organisms whose growth took the form of a logarithmic spiral. He studied spiraling plants, protozoa, netazoa, snails and other shell bearing antmals, and the horns of vertebrates. Then he proceeded to examples of spirals In architecture and art. Regarding the mathematics of the spiral he says (page 6), "Is the logarithmic spiral the mantfestation of the law which is at work in the increase of organic bodies? If sop it may be significant that Newton showed in his Principia, that if attraction had generally varied as the inverse cube instead of as the inverse square of the distance, the heavenly bodies would not have revolved in ellipses but would have rushed off into space in lognrithmic spirals. Professor Goodsir therefore asked, if the law of the square is the law of attraction, is the law of the cube (that is, of the cell) the law of production?"

Three years after the appearance of Cook's book, another, dealing with the same subject was written by D'Arcy Thompson (27). This latter book, while also interested in the examples of spiral form, treated In greater detal the geodesics, mechanics and mathenatics of form. Thompson proves that the form of organisms is necessarily what it is. In other words, form is not arbitrarily, but dynamically determined. The
direction of growth of a plant, the formation of honeycomb cells, cell division and partitioning, the formetion of muscles and bones and even the length of stride in walking, are all phenomena occurring in accordance with the principles of dynamic s and geodesies.

The immediate historical approach to this study lies in recent davelopments in gestalt psychology. Since the publication of KBhler's "Physischen Gestalten" in 1920 and Koffke's "Grundlagen der Psychischen Entwicislung" In 1925 It has become increasingly apparent that the lavs of behavior are the laws of dynamics, given a Gestalt or organismic interpretation. Wheeler, in "the Laws of Human Nature" proposes eight transposable principles, defined as laws of dynemics, and in "The Principles of liental Development", Wheeler and Perkins make use of fifteen dynamic laws. Recently Lewin and Brown $(4,16,17)$ have attempted defintte applications of similar laws in more precise form. to problems in emotional and social behavior. This study mey be considered a direct test and outgrowth of suggestions from these latter works.

Methods

A functional analysis of walking was made by varying all conditions, both objective and subjective, which were considered significant in determining the subject*s path of motion.

The variations which were studied were:

1. Subject's degree of general orientation.

The majority of the subjects were allowed to walk to the field whare the experiment was conducted. To stady the effect of general orientation, five subjects were blindfolded and driven to the fleld in a car by such a devious route that none of them knew where he was at any time during the experimental periode
2. General environmental conditions.

The experiment was conducted both with and without the presence of persons in the environment, other than the subject and experimenter; both with and without wind or sun; with sounds excluded as far as possible and with sounds present.
3. Body position.

At various times the subjects were instructed to walk In a normal position, tipped to the side, leaning forward or Ieaning backward.
4. Position of hands.

The influence of the position of the hands was studied under four conditions: (a) used as in normal walking, (b) on hips, (c) hung limp at sides, and (d) in pockets. 5. Ears.

The influence of audition was checiced by testing subjocts wi thout dampening nie thods; other subjects who were prevented from hearing and still others who wore a watch over one ear. The watch was worn to control the subject's rate of walking.
6. Conditions of wa reing.
a. Constant, normal walking.
b. Step and rest type of movement.
c. Walking under tension or under relaxation.
d. Walking at different rates of spoed. The three speeds employed were:

1 step every 2 seconds (8 ticks of watch)
1 step every 1 second (4 ticks of watch)
1 step every $\frac{1}{3}$ second (2 ticks of watch)
7. Definiteness of goal.
a. Subject told to walk in a straight line. (Blindfolded)
b. Subject allowed to locate some object and then, blindfolded, told to walk to the object.
c. Subject attempts to walk in a straight line toward a constant sound.
d. Subject hears a single sound and then attempts to

15.

walk to the spot fron wich the sound came.
e. Subject toll to walk to a point which he sees" only in vis ual imagery.
f. Subject walks, blirdfolded, along a straight line after soeing the line.
G. Subject told to walk, in the easiest way, entirely passive to direction. In order to insure this disrogard for direction, some subjects were told to count their steps, others were told to concentrate on their rate of walking, others to think only of maintaining tension or relaxation, and still others were asked to day-dream.

The actual experimentotion c an be divided into five parts. In the first part, twelve subjects walked under all of these conditions. From their results those factors were cetermined which mado ooservable differences in the paths traced.

In the second part, thirty-nine subjects were tested under those conditions which part I had shown to be important. The form of the subjectst paths under the different conditions was given particular note in this experiment.

A sample experiment included walking

1. For 10 minutes relaxed, indifforent to direction, at the rate of 1 step every 8 ticks of the watch (2 seconds):
2. For 5 minutes, under tension, indifferent to direction at the same rate. (To produce tension, the subject was
asked to make a speech or else to simply concentrate on tensing his muscles and stiffening his body.)
3. For 5 minutes relaxed, passive to direction, at the rate of I step every 4 ticks of the watch (I second).
4. For 5 minutes, passive to direction, tense, at the same rato (1 step per second).
5. For 5 minutes, passive to direction, relaxed, at the rate of 1 step every 2 ticks ($\frac{1}{2}$ second).
6. For 5 minutes, passive to direction, tense, at the rate of 1 step every 2 ticks.
7. Phree widths of the field (50 yards each) trying to walk in a straight line.
8. To a constant whistle. (This was done trice).
9. Along a chalk line. (either seen or imaged.)
10. To a point either seen previous to the attempt, or imaged.

This required slightly over an hour Periods of time are only approximate. An exact record was not obtained.

A fur ther word is necessary regarding the experinental technique in part II. The subject and experimenter walked to the field on which the experfment was conducted, a football stadium, marked off in the atandard manner. In the center of the field, (Midale of 50 yard line) the subject was blindfolded and a device, which served the double purpose of supporting a watch and deadening environmental nolses, was attached to his ears. He was then given instructions and proceeded to carry them out. The exper-
imonter followed him, a few feet in the rear, and charted the course on a sheet of paper ruled in the same manner in which the stadium was lined. If the subject came to the edge of the field, he was redirected and permitted to continue on his way.

In the third part of the experiment, three subjects were studied under the same conditions as those used in Part II, but an improved and more gomplete technique was employed which yielded additional data. In the first place, a larger fleld was used. this eliminated the necessity of restarting and redjrecting the subjeets, every few minutes. Fecords were taicen of walking curing longer periods of time. A large cardboard box was converted into a hood, which excluded a 11 cues from 12 ght and heat fron the sun's rays, and reduced other cues such as sound and breeze. The box covered as much of the subject's body as was possible without interfering with his locomotion. A watch was attached to the inside-conter-front of the box, at the level of the subject's forehead.

The length of time during which the subject wallod was recorded by a stop-wateh. The subject's path was staked every 10 steps with a long nail to which a numbered mailing tag was attached. At the completion of the experiment, the distance between these tags was measured. A record was taken of the subject's route of walking, the distance traversed in each ten steps, the total distance and the
total time involved.

The four th and fifth parts of the experiment wero attempts to clarify and expand certain results of the preceding experiments.

Experiment four was an attenpt to answer the question "What activity may be expected from a subject to whom no positive instructions have been given?" Five nalve subjects were taken one at a time, blindfolded and instructed not to remove the blindfold. No other instructions were given. For a period of five minutes, their behavior was observed, and at the end of that time they were asked to write an introspection ovor their thoughta and behavior during that time.

Exporiment five was undertaken in order to discover why a blindfolded subject, under instructions to valk in a straight lino, to a constant sound, traced a signoid spiral course whose waves decreased in size as the sound was approeched. The goal selected was a bell which sounded contimually. The blindfolded subject started from a point 50 feot away and attempted to valk in a stralght line toward the source of the sound.

A further study of this phenomenon was conducted by marking off, in six foot lengthe, a straight 50 foot line, at one end of which was the bell. At each six foot maris, the blindfolded aubject attempted to point a yard stick. mounted on a survegor's transit, in the place usually ocm
cupled by a telescope, toward the source of the sound. His angular erpor was recorded in degrees.

Results

The results of part I and part II will be treated together since they were obtained by the same experimental technjque.

The subject's general orientation made no observable difierence in the path which he traced. Subjects who were bilndfolded and taken to the field in a car exhibited sintlar benavior when at a later date they were tested after walking normally to the field. Apparently the loss of vision and hearing disorients a normal subject to a very greatextent. It was also noted that in most cases, subjects who had walked to the fleld vere unable to point to the north correctly, after a few minutes of blindfold walking. Absolute airection and absolute orientation do not exist under the experimental conditions.

General environmental conditions affect different subjects to different extents, and have different effects on the same subject when he is waiking under different Instructions. When the instructions were "walk in a straight I ine", the sun and wind gave considerable assistance to some of the subjects. When the instructions were "make yourself indifferent to direction, just walk in the aasiest way" the sun seemed to have no effect. In fact subject W. R*, who frequently introspected as he valiced, several times madd remarks such as "Here comes that darned sun around again" which indicated that the warmth of the
sun gave him same orientation. His course, however, was almost identical on cloudy days and sunny days. The effect of the sun may be summarized as giving some orfentation and therefore helping a subject to walk in a straight line, if that is his purpose. On the other hand, if he is passive regarding his direction, the influence of the sun is very slight in determining his path, No subject was able to walk in a straight line, by means of the orientation he gained from the sun's rays,

The wind is somewhat more important than the sun in determining a subject's direction. A strong wind makes a subject walk in a path which resembles a row of e's written in longhand. The longer axis of movement in such eases is in the direction in which the wind blows. A mind breeze has less effect, and assists orientation but little. A nalve subject is apt to report that the breeze is shifting in its direction, rather than to realize that he is walking in spirais. (See Appendix for introspections.) A bubject who is walking under tension and indifferent to direction Is frequently upset emotionally by the wind. It throws him off his course and makes it difficult for him to maintain his balance. He is more apt to resist the force of the wind than the individual who is walking relaxed.

Two young women acted as subjects in the presence of a number of men who were "working out" for track. While the men were at one end of the field, the women were highly
aware of them. Even when the bubjects were passive to direction and walking "in the easiest way" their paths deviated away from the position of the men. (See Plate Is C If.) These were the only instances in which the presence of persons in the field produced a noticeable change in the form of the path.

The effect of the subjectis body position wil be treated fully in part III and therefore will not be discussed here. It was discovered that the body position did affect the form of the path traced by the subject.

The position of the hands, whether hanging at the sides limply, used as in normal walking, placed on the hips or in the pockets, made no observable difference in the subjects' paths.

Our results on the effect of sound are at variance with schaeffer ${ }^{2} s$, but this is explainable on the basis of the conditions under which the experiment was performed. The study, from which he concluded that spiralling was unaffected by the subjectis abllity or inability to hear, was conducted in an isolated region where extreneous sounds were unimportant as orienting factors. The present study was conducted on the campus where the subjects were famillar with the sounds and knew their location. For example, a street car could bo heard for a long distance as it ascended the hill, and, three times, subjects were observed to change

PLATE I

their diection as they walked, so that they cont inued to face the moving car. On being questioned later, the subjects denled doing this consciously. In general, sounds were difficult to locate and probably played only a snall part in determining the routes. No difference could be noted in a subject's path depending on which ear wore the watch. This was systomatically tested in twelve subjects.

A11 subjects walked in spiral paths. It is obvious that all such factors as the sun, wind, environmental sounds, slant of ground, et cetera, functioned not as cues by means of which the subjects guided thenselves in a spiral path but were disturbnnces that had the effect of modifying or of producing Irregularities in the path. The basic form of the path, under homogeneous field conditions is a helical spiral. The size of the spirel varied in the same subject at different times and frequently under the same conditions. The diameter of the smallest spirals was 18 feet. (WR, walling at the rate of 1 step every 2 seconds, relaxed and Enditferent to direction.) The diameter of the largest spiral was 600 feet. (MR, attempting to walk in a straight line.) The average diameter of the spirals, for a 11 subjects and under all conditions, when passive to direction was 228 feet.

When walking, passive to direction, and relaxed, as speed increased.
a. the size of the spiral increased in 84.5% of the cases
D.: the size of the spiral decreased in 10.5% of the cases
c. there was no correlation between size and speed in 5.2\% of the cases. Thus, size of the spiral is generally proportional to the speed of walking. (See Plates I - VIII)

When walking, passive to direction, under tension, es the spoed increased,
a. the size of the spiral increased in 73.4% of the cases
b. the aize of the spiral remained constant in 6.5% of the cases.
c. the size of the spiral decreased in 13.3% of the cases
d. there was no relation between speed and size of the apiral in 6.5\% of the cases. (See Table I)

Tension increased the size of the spiral over the size under relaxation in 55.5% of the subjects; caused a decrease in 33.3\%, and brought about no recordable difference in $1.1 .2 \%$ of the subjects. (See Table III)

When the subjects pere relaxed, the size of the spirals increased in over 84% of the cases as their rate of walking increased. Whon walking under tension, only 55.5% of the subjects Increased the size of their spirals proportional with the ir speed of walking. The difference may be explained in terms of the type of tension involved. Some subjects had what may be called a closed reaction, in which the tension inhibited movements.

The subjects appeared to he carrying a heavy load which required slow deliberate movement. Other subjects showed an 'open' reaction, in which the tension was expended through movement. In these cases the size of the spirals increased proportionel to the ccceleration of velceity.

In the results, taken as a whole, there was no marked tendency for the subjects to spiral to the right, rather than to the left, or vice versa.
26.3% of the subjects alternated right and left turns. 31.6% showed marked preference for right turns. 11. 0% showed marked preference for left turns. 31.1% spiraled to the right and left without any observable system. (See Table III)

The course of 82.5% of the subjects became smoother (1. E*, less minor fluctuations) under tension than under relaxation. The reverse was true of 12% of the cases. (See Table III)

Constant movement decreased the size of the arcs over the step and rest' type of movement.

Fluctuations in direction were more frequent and erratic in children than in adults. (See plates VI - VII)

Table I
Relative Spiral Circumference Averages produced by subjects walking Relaxed.

Subject	$\begin{aligned} & \text { One } 2^{\text {step }} \text { sec } \\ & \text { per } \end{aligned}$	$\begin{gathered} \text { one step } \\ \text { per sec. } \\ \text { II } \end{gathered}$	$\begin{gathered} \text { one step } \\ \text { per sec. } \\ \text { III } \end{gathered}$	Ratio of II/I in per cent.	Ratio of III/I in per cent.
WA.	205 ft .	$141 \mathrm{ft}$.	244 ft .	68.8	118.95
LA.	$283 \mathrm{ft}$.	460 ft .	501 ft.	162.6	177.15
BS.	490 ft .	238 ft .	819 ft.	48.6	167.1
BR.	190 ft .	240 ft .	339 ft.	126.5	178.5
BJ.	$117 \mathrm{ft}$.	120 ft .	610 ft .	102.5	521.8
CM.	205 ft .	284 ft.	484 ft .	138.4	236.
HD.	157 ft .	440 ft .	659 ft .	280.	419.5
HK.	99 ft.	$188 \mathrm{ft}$.	407 ft.	190.	411.7
HB.	377 ft.	275 ft.	462 ft.	72.9	122.4
IR.	283 ft .	$521 \mathrm{ft}$.	260 ft .	184.3	91.9
MR.	189 ft .	249 ft.	302 ft .	131.8	159.7
min.	80 ft .	352 ft .	602 ft .	440.	752.
OW.	396 ft.	397 ft .	460 ft.	100.2	116.1
PT.	119 ft .	$109 \mathrm{ft}$.	$89 \mathrm{ft}$.	91.6	74.75
RN.	278 ft.	364 ft.	702 ft .	130.9	252.2
TC.	121 ft.	290 ft .	520 ft.	238.9	429.4
WR.	43 ft .	$83 \mathrm{ft}$.	160 ft.	193.1	371.9
SB.	183 ft .	140 ft .	255 ft.	76.5	139.4
SJ.	142 ft .	380 ft .	457 st.	267.5	321.3
PC.	240 ft.	374 ft.	662 ft .	155.9	275.8
KE.	96 ft .	213 ft .	620 ft .	222.	646.
Averages:	204.6 ft.	279 ft 。	496 ft .	136.16	242.

quble II

Relative Spiral Cincumference Averages produced by sub jects walking under Tenston

Subject	one step per 2 sec I	$\begin{gathered} \text { One step } \\ \text { per sec. } \\ \text { II } \end{gathered}$	$\begin{gathered} \text { one step } \\ \text { per } \frac{1}{2} \text { sec. } \\ \text { III } \end{gathered}$	Ratio of $I I / I$ in $\%$	Ratio of III/I in per cent
WA.	565 ft	388 ft.	377 ft.	68.75	66.7
LA.	426	482	484	.12.9	113.6
BS.	380	388	428	. 02.2	112.6
BR.	294	290	282	98.6	95.9
BJ.	90	282	523	113.4	584.
CM.	282	258	659	91. 5	231.9
HD.	492	568	733	.15.5	149.1
HK.	176	206	314	117.6	178.4
HB.	379	490	943	129.3	248.7
LR.	188	204	566	108.4	300.9
MR.	458	378	258	82.5	55.1
M	121	347	513	286.3	424.
O\%	167	206	565	123.3	338.
\%		*			
PT.	156	240	684	154.	427.8
RN.	807	119	770	14.77	95.5
	\%	:			
TC.	123	131	163	106.3	132.6
VR.	79	2402	148	3410.	187.2
SB	191	220	253	115.1	132.5
Average	:299 ft.	422 ft.	482 It.	141.2\%	161. \%

General Data Concerning Spiraling under Tension and Relaxation.

Subject	Relation of size of spiral to speed or walking	Does tension increase or decreaso spiral size	Does subject tend to turn right, left, or alternate	Is cour se more regular under tensi on or relaxation.	Does increase of speed make the spiral smoother
WA.	7	increase	varies	relaxation	yes
IA.	7	same	alternates	tensi on	yes
BS.	1	decrease	alternates	2	yes
BR.	-	Increase	alternates	T	yes
BJ.	t	decrease	right	T	yes
CM.	1	increase	varles	T	yes
HD.	1	Increase	alternates	T	Jes
HE.	t	same	alternatos	7	Jes
HB.	4	Increase	right	T	Jes
LR.	varies	decrease	alternates	T	yes
MR.	t	Increase	alternates	T	yes
MH	1	same	right	T	yes
OV.	4	decrease	left	T	yes
PT.	-	Increase	right	same	Jos
RN*	\not	increaso	varies	T	yes
TC.	t	decreaso	varies	T	yes
WR	1	increase	left	T	Jes
SB.	4	Increase	right	T	yes
EK.	t	Increase	right	T	Jes
BM.	7	decrease	right	T	yes
WIL.	4	decrease	right	relaxation	yes

The frequency of changes in direction, from right to left and $\forall 1 c e$ versa, was greater under relaxation than under tension in 95.8% of the cases. As speed increased, both under tension and relaxation, the frequency of changes in direction decreased per unit of space.

The more definite the goal, other things being equal, the more direct the course to 1t. Under instructions to "walk in a straight Ilne", all of the subjects made stral ghter peths than those made under instructions to walk in the easiest way. The average diameter of the spirals under instructions to waik in the simplest way was 228 feet. Under instructions to "walk in a straight line" the average diameter was 326 feet, an increase of 23%. Thus, the more definite the goal, the straighter the course to it. When a subject is told to walk in the easiest way, passive to direction, the instructions set up no definite point to which he is to go. He is given a me thod of walking, not an end toward which he is to walk. If, on the other hand, he is told to walk to a certain spot or told to walk in a straight line, his conscious field becomes more highly structured. He has a definite act to perform. A great difference could be noted in the subjectst behavicr. When told to walk in a straight line, or to walk toward an object, they became more active, more interested, and gave indications of being under greater tension. (Seo Plate IX for aiagrams of paths made under instructions which varied the definiteness of the goal. See appendix for relevant introspections.)

PLATE III

PLATE IV

PLATE V

PLATE II

PLATE VII

$\begin{aligned} & \text { SUBUECT BM. } \\ & \text { A CHILD AGE } 9 \\ & \text { SIALE } \\ & \text { INCHARD } \end{aligned}$	

Results of Experiment III.

The data obtained in this experiment augmented the preceding data since it represented a different and more detailed attack on the problem of movement. In addition to the previous results, data on time and length of stride were obtained.

A summary of the results for Subject SR follows:

Speed and Tension One step per	Av. length of stride in inches	Actual time per step in seconds.	Rate of wa lking in seconds per fobt.	Av. circumference of spirals
$2^{\prime \prime}$ relaxed	35.4	2.16	1.77	193.9
1' relaxed	18.27	.95	. 62	130.5
意" relaxed	21.53	. 6	- 33	256.2
$2^{\prime \prime}$ tensed	16.87	1.88	1.33	191.6
17 tensed	17.86	. 89	.59	220.2
2in tensed	18.51	. 65	-42	253.5

Summary of results for subject VR.

2^{n} relaxed	12.15	2.5	2.22	54.
1^{n} relaxed	24.9	.735	.354	272
3^{n} relaxed	23.18	.5	26	284.
2^{n} tensed	13.6	3.2	3.6	79.6
$I^{\prime \prime}$ tensed	32.	.384	.312	2402.
3^{n} tensed	22.5	.476	.253	147.8

* Subject changed posture from ${ }^{\text {(closed' to }}$ open' type, reloasing energy through movement rather than tir ough holding body rigid.

Summary of results for Subject PT

Speed and	Av.	Actual	Rate of	Av.
Tension	length of	time per	valking	oircum-
	stride in	step in	in seconds ference	
One step per	inches	seconds	per foot	of spirals

2^{n} relaxed	27.4	.845	.37	325
l n relaxed.				
$\frac{1}{2 n}^{n}$ relaxed	23.15	.93	.483	467
2^{n} tensed	25.7	.508	.237	757
1^{n} tensed	25.05	.729	.348	156.4
i^{n} tensed	23.6	25.6	.634	.322

These results of walking at the rates of one step every two seconds, one step every second and one step every one-half second under tenst on and relaxation indicate the following facts:

1. Length of stride increases with the speed of walking, under conditions of both tension and relaxation.
2. The size of spirals increases as the speed of walking increases.
3. A subject's estimatation of time is affocted by his speed of walking and bodily tension.

See Appendix for complete introspections describing walking under the above conditions.

The following tables present the results obtained when the gubjects walked with thair bodies bent, at the rate of one step per 2 seconds

Subject SR.
Direction of
body bend
Forward
Backward
Right
Left
Av.
lenth of
stride in
1no hes
21.12
16.8
14.36
15.96

Actual	Rate of	Av.
time per	walking	circum-
stog in	In seconds	ference
socond a	per foot	of spirals
1:45	. 82	211.4
1.8	1.29	132.2
1.61	1.34	68.9
2.01	1.52	798.

Subject PT.

Forward	26.7	.666	.3	200
Backward	24.8	.484	.234	256
Right	26.7	.654	.302	193
Left	24.7	.618	.3	333

subject $S R$. spiraled consistently to the right when walking under instructions to "go in the easiest way, and be passive to direction." When he walired with his body bent forward, he used a long stride and walked in rather large spirals. When he leaned backwards, his stride and spiral size were reduced appoximately 20% and 38 夏 respectively. A right body lean reduced the length of stride and size of spiral to a greater extent than the other variations studied. The most interesting results were obtained when the subject walked with his body bent to tho left. His path (See Plate X) fluctuated to the right and left in a very unstable maner, making, as a whole, a long are to the right. The path gives a pictorial representation of the subject's behavior.

He seened very much disturbed while walking; and apparent ly had difficulby maintaining his balance. He said that this part of the experiment was the most difffcult for him, though he didn't know why. These results indicate that body lean affects the subject's stride, his estimation of time, and the size of the spirals which he traces.

Subject PM. showed similar behavior, thoughthere was less variation under the difforent conditions. His introspoctions follow:

Forward bend. "Found that there was much greater tendency to ascilate back and forth than under upright condition. Right and left balance seemed to generally upset, but not in any specific direction, 1. Q., to the right or left." Backward bend. "Was under considerable musoular strain. Much more than bending forward. Orientation was more upset than under previous condition. Had difficulty in walking at a.1. and seemed to be tipping from one side to the othor. Could not determine beforehand which step would balance me. Had to take several extra steps to get my balance. Field was all doranged."

Right bend. "Very difflcult to walk. There was a tendency to walk to the le ft to keop from falling. Was primarily eware of body strain and disorientation with respect to right and left."

Left bend. "Much the same as right hand, with the opposite componsation."

The effect of acceleration on the form of the subject's path was studied. As might be expected, the more rapidiy he walked, the longer his stride and the smaller the angle of curvatire, 1.0. , the larger the spiral. The subject began at the rate of 1 step every the seconds and gradually increased his speed to the maximum. The resulting curve closely approximates a logarithmic spiral, "the curve of growth" (Thompson). (See Plate XI)

The curve obtained from a subject who attempts to walk at a constant rate for five minutes or more has thee characteristic phases, all of which are stages in a single procoss. (1) The first few steps, usually between 30 and 100 , trace a very vide arc. (2) this arc leads into a oircular or spiral form of smal ler dimensions. (3) There is no sharp diviaing Ine between the thisd phase and the second. The fixird phase is characterized by smaller and smaller spirals. The total path rescmbles a reverse logarithmic spiral.es the curve of degeneration.

These observed changes have the ir sub jective counter part. Subject SR introspects, "When I start to waik; I try for awhile to walk at the speed you told me to, and when I get that down, I let my mind wander or dey dream and just keep walking till you tell me to stop."

Subject BR. states, "I always feel protty well oriented when I start towalk. The feeling probably arises from the fact

PLATE XI

that my environment is most stable when I am standing still. This makes me feel stable and oriented. When I walk I ignore direction and think only of my rate of waiking and either relaxation or tension as demended by the experimenter. After I've walked an hundred feet or so, it usually feels as though I am rather detached from the environment, and just drifting along. Sometimes it seems as though I am circling, but Itry to ignore it."

There are exceptions to this typical series of changes. Sybject WR., for example, in one experiment consistentily increased the size of the spirals which he traced. He accounted for this by volunteoring the information that he felt very sleepy in the beginning, but that the walk had awasened him.

The effects of wind and field slope were investigated; It was found that both wind and the sloping ground produced the same effect on the subjectst course. Whereas nomally the spirals closely overlap each other they form a series of small script "ets" which move downhill, or down wind if those factors are present. As the intensity of the wind, or the slope of the field is increased, the distance between the "e's" increases. When oither force was sufficiently strong, the cour se became a wide arc approximating a straight line.

Results of Experiment IV.
In this experiment, five subjects were instructed to refrain from removing their blindfolds, No other instructions were given. Their behavior was observed for five minutes; and at the end of that time they were asked to write an introspection describing their thoughts and feelings during the period.

Subject SR.
Remained motionless for one minute, then said, "Whenever you are about ready, tell me." Tho minutes, fifteen seconds: shifted weight to other foot. No other observable changes during the pive minute period.

His introspection: "After the box was placed over my head, I was turnod around. I heard the footsteps of the experimenter and then there was silence. First I thought that he had forgotten some thing and had gone after it. I remembered that we had checked everything thoroughly. Noxt, I thought that he was compiling data about our location, otc. I became a little uneasy and sald, Whenever you are about ready, tell me.' I recel ved no answer. I became more uneasy and shifted my weight to my right foot. I was constantly elert for returning footsteps: Since I had no instructions and my instructor had placed me, I didn't chenge my position."

Subject WH.
Fifty-five seconds after starting asked, "Is this a silence test?" One minute, forty-five seconds: he shifted weight without moving feet off the ground.

His introspections: "No instructions were given to me in this experiment, therefore I had no idea what was expected of me. The experimenter merely put the goggles on me and then walked away. I thought I might have to write something because I could hear the pencil moving behind me. When the experimenter failed to Instruct me fur ther I remained as passive as possible. I wanted to shift my position a few times but didn't. My reason for not moving more is hazy, but probably was due to the fact that I thought I might be expected to remain immovable. I wanted to say sonething, butwas afraid I would spoil the experiment so remained silent. My lest move-
ment was the result of weariness in my legs."
Subject OW.
Was in almost constant motion during the five minute period. At first he paced slowly back and forth, then begen to walk in circles, later rever sed direction of circles. At the end of first minute he asked. "How long does this go on?". Thirty seconds later, "If you want te know how my directions are, they are gone."

His introspection: "At first I moved because I find that I can keep my balance better that way. Then, after I realized that I was to receive no instructions, I assumed that Mr. Brigden was interested in my movements, so I consciously moved about the room, because I thought that he wanted me to. After I had located the walls and various large objects in the room, I attempted to walk in as large a circle as possible. Since Mr. Brigden did not answer my questions, I assumed thet he did not wish to reveal his location. I wondered how long the experiment would last, and if I was doing satisfactorily.

Subject VW:
Nei ther moved nor spoke during the five minute period.
His introspection: "For the moment I had no idea as to the exact purpose or the experiment though" I thought it was connected with work on circular movement. Then as I stood waiting for instructions, I noted a slight swaying of the body and thought of the neurological test for the Romberg sign. After that I tried to stand as still as possible. I quite definitely had the intention of standing as motionless as possible."

Subject tre.
Whistled during the first minute, then asked, "What am I supposed to do, if any?" Three minutes and twenty seconds later he asked, "Am I allowed to walk around?" On receiving no answer, after a few seconds pause, he took one step form ward.

His introspoction: "Yhen the blindfold was jut on, I waited calmly for a signal, seconds passed and I became impatient. I was ready to go, but no signal. I finally asked what I was supposed to do. No anwwer. I swayed back and forth and finally took a step. I began to settly myself then to calmness. I was resigned to immovability and then the experimenter called time. I still had a sense of incompleteness; of neoding action."

The purpose of this experiment was to stady goal localization as it affected the cour 8 of a subject who attenpted to walk toward the goal in a straight line. The goal selected was a bell which sounded continuelly. The blindfolded subject started from a point 50 feet away and attempted to walk in a straight line toward the source of the sound. Plate XII shows eight routes followed by two subjects. All subjects traced a wavy course which gradually narrowed in its fluctuations as it approachod the bell. Why, we may ask, when the goal is a point with a definite location, does the subject not walk to it in a straight line? The subject himself (SR) answers the question. "When I started to weIks the bell sounded as though it were a generalized sound coming from an area about two feet high and about. fi fteen feet long. I tried to walk tonard the spot in the middle of this ares which seemed loudest. The sound soon seemed to be coming from the left, so I moved more in that direction. It seemed as though I couldn't pull myself far enough over; and then an instant later the sound seemed to be farther to the right. The area of sound narrowed down as I approached and when I was told to stop (three feet from the bell) I felt as though the bell had contracted to a round area of sound about eight inches in diameter. It became constantly clearer and more definite during all the time I walked torard it." Similar experiences were reported by all the subjects.

PLATE XII
(

In the second part of Experiment V, four subjects attompted to aim a yardstick at the source of the sound (the bell), at six foot intervals along a straight lino. Their errors were recorded in degrees. The following table indicates the results.

Subject	Av. error for Qll distances	P.E. \&v.
SR.	3.4	.523
BR.	4.4	.875
WH.	3.14	.750
OW.	3.7	.595

The low P. E. indicates how constant the errors were. As a matter of fact, there was a slight increase in the angle of error of localization as the subject became far ther removed from the sound. If we a ssume that the angular error of localization remains constant, it follows that the projection of the angle would mark off through the bell, as the subject moved away from the bell.

These results are taken to mean that the "goal' of the subject, from a dynamic, field standpoint is an area having the diameter of the error of localization.

Discussion

In order to understand the significance and implications of our results, let us make an analysis of movement. We shall begin by asking the question, Why does a person walk at all? In onder to enswer this question let us clarify what wo mean by person, Biologicajly, a person is a complex organism, al of whose parts bear certain functional relationships to each other. A knowledge of this fact does not guarantee an understanding of the organism's behavior. This is true, because in the first place the or Eanism never acts independentiy of its environment. This a knowledge of the enviroment is Imperative. Moreover, an understanding of a person's behavior domands thet the forces within and without the individual be reduced to common terms. It would be futile to attempt to pealet an organism's bohavior in a given envimoment, if we Considered the oregnism in terms of structure, and the environment in terms of function.

Sine e both the person and his environment exhibit the properties of dynsmic fields, a fruitful set of terms and concepts to use in our study will be those of dynamics. Thus we can speak of the person as a part of a field. His properties and activities will be field determined. His behavior will have the properties of a vector. It is in these terms then, that we will define our person.

Now to teturn to the original question: Why does a person walk at 211 ? The dynamic answer must be that the
field is unbalanced, i. e. there is a difference in potential in the field. The subject's walking is the me thod by which the field, inciuding the subject, is to return to equilibrium. Some readers may wish to ask how the subject knew that the fiela was disequilibrated, how he knew that walking would reestablish equilibrium, and why ho was interested in re-balancing the field. These questions will arise only in the minds of those people who forget that the subject is a dynamic part of the field. While he is a unit in himself, he is at the seme time an integral part of a larger field. Moreover, the terms equilibrium and disequilibrium refer to fleld dynamics rather then the subject's impression of the field. Phenomenologically, the disequilibration occurs when the subject is given the instruetions to walk, and accepts them, or agrees to walk. The subject does not say, "Those instructions disequilibrate my distribution of energy, and, by following them, equilibrium will be established." He agrees to help in the experiment; the experimenter tells him what to do, so he does it.

The results of Experiment IV denonstrate that as soon as the observers agreed to be subjects in the experiment certain changes took piace. Tensions were established, and in the absence of instructions regarding their release, the subjacts proceeded to set up goals toward which they might strive. TC. was the only subject to specifically mention a "sense of incompleteness" in his introspection. However, four of the observers verbally expressed the same feeling at the termination of the
experiment. The results rather definitely demonstrate that no activity takes place in the absence of a goal, toward which it may be directed. Expressed dynamically, when tensions were aroused in the suoject by his accoptance of the role of observer; and since the field hee not been structured by the experimenters instructions, the subject proceoded to effect a structurization which represented his notion of tho field arrangement desired by the experimenter. This leads us to the next question concerning movement.

Where does a subject walls? Lit us consider this problem In ternas of dynamics. All writers on this subject agree that thers is only one possible answer. All disequilibrated fields return to equilibrium by the most direct route possible under the existing conditions. Since the field we are considering is a dynenic field, our subject mustresolve his tensions by the shor test possible route. When we speak of longer and shorter routea, we refer to the length of the path in relation to the fleld in which the course is traced. But we have already stated that movement has the groperties of a vector: direction and force. Thus, in those cases in which there were no other complicating vectors in the field, the course would be a stmple one since it would be determined by a aingle vector. In those cases in which the fleld is hetcrogeneous, including humerous factors which effect the moving subject, the path will be more complex, i. e., its direction will show greater
fluctuations. This does not mean however that in a complex heterogeneous field, the subject follows a path wich is other than the simplest possible unter the existing conditions of field structure. Whenever we speak of least action or shortest route we 1 mply tho added phrase: under the existing field structure. Othervise least action and shortest route are meaningless. Comparatives and superlatives are almays relative to a field. We are now faced with two mutually exclusive alternatives. Either all behavior does not follow the shor test possible path, or else there is only one possible path which movement could follow. Consistenoy demands that we espouse the latter alternative. Instead of speaking of longer or shorter routes, we can speak of THE route of a subject in a fiold.

The statement "movement has the properties of a vector" demends some expansion. We examine a vector diagrem in a physics book and see a 4 cm . line pointed north, a 3 cm . Ine pointed northeast and a 2 cm . line pointed west. The problem is to discover the resultant. It will be a line having a certain length and direction. Unfortanately this line does not represent the path which a subject would follow, whose atimulation might be symbolized by the component vectors. The resultant vector merely gives the force and its direction at a point. It is important to mention this fact for two reasons. In the first place, no subjectis course was straight. Thus If motion followed the direction of the vectorial resultant,
we would be faced with a dilemm. Either all subjects ${ }^{\text {t }}$ courses would be straight lines or else their course would not have the properties of vectors. In the second place, a subject can be stopped at any time. This would not be true If he had to walk to the end of the line symbolizing the resultant vector* If we realize that the resultant vector is merely a force at a point and that at another point the alignment of stresses will be different, we shall have no difficulty with the concept of vectors.

In answering the question "Where does a subject walk?" we must consider one more characteristic of movement within a fleld. A subject will continue to walk until he reaches his goal. This has been shown to be true also in the case of rats (2,3). Although the position of the goal was changed and the spatial relationships between start and goal were altered, the rats continued to search through the maze until the goal was reached. The search would be terminated at any time if the experimenter placed some food before the rat. Similarly the walking movements of a subject can be terminated at any time by the word "Stop". To the subject this sienifies the achievement of the end. In terms of dynamics, equilibrium has been achieved.

Both the objective results and the introspections of the subjects reveal that the goal ia not a static point in space, but that it is in itself, with reference to the subject,
a variable. A subject (MR.) who had just walked for 10 minutes at the rate of 2 step every 2 seconds, indifferent to direction, when asked to define what his goal had been, stated "Well, I tried to do what you asked me to, to take one step every 8 ticks of the watch and just walk in the easiest way indifferent to where I went. I was very relaxed, and when a gust of wind hit me, it almost knocked me over." Compare this whe the subject's introspection following an attempt to walk in a straight line. "I have a feeling that I didn't go exactiy straight, but I don't know which way I did go. I tried to think what it felt like to walk straight, with my eyes open, and then tried to get the same 'feel'. Whenever I felt as though I was beginning to turn to one side I would try to compensate for it by increasing my tension on that side and slightiy twisting my body in the direction I thought was correct. I was very tense all the time I walked. I couldn't seen to holpit. If I tried to relax, it felt as though I was not going straight." Nothing is said in either of the se introspections about the goal being a point in space. But suppose that the subject is told to try to walk to a definite spot in space. What will be the nature of the goal location under those conditions?

This problom was studied in Exporiment V. The results obtained when a subject attempted to walk toward a constant sound in a straight line, indicated that while the goal physically occupied a single point in space, it was phenom-
enologically an area whose size varies with the subject's distance away. On the basis of the results of the second part of Experiment V in which the subject attempted, at various distances, to point a meter stick toward the source of the sound, we can formulate a more exact statement of the relationship between the 'goal area and the subject's distance from it. The goal is an area whose size varies in direct proportion to the subjectis alstance away from it. Under these conditions, the geographic definiteness of the goal varies inversely with its size.

Another principle of motion is deducible from our data. The straightness of the route leading to the goal is proportionel to the energy expended in that direction. The following data are presented in defense of this principle.

Instructions demanding the expenditure of incrensed energy produce a straighter path. In all cases in which a subject was told to walk faster, his path more nearly approximated a straight line. More energy is required to increase one's speed of walking. Both the subject's introspection and records of increase in pulse rate are indicative of this conclusion.

Instructions to increase tension while wa kring produced straighter patins in 55.5% of the cases studies, more curved paths in 33.3% and produced no recordable difference in 11.2%. On the besis of these statistics one might be inclined to doubt the soundness of the principle under consideration.

However, our qualitative data come to our aid. Those subjects Who made stralghter courses under tension expressed their tension goalward in the form of longer steps and more frequent stepst In spite of the fact that they were instructed to walk at a certaln rate, under tension they increased their speed of walking beyond that rate. Those subjectz whose course became more curved under tension apparently turned their tension Invard so that it had an inhibitory effect. Their stride became shorter and their eatimation of time mas affected in such a way thet they stepped less frequently then the instructions demanded. Since the statement of our law refers to energy expended in the direction of the goal, any change which retards a subject in Lis movenent toward the goal can not be sssumed to fell under the law.

The longer a subject walks under a given set of instructions, the more curved his course becomes. As he walks he becomes fatigued, he has leas energy to direct toward the goal, thus his courso increases in curvature, to a pattern which requires less energy to maintain.

Let us attempt to trace the relationship between the two facts: (1) that the path becomes increasingly stralght WIth increased energy expenditure in the direction of the goal. and (2) that a route becomes straighter as the goal is approached. 16 the goal is approached, it becomes more definite, thus the more definite the goal the straighter the path to it. When a subject is 50 feet away from a bell, his movement is oniy in
the general direction of the sound since his localization of it is inaccurate. As he approashes the sound, it becomes more definitely localized and he is abie to direct a greater proportion of his energy goalward toward a fixed point, With the result that his path becomes straighter. In other words, the straighter the path, the more energy is expended per unit of distance forward toward the goal. This is also true of the first problem where acceleration mean 3 greater expenditure of energy per unit of distance forward in a linear dimension. It thus appears that the second fact mentioned above (the more definite the goal, the straighter the path to it) is an example of the more general proposition, that the straightness of the route leading to the goal is proportional to the energy expended in that direction.

If our reasoning is correct, more energy should be expended by a subject when attempting to walk in a straight line than when he walks in the easiest way. A simple experiment proves that this is true. Five subjects attempted to walk in a straight line and their pulse rate was measured. The average for the group was 77.8 beats per minute the seme group next waiked at the same rate, but indifferent to direction. The average rate was 64.8 beats per minute, a difference of 20%. The subjects agreed that it required much more effort and alertness to 'walk in a straight line* than to walk in the easiest way, which was a spiral. It is interesting to note that with a 20% increase in energy expenditure, the curvature of the pa ths traced decreased

20\%. Insufffcient data have been obtained to demonstrate conclusively the existence of a constant relationsilip between the curvature of the path and energy expenditur e.

Theoretical

The theory which will be proposed is based on the assumption of a dynemic unified field. We have defined a unified field as an organized system of energy in which every part is capable of affecting every other part, and in which every part derives its properties and activities from its position in the system as a whole. The field is given. It is not built up from its parts by any synthotic or additive process. In fact, to assume the opposite would lead Into a hopeless dilemme. If we were to suppose that any Whole is composed of discrete, separate, unorganized parts, our first problem would be to put these parts together bem cause in nature as we see it and study it there is activity between the parts. There are only two alternative methods of doing this. Either there is something wi thin the parts which will join them together, or else some agent outside the parts must join them. If the first possibility wore true, our original assumption would be false because the parts would not be separate and distinct. They would always be in certain relationships with each other, and thus parts of a larger a priori system. If the second alternative were true, we would be violating the law of parsimony and adding something, not given in the beginning. Our problem could never be solved in this way, because it would lead to an illogical infinite regress of causation. All nature, as we know it, is or ganized and pattorned. We simply start by essuming this organization.

Our conception of arganization must be broad enough to include all forms, inorganic, organic, man. As long as any unit affects or is affected in any way by a whole, it is a part of that whole. Thus a human subject is just as much a part of a physical enviroment, just as much a part of the field structure as a stone on the ground, or the air that he breathes. If either were lacking, he would not be thsre, and if he were lacking, there would be a different fleld; a field without man, rather than a field including man. We must assume that our subject is a dynamic part of the structure of the field. It is just as impossible to add structure to a field, as it is to make a whole out of parts, for both represent the some thing.

Having stated our assumption: the primacy of the organized field, we turn to the phenomenon in which we are particulariy interested, movement within the field. We have already experimentally demonstrated that movement in man takes place only when thore is a goal (phenomenological) or differential of potential (dynamical). Given a disequilibrated system, movement whll take place in such a way that balance and equilibriun w111 be reestablished. As Leibniz (1646-1716) stated it, "Chaque chose finit toujours par s"accomoder a son milieu." (19).

Maupertuis (1698-1759) studied the pe ths of moving bodies from a dynamic point of view. In 1740 he presented to the Paris Academy his famous principle of least action. Mauper tuis observed that as we pass from any given initial
configuration of a system, to any given final configuration, the work done when the final configuration is reached is a maximum or a minimum. Hach evaluates Maupertuist contribution in the following terms. Maupertuis gave a new impulse to the theologising bent of physics by enunciation of his principle of least action. In the treatise which formulated this obscure principle, and which betrayed in Maupertuis a woeful lack of mathematicsl accuracy, the author declared his principle to be the one which best accorded with the wisdom of the Creator. Maupertuists principle would in all probability soon have been forgotten, had Euler (1707-1783) not taken up the suggestion. Euler magnanimously left the principle 1 ts name, Mauper tuis the glory of the invention, and converted it into something new and really serviceable. What Mauper tuis meant to convey is very difficult to ascertain. What Euler meant inay be easily shown by simpie examples. If a body is constrained to move on a rigid surface, for instance, on the surface of the earth, it will describe when an impulse Is imparted to $1 t$, the shortest pa th between its initial and terminal positions. Any other path that might be prescribed to it, would be longer or would require a greater time." (20)

Hamilton, in 1834, extended the principle of least action to apply to both conservatize and non-conservative systems. His statement was as follows (\#): "The time mean of the difference of kinetic and potential energies is a minimum (\#) As stated by A.G. Webster, The Dynamics of Particles, Leipzig, Teubner, 1904. 98-99. cf. Wheeler, The Science of Psychology, Crowell, N. Y. 1929, p. 81.
for the actual path between given configurations as compared with infinitely near paths which might be described in the same time between the same configurations.. Nature tends to equalize the mean potential and kinetic energies during a motion."

In 1927 Reiser stated the principle as follows: "In passing from an earlier to a later stage the sequence through which the system passes is such that the mean or average value of the difference between the potential and kinetic energies during the interval of time will be a minimum." (22)

These various statements of the principle of least action confirm our assumption that the world is an organized energy system. It would be a startling and unintelligible discovery If some one found that a given act took place over the shortest route in time, when the world as an aggregate of parts. In fact shortest route would be meaningless. It is because energy systems are organized units that least sction, shortest route and potential have meaning. Potential refers to a differential of energy as a field-determined factor. No force is inherent in an object. Its energy is derived from the fleld. As Max Planck points out, it is "not the local force, as in Newtonian mechanics, but the integral force, that is to say, the potential, which enters the fundemental equations." It is meaningless to talk about the state of a single particle except as that state stands in a cortain relationship with the whole system of particles. It
was Ostwald who showed that two chemicals reacted together because each had a different potential. Thus a change took place in which heat was given off and equilibrium achieved. Similarly if an electric circuit is closed, establishing on electrical field, the current will flow until the potentials are equalized. If the current is made to 11ght a bulb or ring a bell, we soo the effect of the electromotive force in one point in space and might erroneousiy say that the change is Iocated at that point. However, each part of the system is equally essential, functionally, and the system as a whole works because it represents an energy differential.

As wheeler says, "There are exceptions to this statement (leastaction), notably inthe field of optics, which need not concern us here, where movement is over the longest route in tine. In either event complote organization in a given system of energy is Implied, whether we are deaing with maxima or minima. Our interest in the law rests in this assumption of complete organization, without which least and greatest have no significance." (29)

We now proceed to a theory of spiral movement. It is interesting to note that the results of the experiment and the a ssumptions with which we started put certain demands or restrictions on our formulation of a theory. Our theory must consider the fieldas an organized unit in which the subject and field structure are parts. To start whth any other as-
sumption would preclude the possibility of treating the subject and the fleld together in the same terms.

Our theory must not consider spiraling determined within, or solely by the walker. The experiment has demonstrated, that wind, slope of the ground, and the experimenter's instructions, none of hich can be considered as properties of the subject, all produce their effect on the subject's path. Moreover, our theory must not be based on the assumption that spiraling is produced by physical a symmetries in the subject. Schaeffer showed that a blindfolded subject would drive a car in spirals. Physical asyanetries would have been inoperative under those conditions. Iforeover, subjects who walked alternately backward and forward spiraled in the same way as when they walked constantly forward. Physical asymmetries would have altered the form of the spiral under the two conditions had they boen. the cause of spiraling. Another limitation which we must observe In formulating the theory is that spiraling can not be expleined in terms of specialized organs such as the semicircular canals, because organisms lacking the se structures (ameba, etc.) exhibit spiral movement. Not only is it imposible to explain spiraling in terms of the organism alone, but it is also impossible to account for the phenomenon entirely in terms of the environment. Our results show that the same subject will Inscribe spirals of different size under the same conditions of field structure, a fact which we have attributed to fatigue or other changes within the subject. Spiral move-
ment must be considered as a changing spatio-temporal relationship, characteristic of an interaction between an orgenized field and an internally organized part of that field. The condition which beings about this changed relationship is a potential difference within the field, with the moving part one of the terms and the external field structure the other term.

In formulating our theory therefore, we must consider movement as the result of potentials rather than as the result of local discreto forces. Discrete forces imply discrete parts, whose presence in the field we have shown to be an impossibility. Potentials represent an organized field, which we began by assuming and then attempted to demonstrate experimentally.

A final fact which our theory must ombrace is that motion must occur in the line of least action. Every curve will represent the shortest route by which the field potentials could be balanced under the existing field structure.

Movement occurs in the shortest possible route under the existing conditions of field structure. In a homogeneous field, of low potential relative to the moving part, spiral movement will always occur. When the differential between the moving part and the field is less (or small) the dianeter of the spiral will be less (or small) and the velocity of the movement will be slow. When the differential is larger the
diameter of the spiral and the velooity of the moving object will be greater. We may postulate that the diameter of the spiral will be propoitional to the velocity of the moving part. This is because time, space and motion are one configuration, under the field-structue theory, and one factor cannot be varied without correapondent variations in the others.

Since the key-word of the theory is field-atructure, we will define it before proceeding. Field-structure is the totality of organized potentials or gradients in a dynamic system. The potentials are organized of necessity, since in the absence of organization a dynamic sy stem would not exist. By gradient we mean an extended continuum of ascending or descenaing potential. For example, movement takes place because one part of a fleld has a lower potential then another parto A gradient of energy thus exists between these two points, and movement will occur int he direction of the point of lovest potential, from any higher point on the gradient.

Examples of field structure which were effective in the experiment on walling are the goal gradient which was the most important single factor, wind, sun, ground slope, sounds and ob jects.

We will now consider our theory in two ways. We will
show first that it is deducible from our original assumption, and second, that it applies to our experimental results.

To demonstrate that the explanation of spiralmovenent which we have offered is derivable from our assumption of the arganized field we will attempt to prove the impossibility of movemente over any but the show test route in such a field. Movement is the resultant of all the forces in the field. Its extent and direction will be rigidy determined by all of those forces, so that given a certain set of forces, only one movement is possible. This movement would of necessity be the most direct movement possible in that field at that time, for, if it were not, me are led directly to a selfcontradiction. Let us assume the actual path is infinitesimally longer than the shor test possible route. Then, either the increment of movement occurred without a cause, or else it is possible for a field to contain forces which are not a part of it. Since causation without a cause, and relationship between dofinitionally unrelated things are impossible, we are forced to reject the possibility of a moving body following a path which is longer than the shor test route under the given conditions.

The question may be raised, "What determines whether a helical spiral, a aignoid spiral or a atraight line will be the shor test course between two points.". The answer to this question may be derived logically and demons trated experimentally. In each cass we must consider the relation of the
goal, or position of low potential, to the field as a whole. If the experimental instructions fail to establish a definite point toward which the movement is to be directed, and merely gives a method of walking, the goal becomes generalized, and might be described as "away from here" . This type of goal extends 360 degrees around the subject. Every point in the fleld has a lower potential thsn the subjeet's present Location. The farther from the present location, the lower the potential, in all directions. Since the field is thus homogeneous and, up to now, wo have presupposed an infinite number of possibilithes of direction, how is it thet the subject moves only in one direction, namely, that of a helicoid spiral? It would be sheer mysticism to assume that the organisn takes the helicoid path in virtue of his own independent "fiat." We have assumed a dynamic relation between the orgenism and its environment. The two constitute a unit. What, in the nature of the whole, in this case, explains the spiral path? We must assume the explanation in an assumed fundamental characteristic of space-time-energy configurations. According to Eddington, "There are certain curves which can be defined on a curved surface without reference to any frame or system of partitions, vize, the geodesics or shortest routes from one point to another. The gecdesics of our curves space-time supply the natural tracts which partieles pursue if they are undisturbed. We observe a planet wandering a round the sun In an elliptic orbit. A little consideration will show
that if we add a fourth dimension (time), a continual moving on in the time dimension draws out the ellipse into a helix. Why does the planet take this spiral track instead of going straight? It is because it is following the shortest track: and in the distorted geometry of the curved region around the sun, the spiral track is shor ter than any other between the same point." (9, p. 124-5)

Thus, in the absence of a specific goal, and because spacetime itself is curved -- structured under laws of dynamice (leastaction) -a path, other things being equal, will, under the simplest condition, be a spiral. Any other route produces "friction." In the case of human beings, any other route requires more effort.

Our next problem is to explain the sigmoid spiral. A sigmoid spiral path indicates a more specifically located goal; one toward which a subject can at least point and say "there it is." In all probability, he will be incorrent In his goal localization if his courso to the gal is a sigmoid spiral. for this pattern of movement appars when tho goal is an area with respect to the subject. It has been experimentally demonstrated that the size of the area is a function of the subject's distance from the goal. Foreaver, the slze of the waves, which a subject traces, increases with his distance from the goal. Thus, the extent of the fluctuations in a signoid spiral course is proportional to the apparent size of the goal. Dynamically wo may assume that, with indefiniteness of the goal, the subject will take a curved
path in the general direction of the goal-area, but, finding shortly, that he is heading away, he cur ves back. So long as the curve does not take him beyond his error of localization he is satisfied that he is approaching it, thus he continues on his curved path which takes him, eventually to a point where, although poorly localized, the position of the goal, relative to his direction, informs him that he is aga in headed away from it again. He curves back. In this way, the error of localization, that is, the area of the goal, conditions the amplitude of the sigmoid spiral.

A straight path is traced only when the field is highly structured with respect to the subject and the goal is a point. This situation can obtain only when the field is sharply structured gradient-wise, and the goal is at one end of the gradient. A blindfolded subject is unable to walk in a stral ght line because neither of these requisites is satisfied. In fact under normal conditions a straight course is a rarity. As one walks about a building and on the street his course is usually a signoid spiral, unless he attempts consciously to walk in a straight line.

A further question may be raised concerning these facts. How is it that a spiral movement is shorter than a straight line under any conditions? The answer can be given only in terms of field structure. The form of the path is dependent on the amount of energy involved and its direction. In a homogeneously structured field, it requires less energy to walk, drive a car or swin in spirals than to attempt to ap-
proximate a straight line. The objective goal is an area, not a point under these conditions. Expenditure of energy would be required to reduce this area in size. Brt in a homogeneous, unobstructed field, the moving body takes the shor test route in time. Therefore, it does not expend unnecessary energy in reducing the area of the goal to a single point. Further, when circumstances raise the potential of the moving object relative to the homogeneous field, the object will circumscribe a larger soiral. For if the energy is available, it will be expended in the most direct fashion. A helpful analogy may be found in the example of a person swinging a weight, in horizontal circles, on the end of a string. Thus if very little energy is used, the diameter of the Circular path will be relatively small; if more energy is used, the size of the arc increases. Similsily, as a subject walles faster, the size of the arcs which he inscribes increases.

David Burns gives us another example of spiral movement in his book "Introduction to Biophysics" (5). "A thin test tube very of ten cracks in a spiral way. The more homogeneous and isotropic be the glass, the more even and regular will be the spiral. That is, the crack tends to follow the shor test course on the surface of the tube between the point of origin of the crack and the point diametrically opposite..aring formation. Generally, however, the ring winds into a helicoid form and is continued."

Burns" statenent tist, "The more homogenoous and isotropic be the glass, the more even and regular will be the spiral" is in perfect harmony with our results on walling, in which It was apparent that the more homogeneous the field, the more regular the subject's spiral. Our experimental results bear out our general theary. On the basis of this theory we would predict that minor fluctuations in fleld conditions would cause the path of the subject to waver or become slightly modified; but they would not obliterate the general form of the path. This turned out to be the case. If a subject feeld the sun's rays, or is buffetted by a gusty wind, or is aware of disturbing influences, his path will lose its regularity but not i ts major characteristic of form. If the subject maintains condiderable tension as he walks, the complexity of field structure is relatively diminished. A greater differential of potential ia required to disturb his course when he walks under tension. Thus instructions to maintain tension while walking groduced smoother paths in 82. 5% of the cases. Step-and-rest walleing increased the size of the spirals over constant walking. Introspections indicate that the former type of movement permitted a more stable field structure than the latter. (WR.): "When I pause between steps, my entironment seens to be more static, but more definitely visualized. When I make continuous movement, I can viaualize the field less well. There is less structurization of the field." Fluctuations in direction
were more frequent and erratic in children than in adults. The field was very unstably structured for the children. Wide fluctuations took place without any apparent objective cause. A wide are would be interrupted by a sudden sharp turn. All of the se facts indicate that under the simplest fleld structure, a subject will follow a regular course and that as the field structure becomes more complex or more unstable, the subject's cour se will lose its regulerity.
one important conclusion of the experiment is that the more definite the goal, other things being equal, the more direct the course to it. This might be stated as a corollary of the theory as well as a conclusi on of the experiment, beceuse not only was this statement demonstrated in 100% of the results but it offers a verification and enlargenent of the the ory under consideration. It states that the shor test possible route which a moving body can follow is a function of the expanse of the goal toward which the motion is directed. The reason for this is that the more definite the goal, the more direct the resolution of differential between it and the field, or to express the same thing in another way, the sharper the goal gradient. Thus we can express the straightness of the path in terms of energy involved. The straightness of the route leading to the goal, is groportional to the energy expended in that direction. This is borne out in two ways. The arcs circumscribed by rapidily moving objects in a homogeneous field are of a more gradual eurvature, that is,
"straighter" than those circumseribed by slow y moving objects. Also, objects moving in a straight line toward a goal are expending all of their energy at high potential toward their remote end. Thus the two cases, circular movement and straightline movement, are brought under the same general principle.
our theory therefore predicts that, if a moving object accelerates in a homogeneous field, its path will be a spiral of decreasing curvature. Since we have postulated that the curvature will be proportional to the velocity, we can predict that the spiral will be logarithmic. This actually turns out to be the case. Subjects instructed to accelerate their speed, starting at the rate of one step in two seconds, until they were running at top speed (under blindfolded condition) traced logarithmic spirals of a stonishing regularity. (See Plate V.)

If the goal is an area, energy will not be directed toward any single part of it, but toward maintaining a constant relationship with the total area. If the goal is a point, all of the energy will iflow toward it in a straight lino. A physical parallel helps to understand the point. Suppose that a one-biliion-gailon-a-day river is one mile wide at a certain point. The water will be very shallow and will probably flow slowly. Let us suppose that at another point the river is fifty feet wide. There the water will be deep and will flow rapialy. Fur thermore, at the mile-wide-point the river
will, other things being equal, follow a winding course, while at the narrower point the concentrated force of the water would soon make a straight channel.

A similar situation, dynamically, can be duplicated In humen behavion. Let the goal of the subject be a bell. ringing at a distance of 50 feet, so that its localization Is undifferentiated. This means that the goal is an extent corresponding to the error of locallzation. When the subject walks toward this bell, his path resembles the winaling of the river at its wide point. As ho approeches the bell, the sound becones more intense and mare definitely locelized. He is able to direct a greater proportion of his energy in its exact direction and his pathas a result more nearly approximates a straight line. (See Plate XII)

Conclusions

The flrst and most general conclusi on of this study is that a dynamic, organismic approch to tho study of human behavioe is justified and valuable.

We believe that this is true because all nature appears to exhibit the characteristies of dynamic systems. Modern research in Chemistry, Blology, Physlos, Astronomy and Psychology of fer new evidence daily indicating that nature 1 a single, organized system of energy. Any phase of na ture should be studied, therefore, in terms of this organization. It would bo absurd to stady some groblem in terms of units which aid not apply, such as measuring volts In terms of square feet or water ressur e in terms of hours. It is equally useless to a ttempt to understand and interpret natare in terms of units and concepts which are inapplicable. The present study has attempted to deal with one a spect of nature in terms which have been demonstrated to be applicable and therefore useful in many phases of soience. The results of the study indicate that this appoach is applicable to the phase of nature under investigation.

The dynamic organismic apposch has enabled us to make predictions regarding movement. The majority of the resulta of the experiment were predicted beffore the results were obtained. In those instances in whioh inaccurate predictions Were me, the error was discovered later to be due to sone
factor that had been over looked or had not been seen in its proper rela tionsh ip to the whole problem.

Insofar as we are able to predict the nature of movements, we should be able, theoretioglly, to predict all behavior, since all behavior is movement. Actually, this goal of prediction is in most cases of behavior as yet impossible, because in any particular case, our knowle dge of field conditions is limited and also beoause at pesent our knowledge is relatively general and undifferentiated with respect to relasivistic aynamics. However, the fact that in a simple case we are able to predictwith some accur aoy may both encourage us and strencthen our confidence in the methods employed.

The dynamic or ganismic aparoach has enabled us to control behavior. Inso far as we are able to prédict, we can control bobavior in proportion to the extent of our ability to control field conditions. For example, we can predict that a subjoct will walk in a straighter path 100% of the time, if the only factor which is varied is the instruction to walk faster. By ins tructing him to walk faster we can control the form of his behavior.

More specifically, if wo place a human being in a homogeneous field we can aredict that, other things being equal, he will move in a spiral whose diameter varies directly with his velocity. We can predict that when he
moves in a field, structured gradient-wise, that is, with a point as a goal, he will approximate a straight line movement toward the goa 1. We can predict that, if the goal is an extent, smaller than the fie $10, \mathrm{hl}$ s pa th will approximate a pendular wave-like course whose total amplitude corresponds to the error of localizing the goal. We can predict that, when the movement accelerates, the path will approximate a logarithmic spiral. We can predict that if the field is not stably structured, as in the case of children, direction of the pathwill be more variable. Fur thermore, in terms of our theary we can understand how a 11 of this should occur.

We believe that the dynemic approach to the study of behevior is justified since it reduces all behavior to common terms. Walking movement, bodily tension, goals, Will, etc., all become factors in a single fiold. Thus we are justified in using them and considering thom to gether. To extend the same principle one step further, by considering behavior dynemically we are justifled in reducing it to the seme terms as our dynamic environment, and treating human activity in the same manner as physical activity. We know that the physical world does affect people, thus there must be some commonbesis on which both function.

For all of the se reasons we belleve that a dynmic, organismic approach to the study of human behavior is justified.

The results of the experiments herein reported indicate the following conclusions:

1. Movement takes place only when there are potentials in a field. Hovenent is the means by which these potentials are balanced.
2. Movenent α curs in the shortest possible route under the existing conditions of field structure.
a. The more definite the goal, other things being equal, the moredirect the course to it.
b. The straightness of the route leading to the goal
is proportional to the energy expended in that direction.
3. The goal is an area whose size varies in direct proportion to the subject's a is tance away from it.
a. Under these conditions, the geographic definiteness of the goal varies inversely with its size.
4. All of our 51 bindfolded human subjects waik in spiral paths. The spiral may have any of the modes of a helical spiral: circie, he lix, or sigroif spiral. The size of the spiral varies in different individuals and in tho same individual at different times and under different c onditions.
a. The longer the sub ject walks under instructions to move at a constant rate, the smaller the spiral tends to become.
b. The smallest spirals were obtained when subjecte walked slowly, relaxed and indifferent to the direction of their movements in a homogene ous field.
c. The largest spirals were obtained when subjects attempted to walk in a straight line, rapidly and under

tension.

5. The size of the spiral is generally proportional to the speed of walking.
6. Constant acoeleration produes a curve which olosely ep aroxinates a logarithmio spiral.
7. It is possible to reason logically from one form of spiral hovement to another assuming certain changes in field conditions. In a homogeneous field, with no definitely structured goal, the path is a helical spiral. As the goal becomes structured in the field, the helicoid shifts to a sigmoid which straightens out as the goal is approached. Th2s field is iodepondent iy structured gradient-wise, the gradient terminating as the goal area. When this goal area reduces tovard a point the fleld struc ture becomea more sharply formed gradient-wise and the path appoximates a straight line.
8. The paths traced by subjects, under tension were smoother, 1. e., more regular than those traced by the seme subjects under relaxation, in 82.5% of the cases.
9. The verticle angle of the subject s body influences the length of his path per unit of time, and the curvature of the path.
10. There was no marked tendency for the subject to spiral to the right rather than to the teft, or yice versa.
11. Length of stride increases with the speed of walking, under conditions of both tension and relaxation.

71

Append. x

The following introspections are offered with the belier that they are fust as valuable, importat and relevant as any other type of data. The evaluation of Introspections has gone from one extreme to the other in the history of psychology. We aisagree with both those who believe that introspoction is the best way of gaining an understanding of the mind, and with those who evaluate introspection as superfluous and unscientific. The middie course soems pree forable. Inso far as in tro spection represents a sub ject's reaction to his environment and is treated as his description of his experience it has a definite scientific merit. Instead of attempting to answer criticisms we will demonstrate that the use of introspection is justified in a dynamie study of humen behavior.

A dymaic theory implies a monism. No materialisticidealistic or mind-body distinction is belleved to exist. For purely descriptive purposes we some times spealk of "mind" and "body", the former to mean that activity whose resultant alone we cen see, and the latter to mean the extended ineividual form. However, if "mind" can affoct "body" or vice versa they both must be parts of a single configuration. If this is true, the sane laws and potentials act on each. Each is a part of an energy system. As long as we accept data from one part of a sys tem, we must accept it from another. Thus as long as we accopt the mea surenent of a ruler, or the deflection
of a voltmeter, we must laccept introspective material. Introspection is field determined just as much as the voltmeter reading and $1 t$ is as valid as the ruler reading for the purpose specified. Diffesent experimenters may obtein diverse answers from the raler, and different subjects may glve different introspections following the same experienco. Insofar as the experimentors and subjects eccurately describe thelr experienoes, the ir results are valid. Each tells what he experiences under the oxisting conditions.
effect of wind.
DP. "I think I must have gone in aircles because the wind came from different alrections."

BB. "Soems as though the wind has been blowing from different directions and noises come tron all around."

WR. "I have absolutely no sensation of change of direction or curving. It is the funilest thing to see that sun and feel the wind go around and around. Ifeel no inclination tovard a circle at all."

Effect of tension and malking rapidly.
BR . When I'm tense I tiry to fight overything. It is very difficult not to try to go stralght."

BR. MWen I walk festor, I notice a much greater tendency to tense up." (Instructions were to walk rapidly, but relaxed)

WR. "I know that I'm going in circles but I'm going in the
way that takes the least effort."

BB. "I couldn't relax when I did that." (Instructions were to walk rapialy, but relaxed)

RH. "rensing the body tends to make you go in a straight ine since it structures the field."

The following introspection was written in answer to the question, What is the difference botweon walking tense and walring relaxed at the rate of one step every elght tioks of the watch?"

SB. When I was relaxed I had a hard time to koop my balance. I had no particular goal, and had instructions to walk as relaxed as possible. I merely letmyselfgo and worried only about the watch that regulated my cadence. The only thing that made walking dLeficult was tho wind.

When I walked as rigidly a possible I never thought about keoping my balance. My muscles hurt some after I had walked a whilo. Several times 1 caught myself forgetting to count the ticks of the watch that regulated my cadence. I was relieved whan I was instructed to e top."

The following introspections describe relaxed and tense watking at different speeds.
one stop per 2 seconds, relaxed.
WR. TVas conscious of tuming to the left, otherwise field was homogeneous." (Subject traced 3 spirals with 54 feet .
average diameter)

PT. "I found that there was more sidewiso deviation than with the faster speeds. There was a definite awareness of the external stfmulus field, the steps each being determined by the easiest path. I found that there was a change in the structure of the ifgure. One time the ticks of the watch would predominate for a few seconds, then the walking sounds of the experimenter would pedomiate, then the sound of a car would appear, then I would think about some outside unrelated incident for few seconds. Occasionally I would become avare of a partioularly diffioult choice of where to put my foot down. This would occur if I tried to go opposite to the easiest place. There seemed to be more right and left deviations than under faster speeds." (Subject traced 2 circles whose average ofrcumference was 324 feet)
one step per two seconds, tense.
Wa. "I tensedmy arms, shoulders, hands, and back I crept forward as if springing at some object. The fleld was more structured. Had a tendency to ∇ tsue lize surroundings, even in color. Noises would intensify the structurization, but made no difference in orientation. At the end, I felt the whole pattern ready to "break over" into shift to the right." (Subject traced $11 / 3$ carcles whose average ciroumference was 272 feet)

PT. Much as the other tense conditions, but found it a little different then others in that stimulus field would figure occastonally; not as much as in a relazed condition. Felt thet there was moreright and left deviation than under conditions of one step every second or half second, yet not as much as under relexed. (Subject traced $11 / 3$ epirals with 467 feet the eversge elrcumference)

One step per second, relaxed.
PT. "I noticed that under the relaxed condition there was a much graater awareness of turning. I was aware in each case of just letting my foot down where it was the easiesty this oftentimes I knew was out of line with my previous path; either to the right or left. I had no awareness of the general path, except for these deviations. I did not think at any time of compass direction; was completely disoriented throughout all of the experiment as to directional onientation. Did I have right and left orientation." (Subject circle of 757 feet cirounference)

One step per second, tense.
WR. "I threw all of my energy into hur ling myself forward. The field was more stable; structued goal ahead. Posture bent backward, head throw back as though looking upward; long steps. Everything seemed pointed ahead. Did not know I was going straight ahead." (Path was actually a very vide arc.) (Sub ject tracod spiral of 76.9 feet circumferenco)

PT. "When I tensed, I clenched my fists, raised my shoulders and made my legs stiff. I also breathed deeply. I tried to imagine that I was intensely angry. I was not aware for the most part of any deviation in my path, from right to left or VIce versa. I thought that I was walking in a much strai ghter path than under relaxation. There was no awareness of orientation. (Subject made 3.3 spirals of 156.4 feet average circumference.)

One step per $\frac{1}{2}$ second, relaxed.
WR. "The field wes structured homogeneously for the most part. There was no directional orientation. At brief intervals I felt as though I sworved to the left. Had a feeling of being drawn to the left. But most of the time I seemed tobe going straight ahead. Once a gust of wind affected me for about 10 seconds, and I felt myself automatically turning into the wind, to the right, It was not voluntary." (Subject made a large circle with a circumference of 2402 feet.)
PT. "I was again aware of sidewise deviations; the fleld seemed blocked in certain directions, e. g., to the left, and as a consequence I would take the next atep to the right. If I tried to step to the left under this condition, I found a large amount of muscular pulling in the other direction, so that if I stepped to the left I was off balance. It was much easier to step to the right. It was as if someone was pushing me from the bft side. I had no direction (compass) orientation." (Subject made $21 / 3$ spirals whose average circumference was 240 feet.)

One step per ti second, tense.
WR. "Felt hemmed in. My whole postural set patterned as if carry Ing a heavy lad. Walked with arms, shoulders, back and legs tense, on tiptoe, like a horse pulling a hoavy load up hill. Took short steps." (Subject made 8 spirals of 147.8 feet average circumference.)

PT. "There seemed to be less right and left deviation than when I walked relaxed. I seemed to be going in a straight 11ne, but did not particulex ly think about orientation op path. Seemed to be consumed by conditi on of tensene ss. External field was totally ground, body tone and tenseness was the figure in experience." (Subject traced one large spiral whose circumference was 684 feet)

Accelerated walking.

WR. "As I accelerated I could feel compulsion to straighten out. The field tended to structure, and I tried to visualize the goal ahoad. At times felt inhibited by fear of crashing into the wire."

PT. "At slow speed felt awareness of stimulus fleld and right and left deviations. As I speeded up, seemed to have a goal before me, directly in front. Felt that latter half of path was very straight, but there was no effort to make it so. Concentrated on speed. In the last haif, speed occupied the figure."

Several subjects had the experience of suddenly feeling that they were lost. PC. hed been walking in a lerge aro. Suddenly he made a change of direction and then e very small circle. As he made his chenge of direction, he gave a helpless gesture and said, "I'm lostt", SH, had a similar experience and said, "I've lost my Isetif"

B1bllography

1. Bartley, S_{0} H., Gross Different1al Activity of the Dog's Cortox as Revealed by Action Currents. Psy, Mon., Vo1. XLIV, No. 197, 30-56, 1933.
2. Brigden, R. L., Goal Activity In the White Rat. Psy. Mon. Vol. XITV, No. 197, 88-97, 1933.
3. Brigden, R. I., Directional Orientation. J. Comp. Psy., Vol. XVI, 2-27, 1933.
4. Brown, J. F. The Methods of Kurt Lewin in the Psychology of Action and Affection. PBy. Rev. Vol. XXXVI, 200-221, 1929.
5. Burns, David. An Introuction to Biophysies. J. and A. Churohill, London, 1921. p. 386.
6. Blitschli., "Protozoen" in Bonn's Klassen und Ordnungen des Thierreichs, 1863.
7. Cook, T. A., The Curves of Life Constable, London, 1914.
8. Dunkelberger, I., Spiral Movement in Mice. J. Comp. Psy. VoI. VI, $383-389,1926$.
9. Eddington, A. S., The Nature of the Physical Wor 1d. Macmillan, 1928.
10. Gulaberg, F. O., Die Gircularbewegung als thierische Grundbowegung, Ihr Ursache, Phonomenalitht und Bodeutungo Zeit. I. Biol., XXXV, 419-458, 1897.
11. Humphrey, G., The Theory of Einstein and the $G_{0} s t a l t$ Psychology. A Parallel. Amer. J. Psy., Vol. XXXV, 353-359, 1924.
12. Humphrey, G., The Nature of Learning. Harcourt, Brace \& CO. N. Y., 1933.
13. Jennings, H. S. On the Significance of the Spiral Swimming in organisms. Amer. Nat., Vol. XXXV, 369-378. 1901.
14. Koffra, K•Grundiagen der Psychischer Entwicklung, osterwiek, 1921.
15. KBhler, W., Die physischen Gestalten in Ruhe und Im stationAren Zustand, Braunschwe1g, 1920.
16. Levin, K $*$ The Conflict between Aristotelian and Galilean

Modes of Thought in Contempor ary Psychology. J. Gen. Psye, 1931, 5, 141-177.
17. Lewin, K. Environmental Forces in Chila Behavior and Developinent, Hanabook of Child Psychology,
(Ed.) Murchis on, Olark University Press, 1931.
18. Lotica, A. J. Elements of Physical Biology, Willians and Wilking, Baltimore, 1925.
19. Lefbniz, Discours de Metaphysique: Lettres inedites. Ed., de Care11, 1875, 354.
20. Mach, F., The Science of Mechanics. 1907. Trans. T. J. MoCormack, Open Court Pub. Co., Chicago.
21. Planck, M., Where is Selence Going? Norton and Co., 1932. p. 45; 54 .
22. Reiser, 0., A Phenomenological Interpretation of Physico*. chemioal Configurations and Conscious Structures. J. of Philos. Vol. XXIV, No. 14, 1927.
23. Schaeffer, A. A., Amoeboid Movement. Princeton, 1920.
24. Schaeffer, A. A., On a New Principle Underlying Movement in Organ 1 sms . Anat. Rec., Vol. XVII, 1920, 342.
25. Schaeffer, A. A., Relation of Body Form to Spiral Movement. Angt. Rece, Vol. XX, 1921, 184.
26. Schaeffer, A.A., Spiral Movement in Man. J. Morph., Vol. XLV, 1923, 293.
27. Thompson, DiArcy, Growth and Form, Cambridge University Press, 1917.
28. Webster, A. G., The Dynamios of Particles. Leipzig, Teubner, 1904.
29. Wheeler, R. H., The Solenee of Psychology, New York, Growell, 1929.
30. Wheeler, R. He, Laws of Human Nature, Nisbet, London, 1931.
31. Wheeler, R. H. and Perkins, F, T., Principles of Mental

Development, New York, Crowell, 1933.

