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ABSTRACT 

 
In data mining, rule induction is a process of extracting formal rules from decision 

tables, where the later are the tabulated observations, which typically consist of few 

attributes, i.e., independent variables and a decision, i.e., a dependent variable. Each 

tuple in the table is considered as a case, and there could be n number of cases for a 

table specifying each observation. The efficiency of the rule induction depends on how 

many cases are successfully characterized by the generated set of rules, i.e., ruleset. 

There are different rule induction algorithms, such as LEM1, LEM2, MLEM2. In the real 

world, datasets will be imperfect, inconsistent, and incomplete. MLEM2 is an efficient 

algorithm to deal with such sorts of data, but the quality of rule induction largely 

depends on the chosen classification strategy. We tried to compare the 16 classification 

strategies of rule induction using MLEM2 on incomplete data. For this, we 

implemented MLEM2 for inducing rulesets based on the selection of the type of 

approximation, i.e., singleton, subset or concept, and the value of alpha for calculating 

probabilistic approximations. A program called rule checker is used to calculate the 

error rate based on the classification strategy specified. To reduce the anomalies, we 

used ten-fold cross-validation to measure the error rate for each classification. Error 

rates for the above strategies are being calculated for different datasets, compared, and 

presented.
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CHAPTER 1: INTRODUCTION 

 
In data mining different algorithms exist to process large amounts of data. 

However, real-life data are characterized by missing values, which renders the 

classification process difficult. 

1.1 Motivation 
 

The data mining algorithms are used for classifying critical and sensitive real-life 

data. Hence, accurate classification becomes essential. Many different algorithms 

were proposed to address this issue. Few of the algorithms that are commonly 

used for classification are following: 

1. Linear lassifiers like naïve Bayes classifier : 

Naïve bayes classifier is based on Bayes theorem. This classifier assumes that the 

presence of a certain feature in a clas is unrelated to presence od any other 

feature or that all the properties have independent contribution to probability 

[22]. 

2. Naerest Neighbour classifiers 

The k-nearest-neighbors algorithm is a supervised classification technique that 

uses proximity as a proxy for ‘similarity’. The algorithm takes a set of labelled 

points and uses them to learn how to label other points. To classify (label) a new 

point, it looks at the labelled points closest to that new point (those are its nearest 

neighbors) [21]. 
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3. Support vector machines 

The objective of the support vector machine algorithm is to find a hyperplane 

in an N-dimensional space(N — the number of features) that distinctly 

classifies the data points [19]. 

 
4. Decision trees 

Decision tree builds classification or regression models in the form of a tree 

structure. It breaks down a set of data into smaller and smaller subsets while at 

the same time developing an associated decision tree. The final result is a tree 

with decision nodes and leaf nodes that can be used to classify new points [20]. 

5. Random forest 

A Random Forest Classifier is a set of decision trees from randomly selected 

subset of training set. It aggregates the votes from different decision trees to 

decide the final class of the test object [18]. 

6. Neural networks 

Neural networks are built of simple elements called neurons, which take in a real 

value, multiply it by a weight, and run it through a non-linear activation 

function. By constructing multiple layers of neurons, each of which receives part 

of the input variables, and then passes on its results to the next layers, the 

network can learn very complex functions. In theory, a neural network is capable 

of learning the shape of just any function, given enough computational power 

[17]. 
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The technique of learning from inconsistent and incompete data , which is based 

on the concept of rough set theory called rule induction, is also one such example 

[25]. While most of the above algorithms are based on classification using feature 

selution, rule induction is primarily based on using rough-set theory which is 

better than using rule induction with feature selection [28]. 

Rule induction algorithms deal with missing examples in two ways. One is by 

preprocessing the incomplete decision table to make it complete and then 

performing rule induction on it. The other is by performing rule induction on 

incomplete data directly. MLEM2 algorithm that is based on rough set theory is 

one such rule induction algorithm that acts on missing examples directly. When 

an incomplete decision table is provided, rough set theory handles it by 

approximating the inconsistent or missing data with two approximations, lower 

and upper.  

Effectiveness of MLEM2 is defined by different factors like matching factor, 

specificity, strength, and usage of certain and possible rules. Based on these 

factors, we can create sixteen different strategies to classify the ruleset. These rule 

sets can be compared by the error rates calculated using these strategies. 
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1.2 Organization of the document 
 

This thesis is organized into six chapters that include a detailed background of 

rule induction, a description of the MLEM2 and sixteen classification strategies, 

the related experimentation, and results. 

Chapter1 gives an overview of the motivation for the thesis. An overall idea 

about the topic and the main focus of the thesis has been explained. 

Chapter 2 provides background information related to the thesis. It is divided into 

two parts. The first part explains some basic concepts related to rule induction. It 

also explains the concept of missing attribute values in decision tables and the 

different approaches to induce rules from these incomplete decision tables. The 

second part describes the rough-set approach and the related concepts in detail. 

Finally, it describes the MLEM2 algorithm with an example on how to induce 

rules from incomplete decision tables. 

Chapter 3 introduces the classification factors used in rule induction and specifies 

the sixteen classification strategies that have been compared for incomplete data 

using the MLEM2 algorithm. 
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Chapter 4 shows the experimental results and the error rates of the classification 

strategies applied to different incomplete data sets using the MLEM2 algorithm. 

Chapter 5 is for the conclusions of the thesis and suggestions for future areas of 

exploration. 
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CHAPTER 2: BACKGROUND 

 
This chapter gives an overview of the fundamental concepts of rough set theory 

and the MLEM2 algorithm. 

2.1 Decision tables and decision rules 

In the field of data mining the information available about real-world data is 

represented in the form of a decision table. A decision table is a powerful and 

clear way of representing data. 

2.1.1 Information representation in decision tables 
 

A decision table describes a set of examples. Each example is presented in the 

form of a set of attribute values and a decision value. The attribute values 

provide information about the object, and the decision value provides a way of 

categorizing the object. Also, each example belongs to a class, known as the 

concept. Such a class is represented by a set of examples having the same value 

for a decision. A decision table describing cars is shown in Table 2.1. 

Table 2.1: An example of the decision table 
 

Case Year Mileage Decision 

1 1990 300000 Least Reliable 

2 2000 150000 Less Reliable 

3 2008 6000 Very Reliable 

 

In the above decision table, ‘Least Reliable’, ‘Less Reliable’ and ‘Very Reliable’ 

are concepts about the car. Mileage and year are attributes that describe the car. 
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Decision tables are a precise yet compact way to model complicated situations.  

In mathematical terms, a decision table ‘DT’ is an information table of the form 

(U, C  {d}) where d is a distinguished attribute called a decision, U is a set of 

objects, and elements of C are called condition attributes. 

 

2.1.2 Decision rules 
 

Decision rules classify the data in the decision table into different concepts. 

Usually decision rules are expressed in the form: 

If (attribute1 = value1) & (attribute2 = value2) - > (decision = value) 
 

The left-hand side represents the attribute-value pairs, and the right-hand side 

represents the concept. A case x is covered by a rule r if and only if every 

condition or attribute-value pair of r is satisfied by the corresponding attribute 

value for x. For example, from Table 2.1, the following rule can be extracted 

If (Year = 2000) -> (decision = Less Reliable) 
 

Since case 2 with the concept “Less Reliable” satisfies this rule, it is said to be 

covered by the rule. 

Decision rules can be described using two important terms – completeness and 

consistency. The basic idea is to compute rules which are both complete and 

consistent. Such a rule set R is called the discriminant. Consider a concept C. This 

is completely covered by a rule set R if for every case x from C, there exists a rule 

such that r covers x. A rule set R is complete if every concept from the data set is 

completely covered by R. It is consistent with the dataset, if every case x is 
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covered by R, where x is a member of the concept C indicated by R. In other 
 

words, a rule set R is consistent if and only if every rule r  R  is consistent with 
 

the dataset. 
 

Decision rule induction is the process by which rules are induced from the 

decision tables. It involves the extraction of high-level information from low-

level data and is the most fundamental data mining technique. Examples of rule 

induction algorithms are LEM1 and LEM2 [6]. 

 

2.1.3 Handling incomplete attribute values in decision tables 

 

Until recently, data represented in decision tables were assumed to be complete 

and consistent. In recent times, the need for new algorithms to deal with 

uncertain input, lost input or erroneous information has risen. Hence, handling 

data with incomplete values  is  an  active  topic  of   research   in   data   mining. 

One of the general assumptions made in all these rule induction algorithms is 

that, in a particular case, at least one value should be present, which means we 

cannot induce a rule from a case that has all of its attributes missing [2]. 

 

In general, it is assumed that there are three specific types of missing data: 

 

(1) The attribute value might be lost, i.e., either erased or missed out. These are 

called “lost conditions”, represented by ‘?’. 
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(2) The attribute value might be irrelevant to the current classification. In other 

words, value is unnecessary. So, we do not care if they are missing or not. Hence, 

they are called “do not care” conditions. These missing attribute values are 

represented by ‘*’. 

 

(3) The missing attribute values are assumed to belong to a particular concept. 
 

These are called “attribute-concept” values, represented by ‘-‘. 

 

The theories that provide a solution to the missing attribute value problem 

follow two main approaches. 

 

1) The input data is preprocessed, i.e., incomplete attribute values are filled up 

using some heuristics that the application demands. Some examples are: 

replacing the missing attribute value with the most frequently occurring value, 

replacing the missing attribute value with the attribute average, replacing the 

missing attribute value with the most frequently occurring value in that concept, 

etc. Hence, the data becomes complete after preprocessing. Now, the rule 

induction becomes the same as the traditional approach [5]. 

 

2) Inducing rules with the incompletely specified table itself. Examples for this 

approach are MLEM2 [23] and C4.5 algorithms [2, 24]. 

 

Table2.2 illustrates the three types of missing data using an example. 
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Table 2.2: An incomplete decision table: example 1 
 

Case 
Attributes Decision 

Temperature Headache Nausea Flu 

1 High - No Yes 

2 Very_high Yes Yes Yes 

3 ? No No No 

4 High Yes Yes Yes 

5 High ? Yes No 

6 Normal Yes No No 

7 Normal No Yes No 

8 * Yes * Yes 

 

In the above table, there are three attributes namely ‘Temperature’, ‘Headache’, 

‘Nausea’ and one decision ‘Flu’. It has eight cases of which four have missing 

attribute values. Cases 3 and 5 have “lost conditions”, case 8 has two “do not 

care” conditions and case 1 has an “attribute-concept” value. There are two 

concepts ‘Yes’ and ‘No’ for classification. 

 

2.2 Rough set theory 
 

Rough set theory, introduced by Z.Pawlak, brings a mathematical approach to 

data mining. It has evolved into a very powerful tool for analyzing the ambiguity 

of data elements and has served as the foundation for innumerable theories. It 

has also proved its usefulness in many real-life applications. 

 

2.2.1 Preliminary concepts of rough set theory 
 

The main idea behind rough-set theory is the indiscernibility relation between 

objects which can be explained as follows: 
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Any two objects in the universe can be assumed to be indiscernible if the 

available or known facts about them are similar. In other words, they are 

categorized based on the available information about them. The unknown 

information might show them to be different. But according to the facts available, 

they are classified to be similar [11, 12]. 

In mathematical terms, the indiscernibility relation can be explained as: A 

decision table is a pair (U, C) where U is a non-empty set of objects and C is a 

non-empty set of attributes [3, 14, 15]. For each subset of attributes B  C , the 

indiscernibility relation IND (B) can be defined as: 

IND ( B) = {( x, y)  U U : ci  B, ci ( x) = ci ( y)} 

 

where x and y are two objects and ci (x) and ci ( y) are the values of attribute ci for 
 

x and y, respectively. According to rough set theory, with each set, a pair of 

precise sets called lower and upper approximation is associated. For any element 

x of U, the equivalence class of IND containing x will be denoted by [x]IND . A 

lower approximation of X in (U, IND), denoted by RX, is the set 

{x U | [x]  X }. 
IND 

 

An upper approximation of X in (U, IND), denoted by RX , is the set 
 

{x U | [x]  X   }. 
IND 

 

Lower approximation represents data that certainly belong to the set and hence 

the rules extracted using lower approximation are called certain rules. Upper 
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approximation represents data that may possibly belong to the set and hence the 

rules induced this way are called possible rules [3, 16]. 

Let U be a non-empty set called the universe and let IND be the indiscernibility 

relation. An ordered pair (U, IND) is called an approximation space. Let X be a 

subset of U. X is defined in terms of the set in (U, IND). Any finite union of 

elementary sets in (U, IND) is called the definable set in (U, R). The lower 

approximation of X in (U, R) is the greatest definable set in (U, IND), contained 

in X. The upper approximation of X in (U, IND) is the least definable set in (U, 

IND), containing X [1]. 

The main idea behind the approximations is that if it looks impossible to 

completely categorize a set of objects using the available information, it can be 

approximated using the lower and upper approximations. The set that separates 

the lower and the upper approximation is the boundary region for the rough set. 

The main advantage of rough set theory is that it does not require any additional 

information about data, unlike a lot of statistical approaches. Thus, it is possible 

to find hidden information about data more efficiently [2]. 

 

2.2.2 Rule induction algorithms based on rough set theory 
 

Rule induction is one of the most important techniques of data mining that 

extracts regularities from the real-life data. The critical task of rule induction is to 

induce a rule set R that is consistent and complete. That said, rule induction has 

its own challenges. For example, the input data can be affected by errors, may 
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contain numeric attributes (which need to be converted to symbolic attributes 

before or during rule induction), may be incomplete due to missing values or 

inconsistent due to two cases having the same attribute values but a different 

decision value. There are two important kinds of rule induction algorithms, 

global and local. In global algorithms all the attribute values are considered 

where as in local algorithms the concept of attribute-value pairs come into 

picture. The two important rule induction algorithms based on rough set theory 

are LEM1 (Learning by Examples) and LEM2 [6]. 

Let B be a nonempty subset of a set C of all attributes. LEM1 is a global algorithm 

that is based on rough set theory and uses the indiscernibility concept IND (B). 

The family of all B-elementary sets will be denoted by B*. According to the 

definition of LEM1, for a decision d we say that {d} depends on B if and only if B* 

<= {d}* where {d}* is the family of elementary sets of d. A global covering of {d} is 

a subset B of C such that {d} depends on B and B is minimal in C. The main idea 

behind LEM1 is to compute a single global covering. The computed rules then 

undergo a process called dropping conditions. This is done by scanning through 

all the computed rules, dropping conditions one by one and then, checking if the 

consistency of the ruleset is affected by dropping the condition. If the rules with 

dropped conditions are consistent and cover the same number of cases, then the 

condition can be termed as a redundant condition and dropped forever. 

On the other hand, LEM2 is a local algorithm, which takes into account attribute-

value pairs and then converts them into a ruleset. LEM2 works better than 
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LEM1 because it works on lower and upper approximations separately and 

hence the input files for LEM2 are always consistent. 

For an attribute-value pair (a, v) = t, a block of t, denoted by [t], is a set of all 

cases from the universe U which has attribute a and value v. Let B be a nonempty 

lower or upper approximation of a concept represented by a decision- value pair 

(d, w). Set B depends on a set T of attribute-value pairs t = (a, v) if and only if no 

proper subset T’ of T exists such that B depends on that subset T’. 

  [T ] =  tT [t ]  B 
 

Thus in LEM2, the first step is to compute a set of all attribute-value blocks [a, v]. 

After that, an iterative process is followed to identify the minimal complex. A 

detailed description of the LEM2 procedure is given in Appendix A [6]. 

 

2.2.3 Classification system in LERS 
 

LERS (Learning from Examples based on Rough Sets) is a well-known data 

mining system that induces rules based on rough set theory and uses the already 

induced rules to further classify new data. LERS associates three basic 

parameters to evaluate the decision rules, namely strength, specificity, and 

support. 

• Strength is defined as the total number of examples correctly classified by 

the rule during training. It is a measure of how well the rule performed. 
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• Specificity is the total number of conditions or attribute-value pairs on the 

left-hand side of the rule. Thus, rules with more attribute-value pairs are 

considered to be more specific. 

• Support is defined as the sum of scores of all matching rules from the 

concept [8, 9]. 

These factors are explained in detail in the classification strategies below. 

 

2.2.4 Characteristic sets and characteristic relations for incomplete decision 

tables 

For decision tables with missing attribute values, modified definitions are 

needed to determine to which attribute-value block the cases with missing 

attribute values can be added. The following heuristics are followed: 

• If for an attribute a there exists a case x such that the value of a for x is ‘?’, 

i.e., the corresponding value is lost, then the case x should not be included 

in any block [(a, v)] for all values v of attribute a. 

• If for an attribute a there exists a case x such that the value of a for x is ‘*’ 

i.e., the corresponding value is a do not care condition, then the case x 

should be included in blocks [(a, v)] for all specified values v of attribute a. 

• If for an attribute a there exists a case x such that the value is a ‘-‘, i.e., the 

corresponding value is an attribute concept value then the case x should 

be included in blocks [(a, v)] for all specified values v of attribute a 

belonging to that concept [2]. 
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For example, the attribute-value block for Table 2.2 can be defined as: 

[(Temperature, High)] = {1, 4, 5, 8}, 
 

[(Temperature, Very_high)] = {2, 8}, 
 

[(Temperature, Normal)] = {6, 7}, 
 

[(Headache, Yes)] = {1, 2, 4, 6, 8}, 
 

[(Headache, No)] = {3, 7}, 
 

[(Nausea, No)] = {1, 3, 6, 8}, 
 

[(Nausea, Yes)] = {2, 4, 5, 7, 8}. 
 

A few important terms that need to be defined in rough set theory are 

characteristic sets and characteristic relations. The characteristic set KB (x) for a set 

B, is the intersection of blocks of attribute-value pairs (a, v) for all attributes a 

from B for which (x, a) is specified and (x, a) = v. For Table 2.2, the 

characteristic set can be defined for B = A as: 

For Case 1: KA (1) = {1, 4, 5, 8}  {1, 3, 6, 8} = {1, 8}, 
 

For Case 2: KA (2) = {2, 8}  {1, 2, 4, 6, 8}  {2, 4, 5, 7, 8} = {2, 8}, 
 

For Case 3: KA (3) = {1, 2, 3, 4, 5, 6, 7, 8}  {3, 7}  {1, 3, 6, 8} = {3}, 
 

For Case 4: KA (4) = {1, 4, 5, 8}  {1, 2, 4, 6, 8}  {2, 4, 5, 7, 8} = {4, 8}, 
 

For Case 5: KA (5) = {1, 4, 5, 8} U  {2, 4, 5, 7, 8} = {4, 5, 8}, 
 

For Case 6: KA (6) = {6, 7}  {1, 2, 4, 6, 8}  {1, 3, 6, 8} = {6}, 
 

For Case 7: KA (7) = {6, 7, 8}  {3, 7}  {2, 4, 5, 7, 8} = {7}, 
 

For Case 8:  KA (8) =  {1, 4, 8} {2,8}{1,2,4,6,8}={1,2,4,8}. 
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Thus, for a   given interpretation of missing attribute values, the characteristic set 
 

KB (x) may be interpreted as the smallest set of cases that are indistinguishable 
 

from x [2, 10]. 

 

The characteristic relation R (B) is a relation on a set of all objects U defined for 
 

objects x, y  U as follows 
 

(x, y)  R (B) if and only if 

 
 
y  KB (x) 

 

The characteristic relation is known if we know all the characteristic sets x  U. 

For Table 2.2, the characteristic relation can be calculated as: 

R(A) = {(1, 1), (1, 8), (2, 2), (2, 8), (3, 3), (4, 4), (4, 8), (5, 4), (5, 5), (5, 8), (6, 6), (6, 8), 
 

(7, 7), (8, 2), (8, 4), (8, 6), (8, 8)}. 

 
 

2.2.5 Rough set theory in incomplete decision tables 
 

In rough set theory, incomplete decision tables are described using characteristic 

relations, in the same way, complete decision tables are described using the 

indiscernibility relation. For a complete decision table, once the indiscernibility 

relation is fixed and the concept is given, the lower and upper approximations 

are unique. For an incomplete decision table, for a given characteristic relation 

and concept there are three different ways to define lower and upper 

approximations, namely singleton, subset and concept. 

In the case of singleton method, the singleton B-lower and B-upper 

approximations of X are defined as follows: 
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BX = {x U | KB (x)  X } 

 

BX = {x U | KB (x)  X  } 
 

where KB (x) is the characteristic set and U is the set of all objects. 

 

For example, in Table 2.2 the singleton A-lower and A-upper approximations of 

the two concepts {1, 2, 4, 8} and {3, 5, 6, 7} are: 

A {1, 2, 4, 8} = {1, 2, 4, 8}, 
 

A {3, 5, 6, 7} = {3, 6, 7}, 
 

A {1, 2, 4, 8} = {1, 2, 4, 5, 8}, 
 

A {3, 5, 6, 7} = {3, 5, 6, 7}. 
 

Singleton approximations are not very useful since they cannot be represented as 

union of attribute value blocks. So, the other approach uses characteristic 

relations instead of elementary sets. There are two different ways to do this. The 

first method is called subset approximations. 

A subset B-lower approximation of X is defined as: 
 

 

BX = {KB (x) | x U , KB (x)  X } 
 

A subset B-upper approximation of X is defined as: 
 

 
BX = {KB (x) | x U , KB (x)  X  } 

 

For example, for Table 2.2, the subset lower and upper approximations are given 

as follows: 
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A {1, 2, 4, 8} = {1, 2, 4, 8}, 
 

A {3, 5, 6, 7} = {3, 6, 7}, 
 

A {1, 2, 4, 8} = {1, 2, 4, 5, 8}, 
 

A {3, 5, 6, 7} = {3, 4, 5, 6, 7, 8}. 
 

The second method is by changing the subset definition by replacing the 

universe U with the concept C. A concept B-lower approximation of the concept 

X is defined as: 

 

BX = {KB (x) | x  X , KB (x)  X } 
 

A concept B-upper approximation of the concept X is defined as: 

 

BX = {KB (x) | x  X , KB (x)  X  } = {KB (x) | x  X } 
 

For example, in Table 2.2, the concept lower approximations for B = A are: 
 

A {1, 2, 4, 8} = {1, 2, 4, 8}, 
 

A {3, 5, 6, 7} = {3, 6, 7}, 
 

A {1, 2, 4, 8} = {1, 2, 4, 8}, 
 

A {3, 5, 6, 7} = {3, 4, 5, 6, 7, 8}. 

 

For completely defined decision tables, singleton, subset, and concept lower and 

upper approximations are the same. As explained above, they are different for 

incomplete decision tables [2, 4, 10]. 

With these approximations, there is also probabilistic approximations which are 

a generalized form of singleton, subset and concept approximations. 
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For incomplete data, a B-concept probabilistic approximation can be defined as 

    ∪ {𝐾𝐵(𝑥) |𝑥 ∈ 𝑋, Pr (𝑋|𝐾𝐵(𝑥)) ≥  𝛼} 

 

There is a lot of research existing for the comparison of classification systems 

using MLEM2 and probabilistic approximations [26, 27,  28]. 

2.2.6 MLEM2 algorithm 
 

Most of the data mining algorithms are not designed to deal with numerical 

attributes. They take only symbolic (alphanumeric) attributes as inputs. So, to 

classify data containing numerical attributes, they have to be converted to 

symbolic attributes as a preprocessing step. Most of the data mining rule 

induction algorithms take the numerical data and preprocess it by a 

discretization process and then conduct the rule induction process. However, 

this approach doubles the processing time. So, the currently developed 

algorithms conduct rule induction and discretization at the same time. Examples 

for the latter approach are Modified LEM2 (MLEM2), C 4.5 etc [5, 9, 10]. 

The key focus in this thesis is the modified LEM2 (MLEM2) which is based on  

the LEM2 algorithm. MLEM2 classifies all attributes into two major types namely 

numerical and symbolic. Approximations are computed in different ways for 

numerical and symbolic attributes. The procedure is as follows: the first step is to 

sort all values of a numerical attribute. The next step is to compute the average of 

any two consecutive values of the sorted list. For each cut point x, MLEM2 works 

by creating two blocks, the first block containing the values smaller than x and 
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the second block containing the values larger than x. The search space of MLEM2 

includes both the blocks computed from symbolic attributes as well as the blocks 

computed from numerical attributes. From this point, the rule induction follows 

the same procedure as the LEM2 algorithm [9, 10]. 

With the background literature reviewed, the next chapter deals with the main 

theoretical aspects of the thesis. 
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CHAPTER 3: Classification Strategies 
 

In this chapter we will see the factors of classification and sixteen classification 

strategies that have been compared in this work. 

3.1 Classification factors 

There are four factors for the classification of LERS:  

 Strength is a measure of how good the rule performed during training. It is the 

number of cases correctly classified by a single rule in training data. The higher the 

value is, the better. 

 Specificity is a measure of the completeness of a rule. It is the number of 

conditions (attribute-value pairs) of a rule. In other terms, a rule with a higher number 

of attribute-value pairs is more specific. Specificity can either be used or left out during 

experiments.  

 Matching_factor is a measure of matching of a case and a rule. It is the ratio of 

the number of matched attribute-value pairs of a rule with a case to the total number of 

attribute-value pairs of the rule. In these experiments, two versions of matching are 

used: using complete matching first, then partial matching if needed, and using both 

complete and partial matching at once. Therefore, matching-factor is always used in 

partial matching. 
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Support is related to a concept C. It is the sum of all matching rule on C. It is defined as 

follows:   

∑ 𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔_𝑓𝑎𝑐𝑡𝑜𝑟(𝑅) ∗  𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝑅) ∗ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝑅) 

𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑟𝑢𝑙𝑒𝑠 𝑅 𝑑𝑒𝑠𝑐𝑟𝑖𝑏𝑖𝑛𝑔 𝐶

 

The concept with the largest score will have precedence, and if there is a tie 

among concepts, the strongest rule determines the precedence.  

In the above formula, any factor can be equal to one. For example, the value of 

specificity can be set to one, or we can say that the classification strategy does not use 

specificity. Also, during complete matching, the value of matching_factor will be one 

and vice versa. 

 

3.2 Classification strategies 

For the experiments, four combinations of certain and possible rules i.e. a) using only 

certain rules, b) using only possible rules, c) using certain rules first, then possible rules 

if necessary and d) using both certain and possible rules have been used. With these 

four options for choosing rule sets, two options for using specificity, and two options 

for matching_factor, the sixteen classification strategies that are used for the 

experiments are listed below: 

1. Using only certain rules, specificity, complete matching then partial matching if 

necessary, 

2. Using only certain rules, specificity and both complete matching and partial 

matching, 

3. Using only certain rules and complete matching, then partial matching if 
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necessary and not using specificity, 

4. Using only certain rules and both complete and partial matching, not using 

specificity, 

5. Using only possible rules, specificity and complete matching, then partial 

matching if necessary, 

6. Using only possible rules, specificity, both complete matching and partial 

marching, 

7. Using only possible rules, not using specificity, using complete matching, then 

possible matching if necessary, 

8. Using only possible rules and both complete and partial matching, not using 

specificity, 

9. Using certain rules first, then possible rules if necessary, specificity, and 

complete matching, then partial matching if necessary, 

10. Using certain rules first, then using possible rules if necessary, specificity and 

both complete and partial matching, 

11. Using certain rules first, then using possible rules if necessary and complete 

matching if necessary, not using specificity, 

12. Using certain rules first, then using possible rules if necessary and both compete 

and partial matching, not using specificity, 

13. Using both certain and possible rules, specificity, using complete matching then 

partial matching if necessary, 

14. Using both certain and possible rules, specificity, and both complete and partial 

matching.                                                                                                                                                            
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15. Using both certain and possible rules, complete matching, then partial matching 

if necessary, not using specificity. 

16. Using both certain and possible rules and both complete and partial matching, 

not using specificity. 
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CHAPTER 4: EXPERIMENTS 
 

This chapter explains the experiments done on the rules induced by the valued 

tolerance relation. 

4.1 Tools used for evaluation of the decision rules 
 

The main parameter that is used for evaluating the decision rules is the error -

rate. The validation of the decision rules is done by a process called ten-fold 

cross-validation. The rule checker program takes the rules induced by the 

algorithm (MLEM2) and computes the error rate. The algorithm takes Input data 

file as input and produces a report file, a file with rules, and error rate as outputs. 

These files with their descriptions and examples are as follows: 

 
(a) Data input file – the file which is given as the input to the algorithm, 

 

(b) Report file - This file gives the statistics if the results based on the rules 

and data. One such example report file is: 

Fig 4.1 Sample report file 
This report was created from: valuedresult and from: bank-5.d 

The total number of examples is: 66 

The total number of attributes is: 5 
The total number of rules is: 25 
The total number of conditions is: 100 
The total number of examples that are not classified: 41 
The total number of examples that are incorrectly classified: 0 
The total number of examples that are not classified or are incorrectly classified: 
41 
Error rate: 62.12 percent 

 

Concept(d, 1): 
The total number of examples that are not classified: 8 
The total number of examples that are incorrectly classified: 0 
The total number of examples that are correctly classified: 25 
The total number of examples in the concept: 33 
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Concept(d, 2): 
The total number of examples that are not classified: 33 
The total number of examples that are incorrectly classified: 0 
The total number of examples that are correctly classified: 0 
The total number of examples in the concept: 33 

 
 

(c) Name of the new rule set file. This gives the rule file according to the 

LERS format. One such example rule file is: 

Fig 4.2 Sample ruleset file 
! This rule file was created from: input.txt.r and from: input.txt 
!    

 

2, 1, 1 
(a3, 1) & (a4, 0) -> (d, low) 
3, 1, 1 
(a1, 2) & (a3, 2) & (a4, 1) -> (d, high) 
3, 1, 1 
(a2, 2) & (a3, 1) & (a4, 3) -> (d, high) 

 

 
Where the three numbers before the rule specify the strength, specificity, and 

support, respectively. In addition to the above input files, the rule checker needs 

to be specified if the error rate has to be computed for the certain or possible 

rules. For this, the following inputs are to be provided after the generation of 

rules. 

 

(a) If the rules are to be evaluated using conditional probability or strength, 
 

(b) If support is to be used or not, 
 

(c) If specificity is to be used or not, 
 

(d) If the concept statistics need to be printed, 

 
(g) If the case classifications need to be printed. 
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A typical example report generated with the concept statistics is given below: 

  Fig 4.3 Sample statistics 

General Statistics 
 

This report was created from: ru and from: input.txt 
The total number of cases: 12 
The total number of attributes: 4 
The total number of rules: 3 
The total number of conditions: 8 
The total number of cases that are not classified: 0 

PARTIAL MATCHING 
The total number of cases that are incorrectly classified: 1 
The total number of cases that are correctly classified: 2 

COMPLETE MATCHING 
The total number of cases that are incorrectly classified: 4 
The total number of cases that are correctly classified: 5 

PARTIAL AND COMPLETE MATCHING 
The total number of cases that are not classified or incorrectly classified: 5 
Error rate: 41.67% 

 
Concept (“d”,”low”) 
The total number of cases that are not classified: 0 

 
PARTIAL MATCHING 

The total number of cases that are incorrectly classified: 1 
The total number of cases that are correctly classified: 0 

 
COMPLETE MATCHING 

The total number of cases that are incorrectly classified: 4 
The total number of cases that are correctly classified: 1 

The total number of cases in the concept: 6 
 

Concept (“d”,”high”) 
The total number of cases that are not classified: 0 

 
PARTIAL MATCHING 

The total number of cases that are incorrectly classified: 0 
The total number of cases that are correctly classified: 2 

COMPLETE MATCHING 
The total number of cases that are incorrectly classified: 0 
The total number of cases that are correctly classified: 4 

The total number of cases in the concept: 6 

 

(c) Error rate calculator 

The error rate calculated will be saved onto a file as a percentage value and also 
printed out among the above statistics. 
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4.2 Comparison of classification strategies: 

  From the error rates calculated as described above for different datasets have been 
tabled below for the comparison. 
 
Table 4.1 Error rates 

 Abalone Ecoli Ion Pima Yeast 

1 11.10 35.14 32.00 67.00 8.00 

2 11.00 35.67 33.46 67.31 8.12 

3 11.01 36.01 32.14 67.36 8.34 

4 11.21 35.43 33.61 67.56 8.34 

5 12.34 40.01 42.15 71.24 7.36 

6 10.13 43.27 37.48 67.97 7.34 

7 12.34 36.76 36.73 66.54 8.93 

8 13.01 35.98 40.47 72.34 10.05 

9 11.12 36.74 33.61 68.37 8.60 

10 10.36 43.12 32.14 69.31 10.4 

11 11.21 39.01 42.15 73.12 8.60 

12 11.84 40.21 46.41 72.67 7.35 

13 12.31 38.60 39.16 65.19 9.41 

14 13.12 41.14 44.47 66.78 8.00 

15 11.01 37.43 33.61 67.31 8.12 

16 11.00 36.12 31.31 67.57 10.10 
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CHAPTER 5: CONCLUSIONS 

 
For the above experiments, we took five data sets of different sizes, and each set has 

been shuffled in the beginning to produce data sets for ten–fold cross-validation. The 

rule sets have been created using MLEM2 and then are used to calculate error rates 

using different factors like partial or complete matching, using certain and possible 

rules, and using specificity and strength. 

From the above results, we can observe that for strategies (1,2,3,4), there is no significant 

effect by using partial or complete matching. There is also no significant difference 

observed by using specificity on the ruleset, this can be observed from the strategies 2 

and 4, 6 and 8, 10 and 12 and 14 and 16. One factor that has a considerable impact on 

effectiveness is choosing between certain and possible rules. The options with possible 

rules tend to produce lower error rates compared to certain rules, and using both rules 

yielded lower error rates. 

To summarize the above results, there is no single strategy that can be considered as the 

best one to use, and the effectiveness of these strategies can also be dependent on the 

size and type of data as well. 
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APPENDIX A 
 

LEM2 algorithm 
 

The procedure for LEM2 algorithm is given below: [6] 
 

Procedure LEM2 
(input: a set B, 

output: a single local covering of set B); 
begin 

G := B; 
:= Ø; 

while G  Ø 
begin 
T := Ø; 

T(G) := {t | [t]  G  Ø}; 

while T = Ø or [T] Ç B 

begin 

select a pair t T(G) with the highest attribute priority, 

if a tie occurs, select a pair t T(G) such that |[t]  G| is 

maximum; 

if another tie occurs, select a pair tT(G) with the smallest 
cardinality of [t]; if a further tie occurs, select first pair; 

T := T  {t}; 
G := [t]  G; 

T(G) := {t | [t]  G  Ø}; 

T(G) := T(G) – T; 
end {while} 
for each t in T do 

if [T – {t}]  B then T: = T – {t}; 
:=  {T}; 

G := B – T  T[T ] 

end {while}; 
for each T in do 

if S  T [S ] = B then := – {T} 

end {procedure}. 
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APPENDIX B 
 

Implementation details: 
 

For the experiments, a file containing dataset will be given as input to the 

program, which creates ten folds from the initial data, which will be used for 

validating the experiment. From each data set thus formed, the program will 

calculate the number of attributes and cases available to classify. Then the 

program will check if the data consists of missing values and numerical values, 

after performing discretization, attribute-value pairs are created for the entire 

collection of data. From this attribute-value pairs, using the alpha value give 

during initial inputs, the program will create lower and upper approximations. 

From these approximations, a file with rule sets will be created. These input data 

and output rule files are taken as inputs by the second program, which checks 

the rules and calculates error rate based on the factors that are being defined by 

the users. The error rates calculated for all the ten-folds will be written to an 

error.txt file with their average. This process is continued for all the datasets, and 

the resulting error rates are compared. This program was created using Java 

programming language. 

 


