

A comparison of sixteen classification strategies of rule induction
from incomplete data using the MLEM2 algorithm

 Venkata Siva Pavan Kumar Nelakurthi

Submitted to the Department of Electrical Engineering & Computer Science and
the Faculty of the Graduate School of the University of Kansas in partial
fulfillment of the requirements for the degree of Master of Science

Thesis Committee:

Dr. Jerzy Grzymala-Busse: Chairperson

Dr. Guanghui (Richard) Wang: Member

Dr. Prasad Kulkarni: Member

 05/03/2020

Date Defended

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/344443842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

The Thesis Committee for Venkata Nelakurthi certifies that this is the approved
version of the following thesis:

A comparison of sixteen classification strategies of rule induction from incomplete data

using the MLEM2 algorithm

Thesis Committee:

Dr. Jerzy Grzymala-Busse: Chairperson

Dr. Guanghui (Richard) Wang: Member

Dr. Prasad Kulkarni: Member

 05/08/2020

Date Defended

iii

ABSTRACT

In data mining, rule induction is a process of extracting formal rules from decision

tables, where the later are the tabulated observations, which typically consist of few

attributes, i.e., independent variables and a decision, i.e., a dependent variable. Each

tuple in the table is considered as a case, and there could be n number of cases for a

table specifying each observation. The efficiency of the rule induction depends on how

many cases are successfully characterized by the generated set of rules, i.e., ruleset.

There are different rule induction algorithms, such as LEM1, LEM2, MLEM2. In the real

world, datasets will be imperfect, inconsistent, and incomplete. MLEM2 is an efficient

algorithm to deal with such sorts of data, but the quality of rule induction largely

depends on the chosen classification strategy. We tried to compare the 16 classification

strategies of rule induction using MLEM2 on incomplete data. For this, we

implemented MLEM2 for inducing rulesets based on the selection of the type of

approximation, i.e., singleton, subset or concept, and the value of alpha for calculating

probabilistic approximations. A program called rule checker is used to calculate the

error rate based on the classification strategy specified. To reduce the anomalies, we

used ten-fold cross-validation to measure the error rate for each classification. Error

rates for the above strategies are being calculated for different datasets, compared, and

presented.

iv

ACKNOWLEDGMENTS:

I would like to express my heartfelt thanks to my advisor and thesis committee

chair, Dr.Jerzy Grzymala Busse, for his continued support and encouragement.

The knowledge he imparted on me through his data mining lectures and during

research discussions has been invaluable and helped me complete this thesis.

I extend my thanks to my parents for their constant support and encouragement

in every aspect of my graduate education.

Not to forget, I am also thankful to all my friends and peers of The University of

Kansas.

v

TABLE OF CONTENTS

Abstract iii

1. INTRODUCTION 1

1.1 Motivation 1

1.2 Organization of the document 4

2. BACKGROUND 6

2.1 Decision tables and decision rules 6

2.1.1 Information representation in decision tables 6

2.1.2 Decision rules 7

2.1.3 Handling incomplete attribute values in decision tables 8

2.2 Rough set theory 10

2.2.1 Preliminary concepts of rough set theory 10

2.2.2 Rule induction algorithms based on rough set theory 12

2.2.3 Classification system in LERS 14

2.2.4 Characteristic sets and characteristic relation for

incomplete decision tables

2.2.5 Rough set theory in incomplete decision tables 17

2.2.6 MLEM2 algorithm 20

3. CLASSIFICATION STRATEGIES 22

3.1 Classification factors 22

3.2 Classification strategies 23

15

vi

4. EXPERIMENTS 26

4.1 Experiment setup 26

4.2 Comparison of classification strategies 29

5. CONCLUSIONS 30

6. REFERENCES

List of Figures

List of Tables

Appendix A LEM2 algorithm
Appendix B Implementation details

31

36

37

38

39

1

CHAPTER 1: INTRODUCTION

In data mining different algorithms exist to process large amounts of data.

However, real-life data are characterized by missing values, which renders the

classification process difficult.

1.1 Motivation

The data mining algorithms are used for classifying critical and sensitive real-life

data. Hence, accurate classification becomes essential. Many different algorithms

were proposed to address this issue. Few of the algorithms that are commonly

used for classification are following:

1. Linear lassifiers like naïve Bayes classifier :

Naïve bayes classifier is based on Bayes theorem. This classifier assumes that the

presence of a certain feature in a clas is unrelated to presence od any other

feature or that all the properties have independent contribution to probability

[22].

2. Naerest Neighbour classifiers

The k-nearest-neighbors algorithm is a supervised classification technique that

uses proximity as a proxy for ‘similarity’. The algorithm takes a set of labelled

points and uses them to learn how to label other points. To classify (label) a new

point, it looks at the labelled points closest to that new point (those are its nearest

neighbors) [21].

2

3. Support vector machines

The objective of the support vector machine algorithm is to find a hyperplane

in an N-dimensional space(N — the number of features) that distinctly

classifies the data points [19].

4. Decision trees

Decision tree builds classification or regression models in the form of a tree

structure. It breaks down a set of data into smaller and smaller subsets while at

the same time developing an associated decision tree. The final result is a tree

with decision nodes and leaf nodes that can be used to classify new points [20].

5. Random forest

A Random Forest Classifier is a set of decision trees from randomly selected

subset of training set. It aggregates the votes from different decision trees to

decide the final class of the test object [18].

6. Neural networks

Neural networks are built of simple elements called neurons, which take in a real

value, multiply it by a weight, and run it through a non-linear activation

function. By constructing multiple layers of neurons, each of which receives part

of the input variables, and then passes on its results to the next layers, the

network can learn very complex functions. In theory, a neural network is capable

of learning the shape of just any function, given enough computational power

[17].

3

The technique of learning from inconsistent and incompete data , which is based

on the concept of rough set theory called rule induction, is also one such example

[25]. While most of the above algorithms are based on classification using feature

selution, rule induction is primarily based on using rough-set theory which is

better than using rule induction with feature selection [28].

Rule induction algorithms deal with missing examples in two ways. One is by

preprocessing the incomplete decision table to make it complete and then

performing rule induction on it. The other is by performing rule induction on

incomplete data directly. MLEM2 algorithm that is based on rough set theory is

one such rule induction algorithm that acts on missing examples directly. When

an incomplete decision table is provided, rough set theory handles it by

approximating the inconsistent or missing data with two approximations, lower

and upper.

Effectiveness of MLEM2 is defined by different factors like matching factor,

specificity, strength, and usage of certain and possible rules. Based on these

factors, we can create sixteen different strategies to classify the ruleset. These rule

sets can be compared by the error rates calculated using these strategies.

4

1.2 Organization of the document

This thesis is organized into six chapters that include a detailed background of

rule induction, a description of the MLEM2 and sixteen classification strategies,

the related experimentation, and results.

Chapter1 gives an overview of the motivation for the thesis. An overall idea

about the topic and the main focus of the thesis has been explained.

Chapter 2 provides background information related to the thesis. It is divided into

two parts. The first part explains some basic concepts related to rule induction. It

also explains the concept of missing attribute values in decision tables and the

different approaches to induce rules from these incomplete decision tables. The

second part describes the rough-set approach and the related concepts in detail.

Finally, it describes the MLEM2 algorithm with an example on how to induce

rules from incomplete decision tables.

Chapter 3 introduces the classification factors used in rule induction and specifies

the sixteen classification strategies that have been compared for incomplete data

using the MLEM2 algorithm.

5

Chapter 4 shows the experimental results and the error rates of the classification

strategies applied to different incomplete data sets using the MLEM2 algorithm.

Chapter 5 is for the conclusions of the thesis and suggestions for future areas of

exploration.

6

CHAPTER 2: BACKGROUND

This chapter gives an overview of the fundamental concepts of rough set theory

and the MLEM2 algorithm.

2.1 Decision tables and decision rules

In the field of data mining the information available about real-world data is

represented in the form of a decision table. A decision table is a powerful and

clear way of representing data.

2.1.1 Information representation in decision tables

A decision table describes a set of examples. Each example is presented in the

form of a set of attribute values and a decision value. The attribute values

provide information about the object, and the decision value provides a way of

categorizing the object. Also, each example belongs to a class, known as the

concept. Such a class is represented by a set of examples having the same value

for a decision. A decision table describing cars is shown in Table 2.1.

Table 2.1: An example of the decision table

Case Year Mileage Decision

1 1990 300000 Least Reliable

2 2000 150000 Less Reliable

3 2008 6000 Very Reliable

In the above decision table, ‘Least Reliable’, ‘Less Reliable’ and ‘Very Reliable’

are concepts about the car. Mileage and year are attributes that describe the car.

7

Decision tables are a precise yet compact way to model complicated situations.

In mathematical terms, a decision table ‘DT’ is an information table of the form

(U, C  {d}) where d is a distinguished attribute called a decision, U is a set of

objects, and elements of C are called condition attributes.

2.1.2 Decision rules

Decision rules classify the data in the decision table into different concepts.

Usually decision rules are expressed in the form:

If (attribute1 = value1) & (attribute2 = value2) - > (decision = value)

The left-hand side represents the attribute-value pairs, and the right-hand side

represents the concept. A case x is covered by a rule r if and only if every

condition or attribute-value pair of r is satisfied by the corresponding attribute

value for x. For example, from Table 2.1, the following rule can be extracted

If (Year = 2000) -> (decision = Less Reliable)

Since case 2 with the concept “Less Reliable” satisfies this rule, it is said to be

covered by the rule.

Decision rules can be described using two important terms – completeness and

consistency. The basic idea is to compute rules which are both complete and

consistent. Such a rule set R is called the discriminant. Consider a concept C. This

is completely covered by a rule set R if for every case x from C, there exists a rule

such that r covers x. A rule set R is complete if every concept from the data set is

completely covered by R. It is consistent with the dataset, if every case x is

8

covered by R, where x is a member of the concept C indicated by R. In other

words, a rule set R is consistent if and only if every rule r  R is consistent with

the dataset.

Decision rule induction is the process by which rules are induced from the

decision tables. It involves the extraction of high-level information from low-

level data and is the most fundamental data mining technique. Examples of rule

induction algorithms are LEM1 and LEM2 [6].

2.1.3 Handling incomplete attribute values in decision tables

Until recently, data represented in decision tables were assumed to be complete

and consistent. In recent times, the need for new algorithms to deal with

uncertain input, lost input or erroneous information has risen. Hence, handling

data with incomplete values is an active topic of research in data mining.

One of the general assumptions made in all these rule induction algorithms is

that, in a particular case, at least one value should be present, which means we

cannot induce a rule from a case that has all of its attributes missing [2].

In general, it is assumed that there are three specific types of missing data:

(1) The attribute value might be lost, i.e., either erased or missed out. These are

called “lost conditions”, represented by ‘?’.

9

(2) The attribute value might be irrelevant to the current classification. In other

words, value is unnecessary. So, we do not care if they are missing or not. Hence,

they are called “do not care” conditions. These missing attribute values are

represented by ‘*’.

(3) The missing attribute values are assumed to belong to a particular concept.

These are called “attribute-concept” values, represented by ‘-‘.

The theories that provide a solution to the missing attribute value problem

follow two main approaches.

1) The input data is preprocessed, i.e., incomplete attribute values are filled up

using some heuristics that the application demands. Some examples are:

replacing the missing attribute value with the most frequently occurring value,

replacing the missing attribute value with the attribute average, replacing the

missing attribute value with the most frequently occurring value in that concept,

etc. Hence, the data becomes complete after preprocessing. Now, the rule

induction becomes the same as the traditional approach [5].

2) Inducing rules with the incompletely specified table itself. Examples for this

approach are MLEM2 [23] and C4.5 algorithms [2, 24].

Table2.2 illustrates the three types of missing data using an example.

10

Table 2.2: An incomplete decision table: example 1

Case
Attributes Decision

Temperature Headache Nausea Flu

1 High - No Yes

2 Very_high Yes Yes Yes

3 ? No No No

4 High Yes Yes Yes

5 High ? Yes No

6 Normal Yes No No

7 Normal No Yes No

8 * Yes * Yes

In the above table, there are three attributes namely ‘Temperature’, ‘Headache’,

‘Nausea’ and one decision ‘Flu’. It has eight cases of which four have missing

attribute values. Cases 3 and 5 have “lost conditions”, case 8 has two “do not

care” conditions and case 1 has an “attribute-concept” value. There are two

concepts ‘Yes’ and ‘No’ for classification.

2.2 Rough set theory

Rough set theory, introduced by Z.Pawlak, brings a mathematical approach to

data mining. It has evolved into a very powerful tool for analyzing the ambiguity

of data elements and has served as the foundation for innumerable theories. It

has also proved its usefulness in many real-life applications.

2.2.1 Preliminary concepts of rough set theory

The main idea behind rough-set theory is the indiscernibility relation between

objects which can be explained as follows:

11

Any two objects in the universe can be assumed to be indiscernible if the

available or known facts about them are similar. In other words, they are

categorized based on the available information about them. The unknown

information might show them to be different. But according to the facts available,

they are classified to be similar [11, 12].

In mathematical terms, the indiscernibility relation can be explained as: A

decision table is a pair (U, C) where U is a non-empty set of objects and C is a

non-empty set of attributes [3, 14, 15]. For each subset of attributes B  C , the

indiscernibility relation IND (B) can be defined as:

IND (B) = {(x, y)  U U : ci  B, ci (x) = ci (y)}

where x and y are two objects and ci (x) and ci (y) are the values of attribute ci for

x and y, respectively. According to rough set theory, with each set, a pair of

precise sets called lower and upper approximation is associated. For any element

x of U, the equivalence class of IND containing x will be denoted by [x]IND . A

lower approximation of X in (U, IND), denoted by RX, is the set

{x U | [x]  X }.
IND

An upper approximation of X in (U, IND), denoted by RX , is the set

{x U | [x]  X  }.
IND

Lower approximation represents data that certainly belong to the set and hence

the rules extracted using lower approximation are called certain rules. Upper

12

approximation represents data that may possibly belong to the set and hence the

rules induced this way are called possible rules [3, 16].

Let U be a non-empty set called the universe and let IND be the indiscernibility

relation. An ordered pair (U, IND) is called an approximation space. Let X be a

subset of U. X is defined in terms of the set in (U, IND). Any finite union of

elementary sets in (U, IND) is called the definable set in (U, R). The lower

approximation of X in (U, R) is the greatest definable set in (U, IND), contained

in X. The upper approximation of X in (U, IND) is the least definable set in (U,

IND), containing X [1].

The main idea behind the approximations is that if it looks impossible to

completely categorize a set of objects using the available information, it can be

approximated using the lower and upper approximations. The set that separates

the lower and the upper approximation is the boundary region for the rough set.

The main advantage of rough set theory is that it does not require any additional

information about data, unlike a lot of statistical approaches. Thus, it is possible

to find hidden information about data more efficiently [2].

2.2.2 Rule induction algorithms based on rough set theory

Rule induction is one of the most important techniques of data mining that

extracts regularities from the real-life data. The critical task of rule induction is to

induce a rule set R that is consistent and complete. That said, rule induction has

its own challenges. For example, the input data can be affected by errors, may

13

contain numeric attributes (which need to be converted to symbolic attributes

before or during rule induction), may be incomplete due to missing values or

inconsistent due to two cases having the same attribute values but a different

decision value. There are two important kinds of rule induction algorithms,

global and local. In global algorithms all the attribute values are considered

where as in local algorithms the concept of attribute-value pairs come into

picture. The two important rule induction algorithms based on rough set theory

are LEM1 (Learning by Examples) and LEM2 [6].

Let B be a nonempty subset of a set C of all attributes. LEM1 is a global algorithm

that is based on rough set theory and uses the indiscernibility concept IND (B).

The family of all B-elementary sets will be denoted by B*. According to the

definition of LEM1, for a decision d we say that {d} depends on B if and only if B*

<= {d}* where {d}* is the family of elementary sets of d. A global covering of {d} is

a subset B of C such that {d} depends on B and B is minimal in C. The main idea

behind LEM1 is to compute a single global covering. The computed rules then

undergo a process called dropping conditions. This is done by scanning through

all the computed rules, dropping conditions one by one and then, checking if the

consistency of the ruleset is affected by dropping the condition. If the rules with

dropped conditions are consistent and cover the same number of cases, then the

condition can be termed as a redundant condition and dropped forever.

On the other hand, LEM2 is a local algorithm, which takes into account attribute-

value pairs and then converts them into a ruleset. LEM2 works better than

14

LEM1 because it works on lower and upper approximations separately and

hence the input files for LEM2 are always consistent.

For an attribute-value pair (a, v) = t, a block of t, denoted by [t], is a set of all

cases from the universe U which has attribute a and value v. Let B be a nonempty

lower or upper approximation of a concept represented by a decision- value pair

(d, w). Set B depends on a set T of attribute-value pairs t = (a, v) if and only if no

proper subset T’ of T exists such that B depends on that subset T’.

  [T] =  tT [t]  B

Thus in LEM2, the first step is to compute a set of all attribute-value blocks [a, v].

After that, an iterative process is followed to identify the minimal complex. A

detailed description of the LEM2 procedure is given in Appendix A [6].

2.2.3 Classification system in LERS

LERS (Learning from Examples based on Rough Sets) is a well-known data

mining system that induces rules based on rough set theory and uses the already

induced rules to further classify new data. LERS associates three basic

parameters to evaluate the decision rules, namely strength, specificity, and

support.

• Strength is defined as the total number of examples correctly classified by

the rule during training. It is a measure of how well the rule performed.

15

• Specificity is the total number of conditions or attribute-value pairs on the

left-hand side of the rule. Thus, rules with more attribute-value pairs are

considered to be more specific.

• Support is defined as the sum of scores of all matching rules from the

concept [8, 9].

These factors are explained in detail in the classification strategies below.

2.2.4 Characteristic sets and characteristic relations for incomplete decision

tables

For decision tables with missing attribute values, modified definitions are

needed to determine to which attribute-value block the cases with missing

attribute values can be added. The following heuristics are followed:

• If for an attribute a there exists a case x such that the value of a for x is ‘?’,

i.e., the corresponding value is lost, then the case x should not be included

in any block [(a, v)] for all values v of attribute a.

• If for an attribute a there exists a case x such that the value of a for x is ‘*’

i.e., the corresponding value is a do not care condition, then the case x

should be included in blocks [(a, v)] for all specified values v of attribute a.

• If for an attribute a there exists a case x such that the value is a ‘-‘, i.e., the

corresponding value is an attribute concept value then the case x should

be included in blocks [(a, v)] for all specified values v of attribute a

belonging to that concept [2].

16

For example, the attribute-value block for Table 2.2 can be defined as:

[(Temperature, High)] = {1, 4, 5, 8},

[(Temperature, Very_high)] = {2, 8},

[(Temperature, Normal)] = {6, 7},

[(Headache, Yes)] = {1, 2, 4, 6, 8},

[(Headache, No)] = {3, 7},

[(Nausea, No)] = {1, 3, 6, 8},

[(Nausea, Yes)] = {2, 4, 5, 7, 8}.

A few important terms that need to be defined in rough set theory are

characteristic sets and characteristic relations. The characteristic set KB (x) for a set

B, is the intersection of blocks of attribute-value pairs (a, v) for all attributes a

from B for which (x, a) is specified and (x, a) = v. For Table 2.2, the

characteristic set can be defined for B = A as:

For Case 1: KA (1) = {1, 4, 5, 8}  {1, 3, 6, 8} = {1, 8},

For Case 2: KA (2) = {2, 8}  {1, 2, 4, 6, 8}  {2, 4, 5, 7, 8} = {2, 8},

For Case 3: KA (3) = {1, 2, 3, 4, 5, 6, 7, 8}  {3, 7}  {1, 3, 6, 8} = {3},

For Case 4: KA (4) = {1, 4, 5, 8}  {1, 2, 4, 6, 8}  {2, 4, 5, 7, 8} = {4, 8},

For Case 5: KA (5) = {1, 4, 5, 8} U  {2, 4, 5, 7, 8} = {4, 5, 8},

For Case 6: KA (6) = {6, 7}  {1, 2, 4, 6, 8}  {1, 3, 6, 8} = {6},

For Case 7: KA (7) = {6, 7, 8}  {3, 7}  {2, 4, 5, 7, 8} = {7},

For Case 8: KA (8) = {1, 4, 8} {2,8}{1,2,4,6,8}={1,2,4,8}.

17

Thus, for a given interpretation of missing attribute values, the characteristic set

KB (x) may be interpreted as the smallest set of cases that are indistinguishable

from x [2, 10].

The characteristic relation R (B) is a relation on a set of all objects U defined for

objects x, y  U as follows

(x, y)  R (B) if and only if

y  KB (x)

The characteristic relation is known if we know all the characteristic sets x  U.

For Table 2.2, the characteristic relation can be calculated as:

R(A) = {(1, 1), (1, 8), (2, 2), (2, 8), (3, 3), (4, 4), (4, 8), (5, 4), (5, 5), (5, 8), (6, 6), (6, 8),

(7, 7), (8, 2), (8, 4), (8, 6), (8, 8)}.

2.2.5 Rough set theory in incomplete decision tables

In rough set theory, incomplete decision tables are described using characteristic

relations, in the same way, complete decision tables are described using the

indiscernibility relation. For a complete decision table, once the indiscernibility

relation is fixed and the concept is given, the lower and upper approximations

are unique. For an incomplete decision table, for a given characteristic relation

and concept there are three different ways to define lower and upper

approximations, namely singleton, subset and concept.

In the case of singleton method, the singleton B-lower and B-upper

approximations of X are defined as follows:

18

BX = {x U | KB (x)  X }

BX = {x U | KB (x)  X  }

where KB (x) is the characteristic set and U is the set of all objects.

For example, in Table 2.2 the singleton A-lower and A-upper approximations of

the two concepts {1, 2, 4, 8} and {3, 5, 6, 7} are:

A {1, 2, 4, 8} = {1, 2, 4, 8},

A {3, 5, 6, 7} = {3, 6, 7},

A {1, 2, 4, 8} = {1, 2, 4, 5, 8},

A {3, 5, 6, 7} = {3, 5, 6, 7}.

Singleton approximations are not very useful since they cannot be represented as

union of attribute value blocks. So, the other approach uses characteristic

relations instead of elementary sets. There are two different ways to do this. The

first method is called subset approximations.

A subset B-lower approximation of X is defined as:

BX = {KB (x) | x U , KB (x)  X }

A subset B-upper approximation of X is defined as:

BX = {KB (x) | x U , KB (x)  X  }

For example, for Table 2.2, the subset lower and upper approximations are given

as follows:

19

A {1, 2, 4, 8} = {1, 2, 4, 8},

A {3, 5, 6, 7} = {3, 6, 7},

A {1, 2, 4, 8} = {1, 2, 4, 5, 8},

A {3, 5, 6, 7} = {3, 4, 5, 6, 7, 8}.

The second method is by changing the subset definition by replacing the

universe U with the concept C. A concept B-lower approximation of the concept

X is defined as:

BX = {KB (x) | x  X , KB (x)  X }

A concept B-upper approximation of the concept X is defined as:

BX = {KB (x) | x  X , KB (x)  X  } = {KB (x) | x  X }

For example, in Table 2.2, the concept lower approximations for B = A are:

A {1, 2, 4, 8} = {1, 2, 4, 8},

A {3, 5, 6, 7} = {3, 6, 7},

A {1, 2, 4, 8} = {1, 2, 4, 8},

A {3, 5, 6, 7} = {3, 4, 5, 6, 7, 8}.

For completely defined decision tables, singleton, subset, and concept lower and

upper approximations are the same. As explained above, they are different for

incomplete decision tables [2, 4, 10].

With these approximations, there is also probabilistic approximations which are

a generalized form of singleton, subset and concept approximations.

20

For incomplete data, a B-concept probabilistic approximation can be defined as

 ∪ {𝐾𝐵(𝑥) |𝑥 ∈ 𝑋, Pr (𝑋|𝐾𝐵(𝑥)) ≥ 𝛼}

There is a lot of research existing for the comparison of classification systems

using MLEM2 and probabilistic approximations [26, 27, 28].

2.2.6 MLEM2 algorithm

Most of the data mining algorithms are not designed to deal with numerical

attributes. They take only symbolic (alphanumeric) attributes as inputs. So, to

classify data containing numerical attributes, they have to be converted to

symbolic attributes as a preprocessing step. Most of the data mining rule

induction algorithms take the numerical data and preprocess it by a

discretization process and then conduct the rule induction process. However,

this approach doubles the processing time. So, the currently developed

algorithms conduct rule induction and discretization at the same time. Examples

for the latter approach are Modified LEM2 (MLEM2), C 4.5 etc [5, 9, 10].

The key focus in this thesis is the modified LEM2 (MLEM2) which is based on

the LEM2 algorithm. MLEM2 classifies all attributes into two major types namely

numerical and symbolic. Approximations are computed in different ways for

numerical and symbolic attributes. The procedure is as follows: the first step is to

sort all values of a numerical attribute. The next step is to compute the average of

any two consecutive values of the sorted list. For each cut point x, MLEM2 works

by creating two blocks, the first block containing the values smaller than x and

21

the second block containing the values larger than x. The search space of MLEM2

includes both the blocks computed from symbolic attributes as well as the blocks

computed from numerical attributes. From this point, the rule induction follows

the same procedure as the LEM2 algorithm [9, 10].

With the background literature reviewed, the next chapter deals with the main

theoretical aspects of the thesis.

22

CHAPTER 3: Classification Strategies

In this chapter we will see the factors of classification and sixteen classification

strategies that have been compared in this work.

3.1 Classification factors

There are four factors for the classification of LERS:

 Strength is a measure of how good the rule performed during training. It is the

number of cases correctly classified by a single rule in training data. The higher the

value is, the better.

 Specificity is a measure of the completeness of a rule. It is the number of

conditions (attribute-value pairs) of a rule. In other terms, a rule with a higher number

of attribute-value pairs is more specific. Specificity can either be used or left out during

experiments.

 Matching_factor is a measure of matching of a case and a rule. It is the ratio of

the number of matched attribute-value pairs of a rule with a case to the total number of

attribute-value pairs of the rule. In these experiments, two versions of matching are

used: using complete matching first, then partial matching if needed, and using both

complete and partial matching at once. Therefore, matching-factor is always used in

partial matching.

23

Support is related to a concept C. It is the sum of all matching rule on C. It is defined as

follows:

∑ 𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔_𝑓𝑎𝑐𝑡𝑜𝑟(𝑅) ∗ 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝑅) ∗ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝑅)

𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑟𝑢𝑙𝑒𝑠 𝑅 𝑑𝑒𝑠𝑐𝑟𝑖𝑏𝑖𝑛𝑔 𝐶

The concept with the largest score will have precedence, and if there is a tie

among concepts, the strongest rule determines the precedence.

In the above formula, any factor can be equal to one. For example, the value of

specificity can be set to one, or we can say that the classification strategy does not use

specificity. Also, during complete matching, the value of matching_factor will be one

and vice versa.

3.2 Classification strategies

For the experiments, four combinations of certain and possible rules i.e. a) using only

certain rules, b) using only possible rules, c) using certain rules first, then possible rules

if necessary and d) using both certain and possible rules have been used. With these

four options for choosing rule sets, two options for using specificity, and two options

for matching_factor, the sixteen classification strategies that are used for the

experiments are listed below:

1. Using only certain rules, specificity, complete matching then partial matching if

necessary,

2. Using only certain rules, specificity and both complete matching and partial

matching,

3. Using only certain rules and complete matching, then partial matching if

24

necessary and not using specificity,

4. Using only certain rules and both complete and partial matching, not using

specificity,

5. Using only possible rules, specificity and complete matching, then partial

matching if necessary,

6. Using only possible rules, specificity, both complete matching and partial

marching,

7. Using only possible rules, not using specificity, using complete matching, then

possible matching if necessary,

8. Using only possible rules and both complete and partial matching, not using

specificity,

9. Using certain rules first, then possible rules if necessary, specificity, and

complete matching, then partial matching if necessary,

10. Using certain rules first, then using possible rules if necessary, specificity and

both complete and partial matching,

11. Using certain rules first, then using possible rules if necessary and complete

matching if necessary, not using specificity,

12. Using certain rules first, then using possible rules if necessary and both compete

and partial matching, not using specificity,

13. Using both certain and possible rules, specificity, using complete matching then

partial matching if necessary,

14. Using both certain and possible rules, specificity, and both complete and partial

matching.

25

15. Using both certain and possible rules, complete matching, then partial matching

if necessary, not using specificity.

16. Using both certain and possible rules and both complete and partial matching,

not using specificity.

26

CHAPTER 4: EXPERIMENTS

This chapter explains the experiments done on the rules induced by the valued

tolerance relation.

4.1 Tools used for evaluation of the decision rules

The main parameter that is used for evaluating the decision rules is the error -

rate. The validation of the decision rules is done by a process called ten-fold

cross-validation. The rule checker program takes the rules induced by the

algorithm (MLEM2) and computes the error rate. The algorithm takes Input data

file as input and produces a report file, a file with rules, and error rate as outputs.

These files with their descriptions and examples are as follows:

(a) Data input file – the file which is given as the input to the algorithm,

(b) Report file - This file gives the statistics if the results based on the rules

and data. One such example report file is:

Fig 4.1 Sample report file
This report was created from: valuedresult and from: bank-5.d

The total number of examples is: 66

The total number of attributes is: 5
The total number of rules is: 25
The total number of conditions is: 100
The total number of examples that are not classified: 41
The total number of examples that are incorrectly classified: 0
The total number of examples that are not classified or are incorrectly classified:
41
Error rate: 62.12 percent

Concept(d, 1):
The total number of examples that are not classified: 8
The total number of examples that are incorrectly classified: 0
The total number of examples that are correctly classified: 25
The total number of examples in the concept: 33

27

Concept(d, 2):
The total number of examples that are not classified: 33
The total number of examples that are incorrectly classified: 0
The total number of examples that are correctly classified: 0
The total number of examples in the concept: 33

(c) Name of the new rule set file. This gives the rule file according to the

LERS format. One such example rule file is:

Fig 4.2 Sample ruleset file
! This rule file was created from: input.txt.r and from: input.txt
!

2, 1, 1
(a3, 1) & (a4, 0) -> (d, low)
3, 1, 1
(a1, 2) & (a3, 2) & (a4, 1) -> (d, high)
3, 1, 1
(a2, 2) & (a3, 1) & (a4, 3) -> (d, high)

Where the three numbers before the rule specify the strength, specificity, and

support, respectively. In addition to the above input files, the rule checker needs

to be specified if the error rate has to be computed for the certain or possible

rules. For this, the following inputs are to be provided after the generation of

rules.

(a) If the rules are to be evaluated using conditional probability or strength,

(b) If support is to be used or not,

(c) If specificity is to be used or not,

(d) If the concept statistics need to be printed,

(g) If the case classifications need to be printed.

28

A typical example report generated with the concept statistics is given below:

 Fig 4.3 Sample statistics

General Statistics

This report was created from: ru and from: input.txt
The total number of cases: 12
The total number of attributes: 4
The total number of rules: 3
The total number of conditions: 8
The total number of cases that are not classified: 0

PARTIAL MATCHING
The total number of cases that are incorrectly classified: 1
The total number of cases that are correctly classified: 2

COMPLETE MATCHING
The total number of cases that are incorrectly classified: 4
The total number of cases that are correctly classified: 5

PARTIAL AND COMPLETE MATCHING
The total number of cases that are not classified or incorrectly classified: 5
Error rate: 41.67%

Concept (“d”,”low”)
The total number of cases that are not classified: 0

PARTIAL MATCHING

The total number of cases that are incorrectly classified: 1
The total number of cases that are correctly classified: 0

COMPLETE MATCHING

The total number of cases that are incorrectly classified: 4
The total number of cases that are correctly classified: 1

The total number of cases in the concept: 6

Concept (“d”,”high”)
The total number of cases that are not classified: 0

PARTIAL MATCHING

The total number of cases that are incorrectly classified: 0
The total number of cases that are correctly classified: 2

COMPLETE MATCHING
The total number of cases that are incorrectly classified: 0
The total number of cases that are correctly classified: 4

The total number of cases in the concept: 6

(c) Error rate calculator

The error rate calculated will be saved onto a file as a percentage value and also
printed out among the above statistics.

29

4.2 Comparison of classification strategies:

 From the error rates calculated as described above for different datasets have been
tabled below for the comparison.

Table 4.1 Error rates

 Abalone Ecoli Ion Pima Yeast

1 11.10 35.14 32.00 67.00 8.00

2 11.00 35.67 33.46 67.31 8.12

3 11.01 36.01 32.14 67.36 8.34

4 11.21 35.43 33.61 67.56 8.34

5 12.34 40.01 42.15 71.24 7.36

6 10.13 43.27 37.48 67.97 7.34

7 12.34 36.76 36.73 66.54 8.93

8 13.01 35.98 40.47 72.34 10.05

9 11.12 36.74 33.61 68.37 8.60

10 10.36 43.12 32.14 69.31 10.4

11 11.21 39.01 42.15 73.12 8.60

12 11.84 40.21 46.41 72.67 7.35

13 12.31 38.60 39.16 65.19 9.41

14 13.12 41.14 44.47 66.78 8.00

15 11.01 37.43 33.61 67.31 8.12

16 11.00 36.12 31.31 67.57 10.10

30

CHAPTER 5: CONCLUSIONS

For the above experiments, we took five data sets of different sizes, and each set has

been shuffled in the beginning to produce data sets for ten–fold cross-validation. The

rule sets have been created using MLEM2 and then are used to calculate error rates

using different factors like partial or complete matching, using certain and possible

rules, and using specificity and strength.

From the above results, we can observe that for strategies (1,2,3,4), there is no significant

effect by using partial or complete matching. There is also no significant difference

observed by using specificity on the ruleset, this can be observed from the strategies 2

and 4, 6 and 8, 10 and 12 and 14 and 16. One factor that has a considerable impact on

effectiveness is choosing between certain and possible rules. The options with possible

rules tend to produce lower error rates compared to certain rules, and using both rules

yielded lower error rates.

To summarize the above results, there is no single strategy that can be considered as the

best one to use, and the effectiveness of these strategies can also be dependent on the

size and type of data as well.

31

REFERENCES

[1] Jerzy Stefanowski, Alexis Tsoukias, Incomplete Information tables and Rough

Classification, Computational Intelligence Journal, ed. By Randy Goebel and

Russell Greiner, Volume 17, Number 3, Aug 2001, 545-566.

[2] Jerzy W. Grzymala-Busse, Rough set Theory with Applications to Data Mining,

Real World Applications of Computational Intelligence, ed. by M. G. Negoita

and B. Reusch, Springer Verlag, 2005, 221-244.

[3] Jerzy W. Grzymala-Busse, On the unknown attribute values in Learning from

Examples, Proceedings of the ISMIS-91, 6th International Symposium on

Methodologies for Intelligent Systems, Charlotte, North Carolina, Oct 16-19,

1991, 368-377.

[4] Jerzy W. Grzymala-Busse, Three Approaches to Missing Attribute Values- A

Rough Set Perspective, Proceedings of the Workshop on Foundation of Data

Mining, associated with the Fourth IEEE International Conference on Data

Mining, Brighton, UK, November 1-4, 2004, 55–62.

[5] Jerzy W. Grzymala-Busse, Witold J. Grzymala-Busse, Handling Missing

Attribute Values, The Data Mining and Knowledge Discovery Handbook 2005, ed.

By Oded Miamon and Lior Rokach, Springer-Verlag, 2005, 37-57.

32

[6] Jerzy W. Grzymala-Busse, Witold J.Grzymala-Busse, Rule Induction, The Data

Mining and Knowledge Discovery Handbook, ed. By Oded Maimon and Lior

Rokach, Springer-Verlag, 2005, 277-294.

[7] Jerzy W. Grzymala-Busse, EECS 837 Lecture Notes, taken during Fall 2006.

[8] Temidayo.B.Ajayi, Incomplete Data Mining, A Rough Set Approach, Thesis

document submitted to the Department of Electrical Engineering and Computer

Science, University of Kansas, under the guidance of Jerzy W. Grzymala-Busse.

[9] Jerzy W. Grzymala-Busse, A Comparison of Three Strategies to Rule Induction

from Data with Numerical Attributes, Proceedings of the International Workshop

on Rough Sets in Knowledge Discovery (RSKD2003), associated with the

European Joint Conferences on Theory and Practice of Software 2003, Warsaw,

Poland, April 2003, 132-140.

[10] Jerzy W. Grzymala-Busse, Sachin Siddhaye, Rough Set Approaches to Rule

Induction from Incomplete Data, Proceedings of the IPMU'2004, the 10th

International Conference on Information Processing and Management of

Uncertainty in Knowledge-Based Systems, Perugia, Italy, July , 2004, Volume 2,

923–930.

[11] Zdzislaw Pawlak, Jerzy Grzymala-Busse, Roman Slowinski, and Wojciech

Ziarko, Rough Sets, Communications of the ACM November 1995, Volume 38,

Issue 11 , 88 - 95.

[12] Zdzislaw Pawlak, Rough Sets – Theoretical aspects of reasoning about data,

Boston, MA, Kluwer Academic Publishers, 1991, Boston Dordrecht, London.

33

[13] Jerzy Stefanowski and Alexis Tsoukias On the Extension of Rough Sets under

Incomplete Information, ed by N. Zhong, A. Skowron, S. Ohsuga, RSFDGCrC,

Springer-Verlag Berlin Heidelberg, 1999, 73-82.

[14] Jerzy Grzymala-Busse, Rough Set Approach to Incomplete Data, Artificial

Intelligence and Soft Computing - ICAISC 2004, vol. 3070, 50-55.

[15] Zdzislaw Pawlak, Inference Rules and Decision Rules, Artificial Intelligence and

Soft Computing - ICAISC 2004 7th International Conference, Zakopane, Poland, June

2004, 102-108.

[16] Zdzislaw Pawlak, Rough sets and data analysis, Fuzzy Systems Symposium,

Soft Computing in Intelligent Systems and Information Processing, Dec 11-14,

1996, 1-6.

[17] Zeinali, Yasha and Story, Brett A. ‘Competitive Probabilistic Neural

Network’. 1 Jan. 2017 : 105 – 118.

[18] Biau, G., Scornet, E. A random forest guided tour. TEST 25, 197–227 (2016).

[19] Suthaharan S. (2016) Support Vector Machine. In: Machine Learning

Models and Algorithms for Big Data Classification. Integrated Series in

Information Systems, vol 36. Springer, Boston, MA.

[20] Wei Liu, Sanjay Chawla, David A. Cieslak, and Nitesh V. Chawla

Proceedings of the 2010 SIAM International Conference on Data Mining. 2010,

766-777.

[21] Wei Liu, Sanjay Chawla, David A. Cieslak, and Nitesh V. Chawla

Proceedings of the 2010 SIAM International Conference on Data Mining. 2010,

766-777.

34

[22] McCallum, Andrew. "Graphical Models, Lecture2: Bayesian Network

Represention" . Retrieved 22 October 2019.

[23] Patrick G. Clark, Cheng Gao and Jerzy W. Grzymala-Busse. A comparison of

two MLEM2 rule induction algorithms applied to data with many missing

attribute values. Proceedings of the DBKDA, the 8-th International Conference

on Advances in Databases, Knowledge, and Data Applications, Lisbon, Portugal,

June 26–30, 2016, 60–65.

[24] Jerzy W. Grzymala-Busse and Teresa Mroczek. A comparison of two

approaches to discretization: multiple scanning and C4.5. Proceedings of the 6-th

International Conference on Pattern Recognition and Machine Learning,

Warsaw, Poland, June 30–July 2, 2015, Springer Verlag 2015, Lecture Notes in

Computer Science 9124, 44–53.

[25] Patrick G. Clark, Cheng Gao and Jerzy W. Grzymala-Busse. A comparison of

mining incomplete and inconsistent data. Proceedings of the ICIST 2016, 22nd

International Conference on Information and Software Technologies,

Druskininkai, Lithuania, October 13–15, 2016. Springer-Verlag, CCIS 639, 2016,

414–425.

[26] Patrick G. Clark and Jerzy W. Grzymala-Busse. A comparison of

classification systems for rule sets induced from incomplete data by probabilistic

approximations. Proceedings of the ALLDATA 2015, the First International

Conference on Big Data, Small Data, Linked Data and Open Data, Barcelona,

Spain, April 19–24, 2015, 46–51.

[27] Patrick G. Clark, Cheng Gao and Jerzy W. Grzymala-Busse. A comparison of

https://people.cs.umass.edu/~mccallum/courses/gm2011/02-bn-rep.pdf
https://people.cs.umass.edu/~mccallum/courses/gm2011/02-bn-rep.pdf

35

four classification systems using rule sets induced from incomplete data sets by

local probabilistic approximations. Proceedings of the ISMIS 2017, the 23-rd

International Symposium on Methodologies for Intelligent Systems, Warsaw,

Poland, June 26–29, 2017, ed. by M. Kryszkiewicz et al., Springer Verlag, Berlin-

Heidelberg, Lecture Notes in Artificial Intelligence 10352, 282–291.

[28] Jerzy W. Grzymala-Busse. An empirical comparison of rule induction using

feature selection with the LEM2 algorithm. Proceedings of the IPMU 2012, the

14-th International Conference on Information Processing and Management of

Uncertainty in Knowledge-Based Systems, Catania, Italy, July 9–13, 2012.

Advances in Computational Intelligence 297, Springer Verlag, 270–279.

36

LIST OF FIGURES

Fig 4.1 Sample result file

Fig 4.2 Sample ruleset

Fig 4.3 Sample statistics

37

LIST OF TABLES

Table 2.1 An example of the decision table

Table 2.2 An incomplete decision table

Table 4.1 Error rates

38

APPENDIX A

LEM2 algorithm

The procedure for LEM2 algorithm is given below: [6]

Procedure LEM2
(input: a set B,

output: a single local covering of set B);
begin

G := B;
:= Ø;

while G  Ø
begin
T := Ø;

T(G) := {t | [t]  G  Ø};

while T = Ø or [T] Ç B

begin

select a pair t T(G) with the highest attribute priority,

if a tie occurs, select a pair t T(G) such that |[t]  G| is

maximum;

if another tie occurs, select a pair tT(G) with the smallest
cardinality of [t]; if a further tie occurs, select first pair;

T := T  {t};
G := [t]  G;

T(G) := {t | [t]  G  Ø};

T(G) := T(G) – T;
end {while}
for each t in T do

if [T – {t}]  B then T: = T – {t};
:=  {T};

G := B – T  T[T]

end {while};
for each T in do

if S  T [S] = B then := – {T}

end {procedure}.

39

APPENDIX B

Implementation details:

For the experiments, a file containing dataset will be given as input to the

program, which creates ten folds from the initial data, which will be used for

validating the experiment. From each data set thus formed, the program will

calculate the number of attributes and cases available to classify. Then the

program will check if the data consists of missing values and numerical values,

after performing discretization, attribute-value pairs are created for the entire

collection of data. From this attribute-value pairs, using the alpha value give

during initial inputs, the program will create lower and upper approximations.

From these approximations, a file with rule sets will be created. These input data

and output rule files are taken as inputs by the second program, which checks

the rules and calculates error rate based on the factors that are being defined by

the users. The error rates calculated for all the ten-folds will be written to an

error.txt file with their average. This process is continued for all the datasets, and

the resulting error rates are compared. This program was created using Java

programming language.

