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A. Terliuk52, G. Tešić48, S. Tilav36, P. A. Toale46, M. N. Tobin30, S. Toscano13, D. Tosi30, M. Tselengidou24,
C. F. Tung5 , A. Turcati34, E. Unger50, M. Usner52, J. Vandenbroucke30, N. van Eijndhoven13, S. Vanheule26,
M. van Rossem30, J. van Santen52, M. Vehring1, M. Voge11, E. Vogel1, M. Vraeghe26, C. Walck42, A. Wallace2,
M. Wallraff1, N. Wandkowsky30, A. Waza1 , Ch. Weaver23, M. J. Weiss48, C. Wendt30, S. Westerhoff30,
B. J. Whelan2, S. Wickmann1, K. Wiebe31, C. H. Wiebusch1, L. Wille30, D. R. Williams46, L. Wills39, M. Wolf42,
T. R. Wood23, E. Woolsey23, K. Woschnagg7, D. L. Xu30, X. W. Xu6, Y. Xu43, J. P. Yanez23, G. Yodh27, S. Yoshida15,
M. Zoll42

1 III. Physikalisches Institut, RWTH Aachen University, 52056 Aachen, Germany
2 Department of Physics, University of Adelaide, Adelaide 5005, Australia

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/344443833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-017-5261-3&domain=pdf


692 Page 2 of 12 Eur. Phys. J. C (2017) 77 :692

3 Department of Physics and Astronomy, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA
4 CTSPS, Clark-Atlanta University, Atlanta, GA 30314, USA
5 School of Physics and Center for Relativistic Astrophysics, Georgia Institute of Technology, Atlanta, GA 30332, USA
6 Department of Physics, Southern University, Baton Rouge, LA 70813, USA
7 Department of Physics, University of California, Berkeley, CA 94720, USA
8 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
9 Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
10 Fakultät für Physik and Astronomie, Ruhr-Universität Bochum, 44780 Bochum, Germany
11 Physikalisches Institut, Universität Bonn, Nussallee 12, 53115 Bonn, Germany
12 Science Faculty CP230, Université Libre de Bruxelles, 1050 Brussels, Belgium
13 Dienst ELEM, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
14 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
15 Department of Physics and Institute for Global Prominent Research, Chiba University, Chiba 263-8522, Japan
16 Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
17 Department of Physics, University of Maryland, College Park, MD 20742, USA
18 Department of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210, USA
19 Department of Astronomy, Ohio State University, Columbus, OH 43210, USA
20 Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
21 Department of Physics, TU Dortmund University, 44221 Dortmund, Germany
22 Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
23 Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
24 Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
25 Département de physique nucléaire et corpusculaire, Université de Genève, 1211 Geneva, Switzerland
26 Department of Physics and Astronomy, University of Gent, 9000 Ghent, Belgium
27 Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA
28 Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA
29 Department of Astronomy, University of Wisconsin, Madison, WI 53706, USA
30 Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, WI 53706, USA
31 Institute of Physics, University of Mainz, Staudinger Weg 7, 55099 Mainz, Germany
32 Department of Physics, Marquette University, Milwaukee, WI 53201, USA
33 Université de Mons, 7000 Mons, Belgium
34 Physik-Department, Technische Universität München, 85748 Garching, Germany
35 Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
36 Department of Physics and Astronomy, Bartol Research Institute, University of Delaware, Newark, DE 19716, USA
37 Department of Physics, Yale University, New Haven, CT 06520, USA
38 Department of Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK
39 Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
40 Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
41 Department of Physics, University of Wisconsin, River Falls, WI 54022, USA
42 Department of Physics, Oskar Klein Centre, Stockholm University, 10691 Stockholm, Sweden
43 Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA
44 Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea
45 Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada
46 Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA
47 Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802, USA
48 Department of Physics, Pennsylvania State University, University Park, PA 16802, USA
49 Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
50 Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
51 Department of Physics, University of Wuppertal, 42119 Wuppertal, Germany
52 DESY, 15735 Zeuthen, Germany

Received: 16 May 2017 / Accepted: 25 September 2017 / Published online: 20 October 2017
© The Author(s) 2017. This article is an open access publication

Abstract IceCube is a neutrino observatory deployed in
the glacial ice at the geographic South Pole. The νμ energy
unfolding described in this paper is based on data taken with
IceCube in its 79-string configuration. A sample of muon

a e-mail: tim.ruhe@udo.edu
b Also at: Earthquake Research Institute, University of Tokyo, Bunkyo,

Tokyo 113-0032, Japan

neutrino charged-current interactions with a purity of 99.5%
was selected by means of a multivariate classification process
based on machine learning. The subsequent unfolding was
performed using the software Truee. The resulting spectrum
covers an Eν-range of more than four orders of magnitude
from 125 GeV to 3.2 PeV. Compared to the Honda atmo-
spheric neutrino flux model, the energy spectrum shows an
excess of more than 1.9 σ in four adjacent bins for neutrino
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energies Eν ≥ 177.8 TeV. The obtained spectrum is fully
compatible with previous measurements of the atmospheric
neutrino flux and recent IceCube measurements of a flux of
high-energy astrophysical neutrinos.

1 Introduction

The neutrino flux, which can be observed with instruments
such as IceCube, has its origin both in cosmic ray air showers
(atmospheric neutrinos) [1–3] and extraterrestrial sources [4–
7]. These different components can be modeled separately
and fitted to data, with the atmospheric component dominat-
ing up to energies of approximately 300 TeV. Such fits, how-
ever, require assumptions on the spectral shape. An extrac-
tion of the energy spectrum from experimental data is more
model-independent, as no assumption on the cosmic ray com-
position or spectral shape is required. It thus poses an alter-
native to fitting model parameters and allows a direct com-
parison to theoretical model predictions.

This paper presents a measurement of the muon neu-
trino energy spectrum with IceCube during its deployment
phase in the 79-string configuration (IC79). The spectrum
was obtained from a highly pure sample of neutrino candi-
dates by means of regularized unfolding.

1.1 The IceCube detector

The IceCube detector, located at the geographic South Pole,
is a neutrino observatory with an instrumented volume of
1 km3 [8]. It consists of 5160 digital optical modules (DOMs)
deployed on 86 strings at depths between 1450 m and 2450 m.
The strings are arranged in a hexagonal array, with a string-
to-string distance of 125 m. The 86 strings include the low-
energy extension DeepCore [9], which has a string spacing of
approximately 70 m and a vertical DOM distance of 7 m. It is
optimized for low energies and reduces the energy threshold
of the entire detector to Eth ∼ 10 GeV [9].

Each DOM consists of a glass sphere of 35.6 cm diameter,
which houses a 25 cm Hamamatsu R7081-02 photomultiplier
tube (PMT) and a suite of electronics board assemblies. Inter-
nal digitizing and time-stamping the photonic signals ensures
high accuracy and a wide dynamic range of the DOMs. Pack-
aged digitized data is then transmitted to the IceCube Lab-
oratory (ICL) at the South Pole. Each DOM can operate as
a complete and autonomous data acquisition system [8,10].
The air shower array IceTop complements the detector [11].

As neutrinos cannot be observed directly, they are detected
via secondary particles produced in the interactions of neu-
trinos with nuclei in the ice or the bedrock. These secondary
particles induce the emission of Cherenkov light, which is
recorded by the DOMs. The majority of the events observed
with IceCube are track-like events, which originate from

muons propagating through the detector. These muons are
either produced in charged current (CC) neutrino-nucleon
interactions or in cosmic ray air showers. The second most
frequent signature are cascade-like events, originating from
CC interactions of νe and ντ , where the second cascade,
resulting from the decay of the emerging τ -lepton, cannot be
experimentally resolved. Cascade-like events further origi-
nate from neutral-current (NC) interactions of neutrinos of
all flavors within the instrumented volume.

1.2 Atmospheric muon neutrinos

The atmospheric muon neutrino flux is expected to consist
of two components distinguished by the lifetime of their
hadronic parent particles. Conventional atmospheric muon
neutrinos originate from the decay of charged pions and
kaons in cosmic ray air showers. Due to their relatively
long lifetime (τ ∼ 10−8 s [12]), kaons and pions interact
prior to decaying. This results in a flux of approximately
d�
dE ∝ E−3.7.

The second, much rarer component, consisting of prompt
atmospheric neutrinos, originates from the decay of charmed
particles such as D mesons and �+

c baryons. Due to their
short lifetime (τ ∼ 10−12 s [12]), these hadrons decay before
interacting. Prompt atmospheric neutrinos inherit the spectral
index of the cosmic ray flux directly, resulting in a flux of
d�
dE ∝ E−2.7. The conventional component is the dominant
component to the flux of atmospheric neutrinos up to energies
of Eν ∼ 300 TeV [13]. The prompt component has not been
observed so far and the exact threshold depends strongly on
the underlying theoretical model.

The atmospheric νμ energy spectrum has been measured
by various experiments, including AMANDA [1], Fréjus [14]
and ANTARES [15], as well as IceCube in the 40- [2] and
59-string configuration [3].

An additional contribution to the overall flux is expected
to arise from a flux of astrophysical neutrinos [16]. This
flux has recently been discovered by IceCube [5,17]. Its
sources are still unknown. The spectral index of the astro-
physical component is expected to be approximately γ =
2.0 for the simplest assumption of Fermi acceleration [4].
Recent measurements by IceCube obtained indices between
γ = 2.13 ± 0.13 [18] and γ = 2.50+0.08

−0.09 [7].
A major challenge in the measurement of muon neutrinos

is the background of atmospheric muons. Although muons
and muon neutrinos are produced at approximately the same
rate, the rate of triggering atmospheric muons is ∼ 106 times
higher, due to the small cross sections of neutrino-nucleon
interactions.

The application of a Random Forest-based analysis chain
for IC59 presented in [3] resulted in a high statistics sam-
ple of 66,865 atmospheric neutrino candidates with an esti-
mated background contribution of 330 ± 200 background
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events. Averaging these numbers, one obtains an event rate
of 9.3 × 10−4 neutrino candidates per second at an average
background event rate of (3.8 ± 3.4) × 10−6 events per sec-
ond. The separation process presented here is based on the
approach presented in [3]. Compared to [3], however, the sig-
nal efficiency with respect to the starting level of the analysis
was improved from 18.2 to 26.5% at an equally high purity
of the final sample of event candidates.

The subsequent unfolding extends the upper end of the
muon neutrino energy spectrum by a factor larger than 3 (up
to 3.2 PeV) in comparison to previous measurements [3].
The obtained spectrum is in good agreement with previous
measurements of the atmospheric neutrino flux up to ener-
gies of Eν ≈ 130 TeV. For higher energies an excess above
an atmospheric only assumption is observed. This excess is
consistent with the flux of astrophysical neutrinos observed
in other IceCube analyses and can therefore be attributed to
a flux of high energy astrophysical neutrinos from unknown
sources.

The paper is organized as follows: in the next section
the selection of neutrino candidates is presented. Section 3
describes the unfolding of the νμ energy spectrum and dis-
cusses statistical and systematic uncertainties. A discussion
of the results is given in Sect. 4. The paper concludes in
Sect. 5 with a summary and an outlook.

2 Event selection

In this paper, data taken between the 31st of May 2010 and
the 13th of May 2011 are analyzed. After data quality selec-
tions, a dataset with a livetime of 319.6 days remains for
the analysis. First reconstruction and selection steps are per-
formed at the detection site. Further processing of the data,
such as detailed track reconstruction [19] and energy esti-
mation [20], are carried out offline. This analysis used as
input a data set consisting of ∼ 2.58 × 108 event candidates,
∼ 2.39×105 of which are expected to be neutrinos of atmo-
spheric origin. One thus obtains a signal-to-background ratio
of ≈ 0.93 × 10−3.

At this level of the analysis, the majority of the event can-
didates still consists of atmospheric muons, which need to be
efficiently rejected. The separation process can be structured
in two parts: straight cuts and the application of machine
learning algorithms.

Simulated events provide the basis for the machine
learning-based part of the event selection as well as for the
applied cuts.

Simulated neutrino events were produced using the
IceCube neutrino generator NuGen, which is based on
updated cross-sections for deep inelastic scattering using
the HERA1.5 set of parton distribution functions [21]. The
events were simulated according to an assumed cosmic E−2-
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Fig. 1 Distributions of simulated and reconstructed zenith angles for
atmospheric muons [23] and atmospheric muon neutrinos [25]. The
black dashed line indicates the position of the zenith cut applied in the
separation process

spectrum and weighted to neutrino flux models by Honda
2006 [22] and Enberg [13] to account for the conventional
and the prompt component of the atmospheric muon neutrino
flux. In total, ∼ 8.3 × 106 simulated muon neutrino events
were available at the starting level of the analysis. Since the
dominant contribution to the neutrino energy spectrum arises
from conventional neutrinos up to energies of Eν ≈ 300 TeV,
the event selection does not depend on the detailed modeling
of the prompt component.

The background of atmospheric muons was simulated
using the air shower code CORSIKA [23]. The poly-gonato
model [24] was used as an input spectrum for primary cos-
mic rays. In total, ∼ 1.6×106 simulated atmospheric muons
were available at the starting level of the analysis. This cor-
responds to approximately 6 days of detector livetime. This
shortage of simulated background events was compensated
by evaluating the machine learning part of the event selection
in a bootstrapping procedure (see Sect. 2.2 for details).

2.1 Cuts

Since there is no topological difference between neutrino-
induced muons entering the detector and muons from cos-
mic ray air showers, one has two options: either to select
neutrino interactions inside the instrumented volume or to
select only neutrino candidates from zenith angles, for which
atmospheric muons are stopped by the Earth. This analysis
pursues the second approach and, in a first cut, downgoing
events (zenith angle θ ≤ 86◦) are rejected. The remaining
background consists mostly of misreconstructed atmospheric
muons, where the separation task is to distinguish between
well- and misreconstructed events (see Fig. 1).

A second cut is applied on the reconstructed event veloc-
ity vreco ≥ 0.1 c, which is obtained from reconstructing the

123



Eur. Phys. J. C (2017) 77 :692 Page 5 of 12 692

muon track on the basis of the positions ri , and hit times ti
of all DOMs giving signals in the event. Ignoring the geom-
etry of the Cherenkov cone and the optical properties of the
ice, the reconstruction fits a straight line, parameterized by
the time, to the hits. The event velocity vreco is assumed to
be constant and obtained from minimizing the following χ2:

χ2 =
N∑

i

(ri − rLineFit − vLineFit · ti )2. (1)

The velocity is expected to be significantly smaller for
cascade-like events in comparison to high quality track-
like events. This cut therefore selects high quality track-like
events, which are required for a reliable reconstruction of the
neutrino spectrum in the subsequent unfolding. Furthermore,
it reduces the rate of electron neutrinos in the sample.

A third cut is applied on the length of the reconstructed
track in the detector L reco, which is required to be longer
than 200 m. This cut suppresses events of low energies
(Eν ≤ 100 GeV) and events that pass near the edge of the
detector. The cut favors long tracks, which are reconstructed
more accurately.

In total, the three cuts achieve a background rejection of
81 % and keep 71 % of the neutrino-induced muons with
respect to the starting level of the analysis. The cuts further
favor well-reconstructed and highly energetic events. The
remaining background is significantly harder to reject.

2.2 Machine learning

The separation process is continued with algorithms from
the field of machine learning and artificial intelligence. The
core of the next steps is a multi-variate classification using a
Random Forest (RF) [26]. From the machine learning point of
view, this corresponds to a two-class classification process,
with neutrino-induced muons being the positive class and
atmospheric muons being the negative class. To carry out
the machine learning part of the analysis, a class variable
was assigned to every simulated event. This class variable
was chosen to be 1 for neutrino-induced muons and 0 for
atmospheric muons.

As in [3], the RF is preceded by a variable selection
and the entire classification process is embedded in multi-
fold validation methods. This allows to control the stability
and the optimization of each step of the process separately.
Thereafter, recorded events are either classified as neutrino-
induced muons or as misreconstructed atmospheric muon
events.

To maintain computational feasibility, not all available
variables can be used as input to the Random Forest. Fol-
lowing the approach in [3], the input variables are selected
using the Minimum Redundancy Maximum Relevance [27]
(MRMR) algorithm. To avoid mismatches between exper-

imental data and simulation, variables with a large χ2-
disagreement between data and Monte Carlo were discarded
from the set of candidate variables. The set of possible input
variables was further reduced by removing constant variables
and variables with a Pearson correlation |ρ| ≥ 0.95. If two
variables showed a correlation |ρ| ≥ 0.95, only the first one
was kept. The MRMR algorithm was then applied to this set
of preselected variables. Details on the utilized implementa-
tion are presented in [28].

MRMR builds up a variable set in a sequential way. It starts
with the variable with the highest correlation to the class
variable. In the succeeding iterations, the k-th variable Vk
(k > 1) is selected by taking into account the correlation K
of Vk to the class variable (relevance), as well as the average
correlation L of Vk to all variables V1, . . . , Vk−1 selected
in the preceding iterations (redundancy). The variable with
the largest difference D = K − L is added to the set. The
relevance of a variable with respect to the class variable is
determined by an F-test, whereas the redundancy between
two variables is computed as the absolute value of the Pearson
correlation coefficient [28]. This way a set of m variables is
built up. A more detailed description of the approach can be
found in [3,27].

In this analysis, m = 25 showed a reasonable trade-off
between computational feasibility and retaining information
in the dataset. The selected variables can be ordered into
three different groups: variables to approximate the energy,
variables containing geometric properties of the event and
variables indicating the reconstruction quality. Since the per-
formance of the Random Forest depends on the agreement
between data and simulation, the 25 variables selected by
MRMR were manually inspected for disagreement between
data and Monte Carlo. No such disagreement was found and
the 25 variables were used to train the Random Forest accord-
ingly.

A Random Forest is an ensemble of decision trees. It is
trained with simulated events to build a model that can be
applied to unclassified events. In the application the j-th tree
assigns a label xi, j = {0, 1} to the i-th event. Thus, the final
classification is achieved by averaging the output of all deci-
sion trees in the forest:

cSignal,i = 1

Ntrees

Ntrees∑

j

xi, j . (2)

In machine learning, cSignal,i is generally referred to as con-
fidence. To achieve unique trees in the RF, each decision
tree is trained on a subset of simulated events. At each node
only k randomly chosen variables are used to find the best
cut. Before applying the RF to experimental data, the RF is
applied to simulated events to evaluate the performance of
the classification.
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Fig. 2 Confidence distribution for data and simulation. Low confi-
dence values indicate background-like events and high confidence val-
ues indicate signal-like events. A cut in the confidence ≥ 0.92 yields a
sample with a purity of (99.5 ± 0.3)%

After the application of the forest, the vast majority of the
simulated background muons (more than 99.9%) is found
to be scored with a confidence cSignal,i < 0.8. Only 26
simulated atmospheric muons were found to populate the
high confidence region (cSignal > 0.8). Since the analysis
relies on a high purity sample of neutrino candidates, the
number of remaining background events needs to be esti-
mated as accurately as possible. The confidence distribution
is the basis for this estimation and thus has to be obtained as
accurately as possible, as well. Due to the few background
events found for cSignal,i ≥ 0.8 the accuracy of the confi-
dence distribution is statistically limited for this very region.
This limitation can be overcome by utilizing a bootstrapping
technique [29].

In the bootstrapping, a total of 200 Random Forest mod-
els were trained, each built on a randomly chosen sample
with 50% of the size of the full sample. Using this technique,
each event is scored on average 100 times. By normaliz-
ing the resulting confidence distribution for each event, the
approximation of the confidence distribution is improved by
taking the variance of cSignal,i into account. Furthermore, it
provides statistical uncertainties for the classification. Using
this way to control stability and performance, the parame-
ters of the Random Forest were set to k = 5 and 200 trees.
The forest was trained using 120,000 simulated signal events
and 30,000 simulated background events. The resulting con-
fidence distributions for simulated events and experimental
data show good compatibility and confirm a stable separation
(see Fig. 2). No signs of overtraining were observed in the
cross validation.

The cut on cSignal is a trade-off between background rejec-
tion and signal efficiency. Due to the steeply falling spectrum
of atmospheric neutrinos and the expected contribution of
astrophysical neutrinos, the cut was selected to yield a suf-

ficient number of events in the highest energy bins. For this
analysis, a cut at cSignal ≥ 0.92 was chosen (see Fig. 2).

This cut yields a total of 66,885 neutrino candidates in
319.6 days of detector livetime (2.26×10−3 neutrino candi-
dates per second). The number of background events surviv-
ing to the final level of the analysis was estimated to 330±200
((1.10±0.73)×10−5 background events per second), which
corresponds to an estimated purity of (99.5 ± 0.3)%. In total,
21 neutrino candidates with a reconstructed muon energy
Eμ,reco ≥ 10 TeV were observed.

A good understanding of the background is mandatory to
ensure that the remaining background lies in a region clearly
dominated by signal events. To this end, the distributions of
the reconstructed muon energy [20] were investigated in dif-
ferent zenith regions (see Fig. 3). In the region from θ = 120◦
to θ = 180◦, no background and a good compatibility
between data and simulation is observed. Due to earth absorp-
tion [30,31], no high energy events (Eμ,reco � 13 TeV) are
observed in experimental data in this region. Closer to the
horizon (θ = 90◦ to θ = 120◦), however, a few atmospheric
muons are expected at the lowest energies, but this back-
ground is more than three orders of magnitude smaller, com-
pared to the expected number of atmospheric neutrinos and
therefore negligible. Between 316 TeV and 1 PeV, an excess
over the atmospheric-only prediction is observed in recon-
structed muon energies.

No simulated background events are found for zenith
angles 86◦ < θ ≤ 90◦. The livetime of experimental data,
however, is about a factor of 50 larger than the livetime
of the simulated background. From the results obtained on
simulation, one therefore concludes that less than 54 atmo-
spheric muon events are expected to enter the sample from
this region.

3 Unfolding

As the energy of the incoming neutrino cannot be accessed
directly, it needs to be inferred from energy losses of the
neutrino induced-muon within the detector. In the energy
region of this analysis, most muon tracks are only partially
contained in the detector. Furthermore, the conversion of a
neutrino of energy Eν into a muon of energy Eμ is a stochastic
process. Thus, the challenge is to compute the muon neutrino
energy spectrum from the reconstructed energy of the muons.

This type of problem is generally referred to as an inverse
problem. It is described by the Fredholm integral equation of
the first kind:

g(y) =
∫ d

c
A(y, x) f (x) dx + b(y), (3)

where g(y) is the distribution of a measured variable y and
f (x) is the distribution of the sought-after variable x . A(y, x)
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Fig. 3 Distribution of the reconstructed muon energy. The plot in the top shows the full zenith range, while the three smaller plots show the zenith
ranges indicated

is generally referred to as the response function and gives
the probability to measure a certain y given a specific x . The
response function includes the physics of neutrino interac-
tions, as well as the propagation of muons through the ice
and all smearing effects introduced by the detector. The term
b(y) is the distribution of y for any observed background.
Due to the high purity (see Sect. 2), b(y) is negligible in this
analysis.

Several algorithms are available to obtain a solution
to Eq. (3). In the analysis presented here, the software
Truee [32], which is based on the RUN algorithm [33], was
used to extract the spectrum.

Truee allows for the use of up to three input variables
and generates a binned distribution g from them. Cubic B-
splines are used for the discretization of f (x) and accordingly
f contains the spline coefficients. The response function is
transformed into a matrix A accordingly and needs to be
determined from simulated events. Within Truee, this leads
to an equation of the form:

g = Af . (4)

For most practical applications, A is ill-conditioned due
to the complex mapping between x and y. Therefore, regu-
larization is required to avoid unstable solutions.

In this analysis, three variables were used as input to the
unfolding. This is a trade-off between gaining information
by using more input variables and the required number of
simulated events, which grows drastically with the number
of input variables. In this analysis, the reconstructed muon
energy Ereco, the reconstructed track length L reco, and the
number of detected unscattered photons Nph were used as
input to the algorithm. The three variables were mainly cho-
sen due to their good correlation with the neutrino energy.
Furthermore, the combination of these specific variables in
an unfolding exhibits a positive synergy effect, which was
also observed in previous unfoldings [3].

The energy proxy Ereco is obtained by fitting the expected
number of photons via an analytic template. This template
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Fig. 4 Correlation between the unfolding observable reconstructed
track length and the true energy of the neutrino obtained from simu-
lated events. The horizontal structures in this plot stem from the string
spacing
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Fig. 5 Correlation between the unfolding observable number of direct
photoelectrons measured and the true energy of the neutrino obtained
from simulated events

scales with the energy of the muon [20]. A different approach,
which discards energy losses from track segments with the
highest energy loss rates (generally referred to as trun-
catedmean Etrunc), reconstructs the muon energy more accu-
rately [34]. Ereco, however, was found to yield a better over-
all performance of the unfolding, especially when combined
with Nph and L reco.

The correlation of the individual variables with the energy
of the incoming neutrino is depicted in Figs. 4, 5 and 6.
All three input variables are strongly correlated with energy
and were also used in [3]. The horizontal bands in Fig. 4
arise from the fact that certain track lengths are preferred
in the reconstruction, which is due to the integer number of
strings and the regularity of the array. A detailed description
of Truee and its implemented validation methods can be
found in [32], while its application in a spectral measurement
is described in [3].

In spectral measurements with IceCube, systematic uncer-
tainties are dominated by two sources: The first source is
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Fig. 6 Correlation between the unfolding observable reconstructed
muon energy at the center of the detector and the true energy of the
neutrino obtained on simulated events

associated with the amount of light detected in an event,
which is affected by the light detection efficiency of the opti-
cal modules and by the muon interaction cross-sections (ion-
ization, pair-production and photonuclear interaction). These
two uncertainties cannot be disentangled on experimental
data and are therefore combined in a single value associated
with the efficiency of the DOMs. The common calibration
error on the photomultiplier efficiency is 7.7% [38], whereas
the theoretical uncertainty on the muon cross-sections was
estimated to 4% in [39]. The second source of systematic
uncertainties is associated with the scattering and absorp-
tion of photons in the glacial ice at the South Pole [40,41].
The results of the natural formation of the detection medium
are inhomogeneities that are accounted for by systemati-
cally changing the scattering and absorption lengths in Monte
Carlo simulations.

As the unfolding result is based on simulated events which
are used as input to TRUEE, the specific choices (ice-model,
DOM efficiency) used in the generation of these events affect
the outcome of the spectral measurement. To estimate the
impact of changes with respect to the so-called baseline sim-
ulation, systematic uncertainties were derived using a boot-
strapping procedure. Within this bootstrapping, a number of
simulated events corresponding to the number of neutrino
candidates on experimental data was drawn at random from
a systematic data set.

In total, five systematic sets were available for the anal-
ysis at hand. In each of these sets, one property has been
varied with respect to the baseline simulation. In one set,
the efficiency for all DOMs was increased by 10%, while
in a second, the efficiency for all DOMs was decreased by
10%. To account for uncertainties in the description of the
ice, three sets of simulated events with different ice models
were generated. The first set was produced with a scattering
length increased by 10% with respect to the baseline simula-
tion, whereas the second one was produced with an absorp-
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Table 1 Data points and uncertainties of the unfolding results

Energy range Center energy Flux Total uncertainty Stat. uncertainty Cov. matrix (diag. el.)

[log10(E/GeV)] [log10(E/GeV)]
[
E2 GeV

sr s cm2

]

2.10–2.40 2.26 1.84 × 10−4 + 22% − 3% ± 3% 2.78 × 10−20

2.40–2.70 2.55 1.22 × 10−4 + 5% − 7% ± 2% 3.76 × 10−20

2.70–3.00 2.84 5.07 × 10−5 + 16% − 17% ± 4% 1.80 × 10−23

3.00–3.30 3.17 2.80 × 10−5 + 6% − 12% ± 4% 2.62 × 10−25

3.30–3.60 3.43 1.37 × 10−5 + 58% − 27% ± 4% 5.72 × 10−27

3.60–3.90 3.76 5.69 × 10−6 + 78% − 40% ± 5% 7.38 × 10−29

3.90–4.20 4.05 1.68 × 10−6 + 39% − 15% ± 7% 8.73 × 10−31

4.20–4.50 4.36 6.69 × 10−7 + 17% − 22% ± 10% 1.62 × 10−32

4.50–4.80 4.66 3.20 × 10−7 + 15% − 23% ± 10% 2.35 × 10−34

4.80–5.10 4.95 1.51 × 10−7 + 25% − 22% ± 13% 6.11 × 10−36

5.10–5.40 5.25 6.08 × 10−8 + 53% − 20% ± 18% 1.20 × 10−37

5.40–5.70 5.55 3.71 × 10−8 + 76% −31% ± 25% 5.43 × 10−39

5.70–6.00 5.85 2.48 × 10−8 + 77% −36% ± 35% 3.00 × 10−40

6.00–6.50 6.26 1.44 × 10−8 + 136% −53% ± 53% 5.31 × 10−42

tion length also increased by 10% with respect to the baseline
simulation. In a third set, the effects of scattering and absorp-
tion were combined by simultaneously decreasing scattering
and absorption length by 7.1%.

Based on these simulated events the energy spectrum was
obtained, while using the baseline simulation for the extrac-
tion of the response matrix. In a next step, the discrepancy
between the unfolding result and the true distribution was
computed. This procedure was repeated 1000 times on any
of the five systematic data sets and yielded the contribution
of the individual sources of uncertainty. The total systematic
uncertainty was computed as the sum of squares of the indi-
vidual contributions. Compared to the statistical uncertainty,
the systematic uncertainty is found to be large, except for the
last two bins, where both uncertainties are of approximately
the same size.

The unfolded flux of atmospheric muon neutrinos, includ-
ing statistical and systematic uncertainties, is summarized in
Table 1. A comparison to previous measurements [1,3,6,15]
is depicted in Fig. 7. No significant difference to any of the
depicted measurements is observed over the entire energy
range.

A comparison to theoretical predictions for the atmo-
spheric neutrino flux is shown in Fig. 8. A clear excess over
theoretical predictions is observed for the last four bins which
cover an energy range from Eν = 126 TeV to Eν = 3.2 PeV.
The size of the excess was computed with respect to the
Honda 2006 model [22], as well as with respect to fluxes of
atmospheric neutrinos predicted using the cosmic ray inter-
action models SIBYLL-2.1 [42] and QGSJET-II [43] and is
found to vary depending on energy and the underlying theo-
retical model.

Fig. 7 The obtained νμ spectrum of this analysis compared to the
unfolding analyses of AMANDA [1], ANTARES [15] and IceCube-59
[3]. The unfoldings can have slightly different zenith dependent sensitiv-
ities. In addition to the unfolding results the best fit and its uncertainties
from an IceCube parameter fit [6], evaluated for the zenith dependent
sensitivity of this work, are shown

The largest deviation of 2.8 σ is observed in the 11-th
bin (ECenter = 177.8 TeV) with respect to an atmospheric
neutrino flux computed using QGSJET-II. For atmospheric
neutrino fluxes computed using SIBYLL-2.1 and the Honda
2006 model, the largest excess of 2.4 σ is observed for the 13-
th bin (ECenter = 707.9 TeV). For all three flux models dis-
cussed above, the prompt component of the atmospheric flux
was modeled according to the ERS model [13]. Uncertainties
on the theoretical predictions – indicated by the shaded bands
in Fig. 8 – were not taken into account for the calculation of
the excess. The size of the excess is found to decrease for the
last bin, due to larger statistical and systematic uncertainties.
Table 3 summarizes the significance of the excess for the four
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Fig. 8 Unfolded νμ energy spectrum compared to theoretical calcula-
tions. The conventional models Sybill-2.1 and QGSJET-II are used as
upper and lower bounds for possible models [35]. Most of the common
models such as [36] lie in between those two models over the whole
energy range. For the prompt component, the flux from [13] is used. The
blue shaded area represents the theoretical uncertainty on the prompt
flux as reported in [13]. The pink shaded area depicts the sum of uncer-
tainties arising from the conventional and prompt components, respec-
tively. All predictions are calculated for the primary spectrum proposed
in [37] and for the zenith dependent sensitivity shown in Table 2

Table 2 Sensitivity of the detector for different energies and zenith
regions. The percentages are the share of events detected from a zenith
region for a selected energy bin, assuming a uniformly distributed flux
in cos(�). Without earth absorption and with an ideal detector, the
sensitivity would be 25% in each zenith bin. The selected zenith bins
are: �North ∈ [cos 180◦, cos 137◦], �1 ∈ [cos 137◦, cos 117◦], �2 ∈
[cos 117◦, cos 101◦] and �Horizon ∈ [cos 101◦, cos 86◦]
Energy range Ni/NUniform Flux

[log10(E/GeV)] �North (%) �1 (%) �2 (%) �Horizon (%)

2.10–2.40 24.4 25.6 29.0 21.0

2.40–2.70 20.4 24.2 29.1 26.4

2.70–3.00 18.1 22.7 29.2 30.0

3.00–3.30 15.9 21.5 29.7 32.9

3.30–3.60 13.7 19.4 29.7 37.2

3.60–3.90 11.3 17.1 29.4 42.3

3.90–4.20 9.4 15.4 28.3 46.9

4.20–4.50 8.1 13.1 27.2 51.7

4.50–4.80 5.8 11.4 25.5 57.3

4.80–5.10 5.5 11.5 24.3 58.7

5.10–5.40 3.0 10.5 24.5 62.0

5.40–5.70 2.3 7.9 24.7 65.1

5.70–6.00 2.0 8.1 26.7 63.2

6.00–6.50 0.8 3.0 25.9 70.3

highest energy bins with respect to selected model calcula-
tions. A slight increase of the significances is found when
results of recent perturbative QCD calculations [44–46] are
used to model the prompt component.

Table 3 Significance of the observed excess in the four highest energy
bins, computed with respect to selected theoretical predictions. For
all three models discussed here, the prompt component was modelled
according to the ERS model [13]

ECenter in TeV Honda 2006 QGSJET-II SIBYLL-2.1

177.8 1.8σ 1.8σ 2.8σ

354.8 2.2σ 2.2σ 2.5σ

707.9 2.4σ 2.4σ 2.5σ

1819.7 1.7σ 1.7σ 1.8σ

Due to the relatively small number of events observed
in the four highest energy bins, the observed correlation
between those bins is rather large, especially in the case of
neighbouring bins. This prohibits an accurate estimation of
the spectral index of the diffuse flux of high energy astrophys-
ical neutrinos, as well as its normalization. Furthermore, in
such an estimate, two observables would be estimated on the
basis of only four data points.

4 Consistency check

A comparison of the unfolded spectrum with theoretical pre-
dictions for a purely atmospheric flux shows good compat-
ibility up to energies of Eν ≈ 126 TeV (see Fig. 8). Due to
lower maximum energies [1,15], larger uncertainties and the
detector geometry [3], no hints for a non-atmospheric compo-
nent were observed in previous spectral measurements. Nev-
ertheless, those measurements are in good agreement with
the result of this analysis (see Fig. 7).

For energies above 126 TeV, however, a flattening of the
unfolded spectrum is observed. To verify that this flatten-
ing is consistent with an astrophysical contribution to the
overall spectrum of muon neutrinos, the unfolding result is
compared to previous measurements of the astrophysical flux
with IceCube.

Figure 9 depicts a comparison of the unfolded data points
with measurements of the astrophysical flux by IceCube. A
comparison of the unfolded data points to a likelihood analy-
sis of muon neutrinos using six years of detector livetime [18]
is depicted in Fig. 9a. Figure 9b compares the unfolding result
to a combined likelihood analysis of several years of Ice-
Cube data [7]. In each of the figures, the blue shaded area
represents the uncertainty band of the respective analysis.
For each measurement, the uncertainty band was computed
using the 68% confidence level errors on the best fit values
for γastro, �astro as well as on the contribution of conventional
and prompt atmospheric neutrinos. Other IceCube analyses
also performed measurements of the astrophysical neutrino
flux [6,47,48]. We do not, however, explicitly compare those
to the unfolding result, as the obtained indices and normaliza-
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(a) (b)

Fig. 9 Comparison of the unfolded data points to previous measure-
ments of the astrophysical neutrino flux with IceCube. The blue shaded
area represents the error band on the individual fluxes, which was
derived using the 68% CL on the best fit values on γastro, �astro as well
as on the contribution of conventional and prompt atmospheric neutri-

nos. a Comparison of the unfolded overall spectrum of muon neutrinos
to a likelihood analysis of 6 years of IceCube data [18]. b Comparison
of the unfolded overall flux of muon neutrinos to a combined likelihood
analysis of several years of IceCube data [7]

tions are bracketed by the results from [18] (γ = 2.13±0.13)
and [7] (γ = 2.50 ± 0.09).

From Fig. 9, one finds that the result of the unfolding
agrees well with previous measurements of the astrophysical
neutrino flux with IceCube. There is a slight disagreement
between the unfolding result and the maximal flux obtained
in [7]. This disagreement, however, is only observed for data
points below ≈ 60 TeV and arises from the fact that a rather
large normalization of the conventional atmospheric νμ flux
(1.1 ± 0.21 times Honda 2006) was obtained in [7].

We therefore conclude that the flattening of the muon neu-
trino energy spectrum at energies above ≈ 60 TeV is consis-
tent with an astrophysical flux of neutrinos. Note, however,
that due to the rather large uncertainties, the unfolding cannot
discriminate between the results obtained in [7,18].

5 Conclusion

In this paper, an unfolding of the νμ energy spectrum obtained
with IceCube in the 79-string configuration of the detector
has been presented. The unfolded spectrum covers an energy
range from 125 GeV to 3.2 PeV, thus extending IceCube’s
reach in spectral measurements by more than a factor of 3,
compared to previous analyses [3].

The unfolding is based on a dataset with a high purity
of (99.5 ± 0.3)% at an event rate of 2.26 × 10−3 neutrino
candidates per second. This is an improvement of the event
rate by a factor of 2.43 compared to the previous analysis [3]
(0.93 × 10−3 neutrino candidates per second) at an equally
high purity of the final sample of neutrino candidates. The
improvement is the result of two steps that were altered com-
pared to the previous analysis [3].

Firstly, the quality criteria for tracks were chosen to be less
exclusive, which results in a larger number of neutrino candi-
dates available for a further selection with machine learning
techniques. This mainly results from the more symmetric
shape of the IC-79 detector, when compared to IC-59. Sec-
ondly, using a bootstrapping technique, the probability den-
sity function of contaminating muon events was estimated
more accurately. Therefore, the final cut on the confidence
distribution (Fig. 2) was chosen more precisely, which results
in a larger number of neutrino candidates at the final analysis
level.

The distribution of the reconstructed muon energy in the
final sample (Fig. 3) shows an excess of experimental data
over the atmospheric prediction for reconstructed muon ener-
gies of Eν > 40 TeV.

The excess at high energies was confirmed in the subse-
quent unfolding. The unfolded spectrum shows good compat-
ibility with the atmospheric predictions up to neutrino ener-
gies of ∼ 126 TeV (see Fig. 8). For higher energies the spec-
trum exceeds an atmospheric only prediction. This excess
is compatible with recent measurements of an astrophysical
neutrino flux (see Fig. 7 and Sect. 4).

This analysis presents the first observation of an astro-
physical muon neutrino flux in a model independent spectral
measurement.
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