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Abstract

Women experience a higher incidence of oral diseases including periodontal diseases and
temporomandibular joint disease (TMD) implicating the role of estrogen signaling in disease
pathology. Fluctuating levels of estrogen during childbearing age potentiates facial pain, high
estrogen levels during pregnancy promote gingivitis, and low levels of estrogen during menopause
predisposes the TMJ to degeneration and increases alveolar bone loss. In this review, an overview
of estrogen signaling pathways in vitro and in vivo that regulate pregnancy-related gingivitis, TMJ
homeostasis, and alveolar bone remodeling is provided. Deciphering the specific estrogen
signaling pathways for individual oral diseases is crucial for potential new drug therapies to
promote and maintain healthy tissue.
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Introduction

Oral diseases are a major health burden worldwide and exhibit a large socio-economic
impact [1]. Focused analyses on women’s health have revealed sex dimorphisms in many
oral health diseases. Temporomandibular joint disease (TMD), pregnancy-related gingivitis
and age-related alveolar bone loss are all examples of diseases that are more common in
women than in men [2, 3]. While this is a complex problem with many confounding factors,
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one possible mechanism for the increased prevalence of the diseases in women is due to
differences in estrogen levels and corresponding signaling mechanisms.

Estrogen is crucial for development and homeostasis for both sexes even though relative
levels vary. Physiological estrogen is found in three forms: estradiol, estrone, and estriol.
Estradiol is the most potent and abundant form during the reproductive years, and most often
used for in vitro and in vivo studies. In general, standardizing estrogen levels is difficult due
to daily fluctuations in concentration and anatomical differences in the source. In men, low,
constant levels of estrogen are present after puberty through the age of 60. The mean
bioavailable estradiol (E2) is 13 pg/ml in men ages 20-30, 12 pg/ml in men 40-59 years of
age and 8 pg/ml in men over the age of 60 [4]. In contrast, estradiol levels fluctuate from 5
pg/ml at the early follicular phase to a peak of 200-500 pg/ml just before ovulation in
women of childbearing age. After menopause, the level of estradiol precipitously drops and
remains constant around 3 pg/ml in women over the age of 60 [5]. As such, it is plausible
that fluctuations in estrogen and corresponding changes in other sex hormones including
progesterone and relaxin play a significant role on the pathogenesis and propagation of
many oral health diseases. Sex differences in estradiol concentration in people 16-45 years
of age have been implicated in gingivitis and TMD. Further, menopausal women are more
likely than age-matched men to develop TMJ degeneration disease (TMJ-DD) and age-
related alveolar bone loss. This review will provide a thorough evaluation of estrogen
signaling at the cell and tissue level, sex dimorphism of TMD, gingivitis, and periodontal
diseases, and provide target areas for future research.

Estrogen and TMD

Chronic TMD, including TMJ degenerative disease, is defined as pain in the TMJ area for at
least 6 months [6]. Women are roughly three times more likely than men to develop chronic
TMD [7-10]. The Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA)
study, a large prospective clinical trial that investigated the natural history of acute and
chronic TMD diseases, illustrated that only the chronic form of TMD predominantly
afflicted women, whereas the acute form had equal prevalence between the sexes [11].
Likely, the increased prevalence of TMD found in women in a number of cross-sectional
studies is due to the increased duration of TMD symptoms in women such that at any given
time point, more women than men have TMJ symptoms [12].

Data on the effects of estrogen on TMD, however, are contradictory. Older studies
demonstrated that TMD predominantly afflicted women of childbearing age, suggesting that
higher estrogen levels potentiated the disease [8, 13]. However, recent studies in Europe and
the US with larger patient samples sizes have shown that the prevalence for TMD peaks
between 45 and 64 years of age and then gradually decreases [14, 15]. In the US study,
TMD prevalence peaked at around 6% in 35-64 year olds and then decreased to 4% in 65—
84 year olds; while in the European study, TMD prevalence peaked at 9% in 40-49 year old
and then gradually decreased to 4% in 70-90 year old. Since the menopause transition and
subsequent drop in estrogen levels occurs at age 45-55, these results suggest that low levels
of estrogen may potentiate certain types of TMD. TMD comprises over 12 different
diseases, making it difficult to differentiate the mechanistic role of estrogen in mediating one
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of the many disease forms [16]. For example, in a recent study characterizing myalgia, disc
disorders, and TMJ degeneration, it was determined that TMJ degeneration increased in
women over the age of 50; whereas, disc disorders decreased in the same age group and
peaked in women of childbearing age [17]. Another confounding variable is the reduction in
bone quality due to osteoporosis, which is associated with bone loss in the oral region
including the TMJ. However, the role of osteoporosis and TMJ bone changes is controversial
with conflicting results on correlation between systemic bone loss and subchondral bone
changes [18-20]. Taken together, the studies suggest that estrogen may have a biphasic
effect on TMD with high and/or fluctuating levels promoting certain types of TMD and with
low levels potentiating other types of TMD.

One way to examine the role of estrogen in mediating TMD is to examine its prevalence in
post-menopausal women on hormone replacement therapy (HRT). Currently, four studies
have investigated the effects of HRT on all TMD diseases. In the first study, a significant
increase in TMD prevalence in post-menopausal women on HRT was observed [9].
However, at the time when the study was done, a large percentage of the post-menopausal
women on HRT had undergone a hysterectomy [21]. This procedure can also result in
increased TMD prevalence because of intubation [22], potentially biasing the results. In
contrast, three recent studies found no significant difference in the prevalence of TMD in
post-menopausal women on HRT compared to no treatment [23-25]. Taken together, the
aforementioned studies suggest that hormone replacement may have no significant effect on
the prevalence of TMD diseases overall.

Other recent studies have shown that TMD pain is reduced when estrogen levels are high.
During pregnancy, there is a dramatic increase in estrogen levels. In one study, prevalence of
TMD was 2-3 lower in pregnant versus nonpregnant age-matched females [26]. Further, in
two longitudinal studies it was shown that reported orofacial pain diminished significantly
during the third trimester of pregnancy [27] and increased post-partum [28], suggesting that
TMD-related pain is reduced at high estrogen levels. One possible explanation for discordant
results between pregnancy and hormone replacement is an altered sensitivity of tissue to
fluctuating estrogen levels, rather than low or high concentrations [29].

The role of estrogen on TMJ structures

In humans, the temporomandibular joint is a bilateral diarthrodial joint, subjected to both
hinge (inferior joint space) and sliding (both joint spaces) forces [30]. The complex
mechanical functions of the TMJ are achieved by a biconcave fibrocartilaginous disc and
articular fibrocartilage that cover the mandibular condyle and the articular surfaces of the
temporal bone. During joint movement, the disc glides along the glenoid fossa and articular
eminence [31]. The disc is divided into the anterior band, posterior band, and intermediate
zone [32]. The intermediate zone is further subdivided into the lateral, central, and medial
regions each of which exhibit different properties. Collagen fibers (mainly type | with trace
amounts of type 1) compose approximately 90% of the dry weight [33, 34], form a ring-like
alignment around the periphery of the disc and are aligned in the anteroposterior direction
[35, 36]. The disc matrix is comprised of approximately 5% proteoglycans. Chondroitin
sulfate and dermatan sulfate make up the majority of the glycosaminoglycans (GAG) chains

Odontology. Author manuscript; available in PMC 2020 April 30.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Robinson et al.

Page 4

on the proteoglycan proteins [33, 37-39]. Cell populations in the disc are heterogeneous
with 70% fibroblast-like fibrochondrocytes throughout the tissue and 30% chondrocyte-like
fibrochondrocytes localized in the intermediate zone [40, 41]. Biomechanical analysis of
aged human TMJ discs illustrated an increase in overall stiffness and a reduction in
relaxation after strain in female compared to male tissue [42]. Further, fixed charge density,
the contribution of charged GAGs to the disc’s ability to support load via osmotic pressure,
was determined to be lower in aged female human discs compared to males [43]. This
human data points to sex differences in extracellular matrix ultrastructure and contributing
changes in mechanical properties, likely regulated by sex hormone signaling.

Similar to the disc, the mandibular condylar fibrocartilage is comprised of both collagen
type 1 and 2. However, these tissues differ in the organization and composition of this matrix
and the cells that interact and remodel the tissue. There are four zones of the articular
fibrocartilage. The superficial zone contains cells that express lubricin. The second zone is
the polymorphic zone that contains mesenchymal progenitors that are actively proliferating
is response to stimuli. The third zone is the flattened zone and contains cells that express
collagen type 2 (Col2). The fourth zone is the hypertrophic zone where mandibular condylar
fibrocartilage cells undergo terminal maturation [44] and/or directly transform into
osteocytes [45]. There are a finite number of progenitor cells in the superficial and
polymorphic zones of the mandibular condylar fibrocartilage. Once these cells are depleted,
growth ceases and the TMJ undergoes degenerative changes. Unlike long bone growth plate
cartilages, the TMJ undergoes age-related changes. In humans at 15-30 years of age and in
mice at 3-6 months of age, there is a decrease in TMJ growth, a progressive chondrogenesis
of the superficial and polymorphic zone and disappearance of the hypertrophic zone [46,
47]. After these ages, there is cessation of growth, followed by a progressive decrease in
mandibular condylar fibrocartilage cellularity and a gradual increase in degeneration that
plateaus at 50-60 years of age in humans [46] and at 18 months of age in mice [47, 48].

Effects of estrogen on the TMJ disc

In vitro studies isolating the effects of estrogen treatment on single cell populations is one
method to determine mechanisms of action during estradiol treatment. Table 1 includes a
compilation of estrogen effects on TMJ disc and articular fibrocartilage. In baboon disc
fibrochondrocytes, 10 nM estradiol treatment reduced the promoter activity and gene
expression of proteoglycan 4 (Prg4), an important macro-molecule required for lubrication
of the joint [49]. Further, estrogen in conjunction with relaxin increased both collagenase-1
and stromelysin-1 in rabbit in fibrochondrocyte cultures [50] and organ cultures [51].
Interestingly, estradiol had no significant effect on collagenase and stromelysin expression
and activity on TMJ synoviocytes [50]. Although there are only a small number of studies
investigating the effect of estrogen on the TMJ disc fibrochondrocytes in vitro, the data
suggest that high levels of estradiol increase protease activity and decrease the production of
ECM components that promote a healthy disc.

Gonadectomy, including ovariectomy for females and orchiectomy for males, is the standard
animal model to determine estrogen effects on tissue. The TMJ disc from female rats
ovariectomized and then treated with estradiol, relaxin, or progesterone were characterized
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for total GAG and collagen content. Overall, estradiol and relaxin, alone and synergistically,
reduced overall GAG and collagen content. However, when progesterone was administered
on its own or in concert with estradiol and/or relaxin, GAG and collagen levels were not
significantly different compared to the ovariectomized and sham controls [52]. While both in
vitro and in vivo studies suggest estradiol reduces the production of ECM macromolecules, a
larger set of experiments is required to validate these results.

Effects of estrogen on the mandibular condylar fibrocartilage

The health and function of the articular condylar fibrocartilage are necessary to withstand
and redistribute the load on the subchondral bone. As such, damage to this fibrocartilage can
lead to TMJ degeneration. In an organ culture model, estradiol decreased the articular
fibrocartilage thickness and cell proliferation while increasing collagen type 10 in the
hypertrophic chondrocyte zone [53]. Further, 10 nM estradiol decreased fibrochondrocytes’
proliferation harvested from rat mandibular condyles. In rabbit mandibular condylar
fibrochondrocytes, estradiol treatment increased cell proliferation and proteoglycan
synthesis through 1078 M after which estradiol reduced proliferation and proteogly can
synthesis [54].

In vivo studies have shown that estradiol treatment increased the articular fibrocartilage
thickness and subchondral bone volume after a week of treatment post ovariectomy in
female Wistar rats [55]. On the other hand, in ovariectomized C57 female mice, estradiol
decreased progenitor cell proliferation and fibrocartilage thickness compared to placebo
treatment [56, 57]. These results were validated in 3-month old female rats in which
estradiol treatment after ovariectomy (OVX), respectively, decreased progenitor cell
proliferation and fibrocartilage thickness, specifically the hypertrophic layer [58]. Further,
estradiol treatment increased interleukin 6 (IL6) concentration in female, OV X tissue
compared to the vehicle control. While important to conduct in vitro studies to determine the
specific cells responsible for the estrogen-induced effects, it is difficult to compare results
with in vivo as the fibrochondrocytes are cultured in 2D on rigid, polystyrene culture dishes
and passaged in these conditions, greatly affecting their phenotype [59, 60].

Estrogen signaling via nuclear estrogen receptors in TMJ

There are two distinct types of estrogen signaling mechanisms, genomic and non-genomic.
In the genomic pathway, estrogen binds to estrogen receptor alpha (ERa) or beta (ERp),
inducing a conformational change in the receptors that cause dissociation from chaperones,
dimerization, translocation into the nucleus, and activation of the receptor transcriptional
domain [61]. In addition to the nuclear ERs, plasma membrane-associated ERs mediate the
non-genomic signaling pathway that can lead both to cytoplasmic alterations and to
regulation of gene expression [62]. Further, ERs, either dependently or independently of
ligand binding, interact with other transcriptional pathways through protein—protein
interactions likely involving phosphorylation modifications [63, 64]. Foundational studies in
1987 illustrated the sexual dimorphism in expression estrogen receptors (ER) in the TMJ
using a baboon model [65]. Since then, a couple of studies have investigated the relative
expression of ERa and ERp in female rodents compared to males with mixed reviews. One
study found higher expression of both receptors in fibrochondrocytes isolated from female
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mouse TMJ; however, these cells were cultured for 4—6 passages likely altering their
phenotype and gene expression [66]. Another study found that male rat TMJ tissue
contained higher amounts of both receptors [67].

Overall, there are limited data detailing the role of ERa and ERp in the TMJ. In the disc,
studies have shown that increasing estradiol concentrations elevated MMP-9 and MMP-13
levels in TMJ disc fibrochondrocytes harvested from 12-week old female [68]. In both loss-
of-function and gain-of-function studies, the increased MMP levels with estradiol were
modulated via ERa signaling, with ERP having an insignificant role. The effect of estrogen
via ERa on mandibular condylar fibrocartilage morphology, matrix production, and protease
activity was assessed in 7 and 17-week old mice. In the young mice, estrogen via ERa
promoted mandibular condylar fibrocartilage chondrogenesis partly by inhibiting the
canonical Wnt signaling pathway through upregulation of sclerostin (Sost). In the mature
mice, protease activity was partly inhibited with estrogen treatment via the upregulation and
activity of protease inhibitor 15 (Pi15) and alpha-2-macroglobulin (A2m) [57]. In male
mice, estradiol via ERa mediates mandibular condylar fibrocartilage growth and maturation
in young male mice using global ERaKO models [69]. In the same study, there was no
significant evidence to suggest that ERa played a major role in age-related TMJ growth
and/or degeneration in older mice. Further in mandibular condylar bone, estrogen effects of
mandibular bone density were dependent on ERa nuclear signaling and did not require ERB
signaling [70]. Figure 1 provides a summary of the general effects of estrogen on the disc
and condylar fibrocartilage.

While ERa mediates the majority of estrogen’s transcriptional activity, ERp plays a role in
the sex differences observed in response to estrogen signaling. In young female mice, ERB
inhibits proliferation and ERa expression but does not play a role in estrogen-induced
increase in anabolic gene expression including sclerostin (Sost) and collagen type 2 (Col2)
[56], effects observed to be controlled via ERa [57]. Further, ERB inhibits mandibular
condyle growth by promoting fibrocartilage turnover [71]. On the other hand, ERB does not
play a significant role on the young male mandibular condylar fibrocartilage [72]. Based on
these data, future studies focused on the targeted role of ER agonists and/or antagonists to
control cell proliferation and matrix production are warranted.

Role of estrogen in animal models of TMJ degenerative disease (TMJ-DD)

Many TMJ-DD models have been employed to assess estradiol’s effect in the diseased
condition. There are three main classes of experimental TMJ-DD models: mechanical,
chemical, and genetic. Unilateral anterior crosshite (UAC) is an acceptable mechanical
model that results in degenerative changes to the mandibular condylar fibrocartilage and
subchondral bone including decreased fibrocartilage thickness, reduced extracellular matrix,
increased apoptosis and pro-inflammatory markers, decreased bone mineral density, and
increased osteoblast activity. Introducing high doses of estradiol into this TMJ-DD model to
mimic high-physiological levels resulted in enhanced degeneration of the articular
fibrocartilage but reduced UAC-induced bone resorption [73].

Chemically-induced TMJ-DD typically constitutes either injection of complete Freund’s
adjuvant (CFA), formalin, or monosodium iodoacetate (MIA). In formalin-induced TMJ-
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DD, cytokine expression in male and female rats was decreased by gonadectomy and
increased by hormone administration [74]. Interleukin (IL)-6 expression increased in
females during diestrus, proestrus, and estradiol or progesterone administration in
ovariectomized female rats. Tumor necrosis factor alpha (TNF-a), IL-1pB, and
cytokineinduced neutrophil chemoattractant (CINC-1) expression increased with
testosterone treatment after orchiectomy. In a MIA-induced model in rats, E2 enhanced the
OA response in a dose-dependent manner by increasing pro-apoptotic genes and histologic
characterization of fibrocartilage degradation and bone erosion [75]. In this study, a
supraphysiological dose of 80 g of estrogen replacement potentiated MIA-induced TMJ-
DJD compared to the ovariectomy with placebo control group. When CFA and MIA were
combined for a model of TMJ-DD in male and female rats, the female rats showed
aggravated OA features compared to the males [76]. Further, female fibroblast-like
synoviocytes (FLS) isolated from the TMJ synovial membrane were more sensitive to TNF-
a treatment compared to males. Estrogen’s effect in this process was confirmed by
ovariectomy and estrogen receptor agonists. However, the studies were performed in young
growing mice and it is established that estrogen inhibits TMJ growth in the young [77].
Therefore, the effects of estrogen in potentiating TMJ-DD in the young may result from
inhibiting TMJ growth as opposed to modifying the progression of TMJ-DD.

Biphasic role of estrogen levels in mediating the sex dimorphism of TMD

At this time, we have no definitive answers to how estrogen signaling promotes TMD in
females. However, there are four theories to explain the observed effects. First, fluctuations
in estrogen levels promote TMD pain. Similar to TMD, the prevalence of migraines without
aura is greater in females than in males but not at all ages. Before puberty, the prevalence of
migraines is similar between the sexes. However, after puberty, migraines are 2—4 times
more likely to occur in females than age-matched males with the peak prevalence occurring
in women between the ages of 35-45. The estrogen withdrawal hypothesis posits that
fluctuating estrogen levels pre and post-menstrual cycles and during peri-menopause
predisposes women to migraines [78, 79]. Therefore, a similar mechanism may occur in
TMD, whereby TMJ pathology maybe similar in the sexes but fluctuating levels of estrogen
make women more likely to experience longer lasting pain. Second, estrogen protects the
TMJ from degeneration and conversely low levels of estrogen predisposes post-menopausal
women to TMJ-DD. The vast majority of studies have shown that women over the age of 50
are more likely than age-matched men to suffer from TMJ-DD [80-82]. One way that
estrogen may protect the joint is by regulating the expression of protease inhibitors, such as
A2M. Estradiol treatment increased A2m gene expression and mandibular condylar
fibrocartilage immunostaining in wild-type (WT), skeletally mature mice. Interestingly, this
same effect was not seen in ERa knockout mice [57]. Also, A2m and protease inhibitor 15
(Pi15) dosing studies in an organ culture model resulted in decreases in matrix proteases
including MMP-9. However, other studies in bone have shown A2m upregulation via
estradiol independent of either ERa or ERp suggesting this is not the sole mechanism [83].
A2m has been shown previously to be a potential inhibitor of posttraumatic osteoarthritis in
the knee [84] highlighting the potential for similar treatment to reduce TMJ degeneration
utilizing A2m. Third, sex differences in estrogen signaling are contributing to TMD
symptoms. ERp signaling inhibits TMJ growth in female but not in male mice [71]. Also, a
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negative hypothalamus ERa signaling pathway in female but not male mice has been
discussed. Conditional deletion of ERa. in hypothalamus Kiss1-expressing cells caused a
two—fivefold increase in bone density, solely in females [85]. RNA sequencing data from the
bone marrow from these mice revealed that many of the same genes were upregulated
(A2M, Pi15, Col8al) compared to ovariectomized, wild-type mice treated with estradiol in
the mandibular condylar fibrocartilage, suggesting the potential for a hypothalamus Era-
negative signaling pathway in the TMJ in female but not in male mice. Taken together, ERp
and/or a hypothalamus ERa negative signaling pathway may cause inhibition of TMJ repair
making women more prone to TMD. Lastly, differences in TMJ anatomy and structure may
result in altered biomechanics that predispose the female joint to more mechanical fatigue.
The male condyle is larger than the female, on average, and exhibits a longer condylar
lingual length with long elliptical condyles compared to the smaller, round condyles of a
female TMJ [86]. These anatomical differences result in sex differences in joint loading.
Static and dynamic mechanical analyses of aged male and female articular fibrocartilage-
subchondral bone units resulted in significant differences in energy dissipation and load to
the tissues. In males, the subchondral bone with stands the majority of load whereas in
females, the articular fibrocartilage bears a significant proportion of the load [87]. Dynamic
stereometry assessment using Magnetic resonance (MR) and cone-beam computed
tomography (CBCT) data were used to illustrate an increased energy density in the TMJ of
female subjects suggesting an increase in biomechanical fatigue compared to males [88].

Periodontal disease and estrogen

Periodontal disease is a condition of infectious, inflammatory or combined origin that affects
tissues surrounding and supporting teeth [89]. Both non-modifiable and modifiable factors
are involved in its occurrence. Gingivitis and periodontitis are collectively known as
periodontal diseases. The first one referrers to reversible gingival inflammation, while the
other one describes a condition when the loss of alveolar bone and connective tissue
accompanies gingival inflammation [90]. The role of estrogen in mediating periodontal
diseases is biphasic with high levels promoting gingivitis, and low levels potentiating
alveolar bone loss.

Estrogen and gingivitis

Two recent meta-analyses have concluded that conditions which raise estrogen levels (i.e.,
pregnhancy and oral contraceptive use) are associated with an increase in the prevalence of
gingivitis [91, 92]. However, the mechanism remains unclear. One way in which estrogen
may potentiate gingivitis is by changing the composition of the oral microbiome. A
traditional view of periodontal research focuses upon identification of select
periodontopathic bacteria such as the “red complex” (Porphyromonas gingivalis, Treponema
denticola, and Tannerella forsythia) [93]. However, development of molecular-based
approaches has allowed us to consider new models of pathogenesis in which periodontal
disease is initiated by broadly-based dysbiotic and synergistic microbiota [94], including
both cultivated and uncultivated microbes. Older studies found no definitive associations
between elevated states of ovarian hormones and preferential enrichment of the subgingival
microbiome for selected species [95, 96]. However, recent studies using next-generation
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sequencing have found that despite stability of oral microbiome diversity, there was
enrichment of certain bacteria taxa in African American [97] and Chinese pregnant women
[98].

It now appears that pregnancy modulates the mother’s immune system, but it does not
necessarily suppress it. This may result in pregnant women responding differently to
different types of microorganisms, which is also regulated by the different stages of
pregnancy [99]. Estrogen-mediated effects are apparent in all major innate and adaptive
immune cells, including neutrophils, macrophages, T cells and B cells [100]. However,
estrogen by itself does not seem to affect gingival crevicular fluid cytokines levels. For
example, it was shown that rising estrogen levels during pregnancy did not affect IL-beta or
TNF alpha levels [101]. Furthermore in another study they found that there was no
difference in IL-1 alpha, IL-1 beta, IL-8, TNFalpha, and SLPI mRNA levels in the GCF
between samples from the 12th week of pregnancy and 4-6 weeks post-partum [102].

Estrogen deficiency and periodontitis

Menopause is associated with increased alveolar bone loss without changes in probing
depths or in clinical attachment loss [103]. In addition menopausal women are more prone to
osteoporosis, which has been associated with increased alveolar bone loss [104]. Finally,
alveolar bone loss was found to be less severe in post-menopausal women with a history of
HRT use [105]. Recent research has delineated the distinct roles of aging and estrogen
deficiency on skeletal bone mass. New evidence illustrates that estrogen deficiency
independently promotes the survival and increased activity of osteoclasts, resulting in
increased bone resorption [106]. On the other hand, aging independently causes a decrease
in osteoblasteogenesis [106] and an increase in cellular senescence [107]. Most cross-
sectional studies have found a radiographic relationship between alveolar bone loss and
osteoporosis [104], although it is unclear what the exact contributions of estrogen deficiency
and aging are on alveolar bone loss.

Periodontitis is triggered by pathogenic microbes or microbial dysbiosis in a susceptible
host, which results in the host inflammatory response causing soft tissue destruction and
bone loss [108].

The complex host immune response involves cells of both the innate and adaptive immune
response (Fig. 2). Bacteria and their products including lipopolysaccharides (LPS) trigger
the initial production of cytokines such as TNFa, IL-1, IL-6, macrophage inflammatory
protein-1 (MIP-1/CCL3) and macrophage chemoattractant protein (MCP-1) from
neutrophils, monocyte/macrophages, fibroblasts and dendritic cells. Macrophages also
secrete proteases such as matrix metalloproteinases (MMPs) that degrade extracellular
matrix directly. TNFa and IL-1pB stimulate the adaptive immune response with T cells and B
cells, which have been shown to play a critical role in alveolar bone loss in periodontitis
primarily through expression of receptor activator of NFxb ligand (RANKL) [109, 110].
RANKL binds to the RANK receptor on osteoclast precursors, inducing osteoclast
differentiation and activation to resorb bone. Osteoblasts also produce osteoprotegerin
(OPG), a member of the family of TNF receptors, which functions as a decoy receptor for
RANKL. Binding of OPG to RANKL inhibits osteoclast differentiation and bone resorption
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by mature osteoclasts. The OPG/RANK/RANKL system is the dominant, final mediator of
osteoclastogenesis, and bone resorption is determined by the relative amounts of RANKL
and OPG produced [111]. Gingival tissue from patients with periodontal infection, expresses
higher levels of RANKL and lower levels of OPG [112]. In another study, confocal
microscopy revealed that 50% of T cells and 90% of B cells expressed RANKL in diseased
gingival tissue, whereas less than 20% of B cells and T cells expressed RANKL in healthy
gingival tissue [113]. RANKL expression is highest in activated B cells, followed by T cells
and monocytes [113]. Taken together these studies suggest that activated T and B cells play
an important role in alveolar bone loss through enhanced RANKL production. Estrogen
downregulates the production of cytokines by T cells (TNFa, RANKL), monocytes (IL-1,
TNFa), and bone marrow stromal cells (IL-6, RANKL, GM-CSF, and M-CSF) and
increases production of TGFp by osteoblasts, resulting in decreased osteoclast number and
activity [114-116]. Estrogen deficiency after menopause enhances the production of TNFa
and RANKL by T cells [116], increases production of osteoclast precursors [116, 117] and
has both a pro-apoptotic effect on osteoblasts and an anti-apoptotic effect on osteoclasts
(Fig. 2). Therefore, it is likely that periodontal disease and alveolar bone loss would both
accelerate after the menopausal transition, and be prevented by estrogen replacement. The
Osteoperio study determined that history of HRT in postmenopausal women was associated
with lower alveolar crestal height (ACH), suggestive of less alveolar bone loss, although,
serum estradiol (E2) levels did not correlate with ACH [105]. Based on the National Health
and Nutrition Examination Survey (NHANES I11) database, there was also an association
between HRT use and decreased clinical attachment loss [118]. However, a recent meta-
analysis concluded that HRT in post-menopausal women did affect radiographic bone loss or
clinical attachment loss [119]. A possible reason for these discordant results, comes from a
recent paper that analyzed the NHANES database and found that HRT and clinical
periodontal measures were strongest among women with high vitamin D levels [120].

Conclusions

Estrogen signaling plays a significant role in the sex dimorphism of periodontal diseases and
temporomandibular joint disorders. Estrogen signaling is complex and the varying levels of
estrogen during a woman’s lifetime may play a unique role on oral diseases. For example,
fluctuating levels of estrogen during childbearing ages and peri-menopause may predispose
women to facial pain, increased estrogen levels during pregnancy may cause changes in the
oral microbiome leading to gingivitis and low levels of estrogen post-menopause may
potentiate temporomandibular joint degeneration and alveolar bone loss. Furthermore, there
is sex-specific estrogen receptor signaling, that also contributes to the sex dimorphism of
oral disease.

Currently, HRT appears to have only modest impact on the progression of
temporomandibular joint disease and periodontal clinical attachment loss. However,
different estrogen signaling pathways may be involved in promoting anabolic actions in
mandibular condylar fibrocartilage or mediating facial pain, and may differ between specific
TMJ diseases. Additional developments in selective estrogen receptor modulators may hold
further promise for future pharmaceutical therapies. For example, ERa agonist therapy may
prevent TMJ degeneration progression in post-menopausal women but may have little effect
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on post-menopausal women suffering from temporomandibular myalgia or TMJ disc
disorders. Knowledge of sex and age-specific estrogen signaling effects is vital for the
development of strategies for oral tissue remodeling and homeostasis.
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Fig. 1.
Role of estrogen signaling via estrogen receptors alpha (ERa.) and beta (ERB) on cells from

the temporomandibular joint disc and condylar fibrocartilage
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Fig. 2.
Working model of potential role of estrogen in mediating periodontal disease-induced

alveolar bone loss
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