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ABSTRACT

We point out complications inherent in biodiversity inventory metrics when applied
to large-scale datasets. The number of units of inventory effort (e.g., days of inventory
effort) in which a species is detected saturates, such that crucial numbers of
detections of rare species approach zero. Any rare errors can then come to dominate
species richness estimates, creating upward biases in estimates of species numbers.
We document the problem via simulations of sampling from virtual biotas, illustrate
its potential using a large empirical dataset (bird records from Cape May, NJ, USA),
and outline the circumstances under which these problems may be expected to
emerge.
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INTRODUCTION

Biodiversity measurements have important implications for conservation efforts

, (Sousa-Baena, Garcia ¢ Peterson, 2014). Biodiversity metrics provide information about
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evaluate and understand biotic responses to changing environmental conditions.
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significant challenges for such analyses, particularly when data are drawn from publicly

How to cite this article Khalighifar A, Jiménez L, Nufiez-Penichet C, Freeman B, Ingenloff K, Jiménez-Garcia D, Peterson T. 2020.
Inventory statistics meet big data: complications for estimating numbers of species. Peer] 8:e8872 DOI 10.7717/peer;j.8872


http://dx.doi.org/10.7717/peerj.8872
mailto:a.�khalighifar@�ku.�edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.8872
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/

Peer/

accessible databases, rather than collected individually by the researcher (Soberon,
Llorente & Benitez, 1996; Lobo, 2008).

However, those same publicly accessible databases offer exciting opportunities for novel
analyses (e.g., Cameron et al., 2018; Peterson et al., 2015). Primary biodiversity data
connect a particular species with a place and a point in time (Sullivan et al., 2014), and
availability of such data records has grown massively, now exceeding 10° records
(e.g., Global Biodiversity Information Facility, http://www.gbif.org, serving 1,387,995,196
records as of 22 January 2020). Although these data are heavily biased in terms of their
spatial and temporal distributions, being concentrated massively in Europe and North
America and a few other, scattered regions (Yesson et al., 2007; Peterson & Soberdn, 2018),
the promise of genuine, macroscale, synthetic insights remains, and is growing.

In this contribution, we report on a complication in application of the customary
statistics for measuring species richness (Colwell & Coddington, 1994) to very large-scale
(e.g., 10° records or larger) biodiversity incidence datasets (i.e., records only of presence,
and not of abundance). Biodiversity datasets have long been of modest dimensions only,
and the field has been built on metrics and methods equipped and designed for those
dimensions. In the course of studies of avifaunal change over recent decades in North
America that are pending publication, we noted that species richness estimates are affected
significantly by what would seem to be negligible numbers of errors among the real
data records (see Fig. 1, for an example from a site that is sampled massively by
birdwatchers). We present a brief conceptual summary and a demonstration of the
problem via a simple simulation; we conclude with an exploration of how such problems
can be avoided or mitigated.

Conceptual background
The problem of estimating species richness from samples has been approached via
methods that can be separated into three groups according to the statistical approach used
to derive a species richness estimator: (1) extrapolating species accumulation curves to
their asymptotes (Clench, 1979), (2) fitting parametric distributions of relative abundances
(Efron & Thisted, 1976), or (3) using nonparametric techniques based on distribution of
individuals among species (or the distribution of species among samples) (Colwell ¢
Coddington, 1994; Colwell, 2013; Chao ¢ Chiu, 2016). We focus on asymptotic versions of
these methods sensu Chao ¢ Chiu (2016), as we are interested in full inventories of species
present at sites; see discussion in Peterson ¢ Slade (1998). Two kinds of data are used
in these richness studies: incidence data, in which only presences and absences are
recorded for each species in each unit of effort, and abundance data, in which numbers of
individuals of each species are recorded within each unit of effort (Gotelli &> Colwell, 2011).
Abundance data can always be converted to incidence data, whereas the reverse is not
generally possible.

The nonparametric approach has been preferred greatly, since it does not make
assumptions about underlying distributions of abundances or detection rates of species
(Chao & Shen, 2004; Chao ¢ Chiu, 2016). We focus on four nonparametric species
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Figure 1 Example of an intensively sampled site, Cape May National Wildlife Refuge, NJ, USA. This
example shows how the frequency histogram of number of detections per species reflects large numbers
of observations of a finite biota. This histogram summarizes 12,144,561 records for the site, and 436
species detected. We have identified the species having the lowest frequencies of detection, among which
can be noted several species that are probably not occurring there naturally, such as Anser anser,
Eupsittula canicularis, and Melopsittacus undulatus, all of which are likely there as escapes from cap-
tivity. Full-size K&l DOT: 10.7717/peer;j.8872/fig-1

richness estimators based on replicated incidence data that estimate numbers of species
actually present at a site but not observed in the reference sample. All of the estimators
correct observed richness (which is by default a lower bound for a species richness
estimator) by adding a term estimating the number of species present but not detected
based on numbers of species represented in one sample (uniques), two samples
(duplicates), or a few samples only (Gotelli ¢» Colwell, 2011; Colwell et al., 2012).

The reference sample for replicated incidence data consists of a species-by-effort unit
(frequently these units of effort will be days of inventory effort) matrix in which each
element (m;;) corresponds to either the presence or absence of species i in sample j.

The number of columns in this matrix, T, is the number of effort units in the sample;
the number of rows is the observed number of species, Syps. Qg is the number of species
present in exactly k effort units of the sample, so the number of species present in the
assemblage but not included in the overall sample (undetected species) is Qo, the
number of species unique to a single effort unit is Q;, the number of duplicates is Q,,
and so on.
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Chao (1984) originally derived an estimator of species richness S for
abundance-based data that is now called Chaol, which she later recast for incidence data
(Chao, 1987). This latter estimator, now called Chao2, is

T—-1
g
SChaoZ = Sobs + 20, ’ if Q& >0 (1)
T-—1 -1
Sobs + [ = }31((521“)), if Q=0

where T is the sample size available for the overall calculation. The first expression of Eq. (1)
reflects the classic Chao2 estimator; however, this estimator is undefined when Q, = 0.
The second expression in Eq. (1) is a corrected form that is always obtainable and defined.
A second estimator of interest, the incidence coverage-based estimator (ICE), is
based on the concept of sample coverage: the proportion of the total number of incidences
in a set of sampling units that belong to the species represented in the sample. Sample
coverage is a measure of the information available regarding occurrence of relatively rare
species in the sample (Chao ¢ Chiu, 2016); its estimator depends on the complement of the
proportion of singletons, in relation to the total number of incidences of the infrequent
species (Colwell e Coddington, 1994). A third type of species richness estimator is based on
the statistical method of jackknifing, a bias reduction technique involving removing
subsets of the data and recalculating the estimator with the reduced sample (Chao ¢ Chiu,
2016). Finally, we explored the method developed by Chiu ¢» Chao (2016) for microbial
molecular diversity data to account for inflation of numbers of singletons by sequencing
errors (akin to identification errors); this method estimates the true value of Q, based
on Q,, Qs and Qy, and uses the adjusted value in asymptotic diversity estimates. It is
important to notice that this method defaults to the classic Chao2 estimator when both Qs,
and Q, are equal to zero, otherwise the estimator of Q, (the true number of uniques) would
be undefined. Therefore, its application is only valid for a certain window of conditions.
Note that, for each of the estimators described above, the estimator does not take
advantage of the full frequency distribution of detections for species in an inventory
effort—indeed, this partial use of the frequency distribution is the focus of this
contribution. Three of these estimators, as well as their corresponding variances and
confidence intervals, can be computed using EstimateS (Colwell ¢ Elsensohn, 2014) and a
new version implemented in R (Chao ¢ Chiu, 2016); the final estimator can be computed
using the R version only. We used EstimateS (version 9.1.0; Colwell & Elsensohn, 2014)
for the older three nonparametric estimators, as that platform is that which has seen the
greatest use by the biodiversity community, and the R version for the latter estimator.

MATERIALS AND METHODS

We developed a simple simulation based on large samples from a virtual community of
100 “real” species, by using a Poisson mixed model to generate the observed abundances
of an inventory. Mean abundances (i.e., the parameters of the Poisson distributions) of
each species were selected from a log-normal distribution with parameters g = 1.5 and
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0 = 2.0 (the mean and standard deviation of the variable’s natural logarithm, respectively).
For each effort unit (hereafter day, for simplicity) sampled, we simulated abundances from
the corresponding Poisson distributions and converted them to incidence data; that is,
if an abundance was larger or equal than one, the corresponding cell in the table was
set equal to 1, and it was left equal to 0 otherwise. This initial simulation served to illustrate
how crucial values (Q;, Q,, etc.) approach zero as the frequency distribution of detections
of species shifts to higher frequencies of observation, and saturates beyond the few
detections on which the inventory estimators focus.

Then, to simulate effects of very rare errors in the form of misidentifications or incorrect
geographic coordinates on inventory results for sites, in a second phase of simulation,
we added 10 “error” species that were designed to mimic occasional, rare errors; this latter
set of species had a mean abundance 6 orders of magnitude lower than the mean
abundance of the 100 real species. To understand the sensitivity of our results to
distributional assumptions, we also explored log-normal distributions with parameters
n=03ando=12,and p=1.0and o = 0.5, as well as gamma distributions with parameters
a=18and f=1.0,a=25and f=20,and o =3.0 and = 1.2 (where a is the shape
parameter, and B is the scale parameter).

We simulated a set of 100 replicate incidence tables of the 100 real species in R version
3.2.3 (https://www.r-project.org/) (R Core Team, 2015) and a second set of 100 replicate
incidence tables of the 100 real species together with the 10 error species. To avoid
recycling samples and consequent serial dependency among samples, we created
independent random datasets for each number of effort units (5, 7, 10, 15, 20, 25, 50, 75,
100, 125, 150, 175, 200, 300, 400, 500, 600, 700, 800, 900, and 1,000 days), the R code can be
consulted at https://github.com/LauraJim/SpeciesRichness. We used default settings of
EstimateS (Colwell ¢» Elsensohn, 2014) to calculate the Chao2, ICE, jackknifel, and
jackknife2 estimators for the 100 replicates x 21 numbers of effort units = 2100 simulated
populations. Next, we used customized scripts in Python 2.7.11 (the code for these analyses
is available at http://hdl.handle.net/1808/25686) to separate individual replicate datasets
from the combined EstimateS output files, and to select and isolate the final lines from each
replicate, to create a final table of results from each simulated population. Program code
for the analyses of the simulated data is available at http://hdl.handle.net/1808/25686.

RESULTS

The results from the error-free simulations showed clearly that the estimators converged
well on the true value (100 species), and that Q; and Q, approached zero in increasingly
large samples (Fig. 2). The effects of adding the very rare “error” species were also

quite clear: early samples lacked error species entirely, as they were just too rare to show up
in relatively small samples. Only in very large samples, with 400-1,000 effort units, did
these species begin to appear in the analysis datasets (red bars in Fig. 2).

The results of the simulation overall showed that, with ~150 units of effort, estimates of
numbers of species in the community settled at 100 species, which is the correct number
of species (Fig. 3, top). However, when rare species were introduced at minuscule
abundances compared to the “real” species, even though the results settled initially on the
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Figure 2 Summary of frequencies of species in inventory samples used in simulation exercises. The
great bulk of these samples had large numbers of detections (the tall bars along the left and back of the
figure). Note that by 50-100 days of sampling, no species are left in the 1-2 detections categories that feed
into the Chao2 estimator analyses. Note also the appearance of rare species in the analysis (red bars at

front right) when samples became very large.

Full-size K&l DOT: 10.7717/peer;j.8872/fig-2

correct answer of 100 species, later a consistent upward bias was noted when the rare

species begin to appear (Fig. 3, bottom).

The Chiu ¢ Chao (2016) method showed consistent underestimation of true species

numbers for modest numbers of days of sampling (Fig. 4), although this bias disappeared

with large sample sizes. At modest sampling levels, although analyses of the simulated data

with error better approximated the true number of species (100; Fig. 4), the consistent

underestimation in error-free analyses suggests that this outcome may represent a balance

between downward bias in error-free estimates and upward bias introduced by the errors.

The remaining estimators showed behavior similar to that of Chao2: ICE, Jackknifel

(first-order), and Jackknife2 (second-order) analyses, in the first simulation phase, settled

on 100 species at ~100 samples, but in the second phase were biased upwards markedly

by 150-250 samples (see Supporting Information). Finally, we explored different

abundance distributions for the simulation—indeed, in all log-normal and gamma

distributions that we assessed, biases were clear, just as in the results we have presented

above (see Supporting Information).

DISCUSSION

This contribution centers on how inventory completeness statistics need to evolve in the

face of larger and larger magnitudes of biodiversity data sets. That is, we have shown that

any errors in the data (e.g., misidentifications, misspellings), even at very minor

frequencies, can easily end up dominating the estimation process with the common and
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long-used nonparametric estimators, such as Chao2; the older species accumulation curve
approach also would clearly overestimate numbers, given that “error” species would
appear as species documented in the inventory. These biodiversity inventory statistics are
important, offering crucial additional information to the process of biotic inventories;
therefore, updating and amending these approaches to approaches that are less vulnerable
to bias, or at least being cognizant of the potential for problems in estimation for big(ger)
datasets, is important.

What solutions are available to a researcher with a big data set and the desire to develop
detailed analyses of species richness and inventory completeness? Quite simply, a diversity
of types of errors is found in pretty much every large-scale biodiversity dataset (Lamb
et al., 2009), and large-scale datasets (see, e.g., Fig. 1) will by nature have more such errors,
at least on an absolute scale. A crucial first step is that of reducing spurious and erroneous
species names in the dataset (Chapman, 2005). Such names may be misspellings, which
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can be detected easily by comparison of observed species lists with authority lists (Gueta ¢
Carmel, 2016); this sort of error is well-known to inflate species richness estimates in
inventories (Sousa-Baena, Garcia & Peterson, 2013). However, these names may also be
real names chosen by accident from controlled pick-lists or that refer to the taxon in
question under an older taxonomic concept; such errors may be hard to detect owing to the
fact that they are valid names, but just not represented at the site in question. Similar
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contrasts in detectability of different error types have recently been documented for
ecological niche modeling and species distribution modeling (Simoes ¢ Peterson, 2018).
At a most fundamental level, the only means by which to detect such taxonomic
complications and remove them or fix them prior to analysis is careful vetting of data
records by taxonomic experts.

A turther complication may arise from errors in geographic referencing of occurrences.
This sort of error may arise from careless data transcription, or from inaccurate post hoc
georeferencing steps (Peterson et al., 2018). The effect, however, can be that of creating
an occasional report of a species from a site where it does not have populations, which can
feed into the sort of problems that are examined in this paper by creating the appearance of
rare species in the sample.

Finally, and particularly for the case of birds and a few other taxa for which species
are well documented, a third class of problems regarding species names may arise.
Specifically, rare visitors, often termed vagrants, are valid species names, and the species
may genuinely be present at the site at some (rare) point in time (see Fig. 1). However,
depending on the specific definition of the biota under consideration and that is the target
of the inventory, these species may or may not be relevant. That is, detection and
documentation of such species depends on continuous, intensive presence of observers or
collectors, and also on the presence of the “experts” who will be experienced enough to
detect and report such records, and whose records of such species will be believed and
accepted. Such dependencies will easily create biases that may make certain sites appear
richer in species, when in actuality they are richer only in high-level observers (Dittmann
¢ Lasley, 1992). More generally, this point serves to indicate that biotic inventories need to
be defined carefully in terms of a particular point or span of time and space.

The method presented by Chiu ¢ Chao (2016) was developed for application to
microbial molecular diversity data to account for inflation of singletons by sequencing
errors, which would appear to be closely akin to problems created by identification errors
in species inventories. This method estimates the true value of Q,, based on Q,, Q3 and Q,
and uses the adjusted value in asymptotic diversity estimates. This estimator, in our
simulation-based assessments, underestimated true species numbers in the absence of
error, but estimated the true species number closely when errors were introduced—as
such, the Chiu-Chao estimator may offer a useful solution to the problems identified in
this contribution for biodiversity inventory estimates.

CONCLUSIONS

In this note, we point out and document a complication with application of the commonly
used species inventory statistics, as biodiversity data sets grow to be large. The base
observation is that fauna sizes are finite, but sampling effort can grow without limit, which
shifts distributions of frequencies of observations of species towards larger and larger
numbers—this phenomenon has the effect of reducing the numbers of relatively rare
species that inform inventory statistics. Two processes are involved: (1) estimators depend
on the frequencies of detection of the rarer species, which decline to nil in very large
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datasets; and (2) erroneous reports come to dominate the estimation process because
errors are rare and real species accumulate much larger numbers of observations, such that
estimates can come to be based entirely on noise rather than on signal. The first point is a
simple consequence of massive-scale sampling of finite biotas; the second, however, derives
from the dependance of inventory statistics on information from rare species. Solutions to
these problems must involve detailed cleaning and quality control of data, and careful
definition of the relevant species pool that is under study. Exploration of new estimators
that take into account species with greater numbers of records or that correct for biases in
Qi (Chiu & Chao, 2016)—may provide solutions to these problems.
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