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Abstract: Dissecting the genetic basis of natural variation in disease response in hosts provides insights
into the coevolutionary dynamics of host-pathogen interactions. Here, a genome-wide association
study of Drosophila melanogaster survival after infection with the Gram-positive entomopathogenic
bacterium Enterococcus faecalis is reported. There was considerable variation in defense against E.
faecalis infection among inbred lines of the Drosophila Genetics Reference Panel. We identified single
nucleotide polymorphisms associated with six genes with a significant (p < 10−08, corresponding
to a false discovery rate of 2.4%) association with survival, none of which were canonical immune
genes. To validate the role of these genes in immune defense, their expression was knocked-down
using RNAi and survival of infected hosts was followed, which confirmed a role for the genes krishah
and S6k in immune defense. We further identified a putative role for the Bomanin gene BomBc1 (also
known as IM23), in E. faecalis infection response. This study adds to the growing set of association
studies for infection in Drosophila melanogaster and suggests that the genetic causes of variation in
immune defense differ for different pathogens.

Keywords: genome-wide association study (GWAS); innate immunity; immune response; systemic
infection; Toll pathway; gram-positive bacteria

1. Introduction

Pathogenic microorganisms, those that cause increased morbidity and/or mortality in infected
individuals, can pose serious threats to the fitness of infected individual hosts and the long-term
survival of host populations, and even species [1,2]. In response to the challenges posed by pathogens,
most hosts have developed a complex series of defense mechanisms, collectively known as the immune
system. Yet, mounting an immune response to pathogens is costly in terms of both energy expenditure
and resource allocation [3,4]. For this reason, selection should act on hosts to tolerate or resist pathogens
based on the relative costs of harboring or clearing an infection. Furthermore, within host populations
there tends to be genetic variation in immune defense, such that individuals vary in their response to
specific pathogens. This variation in immune defense is not simply restricted to canonical immunity
genes, but also to those genes involved in life-history, behavioral and physiological traits that influence
the outcome of host-pathogen interactions [5]. Continual host-pathogen coevolution likely promotes
maintenance of immune diversity in populations [6,7]. Understanding the genetic underpinnings of
natural variation for immunity within a population or species therefore provides insights into the
specific genes and immune pathways involved in the host immune response to a particular pathogen.
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Genome-wide association studies (GWAS) test for statistical associations between genotype and
phenotype at each variable site in the genome, and theoretically have the power to detect alleles
with only modest effects on phenotype [8]. One perceived benefit of GWAS is that it allows for
unbiased detection of unknown and unexpected genotypic associations because the whole genome
is interrogated simultaneously. While this method has been used to examine the genetic basis of
immunity in Drosophila melanogaster previously e.g., [9–13], no study to date has used GWAS to examine
Drosophila defense against Enterococcus faecalis.

E. faecalis is a Gram-positive bacterium with lysine-type peptidoglycan that readily infects insect
and mammalian hosts [14], where it lowers individual survival [14,15]. E. faecalis occurs naturally in
Drosophila populations, most likely at low prevalence [16,17]. Importantly, E. faecalis has been isolated
from the hemolymph of wild D. melanogaster, and challenge with this bacterium at a relatively low
dose causes intermediate levels of mortality in laboratory reared flies [17,18]. Thus, E. faecalis is not
solely a gut commensal of D. melanogaster but rather can cause systemic pathogenic infections. As such,
it is likely that there is selection for resistance and/or tolerance in D. melanogaster. Indeed, Toll-pathway
induced antimicrobial peptides are upregulated in response to E. faecalis infection and play a key
role in controlling the infection [19–21]. Recently, a new group of immune peptides, the Bomanins,
were shown to play an important role in controlling Gram-positive infections such as E. faecalis in D.
melanogaster [15,22,23].

Here, we use a genome-wide association study to identify genetic variation involved in D.
melanogaster immune defense against infection with E. faecalis. Subsequently, expression of putative
response genes was knocked down in vivo using RNAi and survival after infection was monitored.
This allowed us to confirm the role of two genes involved in D. melanogaster survival after E. faecalis
infection that have not previously been recognized as playing a role in immunity to this pathogen.
In addition, we dissected the role that Bomanins play in regulating response to E. faecalis infection
and showed BomBc1 may play a specific role in enhancing Drosophila survival when infected with
this pathogen.

2. Materials and Methods

2.1. Drosophila and Bacterial Stocks

The Drosophila Genetic Reference Panel (DGRP) population was used in this study. The DGRP is a
North American (Raleigh, NC, USA) set of inbred lines that was developed for analysis of quantitative
traits [24]. Full genome sequences are available for every line (n = 205) [25]. Flies were housed at 22 ◦C
on a 12-h day/night cycle in vials containing standard Drosophila cornmeal-molasses-yeast food.

The E. faecalis strain used in this study was originally isolated from the hemolymph of wild-caught
D. melanogaster [17]. One week before the start of the experiment, the bacterium was revived from a
glycerol stock maintained at −80 ◦C by streaking out on a Lysogeny Agar plate (LA, Difco, Detroit, MI,
USA) and incubating the plate at 37 ◦C overnight. This plate was then stored at 4 ◦C. The evening
before infections were to be performed, a single colony was aseptically picked from the LA plate and
placed in 2 mL of sterile Lysogeny broth (LB, Difco, Detroit, MI, USA) at 37 ◦C with shaking (250
rpm) overnight. The next day, the bacterial suspension was spun down (1 min at 13,000 rpm) and
resuspended in LB to a final OD600 of 1.5 ± 0.02, which represents a final bacterial concentration of
~1.3 × 109 CFU/mL.

2.2. Genome-Wide Association Study

All but three DGRP lines (DGRP_21, DGRP_49, DGRP_325) were included in this study, resulting
in an initial dataset of 202 DGRP lines in the GWAS analysis. Four infectors (JRC, MAD, RC, RLU) aimed
to each infect at least 10 individuals per line. Adult males were infected 4–7 days post-eclosion, via
piercing of the thorax with a Ø 0.1 mm pin that had been dipped in the bacterial suspension described
above. We limited all our infection studies to males because female flies can exhibit different immune
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responses depending on mating status and reproductive investment [26–28]. We used 4–7-day-old
adult flies because the fat body (the main immune tissue in Drosophila) is not fully mature and fixed for
the first three days of the adult stage [29] and because flies undergo immunosenescence as they age [30].
Four to seven days, therefore, represents a period of life in which expression of immune genes should
be optimal. Other flies were pricked with sterile LB to serve as uninfected controls (mean ± s.d. = 15.95
± 5.58 per line). After treatment, 4–10 males from a given line (mean ± s.d. = 9.93 ± 0.45) were placed
in a vial containing cornmeal-molasses-yeast food, with each vial containing flies subjected to a single
treatment by a single infector. Vials were then stored in an incubator at 22 ◦C on a 12 h day/night cycle.
The number of surviving individuals was recorded five days after treatment, which is a reasonable
proxy of infection outcome because numerous Drosophila infection studies have shown that flies tend
to either die of infection within 48 h or survive beyond seven days, e.g., [22,31,32]. We found that
DGRP line DGRP_321 was an extreme outlier in that most individuals died shortly after infection. This
line has also been previously identified as having abnormally lowered immune functioning [13]. As
such, we excluded DGRP_321 and conducted the GWAS analysis on the remaining 201 lines.

To determine whether E. faecalis survival is associated with a specific genetic variant in the DGRP,
a generalized linear mixed model with a binomial distribution and a logit link was fitted to the survival
data using Equation (1):

Proportion alive ~ Date + Infector + Wolbachia status + (1| Line)/variant, (1)

where (1|Line)/variant refers to DGRP fly line nested within genetic variant (random effect), variant
is the specific variant (A, C, T, or G for SNPs, longer sequence strings for insertions and deletions)
at a given genomic position (fixed effect), Date is the day infections were conducted (fixed effect),
Infector is the identity of the person performing infections for that vial (fixed effect) and Wolbachia
status refers to whether the line is systemically infected with the intracellular bacterium Wolbachia
pipientis (fixed effect). This test was performed for every variable position in the genome that met the
following criteria: A) the site was biallelic amongst the phenotyped lines and B) the minor allele count
was greater than five. This led to a total of n = 2,383,736 independent tests.

2.3. RNAi Knock-Down of Candidate Genes

An initial list of variants putatively associated with E. faecalis survival in the DGRP was generated
by applying a p-value cut-off of p < 10−7, corresponding to a false discovery rate of 23.8%. To further
winnow the list of variants to validate, we then applied a second, more conservative p-value cut-off of p
< 10−8 to reduce the false discovery rate to 2.38% and therefore retain only those variants with a strong
association with survival after E. faecalis infection. Genes associated with variants significant at the p <

10−8 level are hereafter termed genes of interest (GOIs). We chose to further dissect the role of a subset
of these genes, as well as genes physically close to these candidate genes (which we termed neighbor
genes), by knocking down their expression in-vivo using RNAi and following survival after infection
with E. faecalis in comparison to ‘empty cassette’ controls (see below). The neighbor gene approach
was chosen to control for the possibility that knocking down random genes produced a change in
immune phenotype. To this end, we used flies created by the Transgenic RNAi Programme (TRiP) [33]
which we obtained from the Bloomington Drosophila Stock Center. TRiP uses a Gal4-UAS system to
drive down expression of the targeted gene when crossed to a driver line. We used two different driver
lines, one (Act5C) targets knockdown across the whole body, the other (C564), targets the fat body. We
used the fat body driver in cases where whole body knock-down of a gene was lethal, because the fat
body is the major immune-related tissue in Drosophila, analogous to the mammalian liver [34,35]. To
obtain knockdown F1 individuals, RNAi TRiP males were crossed to virgin females from the driver
lines Act5C or C564, per gene of interest and ‘empty cassette’ controls (isogenic to the knockdown
lines except for the specific hairpin-containing transgene) (Figure S1). F1 offspring from these crosses
were collected onto fresh food 1–2 day-post-eclosion for subsequent infection (Figure S1). A balancer
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chromosome was present in some of the TRiP lines, in these cases we only infected FI progeny with the
wild-type phenotype, because these individuals harbor the target RNAi transgene.

2.4. E. faecalis Infection of RNAi Lines with Knock-Down of Candidate Genes

As with the GWAS analysis, we infected 4–7-day-old males, in this case, F1 offspring from the
crosses described above, with E. faecalis at a standardized concentration of OD600 = 1.5 ± 0.02 and
counted the number of survivors after five days. However, for these experiments, only two people
infected flies (JRC and MAD). Three types of comparisons were made. First, comparisons were made
between lines with identical genetic backgrounds except for the knock-down of one specific gene
(target vs ‘empty cassette’ comparisons, where the target is either the GOI or neighbor gene, see below).
Second, comparisons were made between knockdowns of the candidate GOI and a neighbor gene,
being the closest genomic neighbor gene that was not itself identified in the GWAS (GOI vs neighbor
comparisons). Third, lines were infected with either E. faecalis or sterile LB (infected vs sterile prick
controls, data not shown). In total, we aimed to infect a minimum of 100 males per line (target/empty
cassette per GOI/neighbor) with E. faecalis and a minimum of 30 males per line (target/empty cassette
per GOI/neighbor) with LB (see Table S2), resulting in a minimum of 260 treated flies per experiment.

To determine whether GOI lines (i.e., those with expression of the candidate gene knocked-down
by RNAi) had different survival than control lines without that gene knocked down, a generalized
linear model with a binomial distribution and a logit link was fitted to the survival data. Depending
on the number of infectors, we used Equation (2) (one infector) or Equation (3) (two infectors):

Proportion alive ~ Line + Date, (2)

Proportion alive ~ Line + Infector/Date, (3)

where Line is the identity of the line (target or control) and Date is the date infections were performed.
Infector/Date is date nested within infector. Equation (3) was only required for the analysis of neighbor
gene CG42272, because both JRC and MAD infected flies for this line (note that only a single person
infected on any given date). For all other genes, Equation (2) was fitted because a single person
performed all infections. Wolbachia status was not required because Wolbachia is maternally transmitted
and the two driver lines (Act5C and C564) are Wolbachia free. To visualize the differences in survival
between target RNAi knockdown genes (GOI/neighbor) and empty cassette controls, we fitted a model
using Equation (2) or Equation (3) as appropriate, then a second model without the Line effect. We
used the residuals from this second model as the response (y) variable and plotted this against the Line
effect from the full (Equation (2)/Equation (3)) model as the predictor (x) variable.

2.5. Effects of Knocking Down Specific Bomanin Genes on E. faecalis Survival

We additionally investigated the effect of transgenically reducing expression of four Bomanin
genes (BomS1, BomBc1, BomT1 and BomS4) by knocking down expression, again using TRiP line
males crossed to C564 females and infecting F1 males. Comparisons were made between specific
Bom-individuals and control individuals containing the TRiP empty cassette, infected with E. faecalis
at the standard dose (OD600 = 1.5 ± 0.02) or Todd-Hewitt (TH) broth as a sterile control. TH was used
in this experiment because it was found that E. faecalis grows better in this media. The use of LB or TH
as growth medium and sterile prick control had no effect on survival of infected or control flies (data
not shown). Five-day survival was recorded. Subsequently, we increased the dose to (OD600 = 2.4
± 0.02) to increase mortality rates, and again recorded survival after five days. All infections were
conducted by JRC for this experiment.

To determine whether knock-down of specific Bomanin genes by RNAi had an effect on fly survival,
a generalized linear model with a binomial distribution and a logit link was fitted to the survival data
using Equation (2). In this case, Line was the identity of the Bomanin knock-down or control line.
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2.6. Statistical Analyses

All statistical analyses were performed using R v 3.4.1 [36]. Generalized models were fitted
using the glmer function in the lme4 package [37] and graphics were plotted using ggplot2 [38] and
corrplot [39].

3. Results

3.1. Variation in Immunity to E. faecalis Infection in the DGRP

In total, 27–65 males were infected with E. faecalis per line (mean ± s.d. = 46.32 ± 6.02, Figure S2a).
There was a more than three-fold difference in raw survivorship across the DGPR lines in their ability
to survive infection for five days (Figure S2b). The five lines with lowest survival across infectors
and days (DGRP_75, DGRP_176, DGRP_177, DGRP_313, DGRP_492) all had an average survival
five days-post infection (5 dpi) of lower than 30%, whereas the top five lines (DGRP_38, DGRP_319,
DGRP_405, DGRP_822, DGRP_913) had an average survival of at least 94% at 5 dpi (Figure S2b). There
was also considerable variance within lines, which can be partially explained by the fact that infections
were conducted by multiple people across multiple treatment days. We therefore fitted a model to the
data to account for the effects of treatment date and infector identity, and use fitted values from this
model in subsequent analyses (Figure 1a).

3.2. Identification of Candidate Genes

After applying a p-value cut-off of p < 10−7, we retained 52 genetic variants, most (94.3%) of which
were single nucleotide polymorphisms (SNPs), as potentially associated with E. faecalis survival in D.
melanogaster (Figure 1b solid red line, Table S1). This p-value threshold results in a fairly high false
discovery rate (FDR) of 23.8%. Therefore, to further narrow down the list of candidate genes (GOIs) for
validation, we validated only those genes associated with SNPs with p < 10−8 (which equates to a false
discovery rate of 2.4%, Figure 1b dashed red line), with the following exceptions. First, two highly
significant (p < 10−9) SNPs were found in the intron of krishah (kri), and two additional SNPs with
slightly lower significance (p < 10−7) were found in the 5′ untranslated region (UTR) of kri (Figure S3).
kri is tightly clustered with the genes S6k and mad2 (Figure S3). All four SNPs are also tightly linked
making it difficult to infer the causal SNP. SNPs in this region have also been previously identified as
being associated with survival after Pseudomonas aeruginosa infection in the DGRP [13]. We therefore
included all three of these genes as candidates for RNAi knockdown of gene expression. Second, one
highly significant SNP (2L_17921046) occurred in a genomic region devoid of genes, and so could not
be validated further. Third, we did not test the role of two genes associated with highly significant
SNPs (Ncc69 and Glc-AT-P). In total, we identified six candidate genes (hereafter genes of interest,
GOI) and four neighbor genes as targets for further analysis via RNAi knockdown (Table S2). For the
genomically clustered GOIs S6k, mad2 and kri, a single neighbor gene (CG42272) was used.
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Figure 1. Genome-wide association study (GWAS) analysis using fitted data. (A) Distribution of
survival rates amongst DGRP lines infected with E. faecalis after fitting a model to control for the effects
of Date, Infector and Wolbachia status. Black line represents fitted average for a model of survival taking
into account the fixed effects of infector and date of infection. The plot is sorted by increasing survival,
and blue bars indicate standard error of the mean, per line. (B) Manhattan plot of genetic variants
across the D. melanogaster genome and their association with E. faecalis survival. p-value is plotted as
−log10 p-value. Solid red line indicates p-value cut-off of 10−7 (which equates to a −log10 p-value of
6). Points above this line were used for generating list of variants putatively associated with survival
after infection (see Table S1). Dashed red line indicates p-value cut-off of 10−8 (which equates to a
−log10 p-value of 7). Most variants above this line were selected for candidate gene analysis; variants
associated with genes are labelled with gene name. Black and grey shading delineates chromosomes.

3.3. Candidate Gene Analyses

Of the six GOIs, we found significant associations between E. faecalis infection and survival with
two genes. There was a marginally significant trend for lower survival after infection in kri-flies (n = 111
GOI and 177 control, Line effect p = 0.049, Table 1, Figure 2a). For S6k-flies, we noted a non-significant
trend towards higher survival in the knockdown lines (n = 155 GOI and 172 control, Line effect p =

0.196, Table 1, Figure 2b). However, due to high overall survival in this experiment, it was difficult
to determine whether knockdown of S6k improved survival (Figure 2b). Therefore, we performed a
second round of infections with a higher E. faecalis dose (OD = 2.4). We indeed found higher survival
of S6k-flies when infection burden was increased (n = 142 GOI and 150 control, Line effect p = 0.029,
Table 1, Figure 2c). kri and S6k are clustered on chromosome 3L (Figure S3), suggesting that this region
may be associated with the response to E. faecalis. However, we did not find any association between
infection response and knockdown of two other genes in this region—mad2 (n = 302 GOI and 278
control, Line effect p = 0.136, Table 1, Figure S4a) and CG42272 (n = 100 neighbor and 133 control, Line
effect p = 0.658, Table 1, Figure S4b). Knocking down expression of the other three GOIs, located in
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different regions of the D. melanogaster genome, had no significant effect on survival after E. faecalis
infected (p > 0.05, Table 1, Figure S4 left panel). Likewise, knockdown on neighbor genes had no effect
on E. faecalis infection survival (p > 0.05, Table 1, Figure S4 right panel).
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Figure 2. Survival of GOI lines versus empty cassette controls (attP40 control line 36304). (A) krishah
(kri, Line 62238) infected with E. faecalis at a dose of OD = 1.5; (B) S6 kinase (S6k, Line 42572) infected
with E. faecalis at a dose of OD = 1.5; (C) S6 kinase (S6k, Line 42572) infected with E. faecalis at a dose
of OD = 2.4. In all cases, infections were conducted across multiple days. As such, the y axis is the
residuals from a model controlling for Date effects.

Table 1. Results of generalized linear models with a binomial distribution and a logit link fitted to
survival data after E. faecalis (EF) infection. Genes of Interest (GOI) are listed above their genomic
neighbor comparison. DF is degrees of freedom. p values less than 0.05 are shown in bold.

Gene Type Factor Deviance Df p-Value

Krishah GOI Line 3.8655 1 0.0493
Date 14.7613 3 0.0020

S6k 1 GOI Line 1.6755 1 0.1955
Date 7.0270 4 0.1345

S6k 2 GOI Line 4.7836 1 0.0287
Date 1.0198 2 0.6006

mad2 GOI Line 2.2275 1 0.1356
Date 5.9814 1 0.0145
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Table 1. Cont.

Gene Type Factor Deviance Df p-Value

CG42272 neighbor Line 0.5070 1 0.4765
Date 6.3657 2 0.0415

CG6767 GOI Line 0.3116 1 0.5767
Date 6.0510 3 0.1092

CG6761 neighbor Line 3.1126 1 0.0777
Date 3.7781 3 0.2864

IA2 GOI Line 1.5029 1 0.2202
Date 1.9210 3 0.5890

Star neighbor Line 3.0205 1 0.0822
Date 0.8459 2 0.6551

CG30377 GOI Line 0.1081 1 0.7423
Date 0.0669 1 0.7959

Dgk neighbor Line 0.0193 1 0.8894
Date 2.9014 3 0.4071

1 Infections with E. faecalis at a dose of OD = 1.5, 2 Infections with E. faecalis at a dose of OD = 2.4.

We have previously calculated Tajima’s D for all genes in the DGRP [40]. We ranked all DGRP
genes from most negative to most positive and calculated the percentile ranking for each GOI and
neighbor gene (Table S2). None of the genes were ranked amongst the highest or lowest 10% of
genes in terms of Tajima’s D, although S6k had a rather positive Tajima’s D (1.001, 88th percentile),
suggesting it may be subject to balancing selection or other forces that promote positive Tajima’s D.
For the remainder of the GOIs and neighbor genes, selective forces appear to be similar to the majority
of the genes in this population (Table S2).

3.4. Role of Bomanin Genes on E. faecalis Survival

Bomanins are a newly described group of immune peptides in Drosophila [15], and have an
important role in response to Gram-positive [15,22,41] and fungal [23] infections. However, to the best
of our knowledge, no survival analyses have yet been performed using E. faecalis infection of lines
where expression of specific Bom genes has been knocked down. We therefore investigated the two
genomic regions with clusters of Bom genes more closely.

The main Bom cluster is located on chromosome 2R and contains 10 of the 12 Bom genes. We
noted several SNPs with p < 10−3 in the 5′ portion of this region, including two perfectly linked SNPs
in the 3′ UTR of BomBc1 with p < 10−5 (Figure 3a). Because mutations in the UTR can have an effect on
gene expression, we next investigated whether baseline (uninduced) BomBc1 gene expression, data
from [25] was influenced by these two linked SNPs, and found that individuals possessing the minor
allele tended to have lower expression than those with the major allele (Figure 3b). To investigate
the role of Bom genes in response to infection with E. faecalis, we knocked down expression of four
Bomanin genes (BomS1, BomBc1, BomT1 and BomS4; also known as IM1, IM23, CG43202 and CG18107
respectively). We found a significant effect for BomBc1 such that individuals not expressing this gene
had lowered survival compared to controls (n = 105 BomBc1 and 105 control, Line effect p = 0.023,
Table 2, Figure 3c). Knocking down the other three Bom genes had no significant effect on survival
(Table 2). Using Tajima’s D values for the DGRP calculated in Chapman et al. [40], we found that BomS1
had a Tajima’s D value (1.157) in the 91st percentile of all DGRP genes (Table S3), suggesting it may
be subject to balancing selection, as has previously been shown for antimicrobial peptides, including
Bomanins [40]. Tajima’s D for the other three Bomanin genes were similar to DGRP genes as a whole
(46th to 72nd percentiles, Table S3).
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Figure 3. Relationship between Bomanin genes and E. faecalis survival. (A) Manhattan plot of genetic
variants within the Bomanin cluster on chromosome 2R of the D. melanogaster genome and their
association with E. faecalis survival. p-value is plotted as −log10 p-value. Light grey polygons denote
the limits of genes, and the dark grey polygons indicate coding sequences within genes. Color of
points denotes location of variant with respect to the closest gene, as per legend. (B) Expression of the
perfectly linked SNPs 2R_14270226 and 2R_14270228 in uninfected DGRP individuals plotted against
survival of the same lines after infection with E. faecalis. Red dots denote the six lines homozygous
for the minor allele. In general, these lines display lowered survival after E. faecalis infection (lower
left quadrant). Dashed lines indicate means for survival (horizontal line) and uninfected expression
(vertical line). (C) Survival of Bom-lines versus empty cassette controls after five days of infection with
E. faecalis at a dose of OD = 1.5. From left to right, BomBc1, BomS1, BomT1, BomS4.

Table 2. Results of generalized linear models with a binomial distribution and a logit link fitted to
survival data for Bom-lines after E. faecalis (EF) infection. Df is degrees of freedom. p-values less than
0.05 are shown in bold.

Gene Factor Deviance Df p-Value

BomBc1 Line 5.1995 1 0.0226
Date 3.3653 2 0.1859

BomS1 Line 0.2420 1 0.6228
Date 9.8015 2 0.0074

BomT1 Line 0.0041 1 0.9491
Date 10.8707 2 0.0044

BomS4 Line 0.7496 1 0.3866
Date 2.2465 2 0.3252

The other Bom cluster, comprising two Bom genes, is located on chromosome 3L. We found no
evidence for SNPs associated with immune defense in this region (Figure S5), and so did not investigate
these two genes further.
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4. Discussion

The distribution of survival proportions (Figure 1A) found in the genome wide association
study indicates the presence of substantial genetic variation for defense against Enterococcus faecalis
in Drosophila melanogaster even after controlling for the effects of infection date, infector identity and
Wolbachia status. Since E. faecalis is present in wild populations of D. melanogaster [14], this genetic
variance may have arisen due to selective pressure exerted in nature [42]. Resistance, whereby the
host works to clear an infection; and tolerance, whereby the host works to limit the damage caused by
infection; can both be evolutionary stable strategies for hosts, and selection will promote whichever
strategy (or combination of strategies) optimizes fitness [9,43]. However, because we simply measured
survival after infection, we cannot determine whether genetic variation arose via selection on tolerance
or resistance to E. faecalis in the DGRP. Furthermore, the extent of the selection pressure exerted
specifically by E. faecalis as opposed to other bacterial pathogens that Drosophila encounter in the wild
is an open question, which will be influenced by numerous factors including pathogen encounter
rates, pathogen infectivity and pathogen virulence. It may be that selection acts largely at the level
of pathogen type (e.g., viral, bacterial, fungal, macro-parasitic), or at the level of classes within these
classifications (e.g., Gram-positive vs Gram-negative bacteria, DNA vs RNA viruses) [42,44]. This
could explain why one of the main classes of immune response genes in Drosophila, the antimicrobial
peptides, are thought to have rather broad-spectrum activities [45,46] rather than targeting specific
pathogens [22,47]. It has recently been shown that infection with E. faecalis elicits lower AMP induction
than other pathogens in Drosophila when infected at low dose [31]. Beyond broad-spectrum protective
immune genes however, it may be that other genes have evolved to respond to specific pathogen threats.

The genetic variants we identified via GWAS as significantly associated with E. faecalis survival
were SNPs associated with six genes, none of which were associated with canonical immune
genes or GO terms related to immunity. Islet antigen 2 (IA-2) is part of the protein tyrosine
phosphatase superfamily [48], and has been found to be involved in gut development during
metamorphosis via modulation of insulin and hexokinase expression [49]. The 3′ end of the IA-2
protein contains a conserved PTP_DSP_cys protein domain characterized by a CxxxxxR catalytic loop.
The PTP superfamily of proteins is part of the tyrosine phosphorylation/dephosphorylation regulatory
mechanism and help cells respond to physiological changes in their environment [50]. CG30377 has
been implicated in copper ion homeostasis [51]. It contains no known conserved protein domains.
CG6767 is a kinase involved in purine and pyrimidine base metabolism [52], is required for glial cell
differentiation [53] and affects olfactory behavior [54]. The CG6767 protein is largely comprised of a
conserved PrsA domain. This protein superfamily is involved in nucleotide and amino acid transport
and metabolism [50]. mad2 is a mitotic spindle assembly checkpoint protein, expressed in mitotic cells
and important for normal cell division processes [55–57]. The protein contains a HORMA protein
domain. This protein superfamily is thought to be involved in recognizing aberrant chromatin states
that arise due to DNA double stranded breaks, DNA adducts and non-attachment to the mitotic
spindle [50]. krishah (kri) encodes an enzyme that regulates larval growth, pre-pupal and pupal viability,
and adult longevity and is homologous to human uracil phosphoribosyltransferase [58]. The Kri protein
contains a UPRTase domain which belongs to the PRTases_typeI superfamily of protein domains. Type I
PRTases catalyze the displacement of α-1′-pyrophosphate of 5-phosphoribosyl-alpha1-pyrpphosphate
(PRPP) by a nitrogen-containing nucleophile [50]. S6 kinase (S6k) is a ribosomal protein kinase [59]
that acts as an effector of the TORC1 growth-regulatory complex [60] and references therein] and
appears to regulate various brain activities, such as synapse development [61], behavioral responses to
hunger [62] and ethanol induced sedation [63].The S6k protein is largely comprised of the conserved
protein domain STKc_p70s6K which belongs to the PKc_like superfamily of catalytic domains which
catalyze transfer of a γ-phosphoryl group from ATP to hydroxyl groups in serine, threonine, or tyrosine
residues of proteins [50]. We used the STRING database [64] to investigate known protein interactions
for each of these six genes. Several genes in the S6k network are involved in Target of Rapamycin (TOR)
signaling (Figure S6). Rapamycin can act as an immunosuppressant in Drosophila, and has antifungal
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properties [65]. Downregulation of the TOR pathway has been shown to improve immune defense
in female D. melanogaster [66]. We did not identify any of our other candidate genes as belonging to
protein networks involving known immunity genes (Figure S6).

However, while none of the six candidate genes have previously been identified as having
canonical immune functions, there is some evidence that a subset of them may have immune-related
roles. First, CG30377 is somewhat induced (up to 3-fold) by Escherichia coli in S2 cells [67]. Second, a
separate GWAS identified two SNPs associated with the clustered genes kri, S6k and mad2 as significantly
associated with Pseudomonas aeruginosa defense in the DGRP [13]. Both SNPs were synonymous
substitutions in kri and therefore occurred upstream of S6k and downstream of mad2. Interestingly,
both E. coli and P. aeruginosa are Gram-negative bacteria, whereas E. faecalis is Gram-positive. In
Drosophila, bacterial pathogens are controlled by two different innate immune pathways. The immune
deficiency (IMD) pathway is generally triggered by Gram-negative bacteria, whereas the Toll pathway
is generally triggered by Gram-positive bacteria and fungi [68,69]. The fact that our GWAS with a
Gram-positive bacterium identified a subset of genes that had previously been identified as responding
to Gram-negative bacteria suggests these genes may be stimulated upstream of the Toll and IMD
pathways or through cross-talk between these pathways and others. In particular, IMD activation
downregulates the TOR pathway [70], and TOR suppression improves immunity in Drosophila [66].
Given the role of S6k as an effector of TOR signaling (Figure S6), this may explain why this gene has
been previously identified as playing a role in defense against Gram-negative infections. In mammals,
mTOR has complex interactions with Toll-like receptor innate immune responses [71], which may
help explain the role of S6k in mediating survival against a Gram-positive bacterium in Drosophila.
Consistent with this, we found that reducing the expression of S6k improves survival against E. faecalis,
suggesting this may be mediated via downregulation of the TOR pathway or an intermediary.

Validation by RNAi knockdown confirmed only two of the six candidate genes as having a
significant association with E. faecalis survival when knocked down. S6k appears to be a negative
regulator of D. melanogaster defense against E. faecalis infection, such that knocking down expression of
this gene improves survival prospects for the fly. In contrast, krishah appears to be a positive regulator
of the D. melanogaster defense against E. faecalis infection, such that knocking down expression of this
gene reduces fly survival.

It is important to note that our GWAS was conducted with a single set of conditions (i.e., males
infected with a specific E. faecalis dose and maintained on cornmeal-molasses-yeast food at 22 ◦C on
a 12-h day/night cycle). A different set of conditions may have yielded different significant GWAS
hits. For example, we have previously shown that dietary composition affects immune defense [12].
Furthermore, other factors, such as genome size, could influence identification of significant GWAS
hits. Genome size can affect phenotypic traits such as survival to adulthood in the DGRP, apparently
via gene expression changes that affect metabolism [72]. It is noteworthy that lines with large genome
sizes upregulate genes involved in TOR signaling [72], which could have implications for immunity, as
discussed above.

Bomanins are a group of AMP-like genes that appear to be key effectors of the Drosophila immune
response to Gram-positive infections [15,22,23]. As such, we anticipated that Bomanin genes may be
involved in response to E. faecalis infection in the DGRP. While we found some evidence for associated
SNPs in the Bom region (Figure 3A), and that uninfected expression of the two (perfectly linked) SNPs
in the 3′UTR of BomBc1 were potentially associated with defense amongst DGRP lines (Figure 3B),
our RNAi candidate gene results were equivocal. BomBc1-mutants had significantly lower survival.
However, we found no associations with the other three genes we tested (Figure 3C). It is possible
that Bomanins have some functional redundancy, such that no one Bomanin protein is essential for
controlling a specific infection, instead a cocktail of Bom proteins may help to bring the infection
under control. Indeed, Clemmons et al. [15], Hanson et al. [22] and Lin et al. [41] have all found
that mutant flies (Bom∆55C) lacking ten of the twelve Bom genes have extremely low survival when
infected with E. faecalis, whereas our knockdown of individual Bom genes generally had little effect
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on survival, with the exception of BomBc1. Synergistic effects of AMPs have previously been shown
in-vitro, e.g., [73–75] and in-vivo e.g., [76]. Additionally, it has recently been proposed that short-form
Bomanins are particularly important for the Drosophila response to Candida infection, whereas bicipital
Bomanins (e.g., BomBc1) may respond to other pathogens such as Gram-positive bacteria [41].

This work, dissecting the relationship between genetic variation and E. faecalis survival in the
DGRP, improves our understanding of immunity related phenotype-genotype interactions in Drosophila.
Such knowledge also elucidates how host-pathogen interactions shape the evolutionary trajectory of
host populations.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/2/234/s1,
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genetic variants with significant GWAS hits (p < 10−7), Table S2: List of candidate genes and controls and Table S3:
List of Bomanin lines used in this study.
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