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Abstract: Free radical pathways play a major role in the degradation of protein pharmaceuticals.
Inspired by biochemical reactions carried out by thiyl radicals in various enzymatic processes, this
review focuses on the role of thiyl radicals in pharmaceutical protein degradation through hydrogen
atom transfer, electron transfer, and addition reactions. These processes can lead to the epimerization
of amino acids, as well as the formation of various cleavage products and cross-links. Examples are
presented for human insulin, human and mouse growth hormone, and monoclonal antibodies.
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1. Introduction

The physical and chemical stability of proteins are critical for the efficacy and safety of protein
therapeutics [1,2]. The reactions of free radicals play an important role in the chemical degradation
of peptide and protein therapeutics in pharmaceutical formulations. For example, pharmaceutical
excipients, such as polysorbate, are prone to generate peroxyl radicals [3]. Peroxyl radicals (and secondary
oxidants derived from peroxyl radicals, such as alkoxyl radicals or hydroperoxides) can oxidize proteins
via various pathways [4–6], generating a manifold of radical and non-radical intermediates and products.
Free radicals can also be generated in pharmaceutical formulations by mechanical shock [7], leading to
cavitation, exposure to light [8–11], or ionizing radiation (e.g., during sterilization) [12]. This article
focuses on the role of a specific type of radical, the thiyl radical (RS•), in the degradation of therapeutic
proteins, which is primarily induced by exposure to light.

Photochemically, protein thiyl radicals can be generated through the direct homolytic cleavage of a
disulfide bond [13] or via the one-electron reduction of a disulfide bond [14,15] (here, we do not consider
thiyl radical generation through the oxidation of thiols, as pharmaceutical proteins rarely contain
free thiols). The direct photochemical cleavage of disulfides may be relevant for specific conditions,
e.g., when chromatographic protein separations are monitored by UV detection (e.g., by UV-C light;
λ ≤ 280 nm) or if protein preparations are exposed to UV-C light for viral decontamination [16].
However, photo-induced electron transfer, e.g., from Trp to disulfide, occurs during exposure to UV-B
light (λ = 280–315 nm) [9,17], as well as exposure to photostability testing conditions according to
the International Conference on Harmonization (ICH), guideline ICHQ1B [10,11]. Importantly, in the
presence of high concentrations of salt, even the exposure to visible light results in the photo-ionization
of Trp [18].

Thiyl radicals can engage in a great variety of reactions including hydrogen atom transfer (HAT),
electron transfer (ET), and addition/elimination reactions. In this way, they can react with literally all
of the 20 essential amino acids, though rate constants, e.g., for HAT reactions, may vary with amino
acid structure [19]. Important information about the potential reactions of thiyl radicals in proteins
can be gleaned from enzymatic processes, rendering at least some thiyl radical-mediated degradation
pathways of pharmaceutical proteins “biomimetic” [20].

Molecules 2019, 24, 4357; doi:10.3390/molecules24234357 www.mdpi.com/journal/molecules

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/344443765?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0001-5082-8672
http://dx.doi.org/10.3390/molecules24234357
http://www.mdpi.com/journal/molecules
https://www.mdpi.com/1420-3049/24/23/4357?type=check_update&version=2


Molecules 2019, 24, 4357 2 of 16

Thiyl radicals can also indirectly affect protein structure and function, e.g., via the non-enzymatic
chemical transformations of mono- and polyunsaturated fatty acids. These transformation reactions
can involve oxidation [21,22] and cis/trans-isomerization [22–24]. Specifically, thiyl radicals, which
can partition into the lipid environment, induce the cis/trans-isomerization of unsaturated fatty acids
in biological membranes, e.g., the HS• radical [25] (derived from H2S/HS−) or the HO-CH2CH2S•

radical [26] (derived from 2-mercaptoethanol). On the other hand, thiyl radicals from glutathione
(GSH) show little efficiency in the cis/trans isomerization processes of biological membranes due to
their hydrophilicity [26]. Changes in lipid structure through oxidation can promote the conformational
changes of polypeptides and proteins, e.g., of amyloid-beta [27]—the main component of amyloid plaques
present in Alzheimer’s disease brains [28]. Lipid peroxidation products chemically modify proteins [29].
Moreover, the presence of trans fatty acids in membranes can modulate the intramembrane proteolysis
of the amyloid precursor protein (APP) [30], leading to an enhanced generation of amyloid-beta.

In the following, we provide a general overview on the free radical reactions of thiyl radicals that
are relevant for the degradation of proteins and, subsequently, summarize recent results on individual
pharmaceutical proteins.

2. Thiyl Radicals in Reversible HAT Reactions

Thiyl radicals engage in reversible HAT reactions, either inter- or intramolecularly. Early
results by Walling and Rabinovitz on product formation during the reaction of isobutylthiyl radicals
[2-mythylpropane-1-thiyl radicals; (CH3)2CH-CH2-S•)] with cumene suggested the reversibility of
Reaction (1) [31].
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Relative rate constants for the reaction of cyclohexanethiyl and benzenethiyl radicals with a number
of substrates, including cumene, were subsequently provided by Pryor et al. [32,33]. In an elegant
study, Akhlaq et al. demonstrated that the exposure of 2,5-dimethyltetrahydrofurane to thiyl radicals
resulted in cis/trans isomerization (Reactions (2) and (3)) via a chain reaction, a process from which
k2 and k−3 were derived as ca. 104 M−1s−1 [34]. Similar rate constants were later measured by pulse
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glycerol dehydrogenase, benzylsuccinate synthase, and 4-hydroxyphenylacetate decarboxylase [40]. 

In synthetic procedures, thiols are employed as so-called “polarity-reversal” catalysts [38,39], due
to the propensity of thiyl radicals to react via HAT with a series of organic substrates such as alcohols,
ethers and amines.
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The reversibility of HAT between thiyl radicals and amino acids is of significance for glycyl
radical enzymes (GRE), such as ribonucleotide reductase (RNR), pyruvate formate lyase (PFL),
glycerol dehydrogenase, benzylsuccinate synthase, and 4-hydroxyphenylacetate decarboxylase [40].
In these enzymes, active site Cys thiyl radicals (CysS•) are generated by HAT to glycyl radicals (Gly•)
(Reaction (4)), and Gly• can be restored by the reverse reaction (Reaction (-4)).
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The location of Equilibrium (4) is controlled by conformational properties of Gly• within the
protein environment, illustrated here for the case of PFL. Electron paramagnetic resonance (EPR)
spectroscopy has demonstrated that the active form of PFL harbors a Gly• radical at the Gly734 position,
where hyperfine coupling constants indicate that Gly• adopts a planar conformation. This Gly•

radical exchanges its α-hydrogen with the solvent via a HAT reaction with Cys [41]. In the planar
conformation, however, Gly• is more stable than CysS•, based on a ca. 3.4 kcal/mol lower αC–H bond
energy of Gly as compared to the S–H bond energy of Cys; as such, Equilibrium (4) is located on the
site of Gly• [42]. In order to afford HAT from Cys to Gly•, generating CysS•, Gly• has been proposed to
adopt a less planar conformation, as supported by its location within the protein framework, rendering
Gly• 4.6 kcal/mol less stable than CysS• and moving Equilibrium (4) towards the site of CysS• [42].
Theoretical calculations by Rauk and coworkers suggested that HAT reactions occur between thiyl
radicals and the αC–H bonds of amino acids located in random and β-sheet conformations, but these do
not occur when amino acids are located in α-helices [43]. Experimentally, the inter- and intramolecular
HAT reactions of thiyl radicals have been demonstrated for amino acids, amino acid derivatives
and peptides, including glutathione, in solution and in the gas phase [19,44–50]. Importantly, these
HAT reactions do not only target αC–H bonds but also C–H bonds of amino acid side chains [51,52].
Together, the experimental data and theoretical calculations on biologically significant HAT reactions
in GRE and HAT reactions in amino acids, amino acid derivatives [45,53], and peptides inspired
us to consider the possibility of thiyl radical-dependent HAT processes and other reactions in the
degradation of protein therapeutics.

3. Thiyl Radical Reactions with Molecular Oxygen

Thiyl radicals reversibly add oxygen to yield thiylperoxyl radicals (RSOO•) (Reaction (5)) [54].
The latter can rearrange to sulfonyl radicals (RS•O2) (Reaction (6)) [54] and further convert into
sulfonylperoxyl radicals (RSO2OO•) (Reaction (7)) [55]. In the presence of electron or hydrogen
donors, sulfonyl radicals convert into sulfonates, while sulfonylperoxyl radicals ultimately yield
sulfonates [56,57].

4. Insulin

4.1. HAT Reactions in Solution

Insulin is a small protein containing two separate chains (A- and B-chain), connected by two
interchain disulfide bonds (CysA7–CysB7 and CysA20–CysB19) [58]. A third, intrachain disulfide bond
connects CysA6 and CysA11 [58]. The disulfide bonds of insulin are shown in the cartoon in Figure 1.



Molecules 2019, 24, 4357 4 of 16

Molecules 2019, 24, x FOR PEER REVIEW 4 of 16 

 

connects CysA6 and CysA11 [58]. The disulfide bonds of insulin are shown in the cartoon in Figure 1. 

 

Figure 1. Cartoon displaying the disulfide bonds (in red) of insulin. 

It is well known that insulin is sensitive to chemical and physical degradation, such as the 
photolytic cleavage of disulfide bonds [59,60] and dityrosine formation [60], deamidation [58,61,62], 
and fibrillation [58,63,64]. The biologically active form of insulin is the monomer, which exists at 
insulin concentrations <0.1 M in the absence of Zn2+ [58]. At higher concentrations, insulin exists as 
a dimer [58], where self-association specifically involves the B8, B9, B12, B13, B16, and B23–28 
residues [65].  

Important for dimer formation is an aromatic triplet, consisting of the residues PheB24, PheB25, 
and TyrB26, which is part of an antiparallel -sheet present at the dimer interface [66]. This dimer 
interface is different from the sequences responsible for fibrillation [63,64], mainly LB11VEALYLB17, 
causing the formation of the cross- spine motif. The PheB24 residue is equally important for the 
binding of insulin to the insulin receptor [66]. Interestingly, the substitution of L-PheB24 by D-PheB24 
caused a significant increase of insulin affinity to the insulin receptor [67]. Therefore, it was of interest 
to evaluate whether thiyl radical-mediated intramolecular HAT reactions would proceed in insulin, 
whether such reactions would be restricted to specific amino acid residues, and whether these would 
include PheB24, possibly converting L-PheB24 into D-PheB24. 

The potential for insulin-derived CysS to engage in intramolecular HAT reactions was 
monitored by covalent H/D-exchange according to the general Reactions (8)–(10) in Scheme 1, which 
representatively show the HAT of amino acid C–H bonds. Solutions of Zn2+-free insulin (50 or 500 
M) in either H2O or D2O were exposed to UV photolysis at 253.7 nm, followed by the alkylation of 
Cys and the HPLC-MS/MS analysis of an endoproteinase GluC-derived peptide map.  

CysB7 CysB19

CysA6 CysA7 CysA20CysA11

A-chain

B-chain

Figure 1. Cartoon displaying the disulfide bonds (in red) of insulin.

It is well known that insulin is sensitive to chemical and physical degradation, such as the
photolytic cleavage of disulfide bonds [59,60] and dityrosine formation [60], deamidation [58,61,62],
and fibrillation [58,63,64]. The biologically active form of insulin is the monomer, which exists at
insulin concentrations <0.1 µM in the absence of Zn2+ [58]. At higher concentrations, insulin exists
as a dimer [58], where self-association specifically involves the B8, B9, B12, B13, B16, and B23–28
residues [65].

Important for dimer formation is an aromatic triplet, consisting of the residues PheB24, PheB25,
and TyrB26, which is part of an antiparallel β-sheet present at the dimer interface [66]. This dimer
interface is different from the sequences responsible for fibrillation [63,64], mainly LB11VEALYLB17,
causing the formation of the cross-β spine motif. The PheB24 residue is equally important for the
binding of insulin to the insulin receptor [66]. Interestingly, the substitution of l-PheB24 by d-PheB24

caused a significant increase of insulin affinity to the insulin receptor [67]. Therefore, it was of interest
to evaluate whether thiyl radical-mediated intramolecular HAT reactions would proceed in insulin,
whether such reactions would be restricted to specific amino acid residues, and whether these would
include PheB24, possibly converting l-PheB24 into d-PheB24.

The potential for insulin-derived CysS• to engage in intramolecular HAT reactions was monitored
by covalent H/D-exchange according to the general Reactions (8)–(10) in Scheme 1, which representatively
show the HAT of amino acid αC–H bonds. Solutions of Zn2+-free insulin (50 or 500 µM) in either
H2O or D2O were exposed to UV photolysis at 253.7 nm, followed by the alkylation of Cys and the
HPLC-MS/MS analysis of an endoproteinase GluC-derived peptide map.

The predominant site of the covalent H/D exchange in the A-chain was CysA20, confirmed by
the MS/MS sequencing of the AsnA18–Tyr–Cys–AsnA21 peptide after photolysis in D2O. This Cys
residue is located at the end of the α-helix formed between the A13 and A20 residues. On the B-chain,
the covalent H/D-exchange was most prevalent between the LeuB6 and SerB9 residues and between
the ValB18 and GlyB20 residues. Hence, deuterium incorporation proceeded selectively and did not
target PheB24, suggesting that PheB24 is also not a target for thiyl radical-mediated epimerization.
Based on the calculations by Rauk et al. [43], the lack of a covalent H/D exchange at the αC–H bond of
PheB24 cannot be rationalized with an effect of the antiparallel β-sheet structure around the aromatic
triplet (PheB24–PheB25–TyrB26) in the insulin dimer on the αC–H bond energy of PheB24. However,
it is possible that the protein conformation did not permit the reaction of any of the photolytically
generated CysS• radicals with PheB24, which would have excluded a covalent H/D exchange at both
the αC–H and βC–H bonds of PheB24. Importantly, a covalent H/D-exchange occurred either in the
vicinity of Cys or on Cys itself. This result is consistent with studies on small Cys-containing model
peptides where deuterium incorporation has been found to be most efficient at residues −1 or +1
from Cys. Deuterium incorporation into Cys itself is consistent with the 1,2- and 1,3-HAT reactions of
thiyl radicals [45,53], for which rate constants were recently reported [45]. Additional evidence for
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the 1,2-HAT reactions of CysS• radicals in proteins comes from studies with Escherichia coli class III
ribonucleotide reductase, where electron spin resonance (ESR) studies revealed the presence of an H/D
exchange at the βC–H bond of a CysS• radical [68].Molecules 2019, 24, x FOR PEER REVIEW 5 of 16 
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Scheme 1. Covalent H/D-exchange mediated by thiyl radicals, representatively shown for an αC–H bond.

An interesting product detected by MS/MS analysis was a cross-link between TyrA19 and CysB20.
This cross-link can form by the reaction of a CysS• radical with a tyrosyl radical (TyrO•). Under our
experimental conditions, a pair of TyrO• and CysS• radicals could be formed via at least two different
ways: (i) photo-induced electron transfer from Tyr to cystine, followed by combination of TyrO• and
CysS•; and/or (ii) the homolytic cleavage of cystine, followed by electron/hydrogen transfer from Tyr to
one CysS• radical and a combination of TyrO• with the second CysS• radical. An alternative pathway
for the formation of Cys–Tyr cross-links would be the addition of a CysS• radical to Tyr, followed by
the oxidation of this radical adduct. In fact, the potential for an addition of CysS• to aromatic amino
acids was experimentally and theoretically demonstrated for the reaction of CysS• with Phe. More
recently, the fast reversible additions of various radicals to the aromatic amino acid His have been
reported [69,70].

4.2. Additional Reactions of Thiyl Radicals Leading to Cross-Links in Solution

Along with the Cys–Tyr cross-link, the photo-irradiation of insulin in solution generated
a dithiohemiacetal cross-link between CysA20 and CysB19 [71]. Such photolytically generated
dithiohemiacetal cross-links have also been identified and characterized for various disulfide-containing
model peptides and proteins, including human and mouse growth hormone and monoclonal antibodies
(see below). Mechanistically, the formation of dithiohemiacetal likely involves the light-induced
homolysis of cystine, yielding a CysS• radical pair, which disproportionates to thiol and thioaldehyde,
followed by the addition of the thiol to the thioaldehyde (Scheme 2).
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4.3. Thiyl Radical Reactions in Solids

In order to evaluate the propensity for HAT reactions in solid insulin formulations, we prepared
amorphous, crystalline, and microcrystalline human insulin [71]. Photo-irradiation at λ = 253.7 nm
yielded a dithiohemiacetal between CysA20 and CysB19, as well as peptide products with reduced Cys
at the CysB7 and CysB19 positions, as characterized by HPLC-MS/MS. The photolysis of an amorphous
insulin sample, generated by drying a D2O solution of insulin, showed no evidence of a covalent
H/D exchange, suggesting that the reversible HAT reactions shown in Scheme 1 may not occur to a
significant extent in insulin solids. We note, however, that the lack of a covalent H/D exchange at C–H
bonds may either be caused by the absence of HAT reactions or by an inefficient H/D exchange of the
sulfhydryl group (Scheme 1; Reaction (9)) in solid formulations.

5. Growth Hormone

Human growth hormone (hGH) belongs to the class of four-helix bundle proteins [72] and is used
for the treatment of pediatric hypopituitary dwarfism [73], as well as children [73] and adults [74]
with hGH deficiencies. HGH is sensitive to deamidation [73,75,76], N-terminal truncation [77],
oxidation [4,7,73,75,76,78–81], aggregation [73], and photo-degradation [82–84]. The structures of a
trisulfide [76,85–87] and a thioether [88] variant, originating from the biosynthetic pathway, have been
characterized by mass spectrometry. HGH contains two disulfides between Cys53 and Cys165 and
between Cys182 and Cys189 [73]. The Cys182–Cys189 disulfide bond defines the small C-terminal loop.
A cartoon displaying the disulfide bonds of hGH is shown in Figure 2. Mutants of hGH, in which either
Cys182 or Cys189 or both Cys residues are replaced with Ala, show a significantly reduced binding to
the human growth hormone receptor [89].Molecules 2019, 24, x FOR PEER REVIEW 7 of 16 
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The photolysis of hGH with UV light has resulted in a large number of products originating from
the disulfide cleavage and subsequent reactions of CysS• radicals [84]. For example, reduced Cys
and thioaldehyde were detected for all Cys residues originally present in the disulfide bonds, and a
dithiohemiacetal was formed between Cys182 and Cys189. In addition, sulfinic and/or sulfonic acid
were detected as products of Cys165, Cys182, and Cys189. These oxyacid products are expected from
thiyl radicals generated in the presence of oxygen, as described in Section 3. The following discussion
shall focus on a few rather unusual degradation products and cross-links, as well as the proposed
mechanisms for their formation. In this discussion, the chemical names for structures are given as if
they were present in amino acid form (rather than in the protein).

5.1. The Conversion of Cys to Gly

The conversion of Cys to Gly was detected for Cys165, Cys182, and Cys189; at the same time, Cys165

and Cys189 were also converted to serine semialdehyde (2-amino-3-oxopropanoic acid; 3-oxoalanine;
2-formylglycine) and Ser. The proposed mechanism for the conversion of Cys to Gly (and serine
semialdehyde) is shown in Scheme 3, where a 1,2-HAT reaction [45] of a CysS• radical is critical for the
formation of a carbon-centered radical at Cβ, followed by the addition of oxygen to yield a peroxyl
radical. A series of reactions could transform the peroxyl radical into an alkoxyl radical, such as oxygen
transfer reactions or reactions with additional peroxyl radicals. The alkoxyl radical is precursor for a
carbon–carbon bond cleavage—yielding a Gly• radical—or a carbon–sulfur bond cleavage—yielding
serine semialdehyde (though we note that serine semialdehyde can also be formed by hydrolysis of a
Cys thioaldehyde). The proposal of a 1,2-HAT reaction for a protein CysS• radical also suggests that
products of a 1,3-HAT reaction might be observed. In fact, for all hGH Cys residues, the formation of
dehydroalanine (Dha) was detected. Dha can form via a 1,3-HAT reaction, followed by the elimination
of HS• [45] (though care has to be taken during sample preparation for HPLC-MS/MS analysis, as Dha
can also form during proteolytic digestion [90]).
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5.2. The Formation of Ether and Vinyl ether

The exposure of mouse growth hormone (mGH) to UV light triggered the formation of particles
of various sizes [91]. The injection of UV-exposed mGH into Balb/c or nude Balb/c mice caused an
immune response, generating antibodies that cross-reacted with unmodified mGH [91]. The mass
spectrometry analysis of UV-exposed mGH tentatively revealed the presence of chemical cross-links
containing an ether bond between the original Cys78 and Ser188 residues or a thioether bond between
the original Cys78 and Cys189 residues [91]. Whether these cross-links contribute to the immunogenicity
of mGH remains to be shown. However, especially the photochemical conversion of a disulfide into an
ether bond involving a neighboring Ser residue, is mechanistically intriguing.

When hGH was exposed to UV light, mass spectrometry analysis revealed the formation of vinyl
ether between the original Cys189 and Ser184 residues and between the original Cys160 or Cys165 and
Tyr164 residues [84]. The proposed mechanisms for the formation of these products are displayed in
Schemes 4 and 5, respectively. Key to product formation is the homolytic cleavage of a disulfide bond
into a pair of CysS•, followed by disproportionation into thiol and thioaldehyde. The latter can react with
the hydroxyl group of either Ser or Tyr to yield a thiohemiacetal. Under continuous UV exposure, the C–S
bond of the thiohemiacetal is expected to cleave, either homolytically or heterolytically [92–94], and the
vinyl ether is generated via subsequent oxidation and deprotonation, respectively [95]. An important
difference between the results of both growth hormones is the formation of an ether cross-link in
mGH vs. a vinylether cross-link in hGH. This may be rationalized by sequence differences between
hGH and mGH [96], as we also observed significant differences in photooxidation between hGH
and rat growth hormone (rGH) [97]. We believe that the ether cross-link is ultimately generated via
reduction of a vinyl ether. The UV exposure of disulfide-containing peptides leads to the formation
of Cys [95,98] and H2S [95]. Under UV-exposure, the specifically thiolate forms of Cys and H2S, i.e.,
CysS− and HS−, release an electron, which can reduce Dha. The latter was experimentally tested
during the photo-irradiation of a disulfide-containing model peptide in the absence and presence of
methylene chloride (CH2Cl2), a prominent scavenger of hydrated electrons [99]. Hence, we propose
that vinyl ether reduction by a hydrated electron, followed by a HAT—likely from a photochemically
generated thiol [95,98]—is key to the generation of an ether cross-link. We observed an analogous
mechanism for the formation of a thioether cross-link from vinyl thioether, where CH2Cl2 inhibited
thioether formation during UV-exposure [95]. Interestingly, the UV exposure of hGH also led to both
vinyl thioether and thioether cross-links between the original Cys182 and Cys189 residues [84], i.e., Cys
residues which originally form the disulfide bond characterizing the small C-terminal loop of hGH.
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5.3. Formation of Non-Native Disulfides

The UV exposure of hGH produced significant yields of non-native disulfide bonds, i.e.,
intramolecularly between Cys189 and Cys189, as well as either inter-or intramolecularly between Cys53

and Cys182, and Cys165 and Cys189 [84]. These disulfide bonds can form via homolytic substitution,
i.e., an SH2 mechanism that involves the reaction of a thiyl radical with a disulfide bond [100], or via
the recombination of two thiyl radicals. In addition, non-native disulfides may form via the reaction
of free thiols with disulfide bonds. Free thiols are generated together with thiyl radicals by the
one-electron reduction of disulfides. Usually, free thiols are derivatized by alkylation prior to mass
spectrometric analysis. However, free thiols can react with disulfide bonds during the time of UV
exposure or any other time required for sample preparation; for example, in the case of hGH, sample
preparation involved 30 min of reduction of the remaining disulfide bonds at pH 7.5 and 45 ◦C. The fact
that non-native disulfide bonds between Cys189 and Cys189 and between Cys53 and Cys182 were not
formed in non-photolyzed control solutions of hGH [84] is consistent with a free radical mechanism of
disulfide scrambling.

5.4. hGH Cleavage Products

The UV-exposure of hGH results in several backbone cleavage products originating from αC•

radicals generated at Cys residues or at amino acid residues in the vicinity of Cys residues, e.g., at Cys53,
Cys165 and Leu52 [84]. Mechanistically, these fragmentation products are generated through the
well-established diamide or α-amidation pathways. What is of interest here is that these fragmentation
products again give testimony to the ability of CysS• radicals to generate αC• radicals via intramolecular
HAT reactions.

6. Monoclonal Antibodies

While a comprehensive product analysis, such as performed for hGH [84], has not yet been
completed for monoclonal antibodies, certain products that are analogous to those generated from
insulin or hGH have been detected. For example, the UV exposure of an immunoglobulin 1 (IgG1)
resulted in the formation of dithiohemiacetal and thioether cross-links [101]. The light exposure of an
IgG1 in an Atlas Suntest CPS+ Xenon test instrument, utilized for photostability studies according to
the ICHQ1B guideline, resulted in disulfide scrambling [11]. The reactions leading to the formation
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of non-native disulfides in the IgG1 molecule are likely analogous to those described for hGH in
Section 5.3.

The potential of CysS• radicals to engage in intramolecular HAT reactions in monoclonal antibodies
was first demonstrated by a UV light-induced covalent H/D exchange analogous to the reactions
presented in Scheme 1 [102]. Subsequent studies on an IgG1 revealed that these HAT reactions have the
potential to epimerize amino acids in a protein, e.g., to convert L- into D-amino acids [103] (analogous
experiments with model peptides [104] and octreotide [105] had demonstrated the ability of CysS•

radicals to epimerize amino acids in peptides). Overall, the exposure of an IgG1 to UV light resulted
in the generation of D-Glu and D-Val (and some D-Ala), where the relative yields of D-amino acids
depended on the presence of various excipients in these formulations [103]. Experimentally, D-amino
acids were recovered from the protein by controlled acid hydrolysis, which converts D-Gln to D-Glu,
so that the yields of D-Glu were representative for the combined yields of D-Glu and D-Gln generated
by HAT. Through proteolytic digestion, peptide fractionation, and the controlled acid hydrolysis of
individual peptides, some locations of D-amino acids were identified such as the heavy chain (HC)
sequences HC51–59 and HC287–296. Specifically, the sequence HC51–59 is located in the hypervariable
region that is responsible for antigen binding, where conformational changes induced by amino acid
epimerization may have biological consequences. We note that the exposure of monoclonal antibodies
to light results in aggregation [106,107] and immunogenicity [108]. An important study was able to
correlate immunogenicity with the presence of chemical modifications on subvisible particles, while
particles not carrying chemical modifications were not found to be immunogenic [109].

7. Conclusions

The preceding sections provide examples for a variety of mechanisms by which thiyl radicals
engage in the chemical degradation of pharmaceutical proteins. Noteworthy are the cross-links
generated between thiol oxidation products and either Ser or Tyr. The exposure of the small (ca. 22 kDa)
protein human growth hormone yielded nearly 60 different products that originated from thiyl radical
generation, and a significantly higher number of products may be expected from the light-exposure of
a monoclonal antibody. Comprehensive product studies on monoclonal antibodies are ongoing in our
laboratory and will be reported in due time.
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