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The Late Palaeozoic insect superorder Palaeodictyopterida
exhibits a remarkable disparity of larval ecomorphotypes,
enabling these animals to occupy diverse ecological niches. The
widely accepted hypothesis presumed that their immature
stages only occupied terrestrial habitats, although authors more
than a century ago hypothesized they had specializations for
amphibious or even aquatic life histories. Here, we show that
different species had a disparity of semiaquatic or aquatic
specializations in larvae and even the supposed retention of
abdominal tracheal gills by some adults. While a majority of
mature larvae in Palaeodictyoptera lack unambiguous lateral
tracheal gills, some recently discovered early instars had
terminal appendages with prominent lateral lamellae like in
living damselflies, allowing support in locomotion along with
respiratory function. These results demonstrate that some
species of Palaeodictyopterida had aquatic or semiaquatic
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larvae during at least a brief period of their post-embryonic development. The retention of functional

gills or gill sockets by adults indicates their amphibious lifestyle and habitats tightly connected with a
water environment as is analogously known for some modern Ephemeroptera or Plecoptera. Our
study refutes an entirely terrestrial lifestyle for all representatives of the early diverging pterygote
group of Palaeodictyopterida, a greatly varied and diverse lineage which probably encompassed
many different biologies and life histories.
ing.org/journal/rsos
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1. Introduction
While the fossil record of hexapods extends to the Early Devonian, the first tangible evidence of aquatic
insect specializations is documented from the Early Permian in some stem mayflies of Permoplectoptera
and stoneflies (Plecoptera) [1–3]. Although the prior records of stem-group representatives of
Ephemeroptera and Odonata with putatively aquatic larvae, are documented since the Late
Carboniferous [4], the evidence is uncertain, perhaps with the exception of a meganeurid griffenfly
larva Dragonympha srokai bearing lateral abdominal tracheal gills from the Late Carboniferous of the
Mazon Creek ‘Konservat-Lagerstätte’ [5]. Based on their morphological specializations, most aquatic
Permian immature and adult insects indicate lotic palaeoenvironmental conditions while the evidence
from lentic habitats is lacking prior to the late Permian [6,7]. Wootton [6] provided extensive review
on historical ecology of aquatic insects and considered the first Permian aquatic insects as predaceous.
Kukalová [8] suggested a link between prognathous head and well-developed mandibles in early
Permian larvae of Protereismatidae considering their predatory behaviour as well.

The rise of aquatic freshwater ecosystems since the Middle–Late Triassic is documented in several
insect orders (e.g. Ephemeroptera, Plecoptera, Heteroptera, Coleoptera, Diptera) showing various
ecomorphological specializations including those for stagnant lake habitats [6]. Wootton [6] considered
that the increased role of insects in lake ecosystems, such as aquatic Heteroptera and Coleoptera, was
due to the appearance of aquatic macrophytes in the early Mesozoic.

During the Late Palaeozoic, some of the most diverse, and morphologically and potentially biologically
varied insects were among the superorder Palaeodictyopterida, a lineage including the earliest
Pterygota ever found [9,10] and comprising four extinct orders: Palaeodictyoptera, Megasecoptera,
Diaphanopterodea and Dicliptera [3,11]. While immature stages of the latter two orders are unknown,
larvae are known from a variety of families of the former two orders and of varied morphotypes
(figures 1 and 2). Not surprisingly, an understanding of their life history remains muddled and has
been debated for over a century. Early authors such as Brongniart [12] considered immatures and even
adults of some species to be amphibious, such as the megasecopteran Corydaloides scudderi, based on the
presence of nine pairs of lateral abdominal bifid structures interpreted as tracheal gills. This view was
followed by Brauer [13] and in some respect also by Handlirsch [14], who interpreted them either as
abdominal tracheal gills or homologous structures. On the other hand, Lameere [15,16] doubted this
interpretation and instead compared these prominent bifid structures with the lateral edges of terga of
the extant mayfly Oniscigaster wakefieldi. This interpretation of such structures representing tergal
projections was accepted by Carpenter [17] and followed by Kukalová-Peck [18], among others. It has
been a dominant hypothesis in recent decades. However, these latter authors reported at the same time
in megasecopterans, unusual ‘long integumental projections covered with setae’, ‘dense dorsal
outgrowths’, or even ‘very long filamentous structures’ on the abdomen (e.g. Carpenter & Richardson
[19, fig. 12, 13], Kukalová-Peck [20, fig. 31], Shear & Kukalová-Peck [21, fig. 18]). Wootton [22,
p. 672] discussed with caution the life history of palaeodictyopteran larvae described from the UK and
stated, ‘… not demonstrably terrestrial, but show no aquatic adaptations’. A weak position adopted by
most past and even present researchers has been the assumption that the presumed biology of one or a
few representative species was equally applicable to all of those within an extinct family or even across
an entire order. While such an assumption may at times be justified, and certainly examples do exist
among insects, there are even more cases in which the biologies of related genera and families differ
greatly (e.g. Grimaldi & Engel [3]). Thus, the considerable variety of morphological specializations
among Palaeodictyopterida probably reflects considerable biological diversity. The resolution of
particular biologies among a variety of Palaeodictyopterida is needed in order to more fully understand
the ecological breadth and success of insects during their first major diversification and prior to the
cataclysmic extinction at the end of the Palaeozoic [23] and whether it was analogous to the tremendous
success in virtually every terrestrial and freshwater habitat present today.
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Figure 1. Disparity of morphotypes among larvae and adults of Late Carboniferous and Early Permian Megasecoptera and
Palaeodictyoptera. (a) Mischoptera nigra, adult, Commentry, France, MNHN R51060. (b,c) Mischoptera douglassi. (b) Early larva
of megasecopteran, reconstruction of habitus, FM PE31976, Mazon Creek, USA. (c) Reconstruction of older instar larva habitus,
Douglass coll., Mazon Creek, USA. (d ) Dunbaria fasciipennis, adult palaeodictyopteran, reconstruction of male habitus based on
several specimens, Elmo, USA. (e) Idoptilus sp., Palaeodictyoptera, larval exuvia of early instar, no. GLAHM A.2680a,
Stainborough, Barnsley, South Yorkshire, UK. ( f ) Palaeodictyoptera family indet., larval exuvia, ISEZ PAN IF-MP-1488-29-08,
Upper Silesian Coal Basin, Sosnowiec−Klimontów, Poland. (g) Bizarrea obscura, palaeodictyopteran larva, reconstruction of
habitus, FM PE11269, Mazon Creek, USA. (a–e,g) drawn by MP, ( f ) drawn by ZČ.
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This issue is made all the more interesting as the phylogenetic relationships of the main pterygote insect
lineages remain controversial, often dubbed the ‘Palaeoptera problem’ [24]. Palaeodictyopterida are
traditionally considered as an early diverging group of Pterygota, either as the sister group to a putatively
monophyletic Palaeoptera (the group comprising extant dragonflies and mayflies and their fossil relatives)
[5,25], or resolved as sister group to Neoptera (all flying insects with the ability to fold their wings over
the abdomen) on the basis of a recent phylogenetic analysis [26]. Interestingly, Palaeodictyopterida have
not been recovered as sister group to all other Pterygota, i.e. to a Palaeoptera +Neoptera clade. The
re-examination of wing base structures in a palaeodictyopteran genus, Dunbaria Tillyard (Spilapteridae),
uncovered a mosaic of characters and identifies homologous structures to Odonatoptera, Ephemeropterida
and also Neoptera [27]. Moreover, recent study their larval wing pad joints also supported the dual
model of insect wing origin [28]. Accordingly, the diversity, biology and evolutionary history of
Palaeodictyopterida are critical to understand Late Palaeozoic insect success.

The aim of this article is to critically evaluate the available morphological evidence on immature
stages and selected adults of Palaeodictyopterida, and explore the plausibility of different hypotheses
about their lifestyle strategies.
2. Material and methods
2.1. Specimen imaging and reconstruction
The results were obtained by comparison of the selected morphological structures between fossil and
recent taxa using stereo microscopy. The specimens were observed under Zeiss Discovery V20 and
Nikon SMZ1500 stereomicroscopes in a dry state and rarely under a film layer of ethyl alcohol.
Photographs were taken with a Canon D550 digital camera, with MP-E 65 mm and EF 50 mm lenses.
The original photographs were processed using Adobe Photoshop CS6, and for some images the
focus-stacking software Helicon Focus Pro and Zerene Stacker were used. A few samples preserved
with high three-dimensional relief were additionally examined with a Keyence VHX VH-Z20UR
digital microscope.
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Figure 2. Larvae of Megasecoptera and Palaeodictyoptera. (a) Lameereites sp., Brodiidae, Megasecoptera, ROM no. 45546, Mazon
Creek, IL, USA. (b) Mischoptera douglassi, Mischopteridae, Megasecoptera, HTP no. 1232, Mazon Creek, IL, USA. Arrows indicate
filamentous projections as supposed tracheal gills. (c) Idoptilus sp., Palaeodictyoptera, larval exuvia of early instar, no. GLAHM
A.2680a, Stainborough, Barnsley, South Yorkshire, UK. (d ) Rochdalia parkeri, holotype MM L.11464, Lower Coal Measures,
Rochdale, Lancashire, UK. (e) Idoptilus onisciformis, palaeodictyopteran larva, NHM In 44654, Middle Coal Measures of Barnsley,
UK. Scale bars, (a–e) 5 mm. (a) Copyright © Royal Ontario Museum, Toronto, (e) copyright © Natural History Museum, London.
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2.2. Material
Institutional abbreviations: FM, The Field Museum (Chicago, USA); GLAHM, Hunterian Museum,
University of Glasgow (Glasgow, UK); HTP, Helen & Ted Piecko coll. (Chicago, USA); ISEZ PAN:
Natural History Museum of the Institute of Systematics and Evolution of Animals PAS (Cracow,
Poland); MM, Manchester Museum (Manchester, UK); MNHN, Muséum national d’Histoire naturelle
(Paris, France); ROM, Royal Ontario Museum (Toronto, Canada); NHM, The Natural History Museum
(London, UK); NMP, National Museum (Praha, Czech Republic); PIN, Paleontological Institute,
Russian Academy of Sciences (Moscow, Russia); TS, Tomáš Soldán coll., Biology Centre, Czech
Academy of Sciences, Institute of Entomology (České Budějovice, Czech Republic); YPM, Peabody
Museum of Natural History, Yale University (New Haven, USA).

Abbreviations used for morphological structures are: bc, banded pattern of coloration, with alternating
light and dark stripes; ds, dorsal spines; ma, precursor of convex vein MA; oe, broad outer edge of sheath
(a developing wing); ps, pronotal spines; pw, prothoracic winglets; sp, spiracles; tg, tracheal gills.
3. Results and discussion
In this study, we thoroughly revise available and new fossils of megasecopteran and palaeodictyopteran
larvae, as well as some adults to clarify morphological specializations and to see what evidence can be
brought to support terrestrial, amphibious or even aquatic life histories. The disparity of larval habitus
was considerable among these lineages, from elongate slender body forms with a spined prothorax in
some megasecopterans to robust onisciform larvae (broad and flattened) often bearing prominent
prothoracic winglets in palaeodictyopterans (figures 1 and 2). Developing wings in Palaeodictyopterida
are well distinguished by the characteristic pattern of tracheal pleating and lacunal channels, including
the presence of a clearly convex precursor of vein MA (figure 3b,f).

Wootton [22] studied palaeodictyopteran larvae from Carboniferous ironstone nodules found in the UK
of the species Idoptilus onisciformis and Rochdalia parkeri, both sharing an onisciform body, the presence of
prothoracic lobes or winglets and prominent abdominal laterotergites. However, he could not
demonstrate any aquatic specializations present on these immatures. Re-examination of another larva
from Middle Coal Measures in South Yorkshire, UK, assigned to Idoptilus sp. revealed early instar exuvia
bearing articulated wing pads with three markedly convex ridges corresponding to the precursors of
veins of RA, MA and CuA [29]. However, this young larva differed from all previously described
Palaeodictyoptera by the presence of three triangular caudal appendages with prominent lateral lamellae
densely covered by fine cuticular setae (figures 1e and 2c). It was assumed that these lamellae functioned
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Figure 3. Ecomorphological specializations of megasecopteran and palaeodictyopteran larvae. (a) Mischoptera douglassi, Mischopteridae,
Megasecoptera, HTP 1232, Late Carboniferous, Mazon Creek, IL, USA, detail of prothoracic lateral spines, meso- and metathoracic wing
pads. (b) Lameereites sp., Brodiidae, Megasecoptera, YPM 66, Mazon Creek, IL, USA, detail of meso- and metathoracic wing pads.
(c) Lameereites sp., Brodiidae, Megasecoptera, ROM 45546, Moscovian, Mazon Creek, IL, USA, detail of metathoracic wing pad.
(d,e) Idoptilus sp., Palaeodictyoptera, GLAHM A.2680a, Stainborough, Barnsley, South Yorkshire, UK. (d ) Wing pads, arrows indicate
contrasting light- and dark-striped pads which allowed crypsis. (e) Habitus of larva in dorsolateral view. ( f ) Idoptilus onisciformis,
holotype NHM In 44654, Middle Coal Measures of Barnsley, UK, detail of metathoracic wing pad. (g) Palaeodictyoptera family
indet., larval exuvia, ISEZ PAN I-F-MP-1488-29-08, Upper Silesian Coal Basin, Sosnowiec−Klimontów, Poland. bc, banded pattern of
coloration, with alternating light and dark stripes; ds, dorsal spines; ma, precursor of vein MA; oe, broad outer edge of sheath (a
developing wing); ps, pronotal spines; pw, prothoracic winglet. Scale bars, (a–f ) 2 mm; (g) 5 mm. (c) Copyright © Royal Ontario
Museum, Toronto, (e) copyright © Natural History Museum, London.
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as tracheal caudal gills owing to their structural resemblance to the gills of damselfly larvae (Odonata:
Zygoptera), which are also used in the locomotion as, for instance, rudders and to escape from predators
[30,31]. Another important difference found in the early larva of Idoptilus is the relatively shorter lamellae
to body size, versus the comparatively larger lamellae known in the majority of extant damselfly larvae.
The smaller surface area of gill lamellae corresponds with limited oxygen uptake; however, this could
have been compensated by higher levels of atmospheric oxygen during the Late Palaeozoic [32], hence
more dissolved oxygen in the water. Along with an ability to breathe underwater via caudal tracheal gills,
the hydrodynamic constraints of larval body shape should be considered. The onisciform larvae like those
of Idoptilus and Rochdalia show enlarged prothoracic lobes protecting the head, and broad abdominal
laterotergites with pointed apices resembling aquatic larvae of water-penny beetles (Psephenidae)
inhabiting fast-flowing streams [33] or some marsh beetles (Scirtidae) and Torridincolidae [34]. However,
a similar habitus is also found in semiterrestrial or terrestrial insects, e.g. moss bugs (Coleorrhyncha:
Pelorididae), larvae of carrion beetles (Silphidae) and trilobite beetles (Lycidae: Duliticola sp.) (e.g. [35]).
By contrast, the body shape of megasecopteran larvae attributed to Mischoptera sp. resemble Permian
Protereismatidae (stem Ephemeroptera) with oblique, laterally positioned wing pads and a slender
abdomen bearing prominent cerci but lacking a terminal filament. While the presence of tracheal gills was
not unequivocally confirmed in this group, the supposed long projections with unknown function were
reported and illustrated from early larval instars ([20, fig. 31], figure 2b).

Another remarkable feature on the wing pads of early instar of Idoptilus sp. were the prominent
transversely banded pattern of coloration, with alternating light and dark stripes (figure 3d ). Such a
pattern of circular contrasting light and dark stripes is known in early larval instars of some extant
damselflies and dragonflies (e.g. Calopterygidae, Aeshnidae, Epiophlebiidae) which live near the
water surface among vegetation [36], although such patterns may also indicate occurrence in any
environment, aquatic or terrestrial, with mottled light passing through overhead foliage. Wesenberg-
Lund [37] considered such a pattern as protective and a kind of crypsis among mottled light resulting
in the animal blending into the background.
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Figure 4. Corydaloides scudderi (Megasecoptera: Corydaloididae), Late Carboniferous, Commentry, France. (a–d ) Image shows nine
pairs of bifid abdominal structures with anterior and posterior parts pointed apically ( presumably tracheal gills). (a) Reconstruction
of habitus based on several specimens MNHN R51251, R51252, R51257, R51231 (drawn by MP). (b) Photograph of adult MNHN
R51251. (c,d ) Detail photographs of abdomen showing bifid tracheal gills and outlines of laterotergites MNHN R51251. tg, tracheal
gills. Scale bars (a,b) 10 mm; (c) 2 mm; (d ) 1 mm.
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While these latter traits partly suggest an aquatic or semiaquatic lifestyle for early instars in some
lineages of Palaeodictyoptera, particularly due to their lamellate form of caudal gills, other authors like
Norling [38] placed less importance for respiration on caudal structures relative to lateral abdominal gills.
Moreover, studies on extant dragonflies and damselflies have demonstrated that the caudal appendages
can change greatly in form and presumably function during ontogeny [39], and this could have been the
same in Palaeodictyoptera and could explain why older larvae completely lack such appendages.

An examination of later-stage palaeodictyopteran larvae from the Late Carboniferous of Sosnowiec,
Poland shows the presence of prominent dorsal and lateral spines on abdominal segments, which most
likely functioned for defence (figures 1f and 3g), as is found in many larvae of extant dragonflies and
mayflies [40]. Anqvist & Johansson [41] demonstrated phenotypic adaptation of growth defensive
spine trajectories in Leucorhinia dubia (Libellulidae) resulting from ontogenetic acceleration in
environments with fish and leading to exaggerated spine shapes. If a similar predator influence and
developmental mode was present in some lineages of Palaeodictyoptera, then this could be further
indirect evidence for an aquatic lifestyle for the larvae of these genera.

The characteristic haustellate mouthparts of adult Palaeodictyopterida for sucking liquids is scarcely
evident and rarely preserved in larvae of Palaeodictyoptera and Megasecoptera, but our limited available
evidence supports a comparable form and function between larvae and adults as known for instance in
Mischoptera sp. [42,43] (figure 1a,b). This has been one line of evidence used to suggest that larvae
inhabited terrestrial habitats like their adults, and perhaps feeding on the same host plants. However,
an amphibious lifestyle for larvae and adults cannot be entirely ruled out and there are analogues of
such cases known in some modern stoneflies [44]. In this context, it is noteworthy that the Late
Carboniferous ecosystems are reconstructed with high humidity and climate with indistinct
seasonality. Interestingly, modern stonefly larvae and adults of Diamphipnoidae, such as
Diamphipnopsis samali, preferably inhabiting habitats like riparian forests or waterfalls often retain
abdominal tracheal gills as adults [45]. Admittedly, Palaeodictyopterida are distantly related to
stoneflies and there is, therefore, no reason to assume the biology of the two would be identical.
Nonetheless, ecological analogues to such a life history are known among some insect groups which
independently evolved aquatic and semi-aquatic habits.

Štys & Soldán [46] demonstrated the retention of abdominal and accessory tracheal gills in
subimagoes and adults of extant Ephemeroptera and reviewed the evidence in adults of Odonata,
Plecoptera and other lineages with aquatic immatures. The re-examination of the megasecopteran
adult Corydaloides scudderi (MNHN R51251) shows prominent lateral bifid structures as presumably
nine pairs of abdominal tracheal gills with anterior and posterior parts pointed apically and emerging
distinctly separated from the terga (figure 4a–d ). Thus, at least C. scudderi retained presumably
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Figure 5. Abdominal tracheal gills in fossil and recent larvae of Ephemeroptera and retention of gills by their subimagoes and
imagoes of Plecoptera. (a–d ) Photographs of abdomen showing bifid tracheal gills and outlines of laterotergites.
(a) Ephemeropsis trisetalis, Hexagenitidae, Ephemeroptera, PIN 3064-3332, Early Cretaceous, Baissa, Russia, larva with seven
pairs of bifid abdominal tracheal gills. (b) Misthodotes sharovi, Mistodotidae, PIN 1700-374, Early Permian, Tshekarda, Russia,
abdomen of nymph with discernable abdominal tracheal gills. (c,d ) Coloburiscus humeralis, Coloburiscidae, Ephemeroptera, larva,
TS coll., Cartenbury, New Zealand. (e) Palingenia longicaudata, Palingenidae, subimago, TS coll., Hungary. ( f ) Neuroperla
schedingi, Eustheniidae, Plecoptera, NMP coll., IX. La Araucanía Region, Chile, imago, ventral aspect of abdomen with
discernable tracheal gills. (g) Diamphipnoa annulata, Diamphipnoidae, Plecoptera, NMP coll., IX. La Araucanía Region, Chile,
imago, ventral aspect of abdomen with discernable tracheal gills. tg, tracheal gills. Scale bars (a) 5 mm; (b–g) 1 mm.
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abdominal tracheal gills as adults. However, we cannot definitely exclude other functions for these
prominently bifid structures, as for example defensive or thermoregulatory. On the other hand, we
assume that such structures are more commonly rigidly fixed and derived from the tergum or
sternum, unlike what we observe in C. scudderi. These structures were previously highlighted by
Brongniart [12] and compared with the gills in the modern stonefly Pteronarcys regalis, but overlooked
in most recent studies.

The significance of these structures resides in their general structural resemblance to the gills of
mayfly larvae, although in crown-group Ephemeroptera there is a maximum of seven pairs known
versus the occurrence on abdominal segments I–IX (figure 5a–d ). Interestingly, similar nine pairs of
gills occurred in some stem-group Protereismatida, coeval with Permian Palaeodictyopterida
(figure 5b) [4,47]. The structurally bifid gills in C. scudderi probably had spinose lamellae owing to the
presence of numerous tubercles on their surface (figure 4c,d ). Various types of setose structures on the
ventral part of the gill lamellae have been experimentally demonstrated for a modern mayfly larva,
Epeorus assimilis (Heptageniidae), to contribute to the friction coefficient and be used as underwater
attachments in the current [48]. A form of gills in C. scudderi can be found for instance in modern
mayfly larvae of the family Coloburiscidae (figure 5c,d ). These spinose structures on the gills serve to
anchor the larva beneath rocks in stony upland streams and for protection [49,50]. Nevertheless,
another important comparison of abdominal gills in C. scudderi should be focused on the imaginal
functional gills found in Plecoptera especially among extant species of Diamphipnoa and Neoperla
(figure 5f,g). The function of adult gills has been experimentally studied in the modern stonefly



royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:190460
8
Diamphipnopsis samali occurring in mountain stream habitats in Chile and Argentina [44]. In this species,

the alternate contact of gills to air and water during rowing, and the ability of gills to contribute in gas
exchange was demonstrated. While the structure of adult gills in extant stoneflies differs from C. scudderi
and these lineages are by no means related, it may serve as an ecologically convergent analogue for
interpreting a possible function in this fossil species. More importantly, some extant mayflies retain as
subimagoes more similar bifid gills (figure 5e), such as Palingenia longicaudata (Štys & Soldán [46,
p. 412, fig. 5]), although the function and operation of such gills in P. longicaudata have not yet been
explored. If the lateral abdominal bifid structures represent functional tracheal gills in adults of C.
scudderi we must consider the possibility that these insects obtained oxygen in shallow water edges,
waterfalls, or perhaps when floating on the water surface and, owing to their wings, were probably
never submerged. Indeed, the permanently outstretched wings in Megasecoptera would have been a
major hindrance to a fully aquatic lifestyle in open and deep pools.

In general, it is difficult to infer the original habitat for these insects basedon taphonomy, as the fossil record
is poor with few isolated larvae, detached wing pads and larval exuviae (e.g. [22,51]). It is also necessary
to keep in mind that the fossilized nymphs often occur in sedimentary rocks corresponding to
palaeoenvironments in which they died and thus perhaps do not represent locations preferred in life. In
addition, the exuviae are extremely prone to secondary transportation by wind and water currents due to
their lightness. In the majority of localities, these larvae are found in the same assemblage together with
adults. It is also the case for the Early Permian stem mayflies Protereismatidae and Misthodotidae where
larvae, their exuviae, and isolated wing pads have been found in the same layers together with adults
[8,52]. However, only from a few Pennsylvanian localities like Sosnowiec near Katowice (Silesia, Poland)
and a single area in the Piesberg Quarry near Osnabrück (Lower Saxony, Germany) could we detect in
taphocoenoses the marked abundance of palaeodictyopteran larval exuviae and detached wing-pad sheaths
supporting the idea of their life tookplace inside or in close proximity to these aquatic/riparianhabitats [53,54].
4. Conclusion
The biology of Palaeodictyopterida appears to have been more varied than has been long surmised, much
like most orders of insects today. The evaluation of available data from the morphology of some larval
stages as well as adults from a few species among Palaeodictyoptera and Megasecoptera reveals direct
and indirect evidence for amphibious or possibly aquatic lifestyles in certain taxa. This can be
determined from different aspects of external morphology as mainly the presence of caudal tracheal
gills in early larval instars and most importantly retention of rudimentary or functional tracheal
abdominal gills by adults. We, therefore, presume that at least these genera were amphibious or aquatic
in early larval stages, transitioning possibly into a semiaquatic mode in mature larvae (much like
petalurid dragonfly larvae (e.g. Petalura gigantea)) that live in flooded burrows during the day and
forage on land during the night tolerating aerial conditions [55,56], and possibly even an amphibious
lifestyle in some adults. Naturally, it cannot be assumed that such biology was fixed across these extinct
orders, as the extreme morphological variety (including the absence of gill-like structures) demonstrates
that these lineages had diversified into a considerable number of niches, analogous to modern orders
such as Heteroptera in which both terrestrial and aquatic lineages coexist. It remains to be discovered
what habits were most prevalent (the larvae and biology of most species of Palaeodictyopterida remain
unknown), or what mode of life pre-dated the Carboniferous appearance of these lineages. Both
terrestrial and aquatic genera may be found within individual families of insects, and it should
therefore perhaps not be surprising that the Palaeozoic insect fauna exhibited a similar ecological
breadth, one which took advantage of diverse habitats in both the water and on land.
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