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ABSTRACT 

As a crucial component of traffic safety, operational quality, and network performance, 

driver behavior has been the subject of numerous studies. However, research has focused 

primarily on descriptive mathematical models of the primary driving tasks (car-following, lane 

changing), while rarely considering the underlying human factors affecting driver behavior. This 

quality of existing models means that they are not generally capable of adapting to systemic 

changes in driving behavior. 

At the same time, vehicle automation, one of the most revolutionary innovations in the 

history of transportation, advances at a very rapid pace. This development will result in deep 

systemic changes in the driver role and behavior, during the unavoidable transition period 

towards fully automated transportation networks, which the existing descriptive models are ill-

equipped to predict. To achieve that, additional information about driver behavior derived from 

the field of cognitive sciences, and psychological constructs like cognitive workload and 

situational awareness, need to be integrated into driving behavior models in order to describe the 

driver state under various levels of automation. 

This research aims to fill that gap by proposing a robust driver behavior framework that 

takes into account human factors and can be applied to both traditional manual driving, as well 

as driving of vehicles with varied automation capabilities. Based on a comprehensive literature 

review, the study proposed an experimental methodology, and a data collection and analysis plan 

that can validate the behavioral framework for use in future transportation applications. 
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CHAPTER 1 - INTRODUCTION 

1.1 Problem Statement 

Acknowledged as a crucial component of traffic safety, operational quality, and network 

performance, driver behavior has been the subject of numerous studies. However, research has 

focused primarily on descriptive mathematical models of car-following, lane changing, and gap 

acceptance, while the underlying human factors affecting driver behavior are generally ignored. 

In addition, even those traffic modelling algorithms are rarely data-driven. Consequently, a 

significant number of traffic phenomena, including breakdowns and capacity drops are not 

adequately captured by the existing models and per-case calibration with field data is essential to 

accurate replicated field conditions. This demonstrates that existing models lack wide 

applicability and are also not capable of adapting to systemic changes in driving behavior. 

At the same time, innovations in vehicle-based technology appear at a rapid rate and the 

driving task is becoming automated to an ever-increasing extent. Automated vehicles and driving 

assistance systems are expected to reduce traffic congestion, incidents and emission levels, 

increase roadway capacity and improve traffic flow stability. However, it will take some time 

before sensors, algorithms, and data collection are sufficiently developed to completely “solve” 

the driving task. Even when that level of advancement is reached, a transitional user acceptance 

period is certain to take place. Therefore, human drivers will remain an integral part of the 

driving task, while their role will dynamically evolve from active actors to more passive 

operators monitoring the automated system as it controls anywhere from just over 0% to just 

under 100% of the driving task. This makes vehicle automation one of the most disruptive 

innovations in the history of driving and as such, existing models are ill-equipped to predict the 

behavioral adaptations that will occur, nor their consequences on the various aspects of driving. 

To achieve that, additional information about driver behavior derived from the field of cognitive 

sciences, and psychological constructs like cognitive workload and situational awareness, need 

to be integrated into driving behavior models in order to describe the driver state under various 

levels of automation. 

1.2 Research Objectives 

The objectives of this research can be summarized as follows: 
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1. To develop a driver behavior framework that takes into account human factors and can be 

applied to describe both traditional manual driving, as well as driving of vehicles with 

varied automation capabilities, and the transitions between the manual and the automated 

driving states. 

2. To propose experimental processes that would capture the impact of varying levels of 

automation and traffic conditions on manual and automated driving preferences of 

demographically diverse test subjects (drivers with different individual static 

characteristics) via measurable changes in their workload and situational awareness under 

purposefully designed scenarios. 

3. To describe how the findings of the suggested experiments can be incorporated into a 

known car-following model (e.g. the Intelligent Driver Model - IDM), as well as how the 

suggested improvements to the model can then be evaluated and validated through a case 

study involving actual drivers conducted with the use of a driving simulator. 
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CHAPTER 2 - LITERATURE REVIEW 

This chapter provides a comprehensive review of past research regarding driver car-following 

behavior, human psychology and cognition during the driving task, and how these established 

concepts may require adjustments to account for recent technological advancements in the field 

of connected and automated vehicles. The first section describes the existing car-following 

models, with an emphasis on those that take into account human factors. Advantages and 

limitations of the most prominent car-following models, especially with regards to modeling 

interaction with automated systems, are also considered. The next section discusses 

psychological factors and cognitive concepts that have been developed in order to explain human 

driving behavior. Finally, vehicle automation classification systems are presented, followed by a 

review of studies that investigate how car-following behavior and driving-related cognitive 

concepts are impacted by the introduction of automated vehicles. 

2.1 Car-following Models 

Car-following is one of the earliest research topics related to driver behavior and has 

consequently been one of the most extensively studied subjects. It was first proposed more than 

half a century ago by Pipes (1953) and Reuschel (1950) and in the decades since both 

transportation engineers and traffic psychologists have added their contributions to the growing 

body of knowledge surrounding this topic. The fundamental assumption of car-following models 

is that drivers adjust their behavior according to that of the leading vehicle (van Wageningen-

Kessels et al., 2015). Car-following models are microscopic, since they describe the longitudinal 

behavior of individual vehicles. The standard notation involves numbering the vehicles as shown 

in Figure 2-1, with the vehicle under consideration being vehicle “n”, its leading vehicle “n-1” 

and its follower “n+1”. Then, one or more of the following three parameters in combination are 

used to model the trajectory of the vehicle: its longitudinal position (usually the front of the 

vehicle) 𝑥, its velocity 𝑣 = 𝑑𝑥/𝑑𝑡, and its acceleration 𝑎 = 𝑑𝑣 𝑑𝑡⁄  =  𝑑ଶ𝑥 𝑑𝑡ଶ⁄ . 

 

n – 2n – 1nn + 1
Driving direction

 

Figure 2-1: Conventional vehicle numbering in car-following models 
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Thus, the following basic notations are used for the majority of the car-following models, with 

additional terms specific to particular models defined as needed: 

𝑎௡ Acceleration (applied by the driver) of vehicle n (subject vehicle) 

𝑎෤௡  Desired acceleration of the driver of vehicle n 

𝑎௠௔௫ Maximum acceleration 

𝑎௖௢௠௙ Comfortable acceleration 

𝑏௡ Deceleration of vehicle n 

𝑏௡ିଵ Deceleration of vehicle n-1 (leading / preceding vehicle) 

𝑏෨௡  Desired deceleration of the driver of vehicle n 

𝑏௠௔௫ Maximum deceleration 

𝑏௖௢௠௙ Comfortable deceleration 

𝑉௡ Speed of vehicle n 

𝑉෨௡  Desired speed of the driver of vehicle n 

𝑉௠௔௫ Maximum velocity 

∆𝑉௡ Speed difference between the subject vehicle and the preceding vehicle (𝑉௡ିଵ − 𝑉௡) 

𝑥௡ Position of vehicle n 

∆𝑥௡ Space headway between the subject vehicle and the preceding vehicle (𝑥௡ିଵ − 𝑥௡) 

∆𝑥෪
௡ Desired space headway (following distance) of the driver of vehicle n 

𝐿௡ିଵ Length of the preceding vehicle 

𝑆௡ Spacing between the subject vehicle and the preceding vehicle (∆𝑥௡ − 𝐿௡ିଵ) 

𝑆ሚ௡  Desired vehicle spacing of the driver of vehicle n 

𝑆௝௔௠ Spacing between the subject vehicle and the preceding vehicle at standstill 

𝑠௡ିଵ Effective length of the preceding vehicle (𝐿௡ିଵ + 𝑆௝௔௠) 

𝑡 Time 

𝜏௡ Reaction time of the driver of vehicle n 

𝑇௡ Time headway between the subject vehicle and the preceding vehicle 

𝑇෨௡ Desired time headway of the driver of vehicle n 
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2.1.1 Safety distance or collision-avoidance models  

Safety distance or collision-avoidance (CA) models are based on the fundamental assumptions 

that the driver of the subject vehicle n aims to always maintain a safe following distance to the 

preceding vehicle n-1 (Olstam & Tapani, 2004). Pipes (1953) was the first to propose a safety 

distance car-following model by defining the position of the subject vehicle as a function of the 

position of the leading vehicle, as shown in Equation (2.1): 

𝑥௡ = 𝑥௡ିଵ − 𝑆௝௔௠ − 𝐿௡ିଵ − 𝑆(𝑣௡)                 (2.1) 

where 𝑆(𝑣௡) is Pipes’ interpretation of the “legal distance” between the two vehicles (van 

Wageningen-Kessels et al., 2015), also known as Pipe’s rule: “a good rule for following another 

vehicle at a safe distance is to allow yourself at least the length of a car between you and the 

vehicle ahead for every ten miles of hour speed at which you are travelling.” (Olstam and 

Tapani, 2004).  

However, the first instance of a safety-distance model that used Newtonian equations of 

motion to more specifically define safe distance was proposed by Kometani and Sasaki (1959). 

In their model, safe distance is the distance necessary to avoid a collision if the vehicle in front 

would act in an “unpredictable” manner, such as suddenly decelerating heavily. Compared to 

Pipes’ model they introduce more velocity-related terms as well as a time delay term 𝜏௡ that 

represents the reaction time of the drive, as shown in Equation (2.2): 

∆𝑥௡(𝑡 − 𝜏௡) = 𝛼𝑉ଶ
௡ିଵ(𝑡 − 𝜏௡) + 𝛽𝑉ଶ

௡(𝑡) + 𝛾𝑉௡(𝑡) + 𝑑          (2.2) 

where 𝛼, 𝛽, 𝛾 are parameters that require calibration, and 𝑑 is a constant representing the 

minimum space headway required to avoid a collision between the two vehicles. 

In 1961, Newell modified that model by expressing the speed of the subject vehicle 𝑉௡(𝑡) 

as a non-linear function of the space headway to the lead vehicle, according to Equation (2.3): 

𝑉௡(𝑡) = 𝑉௠௔௫[1 − 𝑒
൬

ିఒ(∆௫೙(௧ିఛ೙)ାௗ)
௏ౣ ౗౮

൰
]        (2.3) 

where 𝜆 is another calibration parameter. 
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The most impactful enhancement of the safety-distance model was proposed by Gipps 

(1981), as it became one of the most popular car-following models (Saifuzzaman & Zheng, 

2014) and has been extensively used in simulation (Brackstone & McDonald, 1999), such as the 

micro-simulation software package AIMSUN (Barceló & Casas, 2005). In his model, Gipps used 

the desired deceleration rate instead of the maximum one, among other mitigating factors, to 

further reduce the possibility of collision under any circumstances. The model also introduced 

the concept of multiple regimes. In particular, it assumed two driving modes: one that takes place 

during free-flow conditions, and one during car-following. In the first mode, velocity is limited 

only by the desired velocity of the driver, while in the second mode it is determined by 

maintaining a safe distance from the preceding vehicle. The formulation of Gipps’ model is 

shown in Equation (2.4): 

𝑉௡(𝑡 − 𝜏௡) = min

⎩
⎪
⎨

⎪
⎧

𝑉௡(𝑡) + 2.5𝑎෤௡𝜏௡ ቆ1 −
𝑉௡(𝑡)

𝑉෨௡
ቇ ඨ0.025 +

𝑉௡(𝑡)

𝑉෨௡

𝑏෨௡𝜏௡ + ඨ(𝑏෨௡𝜏௡)ଶ − 𝑏෨௡ ቈ2(∆𝑥௡(𝑡) − 𝑠௡ିଵ) − 𝑉௡(𝑡)𝜏௡ −
𝑉௡ିଵ

ଶ (𝑡)

𝑏෠௡ିଵ

቉

        (2.4) 

where 𝑏෠௡ିଵ represents an estimate of the leading vehicle’s deceleration. Two options for 

that estimation are provided in the AIMSUN version 4.1 user manual (TSS, 2002): the first 

assumes that the estimation corresponds perfectly with the actual deceleration of the preceding 

vehicle and thus 𝑏෠௡ିଵ = 𝑏௡ିଵ , while the second option introduces an estimation error by 

calculating the deceleration as the average of the leading vehicle’s deceleration and the 

follower’s desired deceleration: 𝑏෠௡ିଵ =
௕෨೙ା௕೙షభ

ଶ
 . 

The transition between the two regimes is usually smooth, but there are two exceptions: 

when the preceding vehicle decelerates much faster than estimated (𝑏௡ିଵ > 𝑏෠௡ିଵ),  or when a 

lane-changing event occurs in front of the subject vehicle, with either the leading vehicle moving 

to another lane or a third vehicle from an adjacent lane moving between the subject and the 

formerly leading vehicle. (Saifuzzaman & Zheng 2014). 

Gipps’ model provides a number of advantages that account for its popularity (Brackstone 

& McDonald, 1999). It considers human factors by including behavioral parameters such as the 
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desired speed, acceleration and deceleration of the subject driver, along with their reaction time 

and their estimation of the braking rate of the leading vehicle. Many of these parameters (for 

example, reaction time) can also be calibrated by assuming “common sense” or “realistic” values 

derived from previous driver behavior studies, or by performing simple experiments in order to 

estimate the driver’s desired kinematic parameters. Gipps himself used simulation along with 

assumed “realistic” values for these parameters, and showed that the model produced results 

regarding the propagation of disturbances which corresponded to empirical data.  

On the other hand, the model exhibits a number of problems: a) it is difficult to define what 

constitutes a “safe headway”; b) determining how a driver estimates the deceleration of the 

preceding vehicle is especially difficult, while the model ignores that drivers tend to consider 

multiple downstream vehicles in order to anticipate the preceding vehicle’s reaction; and c) it 

produces unrealistic speed discontinuities when the distance between the subject vehicle and the 

preceding vehicle changes abruptly, such us when lane-changing or hard-breaking events occur. 

The most recent development in the safety-distance car-following models is Newell’s 

simplified car-following model (Newell, 2002). As shown in Equation (2.5), the assumption of 

this model is that in congested conditions (second regime) the vehicle follows the time-space 

trajectory of the leading vehicle with space and time shifts corresponding to the jam spacing and 

the time headway between the two vehicles: 

𝑥௡(𝑡 + 𝑇௡) = 𝑚𝑖𝑛 ൜
𝑥௡(𝑡) + 𝑉௡𝑇௡

𝑥௡ିଵ(𝑡) − 𝑆௝௔௠,௡
              (2.5) 

According to Newell, the values of 𝑇௡ and 𝑆௝௔௠,௡ should be sampled independently from a 

joint probability distribution and thus exhibit variation between the various vehicles of a traffic 

stream. 

The simplicity of Newell’s model appeals to researchers (Saifuzzaman & Zheng 2014), and 

so does its equivalence (Leclercq, 2007) to the macroscopic traffic flow LWR model (Lighthill 

& Whitham, 1955; Richards, 1956), which is considered the prototype kinematic wave model 

(van Wageningen-Kessels et al., 2015). Thus, it has resulted in the creation of hybrid 

(microscopic and macroscopic) models and has also allowed researchers to approach complex 

topics, such as the study of traffic oscillations (Zheng et al., 2011a; Zheng et al., 2011b; Chen et 
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al., 2012a; Chen et al., 2012b; Chen et al., 2014) or the effect of lane-changing maneuvers 

(Zheng et al., 2013) using a simple car-following model as their foundation. Finally, Laval and 

Leclercq (2010) introduced a modified version of Newell’s model, where the time shift 𝑇௡ is 

time-dependent and able to capture the difference between “timid” and “aggressive” drivers (or 

the switch between the two behaviors is some drivers due to stop-and-go traffic). Equation (2.6) 

shows the formulation of their model: 

𝑥௡(𝑡) = 𝑚𝑖𝑛 ൜
𝑥௡(𝑡 − 𝑇௡) + 𝑚𝑖𝑛{𝑉௡𝑇௡, 𝑥෤௡(𝑡)}

𝑥௡ିଵ(𝑡 − 𝜂௡(𝑡)𝑇௡) − 𝜂௡(𝑡)𝑆௝௔௠,௡
              (2.6) 

where 𝑥෤௡(𝑡) is the desired distance that vehicle n travels during a time period equal to 𝑇௡ 

and 𝜂௡(𝑡) serves as a dimensionless variable that reflects the deviation of the vehicle’s spacing 

from its equilibrium spacing calculated by Newell’s original model (Equation 2.5). 

However, despite the extensions and refinements to Newell’s model that have been 

proposed, human factors are either not sufficiently included or some of the proposed behavioral 

variables, such as the desired distance 𝑥෤௡(𝑡) under free-flow conditions, are not easy to measure 

or calibrate. 

 

2.1.2 Stimulus-response models  

One of the most populous category of car-following models follow the stimulus-response 

framework that is the product of research by General Motors researchers in the late fifties and 

early sixties (Chandler, Herman, & Montroll, 1958, Gazis, Herman, & Rothery, 1961). The 

primary assumption of the framework is that drivers adjust their acceleration in accordance to 

external stimuli and their own sensitivity to each of them. Thus, response (acceleration) = 

sensitivity × stimulus. A variety of factors have been proposed for the role of explanatory 

stimuli, but three are the most prominent ones: 

1. Current speed of subject vehicle n: 𝑉௡ 

2. Spacing between the subject vehicle n and the preceding vehicle n-1: 𝑆௡ 

3. Speed difference between the subject vehicle n and the preceding vehicle n-1: ∆𝑉௡ 
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2.1.2.1 Gazis-Herman-Rothery (GHR) family models  

The GHR model is considered as the most well-known and most studied car-following model. Its 

earliest expressions were simple linear models (Chandler et al., 1958; Herman et al., 1959), as 

the one shown in Equation (2.7):  

𝑎௡(𝑡) = 𝜆∆𝑉௡(𝑡 − 𝜏௡)       (2.7) 

where 𝜆 is a sensitivity parameter with many potential functional forms (Saifuzzaman & 

Zheng, 2014): 

a) 𝜆 = 𝐶,    Constant 

b) 𝜆 =
𝐶ଵ, ∆𝑥௡ ≤ ∆𝑥௖௥

𝐶ଶ, ∆𝑥௡ > ∆𝑥௖௥

 
  Step function 

c) 𝜆 = 𝐶 ∆𝑥௡⁄   Reciprocal spacing 

d) 𝜆 = 𝐶 ∙ 𝑉௡ ∆𝑥௡⁄   Edie’s (1961) model 

e) 𝜆 = 𝐶 ∆𝑥ଶ
௡⁄   Greenshields et al. (1935) macroscopic flow-density relationship 

where ∆𝑥௖௥ is a threshold that depends on the model developer, and 𝐶, 𝐶ଵ, 𝐶ଶ are constants. 

Eventually, the last three expressions (c,d, and e) where consolidated into the non-linear GHR 

car-following model by Gazis et al. (1961), presented in Equation (2.8): 

𝑎௡(𝑡) = 𝛼 ∙ 𝑉௡
ఉ(𝑡) ∙

∆𝑉௡(𝑡 −  𝜏௡)

∆𝑥௡
ఊ(𝑡 −  𝜏௡)

       (2.8) 

where 𝛼 > 0, 𝛽, 𝛾 are parameters calibrated to fit the model to field data. 

Brackstone and McDonald (1999) reported a plethora of studies in the following decades 

that attempted to calibrate and validate the GHR model. However, the results of these were often 

contradictory with regards to the values of the calibration parameters. This uncertainty in 

successfully calibrating the GHR model was considered its greatest disadvantage by Brackstone 

and McDonald (1999). Saifuzzaman and Zheng (2014) acknowledged the simplicity of the GHR 

model as its primary advantage but also identified a number of limitations, and pointed that the 

model’s inherent assumptions contrast with observations of driver behavior: 
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 Inter-driver heterogeneity is not accounted for, since identical reaction time for all drivers 

is assumed. 

 The model overestimates the ability of human drivers to perceive any small changes in 

spacing and relative speed with accuracy. 

 Situational behavioral differences are not considered, as the estimates of the model 

parameters have a single value for all circumstances. Thus, there is no distinction between 

acceleration and deceleration, nor between free-flow and congested conditions. 

 Driver awareness is limited to only the preceding vehicle and only at the current time step, 

without accounting for the behavior of vehicles further downstream or for the past behavior 

of the preceding vehicle.  

Aiming to counteract the above limitations, many researchers have proposed extensions 

and modifications to the GHR model. 

Regarding the GHR model’s assumption of symmetrical acceleration and deceleration, 

Herman and Rothery (1965) suggested that personal vehicles tend to have a greater deceleration 

than acceleration capacity. Their hypothesis was validated in studies by Subramanian (1996) and 

Siuhi and Kaseko (2010) who observed greater driver sensitivity to deceleration than to 

acceleration under congested conditions. Yang and Koutsopoulos (1996) developed an 

asymmetrical GHR model that is shown in Equation (2.9): 

𝑎௡ = 𝛼± ∙ 𝑉௡
ఉ±

(𝑡) ∙
∆𝑉௡

𝑆௡
ఊ±        (2.9) 

where the parameters 𝛼ା, 𝛽ା, 𝛾ାare used if ∆𝑉௡ ≥ 0 and  𝛼ି, 𝛽ି, 𝛾ିare used if ∆𝑉௡ < 0. 

Their asymmetrical GHR was also a part of a three-regime car-following model used in the 

micro-simulation software MITSIM (Olstam & Tapani, 2004). That model distinguished 

between its three regimes (free driving, following, emergency) via time headway thresholds: 

𝑟𝑒𝑔𝑖𝑚𝑒 = ቐ

𝑓𝑟𝑒𝑒 𝑑𝑟𝑖𝑣𝑖𝑛𝑔,            𝑖𝑓 𝑇௡ > 𝑇௨௣௣௘௥                                   

𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔,                 𝑖𝑓 𝑇௟௢௪௘௥ ≤ 𝑇௡ ≤ 𝑇௨௣௣௘௥                  

 𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦,               𝑖𝑓 𝑇௡ < 𝑇௟௢௪௘௥                                    

 

where the behavior in the following regime is described by Equation (2.9), in the free 

driving regime by Equation (2.10) and in the emergency regime by Equation (2.11). 
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𝑎௡ = ቐ

𝑎෤௡, 𝑖𝑓 𝑉௡ < 𝑉෨௡
0,           𝑖𝑓 𝑉௡ = 𝑉෨௡
𝑏෨௡, 𝑖𝑓 𝑉௡ > 𝑉෨௡

                                                            (2.10) 

𝑏௡ = ൞
𝑚𝑖𝑛 ቈ𝑏෨௡, ቆ𝑎௡ିଵ −

0.5∆𝑉௡
ଶ

𝑆௡
ቇ቉ , 𝑖𝑓 ∆𝑉௡ < 0 

 𝑚𝑖𝑛 ൣ𝑏෨௡, ൫𝑎௡ିଵ + 0.25𝑏෨௡൯൧,             𝑖𝑓 ∆𝑉௡ ≥ 0  

       (2.11) 

Ahmed (1999) developed another asymmetric GHR model, where he also accounts for 

driver heterogeneity with regards to reaction time. This model uses two regimes (free-flow and 

car-following), which are determined by comparing the headway ∆𝑥௡ to a critical headway 

∆𝑥௡,௖௥ which is itself obtained from a two-side truncated normal distribution (Equation 2.12) and 

thus varies for each driver.  

𝑓൫∆𝑥௡,௖௥  ൯ =

⎩
⎪
⎨

⎪
⎧

1
𝜎∆௫

𝜑 ൬
∆𝑥௡,௖௥ − 𝜇∆௫

𝜎∆௫
൰

𝛷 ቀ
∆𝑥௠௔௫ − 𝜇∆௫

𝜎∆௫
ቁ − 𝛷 ቀ

∆𝑥௠௜௡ − 𝜇∆௫

𝜎∆௫
ቁ

, 𝑖𝑓 ∆𝑥௠௜௡ ≤  ∆𝑥௡,௖௥ ≤ ∆𝑥௠௔௫

0 ,                                                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                               

 (2.12) 

where 𝜇∆௫, 𝜎∆௫ represent the mean and standard deviation of the untruncated distribution, 

 ∆𝑥௠௜௡, ∆𝑥௠௔௫ are boundaries of ∆𝑥௡,௖௥ that need to be estimated,  

 𝜑(∙) is the probability density function of a standard normal variable, and 

 𝛷(∙) is the cumulative distribution function of a standard normal variable. 

Therefore, when  ∆𝑥௡(𝑡 − 𝜏௡) ≤ ∆𝑥௡,௖௥, the vehicle belongs in the car-following regime 

and follows the modified GHR equation shown in Equation (2.13), or otherwise it is in the free-

flow regime and follows Equation (2.14): 

𝑎௡(𝑡) = 𝛼
𝑉௡

ఉ(𝑡 −  𝜉𝜏௡)

∆𝑥௡
ఊ(𝑡 −  𝜉𝜏௡)

 𝑘௡
ఋ(𝑡 −  𝜉𝜏௡)∆𝑉௡

ఘ(𝑡 −  𝜉𝜏௡) + 𝜀௡
௖௙(𝑡)     (2.13) 

𝑎௡(𝑡) = 𝜆[𝑉෨௡(𝑡 − 𝜏௡) − 𝑉௡(𝑡 − 𝜏௡) + 𝜀௡
௙௙(𝑡)]      (2.14) 

where  𝛼, 𝛽, 𝛾, 𝛿, 𝜌 are calibration parameters,  

𝑘௡
ఋ(𝑡 −  𝜉𝜏௡) is the visible traffic density downstream of the subject vehicle, 
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𝜉 ∈ [0,1] is a sensitivity lag parameter, 

𝜆 is the constant sensitivity, and 

𝜀௡
௖௙(𝑡), 𝜀௡

௙௙(𝑡) are normally distributed error terms for their respective regimes. 

To account for drivers reacting to stimuli from additional downstream vehicles than just the 

first one, a multiple-vehicle interaction extension to the linear GHR model was proposed by 

Bexelius (1968), as shown in Equation (2.15): 

𝑎௡(𝑡) = ෍ 𝜆௜∆𝑉௡
௜(𝑡 −  𝜏௡)

௠

௜ୀଵ

       (2.15) 

where 𝜆௜ (𝑖 = 1,2, … , 𝑚) are sensitivity parameters for the next m vehicles downstream, and  

∆𝑉௡
௜(𝑡 −  𝜏௡) is the speed difference between the subject vehicle and the ith vehicle 

ahead: 𝑉௡ି௜ − 𝑉௡. 

Hoogendoorn, Ossen, and Schreuder (2006) suggested the following modification 

(Equation 2.16) to eliminate the inconvenient additive function of Bexelius’ equation: 

𝑎௡(𝑡) = min
ଵஸ௜ஸ௠

𝜆௜∆𝑉௡
௜(𝑡 − 𝜏௡)       (2.16) 

To address the assumption that a driver reacts not only to the instantaneous relative speed 

of the leading vehicle but rather to its overall speed history over a period of time, Lee (1966) 

extended the linear GHR model with the addition of a memory function, as seen in Equation 

2.17: 

𝑎௡(𝑡) = න 𝑀(𝑡 − 𝑡́
௧

଴

)∆𝑉௡(𝑡́)𝑑𝑡́     (2.17) 

where M is a memory function representing the information regarding the preceding 

vehicle that the driver of the subject vehicle has accumulated over the driving period. Lee (1996) 

suggests a number of alternative expressions for that memory function, such as a Dirac-Delta 

function: 𝑀(𝑡) =  𝜆𝛿(𝑡 − 𝜏௡), which corresponds to the instantaneous (no memory) model, or a 

decaying exponential function: 𝑀(𝑡) =  𝜇𝑘𝑒ି௞௧ (𝜇, 𝑘 > 0 are parameters), among other forms, 

which represent a more realistic “weighted response over a finite interval of past history”. 

Saifuzzaman and Zheng (2014) noted that although the introduction of a memory function results 
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in a smoother acceleration profile, without unrealistic peaks that were previously present, the 

complexity of the model increases significantly, since each vehicle’s past trajectory must be 

stored and included in the model’s calculations at every step. 

Finally, a more recent attempt to extend the GHR model in order to account for driver 

uncertainty and perception inaccuracy is the use of fuzzy-logic models, where parameters such as 

the time headway are defined by overlapping fuzzy sets. Such models were suggested by 

Kikuchi and Chakroborty (1992), as well as Wu, Brackstone, and McDonald (2000). However, 

fuzzy sets remain notoriously difficult to define, calibrate and validate (Ross, 2010), and 

therefore applications of these models are not common. 

2.1.2.2 Desired measures models  

The stimulus-response car-following models of the previous subsection considered as stimuli 

only the current speed of the subject vehicle and its speed difference with the vehicles ahead of 

it. However, this assumption inevitably results in the following incongruous conclusion: that 

when two vehicles travel at the same speed, any distance between them, no matter how 

unrealistic, is possible – and acceptable by the drivers – since the spacing between the vehicles is 

not a factor taken into account by the model (when ∆𝑉௡ = 0). To avoid this, desired measures 

models fundamentally suggest that each driver has a desired space (or time) headway, and that 

they attempt to maintain that headway, while also minimizing the speed difference with the 

leading vehicle (Saifuzzaman & Zheng, 2014). 

The first model of this class is attributed to Helly (1959), relies on the concept of the 

desired space headway (∆𝑥෪
௡), and is formulated as shown in Equation (2.18): 

𝑎௡(𝑡) = 𝛼ଵ∆𝑉௡(𝑡 − 𝜏௡) + 𝛼ଶൣ∆𝑥௡(𝑡 −  𝜏௡) − ∆𝑥෪
௡(𝑡)൧,

 
∆𝑥෪

௡(𝑡) = 𝛽ଵ + 𝛽ଶ𝑉௡(𝑡 − 𝜏௡) + 𝛽ଷ𝑎௡(𝑡 −  𝜏௡)
     (2.18) 

where 𝛼ଵ, 𝛼ଶ, 𝛽ଵ, 𝛽ଶ, 𝛽ଷ are calibration parameters. 

Helly’s initial calibration of the model resulted in the following average values for these 

parameters: 𝛼ଵ~0.5,  𝛼ଶ~0.125,  𝛽ଵ~20, 𝛽ଶ~1, but – most importantly – 𝛽ଷ~0, meaning that 

the desired space headway for the driver of the subject vehicle did not appear to be affected by 

its acceleration, but only by its speed. 
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In 1995, Xing developed a complex non-linear model by incorporating elements of both 

Helly’s linear model and the non-linear GHR model, as presented in Equation (2.19). It consists 

of four terms which correspond to (i) “standard” driving, (ii) accelerating from a standing queue, 

(iii) the effect of a gradient, and (iv) free-flow conditions (when the first term tends to zero), 

respectively: 

𝑎௡(𝑡) = 𝛼ଵ
∆𝑉௡(𝑡 −  𝜏ଵ)

∆𝑥௡
௟(𝑡 −  𝜏ଵ)

+ 𝛼ଶ

ൣ∆𝑥௡(𝑡 −  𝜏ଶ) − ∆𝑥෪
௡(𝑡)൧

∆𝑥௡
௠(𝑡 −  𝜏ଶ)

− 𝛾𝑠𝑖𝑛𝜃 + 𝜆[𝑉෨௡ − 𝑉௡(𝑡 − 𝜏ଷ)],

 
∆𝑥෪

௡(𝑡) = 𝛽଴ + 𝛽ଵ𝑉௡(𝑡 −  𝜏௡) + 𝛽ଶ𝑉௡
ଶ(𝑡 − 𝜏௡) + 𝛽ଷ𝑉௡

ଷ(𝑡 −  𝜏௡)                                          
  (2.19) 

where 𝛼ଵ, 𝛼ଶ, 𝛼ଷ, 𝛽଴, 𝛽ଵ, 𝛽ଶ, 𝛽ଷ, 𝛾, 𝜆, 𝑙, 𝑚, 𝜏ଵ, 𝜏ଶ, 𝜏ଷ are calibration parameters, with the last 

three representing different time lags for each driving condition, and θ is the gradient difference. 

Similar to Helly’s findings when calibrating his linear model, the desired following distance 

∆𝑥෪
௡(𝑡) is only determined by the speed of the vehicle and not its acceleration, though the 

relationship suggested by Xing is more complicated. Calibration of Xing’s model showed that 

𝑙~𝑚~𝛽ଶ~𝛽ଷ~0 which reduces the model back to a linear form. Comparing the results of the 

model with trajectories obtained from actual vehicles showed an exceptionally good fit, but 

Brackstone and McDonald (1999) noted that the distributions of the significant (non-zero) 

calibrated parameters exhibited high standard deviations, and thus caution should be exercised 

with regards to the validity of Xing’s model. 

One of the most recent and most commonly used desired measures model, is the Intelligent 

Driver Model (IDM), proposed by Treiber, Hennecke, and Helbing in 2000. As shown in 

Equation (2.20), it factors both the desired speed and the desired space headway (as a function of 

the desired time headway) and applies to both car-following and free-flow situations (when the 

spacing between the vehicles tends to infinite and thus the last term of the equation tends to 

zero): 

𝑎௡(𝑡) = 𝑎௠௔௫,௡ ቈ1 − ൬
𝑉௡(𝑡)

𝑉෨௡(𝑡)
൰

ఋ

− ൬
𝑆ሚ௡(𝑡)
𝑆௡(𝑡)

൰
ଶ

቉ ,

 

𝑆ሚ௡(𝑡) = 𝑆௝௔௠,௡ + 𝑆ଵ,௡ඨ
𝑉௡(𝑡)

𝑉෨௡(𝑡)
+ 𝑉௡(𝑡)𝑇෨௡(𝑡) −

𝑉௡(𝑡)∆𝑉௡(𝑡)

2ඥ𝑎௠௔௫,௡ ∙ 𝑏௖௢௠௙,௡

     (2.20) 
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where 𝛿~4 is a parameter representing the sensitivity to deviation from the desired speed, 

and 𝑆ଵ,௡~0 quantifies the effect of this deviation in the desired vehicle spacing. However, since 

the typical value of this parameter is usually zero, the entire second term of the desired spacing 

equation is omitted in most applications of the model, though a non-zero 𝑆ଵ,௡ may be required in 

order to better match field data, especially in less common cases such as when the collected 

empirical data produces a flow-density relationship with inflection points (Treiber et al., 2000).  

Eventually, to simplify the model for the purpose of studying its properties more easily, as 

well as allowing for added complexity in other areas and for the subsequent development of 

more focused and less generalized model extensions, the assumption of identical vehicles, where 

𝑎௠௔௫,௡ = 𝑎௠௔௫ ,  𝑏௖௢௠௙,௡ = 𝑏௖௢௠௙, 𝑆௝௔௠,௡ = 𝑆௝௔௠, 𝑆ଵ,௡ = 𝑆ଵ, 𝑉෨௡(𝑡) = 𝑉෨ , 𝑇෨௡(𝑡) = 𝑇෨  was adopted 

by Treiber et al. (2000), along with the use of standard values, such as 𝑇෨ = 1.6𝑠, 𝛿 = 4, and 

𝑆ଵ = 0. The latter evidently results to the omission of the related term. Thus, the IDM model 

formulation upon which most future models are based on is the one shown in Equation (2.21): 

𝑎௡(𝑡) = 𝑎௠௔௫ ቈ1 − ൬
𝑉௡(𝑡)

𝑉෨
൰

ఋ

− ൬
𝑆ሚ௡(𝑡)
𝑆௡(𝑡)

൰
ଶ

቉ ,

 

𝑆ሚ௡(𝑡) = 𝑆௝௔௠ + 𝑉௡(𝑡)𝑇෨ −
𝑉௡(𝑡)∆𝑉௡(𝑡)

2ඥ𝑎௠௔௫ ∙ 𝑏௖௢௠௙

     (2.21) 

In 2003, Treiber and Helbing proposed a memory function extension to the IDM, which 

they called IDMM (IDM with memory). Their basic assumption is that drivers adapt to the 

surrounding conditions (such as congested traffic) by changing their desired time headway 

within a range bounded by the following parameters: 𝑇଴ = 𝑇෨  (for free-flowing traffic) and 

𝑇௝௔௠ = 𝛽்𝑇଴ (for congested traffic), where 𝛽்~1.8 is an adaptation factor. This is achieved by 

substituting the 𝑇෨  term in Equation (2.21) with 𝑇{𝜆(𝑡)}, where 𝜆(𝑡) is the “subjective level of 

service”, which can assume values from 0 (in congested conditions) to 1 (in free-flow 

conditions), and is calculated as the exponential moving average of the “instantaneous level of 

service” 𝜆଴(𝑉௡) during the adaptation time 𝜏 (usually 600 seconds), according to Equation (2.22): 

𝑇{𝜆(𝑡)} =  𝜆(𝑡)𝑇଴ + [1 − 𝜆(𝑡)]𝑇௝௔௠ = 𝑇෨[𝛽் + 𝜆(𝑡)(1 − 𝛽்)],
 

𝜆(𝑡) = ∫ 𝜆଴൫𝑉௡(𝑡́)൯
௧

଴
𝑒ି

௧ି௧ሖ
ఛ 𝑑𝑡́

     (2.22) 
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The instantaneous level of service 𝜆଴(𝑉௡) is in turn a monotonically increasing function of 

the actual speed 𝑉௡, with 𝜆଴(0) = 0 (worse level of service at standstill) and 𝜆଴൫𝑉෨൯ = 1 (best 

level of service, since the desired speed is reached). For example, the 𝜆଴(𝑉௡) function could have 

the following form: 𝜆଴(𝑉௡) =  𝑉௡ 𝑉෨⁄ . Treiber and Helbing (2003) demonstrated through 

simulation that the adaptation effect included in IDMM succeeds in reproducing observed traffic 

instabilities, oscillations, and the wide scattering in flow-density data during congested traffic, 

despite using only identical vehicles, on a single lane, following a simple deterministic model, 

and without the need of other destabilizing factors, such as stochastic and heterogeneous multi-

lane traffic. 

Another refinement of the (non-memory) IDM was incorporated into the model by Treiber 

and Kesting (2010) in their German-language book “Verkehrsdynamik und -simulationen” and 

its English-translated version (2013): “Traffic flow dynamics: Data, models and simulation”, 

after acknowledging (Treiber, Kesting, & Helbing, 2010) that IDM is fundamentally a two-

regime model. The refinement involves adding a maximum condition to the second part of 

Equation (2.21) as shown in Equation (2.23): 

𝑆ሚ௡(𝑡) = 𝑆௝௔௠ + 𝑚𝑎𝑥 ቆ0, 𝑉௡(𝑡)𝑇෨ −
𝑉௡(𝑡)∆𝑉௡(𝑡)

2ඥ𝑎௠௔௫ ∙ 𝑏௖௢௠௙

ቇ      (2.23) 

This addition is relevant in two situations: (i) when the speed of the preceding vehicle is 

significantly greater and (ii) in stop-and-go traffic when the vehicle in the queue begins to 

accelerate again from zero speed. The most likely scenario for the occurrence of the first state is 

when a faster vehicle enters the lane in front of the subject vehicle, but since the actual spacing 

𝑆௡(𝑡) is likely to be much greater than 𝑆௝௔௠ it is not expected to cause a significant discontinuity 

in the acceleration function. In the second situation, not allowing the latter part of the equation to 

assume negative terms produces a more realistic, though still discontinuous, acceleration profile 

and averts an unreasonably low acceleration rate when starting from a stopped state. However, 

despite its empirically demonstrated necessity, the addition of this maximum condition does 

contradict a previously fundamental property of the IDM: that its acceleration function 𝑎௡(𝑡) is 

continuous and its time derivate is always finite, while ensures smooth regime transitions. 
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In assessing the IDM’s positive aspects, Treiber and Kesting (2013) point favorably to the 

model’s simplicity, where the number of calibration parameters remains low and each of them is 

associated with or explains only one specific driving behavior element, allowing for easier and 

intuitive model calibration. They also consider the IDM’s intelligent breaking strategy as one of 

its greatest innovations and advantages over other models. This strategy is captured by the term 

[𝑉௡(𝑡)∆𝑉௡(𝑡)] ൫2ඥ𝑎௠௔௫ ∙ 𝑏௖௢௠௙൯ൗ  of the desired spacing 𝑆ሚ௡(𝑡), and Treiber and Kesting (2013) 

demonstrate how this breaking strategy is “dynamically self-regulating”, with the deceleration 

always heading in the direction the comfortable deceleration 𝑏௖௢௠௙.  

On the other hand, though, Treiber and Kesting (2013) also acknowledge a number of 

deficiencies and limitations inherent in IDM. In particular, the model’s equations result in: (i) 

unrealistically abrupt deceleration when the speed of the subject vehicle exceeds the desired 

speed (𝑉௡ > 𝑉෨௡), which can occur when encountering a reduced speed limit area, (ii) greater 

vehicle dispersion than what is observed in the field, when a platoon of vehicles (∆𝑉 = 0) are 

driving close to the desired speed (𝑉௡ ≲ 𝑉෨௡), because the spacing 𝑆௡ at equilibrium (𝑎௡ = 0) 

ends up being significantly larger than the desired spacing ൫𝑆ሚ௡ = 𝑆௝௔௠ + 𝑉௡𝑇෨ ൯ of the IDM 

formulation, as shown in Equation (2.24), (iii) exaggerated breaking reaction when the actual 

spacing becomes abruptly smaller than the desired spacing (𝑆௡ ≪ 𝑆ሚ௡), a situation that can arise 

when a changing-lane vehicle enters the subject vehicle’s lane. Finally, they recognize that the 

model’s continuous acceleration function and its lack of a factor that captures the reaction time 

of the driver, make IDM more suited for use in describing the behavior of semi-automated 

vehicles under adaptive cruise control (ACC) than the behavior of human drivers. 

𝑆௡(𝑡) =
𝑆௝௔௠ + 𝑉௡(𝑡)𝑇෨

ඨ1 − ൬
𝑉௡(𝑡)

𝑉෨
൰

ఋ

= 𝑆ሚ௡(𝑡) ∙
1

ඨ1 − ൬
𝑉௡(𝑡)

𝑉෨
൰

ఋ

      (2.24) 

with Equation (2.24) derived by solving Equation (2.21) for 𝑆௡(𝑡) when 𝑎௡(𝑡) = ∆𝑉௡(𝑡) =

0, and as 𝑉௡(𝑡) → 𝑉෨ ⇒ 𝑆௡(𝑡) ≫ 𝑆ሚ௡(𝑡). 

To address the first three shortcomings of the model, Treiber and Kesting (2013) developed 

the Improved Intelligent Driver Model (IIDM), while also emphasizing its applicability for semi-

automated driving behavior. In contrast to the automation-focused IIDM, the Human Driver 
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Model (HDM) was introduced (Treiber, Kesting, & Helbing, 2006; Treiber and Kesting, 2013) to 

better model human driving behavior and account for the lack of human factors in the base IDM, 

such as reaction time, but also temporal and multi-vehicle anticipation, and estimation and 

driving errors. Thus, the HDM, though still a desired measures stimulus-response model, can 

best be classified as a psycho-physical model and is described in depth in subsection 2.1.3 

(Psycho-physical models). 

The latest contribution of Treiber and Kesting (2017) to the IDM was to introduce 

stochasticity, in the form of white acceleration noise 𝜉௡(𝑡) added to the acceleration function 𝑎௡. 

𝜉௡(𝑡) has an expected value of zero, lacks any correlation with time and between vehicles, and 

has intensity 𝑄, which is a parameter than can be calibrated. Mathematically, this is expressed in 

Equation (2.25): 

𝑎̇௡(𝑡) = 𝑎௡(𝑡) + 𝜉௡(𝑡), 𝐸[𝜉௡(𝑡)] = 0, 𝐸[𝜉௡(𝑡)𝜉௠(𝑡́)] = 𝑄𝛿௡௠𝛿(𝑡 − 𝑡́)   (2.25) 

where 𝑎̇௡(𝑡) is the stochastic acceleration, 𝐸[∙] represents the expected value, 𝛿௡௠ is the 

Kronecker delta function, where 𝛿௡௠ = 1 for 𝑛 = 𝑚 and zero if 𝑛 ≠ 𝑚, while 𝛿(𝑡 − 𝑡́) is the 

Dirac delta distribution. 

In addition to the stochastic noise, Treiber and Kesting (2017) incorporated the concept of 

indifference regions, used primarily in psycho-physical models, where the drivers update their 

acceleration only at discrete “action points”, when the difference between the actual acceleration 

and the acceleration of the car-following model exceeds a certain value ∆𝛼. In this case, that 

value is also stochastic, obtained from a uniform distribution: ∆𝛼~𝑈(0, ∆𝛼୫ୟ୶). 

The IDM has been the subject of study by many researchers, besides its originators, though 

most extensions to the model also attempt to introduce psycho-physical elements to the IDM, so 

they are addressed in more detail in that section. The two most prominent models belong to 

Saifuzzaman et al. (2015a; 2017), who introduced TDIDM, incorporating a task difficulty factor 

𝑇𝐷௡(𝑡) into IDM which affects the desired vehicle spacing 𝑆ሚ௡ (Equation 2.26), and 

Hoogendoorn et al. (2013), who – based on Fuller’s (2005) task capability interface (TCI) – 

added task demand and driver capability in the IDM in the form of compensation 𝑚ௗ(𝑡) and 

performance 𝑚௣(𝑡) adaptation effects (Equation 2.27). 
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𝑎௡(𝑡 + 𝜏́௡) = 𝑎௠௔௫ ቈ1 − ൬
𝑉௡(𝑡)

𝑉෨(𝑡)
൰

ఋ

− ൬
𝑆ሚ௡(𝑡) ∙ 𝑇𝐷௡(𝑡 + 𝜏́௡)

𝑆௡(𝑡)
൰

ଶ

቉ ,

 

𝑆ሚ௡(𝑡) = 𝑆௝௔௠ + 𝑉௡(𝑡)𝑇෨ −
𝑉௡(𝑡)∆𝑉௡(𝑡)

2ඥ𝑎௠௔௫ ∙ 𝑏௖௢௠௙

     (2.26) 

where 𝜏́௡ represents reaction time, but modified due to human factor parameters. 

𝑎௡(𝑡) = 𝑎௠௔௫ ቀ1 − 𝑚௣(𝑡)ቁ ቀ1 − 𝑚ௗ
ଷ(𝑡)ቁ ൦1 − ቌ

𝑉௡(𝑡)

𝑉෨(𝑡) ቀ1 − 𝑚ௗ
ଷ(𝑡)ቁ

ቍ

ఋ

− ൬
𝑆ሚ௡(𝑡)
𝑆௡(𝑡)

൰
ଶ

൪ ,

 

𝑆ሚ௡(𝑡) = 𝑆௝௔௠ + 𝑉௡(𝑡)𝑇෨௡ ቀ1 + 𝑚ௗ
ଷ(𝑡)ቁ −

𝑉௡(𝑡)∆𝑉௡(𝑡)

2ට𝑎௠௔௫ ቀ1 − 𝑚ௗ
ଷ(𝑡)ቁ ∙ 𝑏௖௢௠௙ ቀ1 − 𝑚ௗ

ଷ(𝑡)ቁ

     (2.27) 

Concluding this subsection, it must be pointed that while the desired measures model 

resolve many of the issues of previous stimuli-response models, they also introduce additional 

complications. Their greatest disadvantage is that the desired measures themselves (e.g. desired 

speed, desired time or spacing headway) are not directly measurable in the field and thus must be 

estimated indirectly (Saifuzzaman & Zheng, 2014). This is also the reason why validation of 

most of these models was performed through simulation and not through actual data obtained 

from real drivers. 

2.1.2.3 Optimal Velocity (OV) family models  

In optimal velocity models, the acceleration of the subject vehicle depends on the difference 

between its current speed 𝑉௡ and its optimal (or safe) velocity 𝑉௡
∗, which is in turn a function of 

the space headway ∆𝑥௡. Therefore, unlike all the previous subcategories of stimulus-response 

models, the speed difference ∆𝑉௡ is ignored as a potential stimulus. 

The originators of the optimal velocity model were Bando et al. (1995), which proposed the 

following Equation (2.28): 

𝑎௡(𝑡) = 𝛾ൣ𝑉௡
∗൫∆𝑥௡(𝑡)൯ − 𝑉௡(𝑡)൧,

 

𝑉௡
∗൫∆𝑥௡(𝑡)൯ = 𝑉଴ ቂ𝑡𝑎𝑛ℎ ቀ

∆𝑥௡ − 𝐿௡ିଵ

𝑏
− 𝐶ଵቁ + 𝐶ଶቃ

     (2.28) 

where 𝛾 is a sensitivity constant, 𝑏 the length scale, and 𝑉଴, 𝐶ଵ, 𝐶ଶ calibration parameters. 
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In 1998, Bando et al. updated the OV model to include driver reaction (Equation 2.29): 

𝑎௡(𝑡) = 𝛾ൣ𝑉௡
∗൫∆𝑥௡(𝑡 − 𝜏௡)൯ − 𝑉௡(𝑡 − 𝜏௡)൧   (2.29) 

Comparisons of the results of the optimal velocity model with field data demonstrated that 

it produced unrealistic results, specifically high accelerations and decelerations (Saifuzzaman & 

Zheng, 2014). Treiber and Kesting (2013) also identified that the base OV model has not only 

quantitative deficiencies, but also qualitative, as its outcome depends heavily on the calibration 

of its parameters, and thus it does not exhibit robustness. This result is the product of not 

considering the speed difference between the subject and the leading vehicle, while still being 

affected by the traffic stream density through the space headway. For this reason, the 

Generalized Force (GF) model, an extension of the OV that includes speed difference, was 

developed by Helbing and Tilch (1998), as shown in Equation (2.30): 

𝑎௡(𝑡) = 𝛾ൣ𝑉௡
∗൫∆𝑥௡(𝑡)൯ − 𝑉௡(𝑡)൧ + 𝜆(∆𝑉௡(𝑡)) ∙ 𝐻൫−∆𝑉௡(𝑡)൯   (2.30) 

where 𝜆 is a sensitivity coefficient, and 𝐻 is the Heaviside step function, that takes a value 

of 1 when ∆𝑉௡(𝑡) = 𝑉௡ିଵ − 𝑉௡ is negative (the leading vehicle is slower than the subject 

vehicle), and zero otherwise. However, the GF model still does not avoid unrealistic results. 

An alternative solution, based on the GF model, was proposed by Jiang, Wu, and Zhu 

(2001), where they explicitly considered the speed difference (either negative or positive) as an 

additional linear stimulus, deriving the Full Velocity Difference (FVD) model (Equation 2.31): 

𝑎௡(𝑡) = 𝛾ൣ𝑉௡
∗൫∆𝑥௡(𝑡)൯ − 𝑉௡(𝑡)൧ + 𝜆(∆𝑉௡(𝑡))   (2.31) 

Treiber and Kesting (2013) considered the above model “incomplete” because the second 

term of Equation (2.31), which describes the sensitivity to the speed difference is itself 

independent of the vehicle spacing. Thus, they suggested the Improved Full Velocity Difference 

(IFVD) model of Equation (2.32): 

𝑎௡(𝑡) = 𝛾ൣ𝑉௡
∗൫∆𝑥௡(𝑡)൯ − 𝑉௡(𝑡)൧ +

𝜆(∆𝑉௡(𝑡))

𝑚𝑎𝑥[1, 𝑆௡ 𝑉௢𝑇⁄ ]
   (2.32) 

where 𝑉௢𝑇 is the “interaction length”. 

This model produces more realistic acceleration, but still lacks sufficient robustness. 
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Another disadvantage of the FVD model is that it treats acceleration and deceleration in the 

same manner, using a single sensitivity parameter, for both. However, field observations have 

shown that this does not reflect actual driver behavior. For this reason, Gong, Liu, and Wang 

(2008) developed the asymmetric full velocity difference (AFVD) model (Equation 2.33): 

𝑎௡(𝑡) = 𝛾ൣ𝑉௡
∗൫∆𝑥௡(𝑡)൯ − 𝑉௡(𝑡)൧ + 𝜆ଵ(∆𝑉௡(𝑡)) ∙ 𝐻൫−∆𝑉௡(𝑡)൯  + 𝜆ଶ൫∆𝑉௡(𝑡)൯ ∙ 𝐻൫∆𝑉௡(𝑡)൯ (2.33) 

where 𝜆ଵ, 𝜆ଶ are sensitivity parameters for deceleration and acceleration respectively.  

The AFVD exhibits more realistic results, but also requires a longer time period to 

stabilize. 

A multi-vehicle interaction extension of the OVM was proposed by Lenz, Wagner, and 

Sollacher (1999), as shown in Equation (2.34): 

𝑎௡(𝑡) = ෍ 𝛾௜ ቈ𝑉௡
∗ ቆ

∆𝑥௡,௡ିଵ(𝑡)

𝑖
ቇ − 𝑉௡(𝑡)቉

௠

௜ୀଵ

   (2.34) 

where ∆𝑥௡,௡ିଵ(𝑡) is the space headway to the nearest ith leading vehicle. 𝑉௡
∗ is calculated 

by the same equation as in the original OVM (Equation 2.28). The multi-vehicle interaction 

extension exhibits higher stability than the base model. 

Finally, Davis (2003) used simulation to prove that the updated OVM (Equation 2.29) 

which considers reaction time (Bando et al., 1998), is extremely sensitive to the latter, and that 

longer reaction times resulted in unstable flow and unavoidable collisions. His solution, shown in 

Equation (2.35), produces a stable, collision-free flow. However, Davis does not provide any 

justification, behavioral or otherwise, for why the speed of the subject vehicle is calculated at 

time (𝑡), while the space headway and the speed difference are calculated at time (𝑡 − 𝜏௡). 

𝑎௡(𝑡) = 𝛾ൣ𝑉௡
∗൫∆𝑥௡(𝑡 − 𝜏௡)൯ + 𝜏௡∆𝑉௡(𝑡 − 𝜏௡) − 𝑉௡(𝑡)൧   (2.35) 

 

2.1.3 Psycho-physical models 

Psycho-physical models were developed in order to address the apparent inability of all previous 

car-following models to “provide a psychologically plausible characterization of how humans 

think about, and address, the driving problem” (Saifuzzaman & Zheng, 2014). Indeed, as Boer 
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(1999) points out, the aforementioned models are often based on unrealistic assumptions, such as 

that: (i) drivers always optimize their driving performance, (ii) drivers react to inputs that they 

shouldn’t be able to perceive, and (iii) the same rules apply for each driver and driving style. 

Finally, the previous models are largely descriptive, thus any inaccuracies or inexplicable results 

are attributed to noise, while little research effort directed towards investigating if they are the 

product of an underlying, and unaccounted for, behavioral factor. 

On the other hand, psycho-physical models emerge from challenging the above 

assumptions and they approach car-following by trying to understand and model the fundamental 

psychological causes that result in the various observed behavioral phenomena. Thus they 

“combine physiological restriction (reaction times, estimation errors, perception thresholds) and 

psychological aspects (anticipation, heuristic, context, sensitivity, driving strategy in general)” 

(Treiber & Kesting, 2013), from which their name is derived. Non-psycho-physical models often 

include some of these physiological and psychological factors, but in a limited capacity and 

without dealing with their fundamental causes, but only as parameters that can be calibrated. 

There are various categories of psycho-physical models, that are presented in the following 

subsections. The biggest distinction can be made between Action Point models, which question 

the assumption that drivers react in a continuous manner, especially in cases where they 

shouldn’t be able to perceive a change in their current situation (use of perceptual thresholds), 

and continuous models. Action point models are the most known and more widely applicable 

psycho-physical models; Continuous models are more diverse, but also more speculative in 

general and thus they have not been adopted by practitioner to a significant extent. They include 

“driving by visual angle” models, based on the observation that humans do not accurately 

estimate distances, speeds and accelerations, but can estimate time-to-collision (TTC) according 

to the rate of change of the visual angle of the lead vehicle; risk-taking, distraction and error 

models focus on driver decision-making as a function of their perceived – and acceptable – 

levels of risk-taking, modified by human factors; or the previously mentioned Human Driver 

Model (Treiber et al., 2006; Treiber & Kesting, 2013), the Task Difficulty IDM (TDIDM) by 

Saifuzzaman et al. (2015a; 2017), and the extension of the IDM developed by Hoogendoorn et 

al. (2013), based on Fuller’s (2005) task capability interface (TCI). 
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2.1.3.1 Action Point (AP) psycho-physical models  

Wiedemann (1974) was among the first who attempted to address the issue of drivers having 

limits to their perception and therefore are stimulated and react only when certain “perceptual 

thresholds” are exceeded. These driver reactions can also be called “Action Points”. As shown in 

Figure 2-2 there are six main thresholds in the Wiedemann model that are defined as follows: 

 AX:  The desired space headway between two vehicles in standstill  

 BX:  The desired minimum following distance, which is a function of AX, the safety 

distance, and speed  

 SDV:  The action point where a driver consciously perceives that he/she is approaching a 

slower leading vehicle; SDV increases with increasing speed difference   

 CLDV: Closing delta velocity (CLDV) is an additional threshold that accounts for 

additional deceleration by the application of brakes  

 OPDV: The action point where a driver notices that he/she is slower than the leading 

vehicle and starts to accelerate again   

 SDX:  A perception threshold to model the maximum following distance, which is 

approximately 1.5–2.5 times BX 

 

Figure 2-2: Wiedemann car-following model ΔV-ΔX diagram (Wiedemann 1974) 
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A modified version of the original Wiedemann car-following model (known as 

“Wiedemann 99”) is used in the commercial microsimulation software VISSIM. The thresholds 

definitions of that model are not publicly known, but the developers of VISSIM refer to 

Wiedemann and Reiter (1992) for a comprehensive listing of the parameters used. 

In 1998, Fancher and Bareket, suggested an extension of the Wiedemann 74 model by 

introducing the concept of a “comfort zone”, when a driver is with ±12% of their desired 

spacing. Drivers inside the comfort zone, unable to perceive a speed difference with the 

preceding vehicle, will attempt to maintain their current speed. 

A similar Action Point car-following model was developed by Fritzsche (1994), which uses six 

thresholds to divide the space of the ΔV-ΔX diagram into five regions, as shown in Figure 2-3. 

The six thresholds are: 

 PTN: Perception of negative speed difference (∆𝑉௡ < 0) 

 PTP:  Perception of positive speed difference (∆𝑉௡ > 0) 

 AD: Desired distance threshold (𝐴𝐷 = 𝑆௝௔௠ + 𝑇෨௡𝑉௡) 

 AR:  Risky distance threshold, when spacing is too small for comfortable driving,  

(𝐴𝑅 = 𝑆௝௔௠ + 𝑇௙𝑉௡ିଵ), where 𝑇௙~0.5𝑠 is a fixed time headway. 

 AS: Safety distance threshold, when the subject vehicle decelerates too much and 

achieves a safe distance with a positive speed difference (∆𝑉௡ > 0) and has to 

accelerate to match the speed of the preceding vehicle. 𝐴𝑆 = 𝑆௝௔௠ + 𝑇௦𝑉௡), where  

𝑇௦~1.0𝑠 is the safe time headway. The model requires that 𝑇෨௡ > 𝑇௦ > 𝑇௙. 

 AB: Breaking distance threshold, applied to avoid collisions that might occur at high  

speeds. 

The five resulting regions are: 

 Free Driving 

 Danger 

 Following I 

 Following II 

 Closing in 
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The model assumes that the subject vehicle will decelerate only in either the “Danger” or 

“Closing in” regions. 

The greatest advantage of both Action Point models is the use of perception thresholds, an 

important human factor that specifies minimum values for the stimuli that drivers will react to. 

These thresholds are expressed as functions of the relative speed and spacing and are even 

different for acceleration and deceleration decisions. Finally, they define several decision zones, 

where driver behavior is significantly different, and the transitions between them. On the other 

hand, obtaining values for these perception thresholds based on field data is a difficult task, and 

thus most models simply adopt default values for them human factors literature instead 

(Saifuzzaman & Zheng 2014).  

 

 

Figure 2-3: Fritzsche car-following model ΔV-ΔX diagram (Olstam & Tapani 2004) 

2.1.3.2 Continuous psycho-physical models 

Michaels (1963) first stated that when drivers are approaching a vehicle in front, they perceive 

the situation from the changes in the apparent size of the vehicle. More specifically, the relative 

speed is estimated through the changes in the visual angle subtended by the leading vehicle. Gray 

and Regan (1998) confirmed that assumption by showing that human drivers are not well-suited 

to estimate longitudinal distances, absolute speeds, and accelerations of other objects, but they 
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are capable of accurately estimating time to collision (TTC) based on visual angles (in this case, 

visual angle divided by the rate of change of the visual angle). The visual angle (𝜃௡) is 

calculated in Equation (2.36), while the angular velocity (by differentiating Equation 2.25 with 

respect to time) is calculated in Equation (2.37): 

𝜃௡(𝑡) = 2𝑎𝑟𝑐𝑡𝑎𝑛 ൬
𝑊

2𝑆௡(𝑡)
൰ ≈

𝑊

𝑆௡(𝑡)
     (2.36) 

𝑑

𝑑𝑡
𝜃௡(𝑡) = −𝑊

∆𝑉௡(𝑡)

൫𝑆௡(𝑡)൯
ଶ      (2.37) 

where 𝑊 is the width of the leading vehicle. 

Thus visual angle is used to replace relative spacing from the leading vehicle, and angular 

velocity is used to replace speed difference in existing models. Andersen and Sauer (2007) 

modified Helly’s (1959) model accordingly and developed the “Driving by Visual Angle” 

(DVA) model, shown in Equation 2.38. 

𝑎௡(𝑡) = 𝛼 ቆ
1

𝜃௡(𝑡)
−

1

𝜃௡
෪(𝑡)

ቇ +
𝑑

𝑑𝑡
 𝜃௡(𝑡)    (2.38) 

 where 𝜃௡
෪(𝑡) is the desired visual angle of the leading vehicle. 

Visual angle models accurately reflect the capability of human drivers to accurately 

estimate time to collision (TTC) as well as the method they use (visual angles). They are also 

able to produce similar speed and acceleration profiles that are observed in data obtained from 

real driving situations. However, they do not incorporate reaction time, nor driver heterogeneity 

(Saifuzzaman & Zheng 2014). 

Hamdar et al. (2008) developed a driver behavior model that aims to better model risk-

taking behavior. To do so, they used Kahneman and Tverksy’s (1979) prospect theory, which has 

been shown to be better suited for driver decision-making processes compared to the expected 

utility theory (Neumann & Morgenstern, 1949), as it produces more realistic results when risky 

outcomes are possible (Saifuzzaman & Zheng 2014). In the Prospect Theory model, the 

subjective probability ൫𝑝௡,௜൯ of a rear-end crash with the leading vehicle is calculated, based on 

spacing 𝑆௡, speed difference ∆𝑉௡ and acceleration 𝑎௡, as shown in Equation (2.39): 
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𝑝௡,௜ ≈ 𝑝௡(𝑡 + 𝜏̂௡) = 𝜙 ቆ
∆𝑉௡(𝑡)𝜏̂௡ + 0.5𝑎௡(𝜏̂௡)ଶ − 𝑆௡(𝑡)

𝜎(𝑉௡ିଵ)𝜏̂௡
ቇ       (2.39) 

where 𝜏̂௡ is the anticipation time span, and 𝜙(𝑧) is the cumulative distribution function of 

the standardized Gaussian. 

Then the value function 𝑈௉், which defines gains (or losses) as related to increase (or 

decrease, respectively), in speed from the previous time step is given by Equation (2.40): 

𝑈௉்(𝑎௡) =
𝑎௡

𝑎଴
൤𝑤 + 0.5(1 − 𝑤)(tanh ൬

𝑎௡

𝑎଴
൰ + 1൨ ቈ1 + ൬

𝑎௡

𝑎଴
൰

ଶ

቉

଴.ହ(ఊିଵ)

    (2.40) 

where 𝑎଴ is an acceleration normalizing factor, 𝛾 is a non-negative sensitivity parameter, 

and 𝑤 is the weight assigned to negative acceleration. The gains and losses of Equation (2.40) 

are constrained by the maximum desired speed of the driver, and non-negative speed. 

Finally, the driver assesses prospective accelerations and selects the one resulting in the 

highest probability, according to Equation (2.41): 

𝑈(𝑎௡) = ൫1 − 𝑝௡,௜൯𝑈௉்(𝑎௡) − 𝑝௡,௜𝑤௖𝑘(𝑉௡, ∆𝑉௡)    (2.41) 

where the first term indicates the losses or gains in a non-collision situations, while the 

second term considers the losses of a possible collision through two parameters: the seriousness 

factor 𝑘(𝑉௡, ∆𝑉௡) , which reflects the expected consequences of a crash, and the weighting term 

𝑤௖, which is related to driver behavior, with higher values indicating conservative drivers and 

lower values aggressive drivers respectively. 

The model can also incorporate the stochasticity observed in driver responses, by selecting 

the acceleration via the probability density function of Equation (2.42): 

𝑓(𝑎௡) = ൞

𝑒[ఉ∙௎(௔೙)]

∫ 𝑒[ఉ∙௎(௔́)]௔೘ೌೣ

௔೘೔೙
𝑑𝑎́

,    𝑖𝑓 𝑎௠௜௡ ≤ 𝑎௡ ≤ 𝑎௠௔௫

0,                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (2.42) 

where 𝛽 > 0 is a parameter that defines the driver’s sensitivity to the utility 𝑈(𝑎௡), but can 

also be related to driver experience, with more experienced drivers being more sensitive (higher 

𝛽 values) than less experienced ones, by evaluating risk with more accuracy. 
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In 2011, Talebpour, Mahmassani, and Hamdar (2011) proposed an extension to the model 

which considers traffic conditions. He assumed that a driver’s preferences are different 

depending on the situation, as for example, in congested traffic, higher speed and acceleration 

would not be as desirable, and would not be assigned high gains in the utility function 𝑈௉்(𝑎௡), 

compared to free-flow conditions, where the opposite would be true. This two-regime model is 

described in Equation 2.43: 

𝑈௉்(𝑎௡) = 𝑃(𝐶) ∙ 𝑈௉்
஼ (𝑎௡) + ൫1 − 𝑃(𝐶)൯ ∙ 𝑈௉்

௎஼(𝑎௡)   (2.43) 

where 𝑃(𝐶) is the probability of driving under congested conditions, and 𝑈௉்
஼ (𝑎௡) and 

𝑈௉்
ிி(𝑎௡) are respectively the two different utility functions under congested and congested and 

free-flow conditions. A calibration of the two-regime model by Alexiadis et al. (2004) using the 

Next-Generation Simulation (NGSIM) data, showed consistency with field observations of 

driver behavior, including that higher density (lower spacing) results in lower probability of high 

acceleration values, or that drivers in congested traffic tend to match their speed to the average 

speed of the surrounding vehicles to reduce the possibility of a collision. 

The main advantages of the Prospect Theory model are that it allows for the possibility of 

crashes to occur (unlike most models that assume a crash-free traffic stream), as well as 

incorporating the driver’s subjective risk (both their sensitivity to the probability of risk and the 

value they associate with negative consequences) even when the preceding vehicle’s behavior is 

uncertain. 

Another model that incorporates driver risk, alongside other human factors, is the Task-

Difficulty Intelligent Driver Model (TDIDM) developed by Saifuzzaman et al. (2015a). Based on 

Fuller’s (2005) Task-Capacity interface model, a task difficulty car-following (TDCF) 

framework (Figure 2-4) was established, leading to a formulation that calculates perceived driver 

task difficulty at time t, 𝑇𝐷௡(𝑡), as shown in Equation 2.44. 

𝑇𝐷௡(𝑡) = ቆ
𝑉௡(𝑡 − 𝜏́௡)𝑇෨௡

(1 − 𝛿௡)𝑆௡(𝑡 − 𝜏́௡)
ቇ

ఊ

     (2.44) 

where 𝛿௡ < 1 is a risk parameter associated with human factors, with positive values 

indicating that the driver perceives the risk of driving under reduced capability, while negative 

values correspond to aggressive (or impaired) drivers that underestimate the risk, 𝛾 is a 
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sensitivity parameter with regards to the task difficulty, and 𝜏́௡ = 𝜏௡ + 𝜑௡ is the modified 

reaction time, expressed as the standard reaction time 𝜏௡ plus the additional reaction  time 

increase 𝜑௡ which can be attributed to impairment or other human factors. 

 

Figure 2-4: Task difficulty car-following (TDCF) framework (Saifuzzaman et al., 2015a) 

Saifuzzaman et al. (2015a) then proceeded to apply the TDCF framework into the IDM, 

producing the TDIDM formulation shown in Equation 2.45: 

𝑎௡(𝑡 + 𝜏́௡) = 𝑎௠௔௫,௡ ൥1 − ቆ
𝑉௡(𝑡)

𝑉෨௡
ቇ

ఋ

− ቆ
𝑆ሚ௡(𝑡) ∙ 𝑇𝐷௡(𝑡 + 𝜏́௡)

𝑆௡(𝑡)
ቇ

ଶ

൩   (2.45) 

The TDIDM model was calibrated and validated through a driver simulator experiment, 

where vehicle trajectory data along with human factor information was collected. In particular, 

32 participants, with ages from 18 to 26 years old drove the simulator vehicle under three 

scenarios with increased task difficulty and cognitive load: (i) baseline (no distractions), (ii) 

while in a conversation with a hands-free device, and (iii) while in a conversation with a 

handheld device. The phone conversations were of a cognitive nature, meaning that processing 

and storage of information was required from the participants. Various scripted traffic events that 

required driver reaction also took place during all three scenarios. Using genetic algorithms, the 

IDM model parameters (and reaction time) were calibrated first for the baseline scenario, and 

then then human factors added in the TDIDM (𝛿௡, 𝜑௡) were similarly calibrated for the 
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“distracted” scenarios. Only 20 of the 32 trajectories were used for calibration, while the rest 

were used to validate the model. 

Saifuzzaman et al. (2015a) concluded that the model “outperformed” the standard IDM 

model and exhibited higher robustness (less sensitivity regarding changes in the calibrated 

parameters). They also stated the advantage of including driver reaction time into the IDM, 

especially one which can be modified according to the condition of the driver. Thus, capacity 

drop, traffic hysteresis, and stop-and-go oscillation phenomena were more realistically modeled, 

while modelling risk perception reflected aggressive and conservative driver behavior as seen in 

the literature. However, they also noted that a more comprehensive sensitivity analysis in 

necessary before these results can be more widely applied. 

In 2013, Hoogendoorn et al. suggested another adaptation of the IDM which takes into 

account risk and other behavioral factors. Their theoretical framework is also derived from 

Fuller’s (2005) Task-Capacity interface model, but in this case the difference between task 

demand and driver capability is used to derive driver adaptation effects in longitudinal driving 

behavior. Adaptation effects include compensation effects, which are conscious adaptations 

performed by the drivers in order to reduce or increase the difficulty of the driving task (task 

demand), and performance effects, which are subconscious effects emerging from an imbalance 

between task demand and driver capability. Examples of compensation effects include altering 

the desired spacing, the desired speed or the acceleration. Examples of performance effects can 

be changes in perceptual thresholds, reaction time increases, or alterations in the sensitivity of 

acceleration and spacing. Hoogendoorn et al. (2013) suggest that 𝑚ௗ(𝑡) is the difference 

between task demand 𝑚௧(𝑡) and driver capability 𝑚௖(𝑡) at time t, as shown in Equation 2.46: 

𝑚ௗ(𝑡) = 𝑚௧(𝑡) − 𝑚௖(𝑡)      (2.46) 

Assuming that 0 < 𝑚௧(𝑡) < 1 and 0 < 𝑚௖(𝑡) < 1, then −1 < 𝑚ௗ(𝑡) < 1, and the value 

of 𝑚ௗ(𝑡) raised to the cube is used to quantify driver compensation effects, by affecting behavior 

elements they have direct control over. If, however, the imbalance between driver capability and 

task demands is not resolved through compensation efforts, performance effects 𝑚௣(𝑡) will also 

occur. Based on Brookhuis, de Vries, and de Waard (1991), Hoogendoorn et al. (2013) assume 
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that the performance effects are related to the difference between task demands and driver 

capability with an inverted U-shaped function (Equation 2.47): 

𝑚௣(𝑡) = −(𝛼𝑚ௗ
ଶ + 𝛽𝑚ௗ + 𝛾 )       (2.47) 

where 𝛼, 𝛽, 𝛾 are calibration parameters. 

Including both compensation and performance effects in the IDM, Hoogendoorn et al. 

(2013) obtained the model described in Equation 2.48: 

𝑎௡(𝑡) = 𝑎௠௔௫ ቀ1 − 𝑚௣(𝑡)ቁ ቀ1 − 𝑚ௗ
ଷ(𝑡)ቁ ൦1 − ቌ

𝑉௡(𝑡)

𝑉෨(𝑡) ቀ1 − 𝑚ௗ
ଷ(𝑡)ቁ

ቍ

ఋ

− ൬
𝑆ሚ௡(𝑡)
𝑆௡(𝑡)

൰
ଶ

൪ ,

 

𝑆ሚ௡(𝑡) = 𝑆௝௔௠ + 𝑉௡(𝑡)𝑇෨௡ ቀ1 + 𝑚ௗ
ଷ(𝑡)ቁ −

𝑉௡(𝑡)∆𝑉௡(𝑡)

2ට𝑎௠௔௫ ቀ1 − 𝑚ௗ
ଷ(𝑡)ቁ ∙ 𝑏௖௢௠௙ ቀ1 − 𝑚ௗ

ଷ(𝑡)ቁ

     (2.48) 

Finally, in 2006, Treiber et al. developed the Human Driver Model (HDM) by extending 

the IDM to consider four behavioral aspects: (i) finite reaction times, (ii) estimation errors, (iii) 

spatial anticipation (looking several vehicles ahead), and (iv) temporal anticipation: 

 For reaction times, they consider the effective reaction time 𝜏௘௙௙ to be equal to the “proper” 

reaction time of attentive drivers 𝜏௥ = 1𝑠 plus the effect of the attention span ∆𝑡, as 

follows:  𝜏௘௙௙ = 𝜏௥ + ∆𝑡 2⁄  

 For estimation errors arising from imperfect estimation capabilities of human drivers, they 

include: 

o Estimation error of the spacing. The error of the logarithm of the gap is essentially 

constant: 𝑙𝑛𝑆௘௦௧ − 𝑙𝑛𝑆௡ = 𝑉௦𝑤௦(𝑡), where 𝑉௦ is the relative standard deviation from 

the real spacing 𝑆௡ with typical values around 10%, and 𝑤௦(𝑡) is a normally 

distributed variable with values from 0 to 1.The spacing error is assumed to have no 

bias. 

o Estimation error of the speed of the preceding vehicle. This is based on the driver’s 

estimation of the relative speed difference between the two vehicles via the change of 

the visual angle of the leading vehicle, and is also inversely related to the time-to-

collision 𝜏்்஼ = ∆𝑉௡ 𝑆௡⁄ . Experiments showed that the error of the relative angular 
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change is constant, and with the assumption that the standard deviation 𝜎௥ of the 

speed difference ∆𝑉 is also constant, the following is obtained: 𝑉௡ିଵ
௘௦௧ − 𝑉௡ିଵ =

−(∆𝑉௡
௘௦௧ − ∆𝑉௡) = −𝑆(1 𝜏்்஼

௘௦௧⁄ − 1 𝜏்்஼⁄ ) = −𝑆𝜎௥𝑤∆௏(𝑡), where 𝑤∆௏(𝑡) is a 

normally distributed variable with values from 0 to 1. 

 For spatial, or multi-vehicle anticipation, the acceleration function 𝑎௡ is divided into a free-

flow acceleration 𝑎௙௥௘௘ and an interaction acceleration 𝑎௜௡௧ and for 𝑘 ≥ 1 leading vehicles 

𝑛 − 1, … 𝑛 − 𝑘, it is given by the following function: 𝑎௡ = 𝑎௙௥௘௘(𝑉௡) +

𝑐 ∑ 𝑎௜௡௧ (𝑆௡ఉ,𝑉௡, 𝑉௞)௡ିଵ
ఉୀ௡ି௞ . 

 For temporal anticipation, two simple heuristic models are used:  

o For the speed of the subject vehicle, the constant-acceleration heuristic is used: 

𝑉௡
௣௥௢௚(𝑡) = 𝑉௡(𝑡 − 𝜏௡) + 𝜏௡𝑎௡(𝑡 − 𝜏௡)  

o For the speed of the leading vehicle, a constant-speed heuristic is applied, which can 

be expanded to include multiple vehicles: 𝑉௡ିଵ
௣௥௢௚(𝑡) = 𝑉௡ିଵ

௘௦௧ (𝑡 − 𝜏௡) 

Finally, all of the above functions combined with the IDM model produce the Human 

Driving Model, as shown in Equation 2.49: 

𝑎௡ = 𝑎௙௥௘௘
ூ஽ெ (𝑉௡) + 𝑐ூ஽ெ ෍ 𝑎௜௡௧

ூ஽ெ (S௡ఉ
௣௥௢௚

, V௡
௣௥௢௚

, Vఉ
௣௥௢௚

)
௡ିଵ

ఉୀ௡ି௞
      (2.49) 

The most impactful additions to the model are spatial (or multi-vehicle) anticipation and 

the effective reaction time, as demonstrated in Figure 2-5. This is a phase diagram of the 

following congested traffic regimes: (i) homogeneous congested traffic (HCT), (ii) oscillating 

congested traffic (OCT), (iii) triggered stop-and-go traffic (TSG), (iv) pinned localized clusters 

(MLC/PLC), and (v) a crash regime, obtained from simulation tests on a single-lane road section. 

The diagram shows that the number of vehicles anticipated and the reaction time are crucial in 

defining the type of traffic observed and also the possibility of crashes. Specifically, it can be 

seen that as the number of vehicles anticipated increases, the more time drivers have to react in 

order to avoid a crash. 
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.Figure 2-5: Phase diagram of congested traffic states of the HDM (Treiber et al., 2006) 

2.1.4 Summary 

Car-following models have a long history and thus exhibit a great variety of approaches, 

assumptions and levels of complexity. The most popular and well-studied of these models, such 

as Gipps’ safety distance (or collision-avoidance) model (Gipps, 1981), the non-linear GHR 

stimulus-response model (Gazies et al., 1961), Helly’s desired-measures model (Helly, 1959), 

the Intelligent Driver Model (Treiber et al., 2000), the Optimal Velocity model (Bando et al., 

1995,) and the Full Velocity Difference model (Jiang et al., 2001) are primarily descriptive of 

driver behavior, rather than explanatory, containing parameters that reflect the drivers’ physical 

signals (such as speed, acceleration, headway) which can be directly measured and calibrated 

(Saifuzzaman & Zheng 2014), and in general they do not consider human factors beyond driver 

reaction time. Some of the extensions of these model selective include some additional simplistic 

human factors, such as risk sensitivity, or distraction, but only as parameters to be calibrated to 

fit the observed data without considering why the relationships between these variables are 

specified in this manner (van Winsum, 1999). While their applicability (thanks to their 

simplicity) and their adequate approximation of traffic trajectories, when properly calibrated for 
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local conditions, has served the transportation community well over the years, their lack of 

underlying explanatory factors means that these models are not well-equipped to handle 

fundamental changes in the long-established assumptions regarding the driving task. 

In contrast with these models, several psycho-physical models, focusing on the drivers’ 

psychological reactions, motivations and decision-making, have been proposed, including 

Wiedemann’s (1974) and Fritzsche’s (1994) action point (or perception threshold) models, 

Andersen and Sauer’s (2007) “driving by visual angle” model, Hamdar et al.’s (2008) risk-

assessing model using prospect theory, Saifuzzaman et al.’s (2015a) task difficulty car-following 

framework (and extension to the IDM, called TDIDM), Hoogendoorn et al.’s (2013) behavioral 

adaptation framework and IDM extension based on Fuller’s (2005) Task-Capacity interface 

model, and Treiber et al.’s (2006) Human Driver Model. The primary limitations of the psycho-

physical models are a significant increase in model complexity, a narrower scope and higher 

sensitivity to driver variance. This additional complexity and sensitivity often result in increased 

computational requirements, reduced applicability, and cause their calibration and validation 

processes to be much more difficult. The latter is especially compounded by the fact that most of 

their human factor variables are much harder or even impossible to measure directly, though this 

is a critique that can also apply to the “desired measures” variables as well. For this reason, much 

less studies, with conclusive results derived from real driver data, have been performed for these 

models, and a widely-accepted and empirically verified driver behavior theory has not yet been 

established. 

Because vehicle automation is one of the most disruptive innovations in the history of 

driving, it is essential that a detailed driver behavior framework that takes into account complex 

human factors and can be applied to describe both traditional manual driving, as well as driving 

of vehicles with varied automation capabilities, and the transitions between the two driving 

states, must developed. This model incorporates the most relevant components of both 

descriptive and psycho-physical car-following model with the substantial psychological literature 

on driving behavior and (more generally) machine operation, including advanced cognitive 

constructs, in order to identify the more crucial elements (and their relationships) that are 

required to understand human driving behavior in the transitional era between manual and fully 

autonomous driving. 
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2.2 Human Factors in Driving Behavior 

Driver behavior has been commonly studied by researchers in the fields of human factors and 

psychology. Michon (1985) defined driving as a hierarchical process that includes strategic, 

maneuvering and control levels, which are in turn based on the driver’s information, adherence 

to a set of rules, and skills respectively (Figure 2-6). 

 

Figure 2-6: The hierarchical model of the driving task (Michon, 1985) 

The strategic level involves long-term decision making and thus contributes negligibly to 

car-following behavior. The control level, on the other hand, operates on a very short-term scale 

that includes immediate and automatic decisions, like emergency breaking, and does not involve 

conscious control or use of cognitive resources, such as driver attention. It is thus the 

maneuvering level, which involves conscious control, driver attention and cognitive resources to 

perform tasks such as obstacle avoidance, gap acceptance, turning, speed and acceleration 

selection, etc., which matters the most with regards to car-following models. 

A non-hierarchical but also more comprehensive approach, in terms of the affecting factors 

included to describing driver behavior, was proposed by Bekiaris, Amditis, and Panou (2003). In 

that study, the concept of “Drivability” was introduced as the “combination of permanent and 

temporary factors that affect a driver’s performance”. Figure 2-7 depicts the type of relationships 

that the drivability framework proposes. However, this model lacks any objective quantitative 

methods and instead relies on subjectively graded indices for each factor, which are then 

weighted accordingly to produce the Drivability index. 
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Figure 2-7: Drivability and the factors affecting it (Bekiaris et al., 2003) 

Fuller (2000; 2005), examined the impact of task demand on risk-taking and described 

when and how loss of vehicle control and collisions (or near-collisions) take place, by 

introducing the task-capability interface model (TCI). According to Fuller (2005), the TCI model 

“describes the dynamic interaction between the determinants of task demand and driver 

capability. It is this interaction which produces different levels of task difficulty”, as depicted in 

Figure 2-8. 

Fuller (2005) also identified the inversely proportional relationship of task difficulty and 

the difference between task demand and driver capability, closely related the concepts of task 

difficulty and workload, and pointed that task difficulty also impacts situational awareness. 

These last three fundamental psychological concepts affecting driving behavior are examined in 

more detail in the following subsections. 
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Figure 2-8: Outcomes of the dynamic interface between task demand and capability (Fuller 2005) 

 

2.2.1 Driving Task Difficulty (Objective and Perceived) 

Fuller (2000), defines task demand as “the objective complexity of the task” that “arises out of a 

combination of features of the environment, the behavior of other road users, control and 

performance characteristics of the vehicle” (Figure 2-9). He also defined driver competence as 

the driver’s “range of skills broadly described as roadcraft, which includes control skills, ability 

to read the road (hazard detection and recognition), and anticipatory and defensive driving 

skills”. So, according to that definition, as well as the work of previous authors (Evans, 1991), 

competence serves as a ceiling (or an upper limit) on capability but human factors (such as 

fatigue, drowsiness, distraction, stress and other emotions, or alcohol impairment) can reduce the 

driver’s momentary roadcraft skills. That final result is driver capability (Figure 2-9). As 

mentioned above, The TCI model then defines task difficulty in a mostly objective manner, as 

the difference (or the ratio) between Capability and Task Demand. 
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Figure 2-9: Determinants of driver capability and task demand. (Fuller, 2000) 

However, driver behavioral reactions do not necessarily correspond to the objective driving 

task difficulty of Fuller. For this reason, Saifuzzaman et al. (2015a), developed his task-difficulty 

car-following framework (TDCF), described in the previous section (Figure 2-4), where he 

proposed the concept of the Perceived Driving Task Difficulty (Equation 2.44), by expanding 

Fuller’s definition to include a risk parameter that captures how drivers perceive risk, and a 

sensitivity parameter towards the task difficulty. These factors can account for heterogeneity in 

driver behavior based on subjective psychological factors, such as the aggressiveness of the 

driver, or human factors that interfere with the driver’s risk or task difficulty assessment. 

Another aspect of Saifuzzaman et al.’s (2015a) formulation of Perceived Driving Task 

Difficulty is the way that Driver Capability and Task Demand were quantified. Driver capability 

is not easily measurable, as it is a factor of many abstract and unobservable variables, such as the 
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constitutional features or the effect of the human factors on driver competence. However, several 

studies have indicated a correlation between driver capability and desired time headway 

selection: Johansson and Rumar (1971) found a relationship between headway and human 

factors such motivation or alertness; Heino, Molen, and Wilde (1992) showed that 

aggressiveness levels – or “sensation seeking/avoiding drivers” – affect time headways; Ranney 

et al. (2004) showed that mentally demanding tasks, such a phone conversation, also resulted in 

higher time headways, and finally Saifuzzaman et al. (2015b) proved that there is negative 

correlation between driving experience and time headway selection. For these reasons, the 

assumption that actual driver capability is inversely proportional to a driver’s desired time 

headway selection was proposed. Task Demand was also quantified in a more simple manner 

than Fuller’s model, using only a positive correlation with the vehicle’s speed and a negative 

correlation with the vehicle’s spacing from its preceding vehicle. 

2.2.2 Cognitive Workload 

The concept of cognitive workload, is one of the most widely used concepts in ergonomics 

research and practice (Young et al., 2015). Since the 1980s (Hancock & Meshkati, 1988; Moray, 

1979) it has been the focus of many studies that attempted to define it, measure it or apply it to 

describe the performance of operators interacting with mechanical equipment, often partially 

automated.  

Defining cognitive workload appears to be intuitively appealing, as “the allocation of 

attention based on the mental resources available for information processing” (Patten et al. 2006) 

or “the total amount of mental effort (i.e., the amount of information-processing resources used 

per time unit) to meet the level of performance required” (van Lint et al., 2016) for the task 

(driving, in this case). Teh et al. (2014) also equate workload to information-processing 

resources the driver dynamically allocates to the driving task. Stanton and Young (2005) suggest 

that cognitive workload “reflects the level of attentional resources required to meet both 

objective and subjective performance criteria, which may be mediated by task demands, external 

support, and past experience.”, a definition which assumes finite mental and attentional 

resources. However, investing mental resources is a voluntary, though effortful, activity. In other 

words, it is possible to increase the available resources by exerting more effort, in order to 

maintain specific performance criteria. (Young et al., 2015). This malleability of attentional 
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resources is highlighted by Young and Stanton (2002) who posit that attentional capacity can 

change size in response to changes in task demands. In this way, reduced performance effects 

can also be the result of mental underload, as the cognitive capacity of the drivers is reduced due 

to the low difficulty – and thus low stimulation – of the driving task. In conclusion, according to 

the above definitions, suboptimal workload can mean either overload or underload (Brookhuis 

and de Waard, 2001). This exposes one of the major disadvantages of defining cognitive 

workload as an absolute value, that currently no method exist to measure or strictly quantify the 

absolute amount of mental resources used by an individual. 

In contrast, de Waard (1996), defined mental workload as a relative concept, and 

specifically the ratio of demand to allocated resources. With this definition, mental workload is 

unit-less and also corresponds more closely to both task performance and physiological 

reactions, both of which allow for the development of objective workload-measuring techniques. 

Even subjective, self-reporting measuring methods benefit by this definition, as it bounds 

workload between a minimum (zero percentages of resources allocated) and a maximum value 

(all available resources are allocated) that have an intuitive interpretation. Thus defined, 

workload is also not just task-specific, but also person-specific (Rouse, Edwards, & Hammer, 

1993). Task complexity (external task demand) is a significant contributing factor, but so are the 

individual’s reaction to that demand, as well as their desired performance goals. Driver 

capability is crucial, but so is their motivation, mood, and operator state, as well the strategies 

applied in task performance.  

In workload measurement, not only processing effort or resource allocation (Norman & 

Bobrow, 1975) are of primary importance, the term effort is also used for the mobilization of 

additional resources as a compensatory process (Aasman et al., 1987; Mulder, 1980; Vicente et 

al., 1987). Effort reflects the operator’s reaction to demand and the amount of effort being 

expended is considered by many to be one of the most important components of (if not equal to) 

mental workload. Vicente et al. (1987) mention two important reasons for this. Firstly, the effort 

expended by the operator is not necessarily related to input load (demand). The operator’s 

reaction to the demand depends on internal goals and adopted criteria or strategies. Secondly, 

there is no simple relationship between performance and effort invested. The expended amount 

of effort depends very much on the structure of the task (data-limited versus resource-limited, 
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Norman & Bobrow, 1975) and, related to this, the amount of practice and experience, and of the 

operator’s state. 

From that definition, de Waard (1996) formulates a workload model, in relation to task 

performance and demand (Figure 2-10). In the model, several “regions” are specified. In region 

D, the driver’s state is affected (D stands for “deactivation”). In region A2, performance is 

optimal, the driver handles the task demand adequately and achieves their self-selected 

performance goals. In regions A1 and A3, performance remains unaffected, but the driver has to 

exert increasingly higher effort in order to achieve that. In region B that is no longer possible and 

performance declines, while in region C (minimum performance region) the driver in 

overloaded. The A1 and A3 regions are of increased importance, as they signify optimality 

thresholds for workload, and it is at these regions where drivers will initiate compensation 

strategies in order to avoid a decline in performance.                                

 

Figure 2-10: Workload-Performance Relationship in 6 regions. (de Waard, 1996) 

A distinction between state-related effort and task-related effort is also necessary to be 

made. State-related effort is exerted in the case that the operator’s state deteriorates but 

performance remains unaffected, while task-related effort is exerted to maintain performance in 

the case of increased task complexity. 



 

42 
 

 

Terminology in mental workload research has its roots in cognitive and physiological 

theories. As a result, the terms used are sometimes unclear, as different authors use the same 

terms with differing meanings. In this thesis, task demands are determined by goals that have to 

be reached by performance. Workload is the result of reaction to demand; it is the proportion of 

the capacity that is allocated for task performance. Effort is a voluntary mobilization process of 

resources. State-related effort is exerted to maintain an optimal state for task performance while 

task-related effort is exerted in the case of controlled information processing. 

2.2.3 Situational Awareness 

A general definition of Situational Awareness (SA), is “the perception of the elements in the 

environment within a volume of time and space, the comprehension of their meaning and 

projection of their status in the near future” (Endsley, 1995). Figure 2-11 depicts the three levels 

of SA, within a dynamic decision-making environment. Endsley and Garland (2000) further 

analyzed these three components of SA: Perception, Comprehension, and Projection. Perception 

is the most fundamental SA component, as with appropriate information regarding each 

particular situation, the higher levels cannot successfully function. Mere perception is not 

sufficient either though. How the perceived information is interpreted, integrated into a more 

complete depiction of the environment, and how that information relates to the current 

performance goals is also essential. Flach (1995) also states the importance of assigning meaning 

and objective significance to the subjectively perceived information. Finally, projection, the 

highest level of SA, involves the ability to predict and anticipate future situation events and 

dynamics, thus involving a higher level of situational understanding that results in more timely 

decision making. 

2.2.4 Relationships between the psychological concepts 

De Waard’s model (1996) proposed a relationship between workload and performance (Figure 2-

10), with regards to task demand, which corresponds to driver task difficulty. In this relationship, 

both high and low task difficulty results in higher workloads, while the lowest workload (and 

best performance) is observed in a region of optimal demand. The reasons stated for this effect is 

that for lower task difficulty the workload is higher due to state-related effort, as the driver must 

exert effort to maintain their attention on the task (their cognitive resource pool is diminished), 
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while for higher task difficulty the workload increases due to task related effort (there is higher 

demand for cognitive effort). 

 

Figure 2-11: Situation Awareness Framework in Dynamic Decision Making. (Endsley, 1995) 

In a similar manner, the Malleable Attentional Resources Theory (Young and Stanton, 

2012) correlates task difficulty and workload with situational awareness, showing that when 

underload is present, situational awareness tend to decrease as well, as the overall cognitive 

resources pool is reduced. However, Endsley (1995), while recognizing that other cognitive 

constructs (like workload) can affect and interact with situational awareness, they also behave 

independently of each other. Hendy (1995) and Wickens (1995) also considered situational 

awareness and mental workload as clearly distinct concepts, while at the same time recognizing 

that they interact in a complex manner. This association stems from the observation that both 

concepts seem to be influenced by many of the same human factors (such as limited processing 

capacity and limited working memory) and external variables (such as task demand and 

automation). To depict that correlation between the two concepts, Wickens (2008) proposed 
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three potential ways that workload and situational awareness interact with each other (Figure 2-

12), each of which results in a different optimal point of performance. He used automation as the 

reason for the workload reaction. 

 

Figure 2-12: Hypothetical relationship forms between WL and SA. (Wickens, 2008) 

Adapting Fuller’s model, Hoogendoorn (2013) also proposed a framework that: i) 

associates mental workload with the difference between driver capability and task demand, iii) 

considers workload as a determinant of situational awareness, and iii) directly links 

compensation effects with task demand and performance effects with situational awareness 

(Figure 2-13). 

In order to further distinguish the two concepts, and define their interactions, Wickens 

(2001), posited that “Mental Workload is fundamentally an energetic construct, in which the 

quantitative properties (“how much”) are dominant over the qualitative properties (“what kind”), 

as the most important element. In contrast, situation awareness is fundamentally a cognitive 

concept, in which the critical issue is the operator’s accuracy of ongoing understanding of the 

situation.” In other words, workload should be determined by its amount and type, while 

situational awareness by its quality (scope, depth and accuracy). Both the level of workload and 

the quality of the SA are influenced by exogenous and endogenous factors, with the former being 

inherent in the situation (e.g. task demand and situation complexity), while the latter relies in a 

person’s ability and skill (Vidulich, 2003). 
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Figure 2-13: Theoretical framework of adaptation effects (Hoogendoorn 2013) 

To the extent that “workload is caused by and SA supported by many of the same cognitive 

processes”, Vidulich and Tsang (2012) argued that they are enabled by, and subject to, common 

limitations. Therefore, the following relationships were identified: the more demanding the task, 

the more complex the situation and the more effort is required to complete the task and assess the 

situation. Higher level of workload demands more attention for adequate task performance 

leaving less attentional resources for situation assessment. Thus, task performance and SA may 

compete for the limited attentional resource supply, and therefore a high level of workload could 

lead to poor SA. On the other hand, increased effort could result in improved SA, so high-level 

workload can be sometimes necessary to maintain a good SA. Thus, a high-level of workload 

could be associated with either a low or high degree of SA, while poor SA may or may not inflict 

higher workload levels. In the latter, the driver could simply not be allocating additional effort 

either by choice or by not being aware of their current lack of SA. In the former, awareness of 

one’s lack of SA could start a course of action that increases the level of workload in the process 

of attaining and restoring SA. The ideal scenario is one where a high degree of SA would result 

in more efficient use of resources thus producing a low level of workload. In conclusion, mental 

workload and SA can both support each other as well as compete with each other, depending on 

the circumstances. 
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2.3 Human Factor Measurements 

According to reviews of measurement methods regarding workload (Matthews et al., 2014; de 

Waard, 1996) and situational awareness (Nguyen et al, 2019; Salmon et al., 2006), the various 

metrics and assessment techniques can be evaluated according to the following criteria codified 

by O’Donnell and Eggemeier (1986) and Eggemeier et al. (1991): 

 Sensitivity 

 Diagnosticity 

 Selectivity 

 Reliability 

 Intrusiveness 

 Operator acceptance 

 Implementation requirements 

The first four properties determine the validity of each metric: sensitivity indicates the 

capacity of the process or instrument to detect changes in the measured cognitive concept; 

diagnosticity is the ability to distinguish between different aspects of the concept (such as the 

three SA levels), or identify specific causal sources (such as a specific resource demand or a 

specific task); selectivity ensures that the metric is only sensitive to changes of the chosen 

concept and not to other factors or constructs; finally, reliability reflects the consistency of the 

measure both within and across different tests. The remaining three properties are practical 

considerations, but the first two can also indirectly impact the validity of the measurement 

method by affecting performance: intrusiveness is an undesirable property that should be 

minimized, since it is the amount of disruption to the primary task performance caused by the 

measurement technique; operator acceptance regards the level of approval of the procedure 

displayed by the operators, and is related to intrusiveness, but also to their perception of validity 

and artificiality of the technique, all of which can potentially result in undesired, performance-

altering behavior; last, implementation requirements are additional practical limitations of the 

measurement methodology, such as the need for specific equipment and software or training of 

the operators; 
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De Waard (1996) points that the above criteria exhibit a significant amount of 

interdependence. Diagnosticity is negatively correlated with sensitivity, since a highly diagnostic 

measurement is by definition sensitive only to distinct and limited changes of the measured 

concept. At the same time, selectivity is an essential prerequisite for diagnosticity, while 

considerably sensitive techniques generally tend to exhibit lower reliability, and intrusiveness 

can interfere with diagnosticity. Consequently, no measurement method can be ideal for all 

experimental purposes and the relative importance of the evaluation criteria should be adjusted 

accordingly. 

Matthews et al. (2014) add that the American Educational Research Association, 

American Psychological Association, and National Council on Measurement in Education 

(AERA/APA/NCME; 1999) consider the need for additional criteria in order to ascertain test 

validity when cognitive concepts such as workload and SA are involved: individual differences 

in responses must be accounted for, there must be evidence of a consistent internal structure of 

the metric that corresponds to a theoretical construct, as well as evidence on correlations with 

other relevant variables that also assess the common latent construct (convergent evidence). 

However, this type of evidence is found very rarely in the workload and SA literature, and thus it 

is difficult to satisfy these additional criteria, but during measurement method and model 

selection they should also be taken into consideration. 

2.3.1 Workload Measurement  

Being an abstract cognitive concept primarily applicable to human-machine interaction, 

cognitive workload is difficult to be directly observed or measured (Matthews et al., 2014). 

Instead, multiple methods have been devised to deduce the level of workload, including self-

reporting, psychophysiological measurements, and task performance (Hancock & Chignell, 

1988; O’Donnell & Eggemeier, 1986; Vidulich & Tsang, 2012). Currently, self-reporting scales, 

such as the NASA Task Load Index have seen the most use, and are the most thoroughly studied 

and validated (NASA-TLX; Hart, 2006; Hart & Staveland, 1988; Stanton et al., 2005). Vidulich 

and Tsang (2012) acknowledge the pragmatic utility of self-report methods, but point to several 

limitations. First, responses may be susceptible to biases, such as social desirability. Second, 

self-reports cannot be used for continuous monitoring of workload. Third, they do not capture 

subconscious aspects of workload. These disadvantages can be addressed through the use of 
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psychophysiological measurements, such as recordings of the electroencephalogram (EEG), 

electrocardiogram (ECG), eye tracking, and other response systems (Cain, 2007; Vidulich & 

Tsang, 2012; Wilson & Eggemeier, 1991) that can be obtained in real-world settings, typically 

without interfering with task performance (Stanton et al., 2005). However, both self-reporting 

and psychophysiological measurements of workload have limited practical use unless 

contextualized through their effect on driver performance. This effect is what task performance 

measures attempt to capture. 

2.3.1.1 Self-report techniques 

2.3.1.1.1 Rating Scale Mental Effort (RSME)  

Developed by Zijlstra (1993), the RSME asks subjects to indicate how much effort they invested 

towards the completion of a task on a unidimensional scale of 0 to 150. This assessment is 

assisted by providing nine descriptive statements related to invested effort along with their 

location on the scale (Figure 2-14). RSME addresses only the amount of invested effort and not 

the more abstract aspects of mental workload, such as mental demand. Its simplicity and ease of 

implementation, however, qualify RSME as a good candidate for self-report workload 

measurement, that also shows good correlation with more complex methods (Sartang et al., 

2017). 

In traffic research, RSME has not seen much use. De Waard (1996) applied the method in 

three simulation studies where baseline ratings of effort of driving were compared with ratings of 

effort of driving while using a phone, a feedback system, or being under the influence of 

Triprolidine, respectively. In all cases, RSME was able to distinguish between the task-load 

situations and baseline, showing sensitivity to both task-related effort, in the first two cases, and 

to state-related effort, in the latter. On the other hand, the diagnosticity of RSME is low unless 

applied per task dimension, as proposed by Zijlstra and Meijman (1989). Selectivity is difficult 

to assess as the main other factor to which the scale could be sensitive, physical workload, is 

very restricted in driving. Reliability is high, as sensitivity to mental workload in the three 

different studies was high. Primary-task intrusion is low as long as the rating is asked after 

completion of the task. The implementation requirements are low since the measures are 

collected without the need for any equipment. Finally, no problems in operator acceptance have 

been reported, which suggests high operator acceptance (de Waard,1996). 
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Figure 2-14: Rating Scale Mental Effort (RSME) graded and labeled axis (Zijlstra, 1993) 

 

2.3.1.1.2 NASA Task Load Index (NASA-TLX) 

Developed by Hart and Staveland (1988) at the Human Performance Group at NASA's Ames 

Research Center, this multidimensional workload rating technique is one of the most frequently 

used across a wide range of applications. The method uses six dimensions to assess mental 

workload: mental demand, physical demand, temporal demand, performance, effort, and 

frustration. The subjects evaluate each category on a twenty‐step scale (Figure 2-15) and then an 

overall workload score is then derived based on a weighted average of the ratings on these six 

subscales (Rubio et al, 2004). The weights are obtained from fifteen paired comparisons between 

the six categories, in each of which the subject selects which workload dimension contributed 

more to their feeling of workload. The number of times a dimension is chosen as more relevant 

to the overall workload is the weighting of that dimension scale. The final workload score, 

ranging from 0 to 100, is obtained by multiplying that weight by the corresponding subscale 
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score for all six categories, summing them, and dividing by 15. Like RSME, NASA-TLX is 

administered after task completion. In 1992, Hill et al. determined that NASA-TLX exhibited 

high sensitivity even outside its original application in aviation, while its multidimensional 

nature results in high diagnosticity as well. Stojmenova and Sodnik (2015) observed a strong 

influence by the last performed task to the reported ratings, and a heavy reliance on the subject’s 

memory and recollection abilities, which is not conducive to high reliability. Like RSME, the 

method is non-intrusive, with no implementation requirements and high operator acceptance 

(Tokunaga et al., 2000). However, both methods cannot provide continuous data regarding 

workload variance across time. 

2.3.1.1.3 Driver Activity Load Index (DALI) 

Since NASA-TLX was developed for use in aviation applications, its six subscales are not 

specifically attuned to the dimensions that define the workload of the driving task (Pauzie & 

Pachiaudi, 1997; Pauzie, 2008a, Pauzie, 2008b). For example, the driving task is not considered 

physically demanding, thus the respective dimension had much less relevance in assessing a 

driver’s workload. For this reason, Pauzie and Pachiaudi (1997) proposed a revision of the 

NASA-TLX method, where the six subscales were replaced with the following: effort of 

attention, visual demand, auditory demand, temporal demand, interference, and situational stress. 

The revised method was named the Driver Activity Load Index (DALI) and is otherwise 

identical in its implementation to NASA-TLX. However, although DALI was developed 

specifically for driving applications, NASA-TLX remains the most commonly used method for 

driver workload applications (Stojmenova & Sodnik, 2015). 
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Figure 2-14: NASA Task Load Index (NASA-TLX) subscales (Hart & Staveland, 1988) 

 

2.3.1.1.4 Subjective Workload Assessment Technique (SWAT) 

Developed by Reid and Nygren (1988), SWAT uses three dimensions to assess workload: time 

load, mental effort load, and psychological stress load. Each category is rated on a three-level 

scale: (1) low, (2) medium, and (3) high, which are defined in Figure 2-15. The three ratings are 

eventually combined into a single, overall workload score between 0 and 100 through a scale 

development process. This involves the subjects being presented with 27 cards that correspond to 

all possible combinations of the three levels of each of the three dimensions, and tasked to rank 

them in an order that reflects their own perception of increasing workload. Scale development is 

a complex procedure involving conjoined measurement and scaling techniques which requires a 

significant amount of time (for the subjects) and resources (computer analysis) to implement 

(Rubio et al., 2004). 
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Figure 2-15: Subjective Workload Assessment Technique (SWAT) rating scale definitions (Reid 
and Nygren, 1988) 

The SWAT technique exhibits good sensitivity in a variety of tasks, (manual control tasks, 

display monitoring), but is less sensitive in low workload conditions. It has the advantage of 

being non-intrusive, but high levels of statistical expertise required to apply and interpret 

conjoint measurement for the scale development process, and is also less suitable for persons 

unfamiliar with running psychometric tests. It has also limited applications in driving 

applications (Janssen, Kuiken, & Verwey, 1994; Verwey & Veltman, 1995). 

2.3.1.1.5 Instantaneous self-assessment (ISA) 

ISA is a technique that was developed to provide immediate subjective ratings of workload 

demand during the performance of primary work tasks (Jordan & Brennen, 1992). ISA involves 

subjects self-rating their workload during a task (normally every two minutes) on a scale of 1 

(low) to 5 (high). Typically, the assessment is performed through a color-coded keypad which 

flashes when a workload rating is required and the participant simply pushes the button that 

corresponds to their perceived workload rating. Girard et al. (2005) adapted the ISA method by 

adding a 5-level “relative” scale to the original 5-level “absolute” scale, based on the assumption 
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that drivers can better gauge changes in their workload than evaluate their actual workload level. 

Using an auditory - instead of a visual - stimuli, to indicate when a rating is required, they first 

asked the subjects to assess their workload on the absolute ISA scale, and then on the relative 

scale, that takes the following values : (-2) “the load is much lower than the last assessment”, (-

1) “the load is lower than the last assessment”, (0) “the load is the same as the last assessment”, 

(1) “the load is higher than the last assessment”, (+2) “the load is much higher than the last 

assessment”. In a 2016 driving simulation study, Jansen et al. used the original absolute ISA 

scale to assess driver workload, but further adapted the technique’s interface by not only using an 

auditory prompt but also evoking a verbal numeric response in order to “minimize interference 

with the visual/manual driving task”. In contrast to the previous self-report techniques, ISA 

produces a temporal workload profile of each driving task, thus allowing for higher 

diagnosticity. It is also a simple method, with few implementation requirements and high 

operator acceptance. The method is intrusive to the primary task, but not to a high degree, and 

several alternative protocols (auditory trigger, verbal reply) have been developed to further 

mitigate that disadvantage. However, despite its extensive use in many applications, only limited 

validation evidence for ISA has been available (Jordan & Brennen, 1992) as on-line self-

reporting of cognitive states has often been shown to be less accurate. Thus, to ensure 

comprehensiveness, ISA has often been used in combination with other self-reporting 

techniques, like NASA-TLX. 

2.3.1.1.6 Continuous Subjective Ratings (CSR).  

Schießl (2009), while acknowledging the high sensitivity of previous self-report measurements, 

pointed that neither post-task (NASA-TLX, SWAT) nor discrete event-, time-, or spatial-

triggered (ISA) workload assessment techniques are ideal for capturing the effects of 

dynamically changing load factors over time. Thus, a continuous subjective rating method (CSR) 

was developed, where subjects rated their experienced load during the drive using a 15-point 

rating scale (Figure 2-16), giving a new rating whenever they perceived a change of their 

subjective workload, instead of at specific trigger points. Both online (while driving) and offline 

(post-hoc, using video recordings of the drive) ratings were tested, where the first is more 

intrusive, while the second depends on memory skills. The results were comparable for both 

approaches, and Schießl (2009) concluded that the choice can depend the specific requirements 

and goals of each experiment. Finally, noticing biased clustering of the results, Teh et al. (2014) 
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suggested a simpler 10-point rating scale, representing low (1-3), medium (5-6), and high (8-10) 

workload, instead. 

 

Figure 2-16: Continuous Subjective Ratings (CSR) scale (Schießl, 2009) 

2.3.1.2 Psychophysiological measurements 

2.3.1.2.1 Cardiac activity measures 

The electrocardiogram (ECG) is a technique that monitors electrical activity in the heart in a 

continuous manner. Metrics such as heart rate (HR), heart rate variability (HRV), and Inter-Beat-

Interval (IBI) can be used for workload assessment (de Waard, 1996). It is considered an 

intrusive technique since electrodes or contact points must be placed on the subjects as part of 

the ECG equipment and heart rate monitors. In the absence of physical effort and intense 

emotional factors (i.e. fear), comparing heart rate (HR) during task performance with a baseline, 

is a sufficiently accurate measure of workload. Thus, the method has high sensitivity, but low 

selectivity. Heart rate variability (HRV) is also a good measure of cognitive workload, with HRV 

decrease shown to be more sensitive to increases in workload than HR, though combining the 

two metrics provides increased diagnosticity. For example, Lee and Park (1990) showed that an 

increase in physical load decreased HRV and increased HR, while an increase in mental load 

reduced HRV with minimal effect on HR. 

2.3.1.2.2 Brain activity measures 

The background Electroencephalogram (EEG) detects changes in electrical potential arising from 

the activity in the brain cells. The EEG provides two main ways of determining workload: using 

raw EEG data synchronized to the driving task timeline and using event-related potentials (ERP) 

(Kincses et al., 2008). EEG is a highly intrusive technique, as the device uses electrodes attached 

to the scalp of the subject. 

The raw EEG signal is typically partitioned into five frequency bands: delta (0.5-4Hz), 

theta (4-8Hz), alpha (8-13Hz), beta (13-40Hz), gamma (>40Hz). Studies have shown that the 

power of alpha band increases the more relaxed the driver state is, while an increase in the beta 

band power is correlated with tension and cognition (Kim et al., 2014). A decrease in alpha band 

activity with a simultaneous increase in theta band activity is usually associated with increased 



 

55 
 

 

workload (de Waard, 1996, Kramer, 1991). The ability to combine the results of multiple 

frequency bands in order to distinguish between the different driver states and conditions, 

produces a method with high diagnosticity. 

An event-related potential (ERP) is the electrophysiological brain response directly 

accompanying a specific sensory, cognitive, or motor event. ERP captures coordinated neural 

activity by analyzing electrical shifts temporally relate to a task. Several studies apply this 

analysis to detect changes in workload (Prinzel et al., 2001). More specifically, observed peaks 

of around 300ms (the P300 amplitude) correlate with cognitive load and processing (Light et al., 

2010). However, because “ERP signals are relatively small and ensemble averaging across many 

stimuli is necessary for meaningful interpretation”, the sensitivity of this method is not always 

sufficient (Vidulich & Tsang, 2012). 

2.3.1.2.3 Ocular activity measures 

A variety of measures related to eye activity had been used as estimates of the cognitive 

workload of drivers, including blinks, fixations, and pupil dilation (Marquart & de Winter, 

2015).  

Blink rate analysis performed by Kramer (1991) initially showed mixed results with 

regards to workload. Recarte et al. (2008) settled the apparent discrepancies by observing that 

“visual and mental workload produce opposite effects: blink inhibition for higher visual demand 

and increased blink rate for higher mental workload”, which means that the method has low 

selectivity, with the results being highly affected by visually demanding tasks. Blink rate 

changes have also been observed in studies regarding highly automated driving. Specifically, it 

was found that blink rate increases during highly automated driving in comparison to manual 

driving, despite the assumed decrease in mental workload that is derived from automation (Merat 

et al., 2012). Blink duration was also studied by Kramer (1991), who found that increasing task 

demand resulted in shorter blink durations.  

Fixation duration has been the subject of several workload studies. Underwood, Crundall, 

and Chapman (2011) reviewed several studies that correlated eye fixation duration with high 

mental load, in attentionally demanding situations. 

Pupillometry, the measurement of pupil diameter, is also a promising method of assessing 

the cognitive workload of the driver. Pupil dilation is associated with changes in workload levels 
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through what is called task-evoked pupillary responses (TEPR) (Strayer et al., 2013, Devos et al., 

2017). Several studies have shown that cognitive workload and pupil diameter tend to increase 

together (Kahneman et al., 1969; Klingner, 2010; Szulewski et al., 2014). However, pupil 

diameter is also affected by other factors, with the most important being the presence or absence 

of light. For this reason, the Index of Cognitive Activity (ICA) a was developed (Marshall, 2002) 

in order to measure pupil changes that are caused by mental effort, while factoring out the light 

reflexes. This is achieved by distinguishing between the two sets of muscles that control the 

pupil: the circular set which reacts to light, and the radial set that only reacts to mental effort. 

The ICA has been incorporated into most modern eye-tracking devices, allowing for real-time 

automatic and non-disruptive cognitive workload assessment. 

2.3.1.3 Performance measures 

2.3.1.3.1 Primary Task Performance  

De Waard (1996) showed that several performance aspects of the primary task (driving), 

including speed control, car-following ability and lane-keeping ability, were related to workload 

levels. Thus, performance measures such as speed instability, distance headway instability, and 

the standard deviation of the lateral position (SDLP) or the standard deviation of the steering 

wheel movements (SDSTW) can be a useful measure of task workload. Of the above, the two 

lateral deviation measures (SDLP, SDSTW) showed higher sensitivity and reliability (Brookhuis, 

Louwerens, & Hanlon, 1985; Brookhuis et al., 1991) in assessing driver workload. However, 

studies summarized by de Waard (1996) produced conflicting results between the lateral 

deviation metrics and workload (presumably due to unknown interfering factors), demonstrating 

that these measures exhibit low selectivity. The diagnosticity of these performance measures is 

also low. On the other hand, though, they are non-intrusive and with high operator acceptance. 

2.3.1.3.2 Secondary Task Performance.  

These methods assess workload by requiring the subjects to react to a visual or sensory stimulus 

and measuring their performance in that secondary task under the assumption that high cognitive 

workload will result in less mental resources being allocated towards the secondary task, 

reducing the performance. Common measures include the peripheral detection task (PDT) and 

the detection response task (DRT). The PDT procedure measures the detection ability and 

response time of the subjects to multiple stimuli (typically visual) presented during the driving 
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task (Patten et al., 2006). The response is usually signified by pressing a button on the steering 

wheel after a stimulus has been detected. The DRT evolved from the PDT, incorporating controls 

to eliminate sources of unwanted variability in the DRT metrics and conflicts between the visual 

demands of the primary (driving) and secondary task (Ranney et al., 2014). Thus, PDT and DRT 

differing primarily in the method of target presentation, with the most prominent version 

between that of the tactile DRT (TDRT) which uses an electrical vibrator taped on the subject’s 

shoulder to deliver the stimulus. In this way, the TDRT also eliminates all potential visual 

conflicts. The DRT assesses performance by measuring response time, hit rate, and miss rate 

(ISO 17488, 2016). Manjunatha and Elefteriadou (2018) proposed a single performance 

assessment measure that combines both miss rates and reaction times. Reaction “cut-off” times 

were assumed (2 seconds for the lower cut-off point and 3 seconds for the higher cut-off point), 

and responses higher than 3 seconds were considered “complete misses” (maximum workload), 

less than 2 seconds were “complete hits” (minimum workload), while the workload for responses 

between 2 and 3 seconds was assumed to be linearly increasing with the reaction time (Figure 2-

17). 

 

Figure 2-17: Proposed relationship between Reaction Time (RT) and Workload (PDT)  
(Manjunatha & Elefteriadou, 2018) 

2.3.1.4 Summary 

Table 2-1 comparatively summarizes the characteristics, as well as the advantages and 

disadvantages of the workload measurement techniques presented in this chapter.
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2.3.2 SA Measurement 

Measurement of actual SA levels is troublesome because SA is an inferred cognitive state that 

only indirectly relates to decision making and performance. In addition, the lack of a universally 

accepted model of SA results in measurement techniques that capture different aspects of the 

concept. Some deal with the processes used in achieving and maintaining SA, while others 

capture SA as the end result of these processes (Stanton et al., 2005). Therefore, there are a 

number of different SA assessment approaches available to researchers. They can be divided into 

freeze probe, real-time probe, self-rating, observer-rating, and physiological techniques. A short 

description about each technique is provided in the sections that follow.  

2.3.2.1 Freeze-probe techniques 

Applicable only to simulation experiments, freeze-probe techniques involve randomly pausing 

the task and evaluating the subject’s perception of the current situation via queries. The main 

advantage of the freeze-probe techniques is that they provide a simple and direct way to 

quantitatively assess the subject’s overall SA (Salmon et al., 2006). They are also free from 

issues associated with post-hoc data collection, such as performance bias or insufficient recall 

(Stanton et al., 2005) However, they are also highly intrusive on the primary task performance, 

as they interrupt the natural flow of the task. Sensitivity is low, and the importance of all queried 

topics is assumed to be equal, while the subject’s memory capabilities are introduced as an 

additional complicating factor. Finally, freeze-probe methods cannot be applied in the field or in 

real time, but require expensive equipment under a simulated environment that has pausing 

capabilities (Salmon et al., 2006), and significant preparation is also require for the analysis 

(Stanton et al., 2005). The Situational Awareness Global Assessment Technique (SAGAT) 

developed by Endsley (2000) is the most common freeze-probe technique. The SAGAT queries 

are designed to assess all three levels of situational awareness (perception, comprehension, and 

projection). The validity of the method has been confirmed by multiple studies. 

2.3.2.2 Real-time probe techniques 

These methods are similar to freeze-probe techniques but the subjects are queried “on-line”, 

without freezing the simulation. Both the accuracy of the answer and the response latency are 

considered for assessing the subject’s situational awareness. The primary advantage of the real-

time probe techniques is that they retain the objectivity of freeze-probe methods but reduce the 
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level of intrusion on task performance by avoiding task freezes. However, real-time probe 

queries may also function as distractions, drawing the attention of the participant, and thus 

introducing a different kind of bias, so the intrusiveness of these techniques is not minimal. The 

situation present assessment method (SPAM) is the most common real-time probe technique and 

was developed by Durso et al. (1998) to assess the situational awareness of air traffic controller. 

Unlike SAGAT, SPAM measures the ability of the subject to locate information in the 

environment as an indicator of SA, rather than the recall of specific information regarding the 

current situation. SPAM queries are typically administered and answered verbally. SPAM is 

quick and easy to use, requiring minimal training, and its real-time nature allows it to be used 

even in non-simulated applications. 

2.3.2.3 Self-rating techniques 

Similar to self-reporting workload measurements, self-rating techniques involve questionnaires 

that the subjects reply to after the completion of the task. The Situation Awareness Rating 

Technique (SART) is a multidimensional scaling technique developed by Taylor (1990) that 

consists of ten subscales each rated from one (low) to seven (high). The subscales include: 

instability of situation, variability of situation, complexity of the situation, arousal, spare mental 

capacity, concentration, division of attention, information quantity, information quality, and 

familiarity (Figure 2-18). 

These ten subscales are categorized in three domains: attentional demand (D), attentional 

supply (S), and understanding (U). A composite SART score is calculated using the following 

formula: SA = U – (D – S), where: U is summed understanding, D is summed demand, and S is 

summed supply (Selcon & Taylor, 1989). The quicker and simpler method, 3-D SART, uses a 

100-point scale from 0 (low) to 100 (high), directly for each of the three domains (demand on 

attentional resources, supply of attentional resources and understanding of the situation). Then 

the overall SART score is calculated similar to above: SA = Understanding – (Demand – 

Supply). 
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Figure 2-18: SART questionnaire with rating subscales (Taylor, 1990) 
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Figure 2-19: SART subscales, their definitions and categorical domains (Selcon & Taylor, 1989) 

2.3.2.4 Process Indices 

Process indices can also be used to measure SA.  Process indices involve recording the processes 

that the participants use in order to develop SA during the task under analysis.  One example of 

using process indices to assess SA is the measurement of participant eye movements during task 

performance (Smolensky, 1993). Eye-tracking measures such as gaze overlays, fixation patterns, 

and saccades can also be used for assessing situational awareness. For example, fixations can be 

used to determine how the participant’s attention was allocated during the task under analysis. 

There are a number of disadvantages associated with the use of an eye-tracker device, including 

their indirect nature (how do we know the participant perceived what they looked at?), an 

inability to be used outside of laboratory settings, the temperamental nature of the equipment, 

and also the problem of the ‘look but do not see’ phenomenon, whereby participants may fixate 

upon an environmental element but do not actually perceive it.  Concurrent verbal protocol 

analysis (VPA) involves creating a written transcript of operator behavior as they perform the 

task under analysis.  The transcript is based upon the operator ‘thinking aloud’ as he conducts the 

task under analysis.  VPA is used as a means of gaining an insight into the cognitive aspects of 

complex behaviors and is often used to indicate operator SA during task performance (Salmon et 

al., 2006).
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2.4 Vehicle Automation 

 

2.4.1 Automation Classification 

The driving task is highly complex and involves “different levels of control with different levels 

of temporal granularity” (Michon, 1985). Lu et al. (2016) divided it in three primary sub-tasks: 

lateral control, longitudinal control, and monitoring. That distinction is also used in the 

definitions that classify vehicle automation levels independently developed by the German 

Federal Highway Research Institute (BASt; Gasser & Westhoff, 2012), the Society of 

Automotive Engineers (SAE, 2014), and the United States National Highway Traffic Safety 

Administration (NHTSA, 2013). Even though the BASt, SAE and NHTSA definitions differ 

from each other, all three organizations use similar criteria based on how the three essential sub-

tasks are distributed between the driver and the automated system. 

2.4.1.1 NHTSA Definitions of Vehicle Automation Levels 

The definitions below were developed by the United States National Highway Traffic Safety 

Administration and cover the complete range of vehicle automation, from vehicles that do not 

have any of their control systems automated (level 0) through fully automated vehicles (level 4) 

(NHTSA, 2013). 

 Level 0 – No-Automation. The driver is in complete and sole control of the primary 

vehicle controls (brake, steering, throttle, and motive power) at all times, and is solely 

responsible for monitoring the roadway and for safe operation of all vehicle controls. 

Vehicles that have certain driver support/convenience systems but do not have control 

authority over steering, braking, or throttle would still be considered “level 0” vehicles.  

Examples include systems that provide only warnings (e.g., forward collision warning, lane 

departure warning, blind spot monitoring) as well as systems providing automated 

secondary controls such as wipers, headlights, turn signals, hazard lights, etc.   

 Level 1 – Function-specific Automation. Automation at this level involves one or more 

specific control functions; if multiple functions are automated, they operate independently 

from each other. The driver has overall control, and is solely responsible for safe operation, 

but can choose to cede limited authority over a primary control (as in adaptive cruise 

control), the vehicle can automatically assume limited authority over a primary control (as 
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in electronic stability control), or the automated system can provide added control to aid the 

driver in certain normal driving or crash-imminent situations (e.g., dynamic brake support 

in emergencies). The vehicle may have multiple capabilities combining individual driver 

support and crash avoidance technologies, but it does not replace driver vigilance and does 

not assume driving responsibility from the driver. The vehicle’s automated system may 

assist or augment the driver in operating one of the primary controls – either steering or 

braking/throttle controls (but not both). As a result, there is no combination of vehicle 

control systems working in unison that enables the driver to be disengaged from physically 

operating the vehicle by having his or her hands off the steering wheel and feet off the 

pedals at the same time. Examples of function specific automation systems include: cruise 

control, automatic braking, and lane keeping. 

 Level 2 - Combined Function Automation. This level involves automation of at least two 

primary control functions designed to work in unison to relieve the driver of control of 

those functions. Vehicles at this level of automation can utilize shared authority when the 

driver cedes active primary control in certain limited driving situations. The driver is still 

responsible for monitoring the roadway and safe operation and is expected to be available 

for control at all times and on short notice. The system can relinquish control with no 

advance warning and the driver must be ready to control the vehicle safely. An example of 

combined functions enabling a Level 2 system is adaptive cruise control in combination 

with lane centering. The major distinction between level 1 and level 2 is that, at level 2 in 

the specific operating conditions for which the system is designed, an automated operating 

mode is enabled such that the driver is disengaged from physically operating the vehicle by 

having his or her hands off the steering wheel and foot off pedal at the same time. 

 Level 3 - Limited Self-Driving Automation. Vehicles at this level of automation enable 

the driver to cede full control of all safety-critical functions under certain traffic or 

environmental conditions and in those conditions to rely heavily on the vehicle to monitor 

for changes in those conditions requiring transition back to driver control. The driver is 

expected to be available for occasional control, but with sufficiently comfortable transition 

time. The vehicle is designed to ensure safe operation during the automated driving mode. 

An example would be an automated or self-driving car that can determine when the system 

is no longer able to support automation, such as from an oncoming construction area, and 
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then signals to the driver to reengage in the driving task, providing the driver with an 

appropriate amount of transition time to safely regain manual control. The major distinction 

between level 2 and level 3 is that at level 3, the vehicle is designed so that the driver is not 

expected to constantly monitor the roadway while driving. 

 Level 4 - Full Self-Driving Automation. The vehicle is designed to perform all safety-

critical driving functions and monitor roadway conditions for an entire trip. Such a design 

anticipates that the driver will provide destination or navigation input, but is not expected 

to be available for control at any time during the trip. This includes both occupied and 

unoccupied vehicles. By design, safe operation rests solely on the automated vehicle 

system. 

2.4.1.2 BASt Definitions of Vehicle Automation Levels 

The German Federal Highway Research Institute (BASt; Gasser & Westhoff, 2012) defines the 

following five vehicle automation categories, from lower to higher degree of automation: 

 Driver Only. Human driver executes manual driving task. 

 Driver Assisted. The driver permanently controls either longitudinal or lateral control. The 

other task can be automated to a certain extent by the assistance system. 

 Partially Automated.  The system takes over longitudinal and lateral control, the driver 

shall permanently monitor the system and shall be prepared to take over control at any 

time. 

 Highly Automated. The system takes over longitudinal and lateral control; the driver is no 

longer required to permanently monitor the system. In case of a take-over request, the 

driver must take-over control with a certain time buffer. 

 Fully Automated. The system takes over longitudinal and lateral control completely and 

permanently. In case of a take-over request that is not followed, the system will return to 

the minimal risk condition by itself. 

Table 2-3 describes each automation level in more detail, according to the tasks assigned to the 

driver or the automated systems, and also provides examples of said systems.



 

 
 

67 

T
ab

le 2-3. C
ategorization and d

escription
 of autom

ated drivin
g functions (B

A
St; G

asser &
 W

esthoff, 2012). 

N
om

enclature 
D

escription
 of autom

ation level according to driver and system
 task d

istrib
u

tion
 

E
xem

p
lary System

s 
D

river O
nly 

T
he driver continuously (throughout the com

plete trip) accom
plishes longitudinal 

(accelerating /braking) and lateral (steering) control. 
N

o (driver-assistance) system
 active that 

intervenes into longitudinal and lateral control 
A

ssisted 
T

he driver continuously accom
plishes either lateral or longitudinal control. T

he other/ 
rem

aining task is accom
plished by the autom

ating system
 to a certain level only.  

 
T

he driver m
ust perm

anently m
onitor the system

  
 

T
he driver m

ust at any tim
e be prepared to take over com

plete control of the 
vehicle 

A
daptive C

ruise C
ontrol:  

 
L

ongitudinal control w
ith adaptive 

distance and speed control 
P

arking assistance:  
 

L
ateral control (autom

atic steering into a 
parking space) 

P
artially 

A
utom

ated 
T

he system
 takes over lateral and longitudinal control (for a certain am

ount of tim
e 

and/ or in specific situations).  
 

T
he driver m

ust perm
anently m

onitor the system
  

 
T

he driver m
ust at any tim

e be prepared to take over com
plete control of the 

vehicle 

M
otorw

ay assistant:  
 

A
utom

atic longitudinal and lateral control 
 

O
n m

otorw
ays up to an upper speed lim

it  
 

T
he driver m

ust perm
anently m

onitor and 
take over im

m
ediately in case of takeover 

request by the system
 

H
ighly 

A
utom

ated 
T

he system
 takes over lateral and longitudinal control for a certain am

ount of tim
e in 

specific situations. 
 

T
he driver needs not perm

anently m
onitor the system

 as long as it is active 
 

If necessary, the driver is requested to take over control by the system
 w

ith a 
certain tim

e buffer.  
 

A
ll system

 lim
its are detected by the system

. T
he system

 is not capable of re-
establishing the m

inim
al risk condition from

 every initial state 

M
otorw

ay chauffeur:  
 

A
utom

atic longitudinal and lateral control 
 

O
n m

otorw
ays up to an upper speed lim

it 
 

T
he driver need not perm

anently m
onitor 

 
In case of a take-over request, the driver 
m

ust react w
ith a certain tim

e buffer 

Fully 
A

utom
ated 

T
he system

 takes over lateral and longitudinal control com
pletely w

ithin the individual 
specification of the application.  

 
T

he driver need not m
onitor the system

  
 

B
efore the specified lim

its of the application are reached, the system
 requests 

the driver to take over w
ith sufficient tim

e buffer 
 

In absence of a takeover, the system
 w

ill return to the m
inim

al risk condition 
by itself  

 
A

ll system
 lim

its are detected by the system
, the system

 is capable to return to 
the m

inim
um

 risk condition in all situations 

M
otorw

ay pilot:  
 

A
utom

atic longitudinal and lateral control 
 

O
n m

otorw
ays up to an upper speed lim

it 
 

T
he driver need not m

onitor 
 

In case the driver does not react to a take- 
over request, the system

 w
ill brake dow

n 
to standstill 

  



 

68 
 

 

2.4.1.3 SAE Definitions of Vehicle Automation Levels 

The Society of Automotive Engineers (SAE, 2014) defines six levels (0 to 5) of driving 

automation, covering the full spectrum from no automation to full automation, and grouped into 

two categories: 

 Human driver monitors driving environment: 

o Level 0 - No Automation 

o Level 1 - Driver Assistance 

o Level 2 - Partial Automation 

 Automated driving system monitors driving environment: 

o Level 3 - Conditional Automation 

o Level 4 - High Automation 

o Level 5 - Full Automation 

Tables 2-4 and 2-5 provide descriptions of the six levels with regards to the role (if any) of 

a human driver and the dynamic driving task. These roles describe technical capability and not 

legality. Levels of driving automation are descriptive rather than normative and technical rather 

than legal. Elements indicate minimum rather than maximum capabilities for each level. 

Table 2-4. Description of automation levels where the human driver monitors driving environment 

(SAE, 2014). 

Automation Level Role of Human Driver Role of System 
Level 0 - No 
Automation 

 Monitors driving environment  
 Executes the dynamic driving task (steering, 

accelerating, braking) 

 No active automation (but 
may provide warnings) 

Level 1 - Driver 
Assistance 

 Monitors driving environment 
 Executes either longitudinal (accelerating, braking) 

or lateral (steering) dynamic driving task 
 Constantly supervises dynamic driving task executed 

by driver assistance system 
 Determines when activation or deactivation of driver 

assistance system is appropriate, except for systems 
that automatically intervene in an emergency 

 Takes over immediately when required 

 Executes portions of the 
dynamic driving task not 
executed by the human driver 
(either longitudinal or lateral) 
when activated 

 Can deactivate immediately 
with request for immediate 
takeover by the human driver 

Level 2 - Partial 
Automation 

 Monitors driving environment 
 Constantly supervises dynamic driving task executed 

by partial automation system 
 Determines when activation or deactivation of partial 

automation system is appropriate, except for systems 
that automatically intervene in an emergency 

 Takes over immediately when required 

 Executes longitudinal 
(accelerating, braking) and 
lateral (steering) dynamic 
driving task when activated 

 Can deactivate immediately 
with request for immediate 
takeover by the human driver 
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Table 2-5. Description of automation levels where the automated driving system monitors driving 

environment (SAE, 2014). 

Automation Level Role of Human Driver Role of System 
Level 3 - Conditional 
Automation 

 Determines when activation 
of automated driving system 
is appropriate 

 Takes over upon request 
within lead time 

 May request deactivation of 
automated driving system 

 Monitors driving environment when activated 
 Permits activation only under conditions (use cases) 

for which it was designed 
 Executes longitudinal (accelerating, braking) and 

lateral (steering) portions of the dynamic driving 
task when activated 

 Deactivates only after requesting driver takeover 
with a sufficient lead time 

 May, under certain, limited circumstances, transition 
to minimal risk condition if human driver does not 
take over 

 May momentarily delay deactivation when 
immediate human takeover could compromise safety 

Level 4 - High 
Automation 

 Determines when activation 
of automated driving system 
is appropriate 

 Takes over within lead time, 
if requested 

 May request deactivation of 
automated driving system 

 Some applications in this 
category may not entail a 
human driver. 

 Monitors driving environment when activated 
 Permits activation only under conditions (use cases) 

for which it was designed 
 Executes longitudinal (accelerating, braking) and 

lateral (steering) portions of the dynamic driving 
task when activated 

 Initiates deactivation when design conditions are no 
longer met 

 Deactivates only after human driver takes over 
 Transitions to minimal risk condition if human 

driver does not take over 
 May momentarily delay deactivation when 

immediate human takeover could compromise safety   
Level 5 - Full 
Automation 

 May activate automated 
driving system 

 May request deactivation of 
automated driving system 

 This category may not 
entail a human driver. 

 Monitors driving environment when activated 
 Executes longitudinal (accelerating, braking) and 

lateral (steering) portions of the dynamic driving 
task when activated 

 Deactivates only after human driver takes over or 
vehicle reaches its destination 

 Transitions to minimal risk condition as necessary if 
failure in the automated driving system occurs 

 May momentarily delay deactivation when 
immediate human driver takeover could compromise 
safety 

 

Table 2-6 summarizes the previous descriptions, provides a breakdown of each driving task 

alongside whether it is assigned to a human driver or to the automated system, and compares the 

SAE definitions with those of BASt and NHTSA, while Table 2-7 presents the approximate 

alignment among SAE, BASt and NHTSA more explicitly. 

 



 

70 
 

 

Table 2-6. SAE automation level definitions, task breakdown, and comparison to BASt and NHTSA 

automation levels (SAE, 2014). 

 

Table 2-7. Approximate alignment among SAE, BASt, and NHTSA levels (SAE, 2014). 
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In considering the differences between the SAE and NHTSA levels, it is helpful to bear in 

mind that NHTSA’s level 4 encompasses SAE levels 4-5 in a manner that is not as simple as 

BASt’s decision to omit “full” automation. For example, certain automated driving systems that 

are geographically or environmentally limited are included in NHTSA’s level 4 rating because 

they do not require the presence of a human driver, while SAE level 5 excludes such systems, 

because they are not capable of delivering the same degree of on-road mobility as a conventional 

vehicle driven by a human (SAE, 2014). 

2.4.2 Human Factors and Automated Driving 

The interaction between the human driver and automated vehicles has been the subject of 

multiple studies (e.g. Nilsson, 1995). Originally, automation technologies were expected to 

provide significant benefits, such as the reduction of driver workload (Boer & Hoedemaeker, 

1998) and safety improvements through minimizing driving errors associated with individual 

driving styles (Goodrich & Boer, 2003). However, further studies also demonstrated that high 

levels of vehicle automation can result in unwanted behavioral changes in drivers (Jamson et al., 

2013), such as reduced situation awareness (de Winter et al., 2014), mental underload (Young & 

Stanton, 2002; Stapel et al., 2017) and eventually impaired performance (Engström et al., 2017). 

These behavioral adaptations can be mainly attributed to automation systems altering driver’s 

role from an active operator to a more passive observer and system supervisor (Merat et al., 

2012; Martens & van den Beukel, 2013) in an increasing function correlated to the levels of 

automation. This can give rise to the “out-of-the-loop performance problem” (Endsley & Kiris, 

1995) which in turn results into overreliance in automation, erratic mental workload, skill 

degradation, reduced situation awareness and increased reaction times. 

2.4.2.1 Workload and Automation 

A meta-analysis of studies that investigated the effects of adaptive cruise control (ACC) and 

highly automated driving (HAD) systems on driver workload was performed by de Winter et al. 

(2014). Studies that relied on post-hoc self-reporting workload levels showed that ACC resulted 

in a relatively small workload reduction (about 9% on average), while HAD resulted in a much 

larger reduction (45%), compared to manual driving. On-line secondary-task studies showed a 

12% increase in secondary tasks performed under ACC and a 150% increase under HAD, again 

hinting a significant workload reduction compared to non-automated driving. Physiological 
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measure studies also generally found lower mean heart rates for ACC and HAD, but the results 

were not as consistent as before. When workload was measured via the drivers’ reaction to visual 

stimuli (PDT), ACC showed quicker reactions than manual drivers, but for HAD the reaction 

times were slower, potentially capturing the effects of mental underload. Similar results were 

obtained from gaze-focusing eye-tracking techniques where ACC and manual driving were 

statistically similar, but HAD drivers where much less likely (by 33%) to direct their gaze 

towards the roadway, indicating both reduced workload and reduced situational awareness 

(Llaneras et al., 2013). 

In summary, ACC is shown to contribute to small reductions in self-reported workload and 

small performance improvements on self-paced secondary tasks, while HAD results in large 

reductions in self-reported workload and large performance improvements, when compared to 

manual driving. Therefore, the evidence strongly suggests that automation reduces workload, 

especially as it takes over more of the driving sub-tasks. However, physiological measurements, 

such as heart rate, were less conclusive, and reaction times initially decreased on low automation 

levels, but subsequently became greater than manual driving for high automation levels. 

2.4.2.2 Situational Awareness and Automation 

In addition to the gaze-related studies showing a situational awareness reduction during Highly 

Automated Driving, freeze-probe studies using the SAGAT method found that driving with ACC 

assistance resulted in 20% to 50% higher situational awareness scores (Ma & Kaber, 2005; Ma, 

2006). However, studies using HAD gave contradicting results, with some studies (e.g. Barnard 

& Lai, 2010) measuring a situational awareness decrease (18% lower SAGAT score), while 

others (e.g. Davis et al., 2008) showed a 20% higher detection of objects instead. The main 

difference between the two studies was that the first was conducted with a driving simulator, 

while the second was evaluating the situational awareness of the drivers of an automated military 

convoy, where motivation and driver discipline were different from that of civilian drivers. 

Therefore, it can be concluded that HAD has the potential to free up mental resources and 

increase situational awareness, if compared with sufficiently motivated drivers, but it also can 

result in lower situational awareness, due to the malleability of attentional resources (Young & 

Stanton, 2002), as drivers utilize a smaller percentage of what is theoretically available when less 

effort is seemingly required. 
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In summary, the effects of automation on situational awareness were varied. While some 

studies showed improved object detection under automated conditions, others concluded that 

automation tends to deteriorate the situational awareness of the drivers and induce drowsiness 

(Cha, 2003). Thus, the relationship between situational awareness and automation is not direct, 

but is affected by other human factors which regulate the attentional resources that drivers are 

willing to commit to the driving task (Young & Stanton, 2002). One such example is perceived 

task difficulty, as shown by a 2013 study by Jamson et al., where increased attentional demands 

imposed by heavy traffic seemingly mitigated the increased fatigue and reduced situational 

awareness that was observed during lighter traffic conditions. 

2.4.2.3 Automation Trust 

Automation may be used according to its design purposes, but instances of misuse and disuse are 

also prevalent (Parasuraman & Riley, 1997). One of the major factors related to both misuse and 

disuse is trust in automation (Lee & Moray, 1992). Low levels of trust can lead to disuse, as is 

often the case with automated systems that generate many false alerts (Dixon, Wickens, & 

McCarley, 2007; Parasuraman, Hancock, & Olofinboba, 1997). In contrast, very high levels of 

trust in automation can be associated with overreliance and complacency, such as neglecting to 

adequately monitor the situation (Parasuraman, Sheridan, & Wickens, 2008). Complacency also 

often results in a strategy of allocating attention away from the automated task to other 

concurrent tasks (Parasuraman, Molloy, & Singh, 1993).  

Trust in automation is of paramount importance when studying the effects of vehicle 

automation on driver behavior as well, since it directly relates to defining the circumstances 

where drivers are willing to give up aspects of direct control of the vehicle to the automated 

system or refrain from doing so (Muir & Moray, 1996). Early studies showed a correlation of 

automation trust and vehicle headways. Specifically, de Vos et al. (1997) found that short 

headways under automated conditions were not comfortable for drivers, and Nilsson, Alm, and 

Jansson (1992) showed that drivers were reluctant to relinquish control when headways were 

short. However, they were more willing to do so in an emergency (Bekiaris et al., 1997). 

According to Endsley (2017), trust in automation has been found to be based on (a) system 

factors, including system validity and reliability, robustness, subjective assessments of system 

reliability, system understandability and predictability, timeliness, and integrity; (b) individual 
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factors, including perceived ability to perform the task, willingness to trust, and other personal 

characteristics (such as age, gender, culture, and personality); and (c) situational factors, 

including time constraints, workload, effort required, and the need to attend to other competing 

tasks. (Hoff & Bashir, 2015; Schaefer et al., 2016). A meta-analysis showed that system factors 

(most notably, system reliability and performance) had the greatest overall impact on trust, 

whereas individual and situational factors had a much lower impact (Hancock et al., 2011). 

2.4.3 Transitions in Automated Driving 

Control Transitions in automated driving are defined as either an activation or a deactivation of 

an automation function (Gold et al., 2013; Miller et al., 2014), or a change from one level of 

automation to another (Merat et al., 2014; Varotto et al., 2015). However, these definitions do 

not capture all types of transitions, such as non-control transitions associated with the monitoring 

task, nor do they address the human factors associated with these processes. The following 

subchapters address these shortcomings by defining and classifying transitions, as well as 

investigating their relationship with human factors. 

2.4.3.1 Driving States 

To define transitions, it is first necessary to define the driving states of automated driving (Lu et 

al., 2016). Based on the automation classification criteria, driving states are also an expression of 

how the driver or the automated system are executing the three primary driving tasks 

(longitudinal control, lateral control, monitoring). When there is no transition taking place and 

control of a task is either performed by the driver or the automated system, the driving state is 

considered as “static”. Lu et al. (2016) defines the following static driving states: 

 State 1 (manual driving): Longitudinal and lateral control are executed by the driver, who 

also is responsible for continuous monitoring of the situation. 

 State 2.1 (driving assistance with longitudinal automation, such as ACC – Adaptive Cruise 

Control): Longitudinal control is automated, while the driver is still engaged in lateral 

control and (continuous) monitoring. 

 State 2.2 (driving assistance with lateral automation, such as LKAS - Lane Keeping Assist 

System): Lateral control is automated, while the driver is still engaged in lateral control and 

(continuous) monitoring. 
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 State 3 (driving with longitudinal and lateral automation): Both longitudinal and lateral 

control are executed by the automation system, but the driver is still continuously 

monitoring in order to be able to assume control if needed. 

 State 4 (high-level automated driving): Longitudinal and lateral control are still performed 

by the automation system, but the driver’s monitoring is not continuous. As a consequence 

of its definition, State 4 can encompass several sub-states depending on the degree of the 

driver’s involvement in the monitoring task. 

 State 5 (fully automated driving): All three tasks (monitoring, longitudinal and lateral 

control) are performed by the automated system so the driver does not monitor the situation 

at all. In this state the driver’s role is solely reduced to initiating a transition to a different 

state. 

It should be clarified that the driving states represent what is actually taking place at any 

given moment during the driving task, and not the capabilities of the system or the driver. For 

example, the installed system may be capable of simultaneous longitudinal and lateral 

automation, but if the driver has only activated the latter, their driving state is 2.2, not 3. In a 

similar manner, in a fully automated system, where driver monitoring is not technically required, 

the driver state can either be 5 (no monitoring), 4 (if they choose to partially monitor the 

situation) or even 3 (if they continuously monitor the situation regardless of the automated 

monitoring that also takes place). 

2.4.3.2 Classification of Transitions 

Transitions are the processes that take place when the driver-automation system changes between 

the six driving states. Based on the definition of driving states, transitions can be distinguished in 

control transitions (between states 1, 2.1, 2.2, and 3 to 5) and monitoring transitions (between 

states 3,4 and 5). Monitoring transitions indirectly affect driving behavior, by influencing driver 

workload and especially situational awareness, but control transitions have the most direct 

impact on vehicle trajectory (speed, pathing) and the car-following task, so the latter where 

further classified (Lu et al., 2016) according to three criteria: (a) transition initiator, (b) transition 

“end point”, and (c) underlying reason. The first criterion distinguishes between human-initiated 

and automation-initiated transitions, the second criterion determines the controller (human or 

automated system) of the specific driving task after the transition, and the third criterion 
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differentiates between optional or voluntary transitions and mandatory or emergency transitions, 

as shown in Figure 2-20.

 

Figure 2-20: Classification Tree of Control Transitions (Lu et al., 2016) 

2.4.3.3 Human Factors and Control Transitions 

With regards to control transitions, human factors are only relevant in the following two cases: 

(a) driver-initiated, optional transitions, between driving states 2 or 3 and 1 or vice versa, and (b) 

transitions between states 4 or 5 and states 1, 2 or 3 (either driver- or automation-initiated, 

optional or mandatory). Studies involving the latter have been summarized by Lu et al. (2016) as 

well as de Winter et al. (2014), as presented in section 2.4.2, and show the effects of reducing 

driver monitoring and being “out-of-loop” to situational awareness and workload. Driver-

initiated, optional transitions have also been the subject of studies on driver behavioral 

adaptation when using automated systems (Hoedemaeker & Brookhuis, 1998; Young & Stanton, 

2007;) and studies that investigate when drivers choose to activate or deactivate their automation 

system (Viti et al., 2008; Pauwelussen & Feenstra, 2010; Varotto et al., 2015) though most 

focused on the effects of the transitions on traffic flow.  

Varotto et al. (2017) performed a controlled on-road experiment in order to identify the 

main factors influencing drivers’ choice to resume manual control from an ACC system. A 

discrete choice model was developed for the decision to (i) maintain the system (“Active”), (ii) 

to deactivate the system (“Inactive”) by either pressing the break pedal or via the on-off button, 

or to maintain the system but temporarily override it via manual acceleration by pressing the gas 

pedal (“Active and accelerate”). Transitions were assumed to occur at most every 1 second, as 

they are driver-initiated, so the choices were modelled for every 1-second time interval and were 
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associated with the driver behavior characteristics registered at the beginning of the interval. To 

predict the probabilities of transition choices a mixed logit model was applied, with a driver-

specific error term assumed to be normally distributed over the sample that captures unobserved 

preferences which affect all choices made by the individual driver over time. The final 

specification was selected based on statistical significance and resulted in three utility functions: 

for remaining Active (A), transitioning to Inactive (I), and transitioning to Active and accelerate 

(AAc) for driver n at time t (Varotto et al., 2017). The study reached the following conclusions: 

 Drivers are more likely to keep the system active than to transfer to manual control. 

 Everything else being equal, drivers are more likely to overrule than to deactivate the 

system.  

 The probability that drivers would resume manual control is highest in the first few seconds 

after the system has been activated.  

 Drivers are more likely to resume manual control at higher speeds. In addition, they are 

more likely to intervene when their speed is higher than the target speed set in the ACC and 

this probability increases for larger differences.  

 Drivers are more likely to overrule the system when the ACC acceleration is low.  

 The time headway and the target time headway set in the ACC did not influence 

significantly the choice to overrule the system.  

 Drivers are more likely to deactivate the system when the time headway is short for speeds 

higher than 30 km/h. The time headway at speeds lower than 30 km/h, the target time 

headway set in the ACC and the ACC acceleration did not have a significant effect on 

deactivations.  

 Interestingly, the driver behavior characteristics of the leader have a different effect on 

overruling and deactivating. Drivers are more likely to deactivate the system when they are 

faster (negative relative speed) and accelerate more (negative relative acceleration) than the 

leader and to overrule the system when they are slower (positive relative speed). 

 Relative accelerations had a non-significant effect on choices to overrule the system. 

 Drivers are more likely to deactivate the system when they expect that a vehicle will cut in 

during the next 3 seconds (proactive behavior) and to overrule the system after a vehicle 

has cut in (reactive behavior).  
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 Road locations influenced significantly the choices to transfer control. Drivers are more 

likely to deactivate the system close to on-ramps, between two ramps (closer than 600 

meters), and before exiting the freeway.  

 Notably, driver characteristics have a significant effect on transition choices. Female 

drivers and experienced drivers are less likely to overrule the system. However, these 

driver characteristics did not significantly influence system deactivations.  

A follow-up study (Varotto et al., 2018) investigated the association of risk feeling and task 

difficulty with control transitions. The results showed that the perceived level of risk feeling and 

task difficulty is higher when time headways are shorter, when approaching a slower leader and 

when expecting vehicles to cut in. Control transitions to Inactive (system deactivations) and 

ACC target speed decrements occurred most often in high risk feeling and task difficulty 

situations (short time headways, slower leader, and cut-ins expected), while control transitions to 

Active and accelerate (overruling actions by pressing the gas pedal) took place in low risk 

feeling and task difficulty situations (large time headways and faster leader). Control transitions 

and ACC target speed regulations were interpreted as an attempt to decrease or increase the 

complexity of a traffic situation. Finally, everything else being equal, some drivers have a larger 

acceptable range with ACC and choose smaller ACC target speed regulations. 

2.4.4 Simulation of Automated Vehicles  

In the case of automated driving, a simplistic adaptive cruise control algorithm based on user 

parameter preferences is applied by the simulation software of the National Advanced Driving 

Simulator (NADS), which attempts to reach and maintain the desired speed in free-flowing, non-

interactive conditions, while maintaining the desired time gap from the leading vehicle instead 

when there is vehicle interaction. 

The NADS simulator applies the following ACC algorithm (Moeckli et al., 2015): 

First the ACC systems test a condition to determine whether it should be operation in free-

driving or vehicle-following mode: 

𝐴𝐶𝐶 𝑀𝑜𝑑𝑒 =  ൜
𝑓𝑟𝑒𝑒 𝑑𝑟𝑖𝑣𝑖𝑛𝑔, 𝑖𝑓 𝑆௡(𝑡) > 𝑆ሚ௡(𝑡) 𝑜𝑟 𝑉௡(𝑡) + ∆𝑉௡(𝑡) > 𝑉෨௡ (𝑡) 

𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔,                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                     
 

Then the local acceleration limit is set depending on the ACC mode: 
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𝑎௠௔௫ =  ൜
𝐴௠௔௫(𝑔𝑙𝑜𝑏𝑎𝑙 max 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛) , 𝑖𝑓 𝑓𝑟𝑒𝑒 𝑑𝑟𝑖𝑣𝑖𝑛𝑔   

𝐴௠௜௡(𝑔𝑙𝑜𝑏𝑎𝑙 min 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛) , 𝑖𝑓 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔
 

Three possible values for the local deceleration limit are calculated based on different 

conditions. First, the limit can be varied according to the instantaneous time-to-collision (ttc) 

value and the time-to-collision threshold (ttcth): 

𝑑1௠௔௫ =

⎩
⎨

⎧
𝐷௠௔௫(𝑔𝑙𝑜𝑏𝑎𝑙 max 𝑑𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛) , 𝑖𝑓 𝑡𝑡𝑐 < 𝑡𝑡𝑐௧௛  

𝐷௠௔௫ − (𝑡𝑡𝑐 − 𝑡𝑡𝑐௧௛)
(𝐷௠௔௫ − 𝐷௠௜௡)

4 ∗ 𝑡𝑡𝑐௧௛
, 𝑖𝑓 𝑡𝑡𝑐௧௛ < 𝑡𝑡𝑐 < 5𝑡𝑡𝑐௧௛

𝐷௠௜௡(𝑔𝑙𝑜𝑏𝑎𝑙 min 𝑑𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛) , 𝑖𝑓 5𝑡𝑡𝑐௧௛ < 𝑡𝑡𝑐

 

Alternatively, it can be calculated based on how close the speed vehicle is to the desired 

following range: 

𝑑2௠௔௫ =

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝐷௠௔௫(𝑔𝑙𝑜𝑏𝑎𝑙 max 𝑑𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛) , 𝑖𝑓 

𝑆௡(𝑡)

𝑆ሚ௡(𝑡)
 ≤ 0.2

𝐷௠௔௫ − ቆ
𝑆௡(𝑡)

𝑆ሚ௡(𝑡)
− 0.2ቇ

(𝐷௠௔௫ − 𝐷௠௜௡)

0.3
, 𝑖𝑓 0.2 <

𝑆௡(𝑡)

𝑆ሚ௡(𝑡)
< 0.5

𝐷௠௜௡(𝑔𝑙𝑜𝑏𝑎𝑙 min 𝑑𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛) , 𝑖𝑓 0.5 <
𝑆௡(𝑡)

𝑆ሚ௡(𝑡)

 

Finally, it can be calculated using a metric that combines speed difference and time-to-

collision, as an additional measure of severity: 

𝑑3௠௔௫ =  − 
∆𝑉௡(𝑡)

𝑡𝑡𝑐
 

The final value of the local deceleration limit is chosen as the maximum of the three choices: 

𝑑௠௔௫ =  max (𝑑1௠௔௫ , 𝑑2௠௔௫ , 𝑑3௠௔௫) 

The parameters that need to be set in the model are given in Table 2-8:  
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Table 2-8. ACC Parameters of NADS (Moeckli et al., 2015) 

Parameter Value 

ACC Velocity Increments 5 mph 

ttcth 3 s 

Amax -1 m/s 

Amax 0.2g 

Amin 0.1g 

Dmax 0.3g 

Dmin 0.05g 

 

The NADS model incorporates the ACC algorithm and provides the desired functional 

modes of cruise control.  There are four modeled cruise states:  OFF, ON, SET, and WARN and 

eight functions: functions are:  Off, On, Cancel, Resume, Set, Coast, Accel, and Ext, controlled 

by pressing a button in the steering column. The last is not a standard cruise function, but is a 

useful way to have the car track a pre-recorded velocity profile. The state transition diagram that 

summarizes the logic for the model is shown in Figure 2-15. 

 

Figure 2-21: Cruise control state transition diagram (Moeckli et al., 2015) 
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CHAPTER 3 - METHODOLOGY 

3.1 Introduction 

The theoretical framework of this study (Figure 3-1) consists of a cognitive longitudinal driving 

behavior model, that takes into account external factors, longitudinal vehicle control factors, 

vehicle automation (ACC or ACC plus automated lane keeping), and a variety of human factors, 

with their respective interactions. The framework draws inspiration from Hoogendoorn et al. 

(2013), in which complexity, mental workload, situational awareness and adaptation effects are 

considered, and Fuller’s (2000) Task-Capability Interface (TCI) Model, which is based on the 

interaction between driver capability and task difficulty to describe driver behavior, but 

introduces a number of innovative elements.  

More specifically, the framework: 

 Introduces an additional layer of interactions for automated driving, which runs in parallel 

to the interactions layer of manual driving,  

 Incorporates the concept of Automation Trust (Parasuraman et al., 2008) to model driver 

decision to transition between automated and manual driving, 

 Replaces the TCI model with the Competence-Complexity Interface (CCI) model by 

removing dynamic human factors and subjective assessments of task difficulty. 

 Utilizes the findings of many studies (Young & Stanton, 2002; Merat et al., 2012; de 

Winter et al., 2014; Engström et al., 2017; Manjunatha & Elefteriadou, 2018) to define the 

concept of “Driver State” as a surrogate for the dynamic driver characteristics, as well as 

driver capability, and  

 Develops a car-following model by enhancing the Intelligent Driver Model (IDM) 

proposed by Treiber et al. (2000), through incorporating human factors via modified 

versions of Saifuzzaman’s Task-Difficulty framework (2015a) and Hoogendoorn’s 

adaptation effects framework (2013), as well as discrete action points according to Treiber 

and Kesting (2017), and the car-following models of Wiedemann (1974) and Fritzsche 

(1994). 
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3.2 Description of Behavioral Framework 

3.2.1. Model Variables 

The model’s input variables include: 

 External Factors (Hoogendoorn, 2013) as the model’s free variables: 

o Road Design (alignment; surface condition; and other factors) 

o Environmental Factors (weather conditions – visibility; and traffic conditions – traffic 

intensity and interaction with other users. 

o Vehicle Characteristics (breaking, acceleration, speed and steering capabilities; and 

in-vehicles systems, such as automation) 

 Static Driver Characteristics (Hoogendoorn 2013) to account for driver behavior 

variability: 

o Demographics (Age, Gender) 

o Driver Experience (Experience with manual driving as well as automation) 

 Longitudinal vehicle control factors at each time interval, as the model’s dynamically 

changing inputs, derived from the car-following model of choice: 

o Speed 

o Headway 

o Acceleration/Deceleration 

 Whether the automated systems are activated or not. 

The free (or independent) variables of this study are a subset of the external factors, which 

include Traffic Conditions (both traffic intensity and interaction with other vehicles), 

Environmental Factors (mainly limited visibility in certain scenarios), and Vehicle 

Characteristics (automated features of the vehicle). 

The target variables of this study, which require calibration and validation, include the 

Perceived Driving Task Difficulty (the driver’s sensitivity to task complexity), Driver 

Preferences (desired speed, desired time gap) for manual driving, the User Parameter Preferences 

(speed, time gap) for automated driving, the effect and magnitude of Compensation Effects on 

either of the two aforementioned variables for both manual and automated driving, the effect and 

magnitude of Performance Effects on manual driving, the drivers’ Trust in Automation (under  
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Figure 3-1: Cognitive Driving Behavior Framework 
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which conditions they choose to engage or disengage with the automated systems), as well as the 

following thresholds: perception thresholds for increase in workload, indifference thresholds for 

changes in driver state, the performance effects threshold, and the action points thresholds of the 

car-following model. 

The output variables of this model (while also serving as an input since the framework has 

a feedback loop structure) are the longitudinal vehicle factors of the car-following models 

(speed, headway, acceleration) or, essentially, the vehicle trajectory. The output variables are 

also the calibration performance measures that can be used to validate the calibration of the 

target variables of the model. 

3.2.2. Objective and Cognitive Constructs 

The following objective (but not always measurable on the field) and subjective cognitive 

constructs are introduced and defined in order to study the effects on the target variables caused 

by respective changes of the free variables and the rest of the (static or dynamic) input variables: 

 Task Complexity (TC) of the driving task. This model adopts Fuller’s (2000) definition of 

task demand as the objective construct of Task Complexity (TC). The study relies on 

designing scenarios of varied demand and complexity by adjusting the free variables, thus 

TC is a dynamic factor. However, objective task complexity is not be directly measured in 

the data collection process but its influence on other measurable parameters serves as an 

indirect indication of its magnitude. 

 Driver Competence (DC) is modelled as another objective, though non-dynamic factor, 

related only to static driver characteristics, and is also based on the interpretation of 

competence used by Fuller (2000) to define the second component of the TCI model, 

Driver Capability. Additionally, as with Task Complexity, no direct measurement of Driver 

Competence takes place but it is considered indirectly through its effects on other 

measurable constructs. 

 Cognitive Workload (WL) is a dynamic cognitive construct that indicates the overall 

mental effort a driver exerts per unit of time in order to perform the driving task on a level 

of competence that meet their objective and subjective criteria (van Lint et al., 2016; 

Stanton & Young, 2005). Teh et al. (2014) equate workload to information-processing 

resources the driver dynamically allocates to the driving task. As per those sources, in this 
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model, Workload is also an expression of mental effort that varies with time as external or 

internal (human factor) conditions change and is one of the primary variables measured in 

the study. Workload can be considered as both a subjective or objective construct (Young 

et al., 2015). This study recognizes that both interpretations apply, with each having a 

different effect on the driving task, and endeavors to measure workload using both 

subjective and objective methods. 

 Situational Awareness (SA) is another dynamically evolving mental construct which 

describes, in simple terms, the driver’s perception, recognition and comprehension of their 

surrounding environment (Endsley & Garland, 2000), especially as it pertains, in this case, 

to the driving task (van Lint et al., 2016). Situational awareness has significant effects on 

decision making (Endsley, 1995) but, unlike Workload, this model assumes that the drivers 

are not inherently self-aware of their level of Situational Awareness, unless the researcher 

deliberately directs their attention to it. In addition, measuring situational awareness is also 

subject to complications: while the first (lowest) level (perception) can be objectively 

measured in a number of ways (e.g. through eye-tracking), the higher levels can only be 

measured subjectively. Therefore, as with workload, the study attempts to measure 

situational awareness through multiple means, both objective and subjective. 

 Driver State (DS), while pre-existing as a term in the driver behavior literature, is defined 

in a very specific way in this model. Acknowledging the multiple and complex ways that 

Workload and Situational Awareness interact with each other (Vidulich & Tsang, 2012; 

Manjunatha & Elefteriadou, 2018), that “SA and WL, although inter-related, are 

hypothesized to be essentially independent constructs” (Endsley & Garland, 2000) and that 

their correlation was found to be statistically insignificant (Manjunatha & Elefteriadou, 

2018), it can be concluded that one cannot be derived directly from the other or be its sole 

causal factor. Therefore, the concept of a two-dimensional “Driver State” is introduced to 

encompass, describe and represent both constructs in further analysis. Based on a study by 

Manjunatha and Elefteriadou (2018) who arranged (and then clustered and classified) 

drivers on a two-dimensional plane with the two axes representing workload and situational 

awareness respectively, Driver State is defined as the dynamically changing position of the 

driver on that plane, with a qualitative assessment associated with that position (higher 

situational awareness and lower mental workload describing a “good” driving state and 
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vice versa). Workload actually is somewhat more complicated in that assessment, since 

Underload (extremely low workload) is also considered undesirable (“Malleable 

Attentional Resources Theory,” Young & Stanton, 2002), so there is instead an “optimal” 

low-but-not-too-low workload. The (fuzzy) boundaries between the different driver states 

are obtained from the thresholds where changes in driver behavior and adaptation effects 

are observed. In this cognitive framework, Driver State represents both the Dynamic Driver 

Characteristics as well as the Driver Capability, as defined by Fuller (2000): a reduction of 

driver competence due to human factors. However, this study focuses only on a limited 

subset of human factors: the stress related to increased cognitive workload, and the 

malleable attentional resources that are related to task complexity, especially in the context 

of automated driving (Young & Stanton, 2012). Because of these factors, Driver State (or 

Capability) is a dynamic subjective cognitive construct. 

 Perceived Driving Task Difficulty (TDp) is a construct based on Saifuzzaman’s Task 

Difficulty formulation (2015a), simplified by removing the risk-taking parameter and the 

desired time headway factor, which are included in the car-following model, but retaining 

the objective factors of vehicle speed and space headway, as well as the human factors of 

driver sensitivity to the task difficulty and the reaction time. Therefore, TDp is also a 

dynamic subjective cognitive construct. 

 Adaptation Effects (EA) are changes to longitudinal driving behavior imposed (in this 

model) by changes in Driver State. In Hoogendoorn’s (2013) theoretical framework, 

adaptation effects result from changes in the relationship between task demand and driver 

capability following Fuller’s (2000) Task-Capability Interface model. In this model, 

adaptation effects are based on the interaction of Driver State and Perceived Driving Task 

Difficulty. Hoogendoorn (2013) also assumed the existence of two types of adaptation 

effects: compensation and performance effects, which is a distinction adopted by this 

model as well. 

o Compensation Effects (EC) according to Hoogendoorn (2013) are “conscious 

adaptations in longitudinal driving behavior in order to reduce or increase the 

difficulty of the driving task (task demand), such as changes in speed and spacing.” 

o Performance Effects (EP), on the other hand, are “subconscious effects in 

longitudinal driving behavior following an imbalance between task demands and 
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driver capabilities” and can involve changes in driver reaction times, decision times, 

perception thresholds or even the sensitivity and accuracy of their acceleration 

towards their desired speed and spacing. Assumed by the definition of the two effects 

is that compensation effects usually occur first - when the imbalance between demand 

and driver capability is relatively low and attempt to mitigate it -, but if compensation 

effects are not sufficient then performance effects are also observed. In rare, special 

cases, such as when situational awareness is so low that drivers do not comprehend 

the need to apply compensation effects (Vidulich & Tsang, 2012), performance 

effects could possibly occur without compensation effects. However, this study 

always assumes that the presence of performance effects also includes the presence of 

compensation effects. 

 Automation Trust (ATs) is defined in the framework as an objective and static cognitive 

concept related to the static driver characteristics (age, experience, etc.). It is quantified on 

a scale of 0 (no trust) to 1 (complete trust) by observing and analyzing the circumstances 

under which the drivers engage or disengage the automated systems. 

As shown in Figure 3-1, all of the above constructs (except performance effects and 

automation trust) appear in two versions, one for manual and one for automated driving. This is 

due to the assumption that automated driving, and especially when the driver’s role change to a 

passive monitor of the automated system from an active participant (Merat et al., 2012), results 

in these concepts being defined in slightly different ways if automation is in effect. As for the 

exceptions: performance effects are obviously excluded because they cannot occur during 

automation, and automation trust relates to the threshold between the two states. 

3.2.3. Relationships and Assumptions 

To fully determine the behavioral framework and explain the diagram of Figure 3-1, it is 

necessary not only to establish the concept and structures that serve as its components, but also 

to describe the relationships between said components and the rules and assumptions that govern 

said relationships. The relationships that govern manual driving are addressed first, as they best 

reflect the model’s most general case, followed by the changes and modifications in the model 

that are the results of incorporating automated driving. 
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3.2.3.1. Manual Driving 

Competence-Complexity Interface (CCI). According to Fuller (2005), the task-capability 

interface (TCI) model “describes the dynamic interaction between the determinants of task 

demand and driver capability. It is this interaction which produces different levels of task 

difficulty.” This study uses the CCI model instead of the TCI, by replacing driver capability and 

task demand with the following factors: 

 Driver Competence (DC), either for manual or automated driving, as a direct result of the 

Static Driver Characteristics. 

 Task Complexity (TC), is also determined solely from external factors, including the road 

design characteristics (alignment, surface condition, and other factors, the environment 

(including traffic conditions or weather), and the characteristics of the vehicle (steering, 

braking and acceleration capabilities, in vehicle-systems, including assistance and 

automation system) (Hoogendoorn, 2013). Included in the above, though, are the 

interaction with other drivers and the vehicle’s longitudinal factors (speed, headway, 

acceleration) that are the results of the car-following models of this framework. 

In the same manner that Hoogedoorn (2013) derives a causal relationship between the 

output of the TCI model and workload, this model asserts that the output of the CCI model 

affects both workload and situational awareness, and eventually the adaptation effects, but 

describes their relationships the following manner: 

 First, it is considered that the CCI output affects Situational Awareness directly, not only 

through its complicated relationship with Workload. Also, due to the assumption that the 

driver is not inherently conscious of their level of situational awareness, the driver is not 

also not directly aware of that relationship and there are no perception thresholds involved. 

Finally, because the CCI model inputs are not measured, this relationship is not quantified 

in this model, but its effect is captured by directly measuring Situational Awareness. 

 Second, a Perception Threshold (PTWL) is introduced between the CCI output and changes 

in Workload. This emerges from the definition of Workload as the conscious effort of the 

driver towards fulfilling the driving task, therefore minor changes in task difficulty (below 

that perception threshold) would not result in any observable changes in workload, but 

instead lead to the “no change in behavior” node (NC), so that the driver would not alter 

their car-following parameters. PTWL is not directly quantified either in this study but 
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inferred through the measurement of the subjective Workload of the drivers: if the latter 

changes, then the Workload Perception Threshold (PTWL), is exceeded, otherwise it is not. 

 Third, the Driver State construct is incorporated in order to encompass the multifaceted 

relationship and effects of the Workload and Situation Awareness constructs, as described 

above in the definition of Driver State. 

 Fourth, it is considered that Adaptation Effects are derived from the Driver State and the 

Perceived Driving Task Difficulty according to a series of thresholds: 

i. An indifference threshold (ITDS) is introduced between the Driver State and the 

(conscious) Compensation Effects to capture the cases of drivers that acknowledge an 

increase in their Workload, but that increase is not sufficiently high to take any 

compensatory action. That threshold compares the difference between the Driver 

Capability (as expressed by the Driver State) and the Perceived Driving Task 

Difficulty via the ratio of the “Dynamic Observed Driver Capability” 𝐶௡̅(𝑡) and the 

“Relative Driving Task Difficulty” 𝐷ഥ௡(𝑡) variables, which are described in Chapter 

3.3 and defined in Equations 3.3 and 3.4, respectively. If the indifference threshold is 

not exceeded, the process leads again to the “no change in behavior” node (NC). 

ii. An unconscious threshold (which is also not measured directly, as Task Difficulty is 

not quantified, but identified through its effects) is introduced, after (and only if) the 

ITDS is exceeded. This threshold governs whether the task difficulty is so high and/or 

the compensation efforts prove insufficient to reduce it that Performance Effects also 

appear, in conjunction with Compensation Effects. 

Adaptation Effects (Compensation and Performance effects). They appear only if the 

aforementioned thresholds are exceeded, and in turn affect the parameters and the outputs of the 

car-following models (Hoogendoorn, 2013). The intensity of the effects is captured by their 

respective parameters (Ec for compensation and Ep for performance effects) and is assumed to be 

a function of the driver state. Specifically: 

 Compensation Effects (Ec) affect the conscious driver preferences as they attempt to 

reduce task difficulty. These include the desired speed, desired time gap and the decision to 

start or stop using vehicle automation. Compensation effects are identified by observed 
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changes in these parameters, while their magnitude is related to the difference between 

Driver Capability (Driver State) and Perceived Driving Task Difficulty. 

 Performance Effects (EP) affect parameters that the driver has no control over (such as 

increasing their reaction speed) and also result in suboptimal decisions. For example, the 

driver choosing an acceleration level that is different from what would be required in order 

to approach their desired speed or time gap. Performance effects are identified by 

secondary characteristics (not necessarily longitudinal) that indicate lack of control, such as 

increased lateral oscillation. 

Car-following model. Any car-following following model that inherently takes into account 

dynamic human factors (Driver State and Adaptation Effects), or is modified accordingly to 

incorporate them, can be applied to translate the model’s inputs and field-measured variables into 

longitudinal vehicle factors. For manual driving cases, this study uses a modified version of 

Treiber’s “Intelligent Driver Model” (IDM), named the “Naturalistic Human Driving Model” 

(NHDM), the equations of which are described in the next subsection. If the input to the car-

following model is the “no change in behavior” node (NC), then the dynamic human factors and 

the model variables related to them, such as driver preferences, are not altered. 

Longitudinal Vehicle Factors. They are the direct output of the selected car-following model’s 

equations, but also serve as input into the external factors, affecting interaction with other 

vehicles, and thus completing the feedback loop that forms the hypothesized behavioral 

framework’s structure. 

3.2.3.2. Automated Driving 

Adding the automated driving layer, results in the following changes and modifications in the 

model’s relationships: 

 Driver competence is assumed to be different depending on the level of automation in 

effect, as the very nature of the task differs accordingly, from active decision-making to 

passive monitoring (Merat et al., 2012). Therefore, an Automated Driver Competence 

(DCA) is added alongside the Manual Driver Competence (DCM) 

 Task Complexity is affected in the same manner (since the task itself changes) and 

Automated Task Complexity (TCA) is separate from Manual Task Complexity (TCM). 
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 The Competence - Complexity Interface functions similarly in the case of automation, 

using the difference between DCA and TCA instead of the difference between DCM and 

TCDM used in the manual driving case. Therefore, the Workload Perception Threshold is 

also different for automated (PTWL/A) and manual (PTWL/M) driving conditions, as are 

Situational Awareness (SAA versus SAM), Workload (WLA versus WLM) and the Driver 

State itself. 

 The Adaptation Effects are affected significantly in the automated driving layer: 

o Performance Effects – and their related unconscious threshold – are not applicable, 

since the driver is not in direct control of the longitudinal trajectory of their vehicle. 

o Compensation Effects though still apply, but since they are derived from the 

automated driver state they – and their related indifference threshold – are also 

defined differently for automated (Ec/A and ITDS/A) than for manual driving (Ec/M and 

ITDS/M). More specifically, Perceived Task Difficulty is not a factor considered for 

ITDS/A or Ec/A, with the latter taking the form of a step function derived from 

measurement. These compensation effects still affect the conscious driver 

preferences, which in this case are the user-selected parameters (desired speed, gap) 

they choose for their automated system. 

 Car-following model. A different car-following model is applied when automation is 

activated, such as the NADS Adaptive Cruise Control algorithm (Moeckli et al., 2015) 

described in section 2.4.4, which uses the selected user preferences to derive the 

longitudinal vehicle factors. 

 Automation Trust (ATs) is derived from the static driver characteristics and contributes 

along with the car-following outputs (which include adaptation effects) into the decision of 

the drivers to engage or disengage their automated systems (control transitions), when 

automation is available.  

3.3 Naturalistic Human Driving Model (NHDM)  

This car-following model was developed by enhancing the original Intelligent Driver Model 

(Treiber et al., 2000) so that it takes into account a subset of human factors (which define the 

Driver State and the Adaptation Effects), and also acknowledges the “naturalistic” nature of 

driving as a series of abrupt and discrete choices (“action points”) as opposed to a continuous 
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process. Task difficulty is considered via a modified version of Saifuzzaman’s Task-Difficulty 

framework (2015a), while adaptation effects are based on Hoogendoorn’s framework (2013). 

The addition of action points, based on perception threshold and indifference regions, are used in 

the car-following models of Wiedemann (1974) and Fritzsche (1994), acknowledged and even 

advocated by Treiber himself in his 2013 book (“Traffic Flow Dynamics”) and a 2017 study 

(“The Intelligent Drive Model with Stochasticity”) respectively. Though the latter study also 

makes a compelling case for the stochasticity of the model parameters and thresholds, while 

Hoogendoorn (2013) correctly identifies that fuzziness plays an important role when human 

decision-making is involved, this study assumes that the car-following parameters are 

deterministic and non-fuzzy as a necessary compromise for calibrating them. The NHDM model 

is thus presented in equations 3.1 to 3.13: 

𝑎෤௡(𝑡) = 𝑎௠௔௫
(௡)
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        (3.1) 

where 𝑎෤௡(𝑡) is the ideal acceleration that the driver of vehicle (n) would like to enact at time (t) 

in order to achieve their desired speed and time headway if they were able and willing to change 

their acceleration in a continuous manner and with zero reaction time; 

𝑎௠௔௫
(௡)  is the maximum acceleration/deceleration of subject vehicle (n), based only on its 

technical characteristics; 

𝑉௡(𝑡) is the actual speed of vehicle (n) at time (t); 

𝑉෨௡ is the desired speed of the driver of vehicle (n); 

𝛽௡ is a sensitivity parameter that indicates how sensitive the desired speed of the driver of 

vehicle (n) is to compensation effects. It cannot take negative values: (𝛽௡ ≥ 0); 

𝑆௡(𝑡) is the actual spacing between vehicle (n) and its lead vehicle (n-1) at time (t); and 

𝑆ሚ௡(𝑡) is the desired spacing between vehicle (n) and its lead vehicle (n-1) at time (t). It is 

calculated in equation (3.2):  
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     (3.2) 

where 𝑆௝௔௠
(௡)  is the minimum stopping distance at standstill; 

𝑇෨௡ is the desired time headway of the driver of vehicle (n); 

𝛾௡ is a sensitivity parameter that indicates how sensitive the desired time headway of the 

driver of vehicle (n) is to compensation effects. It cannot take negative values: (𝛾௡ ≥ 0); 

∆𝑉௡(𝑡) is the speed difference between vehicle (n) and its lead vehicle (n-1) at time (t); 

𝑏௖௢௠௙
(௡)  is the comfortable deceleration of the driver of vehicle (n); and 

𝐸௖
(௡)

(𝑡) is the compensation effect parameter for vehicle (n) at time (t). It takes values 

between -1 and 1 and is calculated in equation (3.3): 

𝐸௖
(௡)

(𝑡) = 𝐷ഥ௡(𝑡) − 𝐶௡̅(𝑡)    (3.3) 

where 𝐶௡̅(𝑡) is the driver’s “Dynamic Observed Driver Capability” (in contrast to the Static 

Driver Capability – or Competence, which is derived only from the Static Driver 

Characteristics). 

𝐶௡̅(𝑡) is derived from the two-dimensional Driver State (DS) as follows: both Workload 

(WL) and Situational Awareness (SA) objective measurements are converted to a scale from 0 to 

0.5, where 0 represents the minimum and 0.5 the maximum score obtained by the driver of 

vehicle (n). Then, they are combined, as shown in equation (3.4) to produce 𝐶௡̅(𝑡), which thus 

takes values from 0 to 1: 

𝐶௡̅(𝑡) = 𝑆𝐴௡(𝑡) − 𝑊𝐿௡(𝑡)    (3.4) 

𝐷ഥ௡(𝑡) is also a dynamic variable that considers the Relative Driving Task Difficulty for the 

driver of vehicle (n). It also takes values from 0 to 1 and it is given in equation (3.5): 

𝐷ഥ௡(𝑡) =  ቌ
𝐷௡(𝑡 − 𝜏̇௡)

𝐷௠௔௫
(௡)

ቀ𝑡 − 𝜏̇௠௔௫
(௡)

ቁ
ቍ

ఋ೙

     (3.5)  
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where 𝛿௡ is a sensitivity parameter which reflects how sensitive the driver of vehicle (n) is to the 

driving task difficulty. It cannot take negative values: (𝛿௡ ≥ 0). 

𝐷௡(𝑡 − 𝜏̇௡) is a formulation that represents the difficulty of the driving task for the driver 

of vehicle (n), based on Saifuzzaman’s Task difficulty car-following (TDCF) framework 

(2015a), but simplified for this application. It is calculated in equation (3.6): 

𝐷௡(𝑡 − 𝜏̇௡) =  ቆ
𝑉௡(𝑡) ∗ 𝜏̇௡

𝑆௡(𝑡)
ቇ    (3.6) 

where 𝜏̇௡ is the modified reaction time of the driver of vehicle (n), given in equation (3.7): 

𝜏̇௡ = 𝜏௡ + 𝜑௡   (3.7) 

where 𝜏௡ is the standard (or ideal) reaction time of the driver of vehicle (n), in seconds; and 

𝜑௡ is the additional reaction time of the driver of vehicle (n) due to human factors. In this 

model, 𝜑௡ is a direct result of performance effects, and thus it is considered 0 of there are none 

of the latter. The value of 𝜑௡ is considered to be a function of the Driver State (DS) and it is 

measured during the experiment, where the form of the 𝑓[𝐷𝑆] function is also determined: 

𝜑௡ =  ቊ
0 , 𝑖𝑓 𝐸௉

(௡)
(𝑡) = 1

𝑓[𝐷𝑆(𝑡)], 𝑖𝑓 𝐸௉
(௡)

(𝑡) ≠ 1
 (3.8) 

𝐷௠௔௫
(௡)

ቀ𝑡 − 𝜏̇௠௔௫
(௡)

ቁ is the maximum observed difficulty for the driver of vehicle (n) and given 

by equations 3.9 and 3.10: 

𝐷௠௔௫
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𝜏̇௠௔௫
(௡)

= 𝜏௡ + 𝜑௠௔௫
(௡)

       (3.10) 

 𝐸௉
(௡)

(𝑡) is the performance effect parameter for vehicle (n) at time (t). If no performance 

effects are present (no indications of performance effects are detected, thus the unconscious 

performance effect threshold is not exceeded), 𝐸௉
(௡)

(𝑡) = 1 . Otherwise, it is calculated as shown 

in equation (3.11). The form of the 𝑓ቂ𝐸௖
(௡)

(𝑡)ቃ function is determined by the experiment. 
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Finally, the actual acceleration of vehicle (n) at time (t) is given by equation (3.12): 

𝑎௡(𝑡) =  
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    (3.12) 

where 𝑎௡(𝑡 − 𝜏௡) is the actual current acceleration of vehicle (n), used in the previous time step, 

so it means that the driver chooses to not change his acceleration during this time step even if it 

differs from the ideal acceleration 𝑎෤௡(𝑡). 

𝐼𝑇஺௉ is the indifference threshold of the driver that determines when an Action Point is 

reached. Upon reaching an Action Point, the driver chooses to act and update his acceleration 

according to the ideal acceleration of the NHDM. 𝐼𝑇஺௉ is a binary variable, as shown in equation 

(3.13): 

𝐼𝑇஺௉ = ቐ

1, 𝑖𝑓 ห𝑉௡(𝑡) − 𝑉෨௡ห > ∆𝑉௡

1, 𝑖𝑓 ห𝑆௡(𝑡) − 𝑆ሚ௡ห > ∆𝑆௡

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (3.13) 

where ∆𝑉௡ and ∆𝑆௡are parameters that determine the acceptable deviation of the current speed 

and space gap from the desired speed and space gap of the driver of vehicle (n) and their values 

are the target of the model calibration. 

  



 

96 
 

 

CHAPTER 4 – DATA COLLECTION AND ANALYSIS PLAN 

 

4.1 Introduction 

The theoretical behavioral framework described in Chapter 3 needs to be validated via 

experimental data before it can be considered for future applications. In addition, a number of 

model parameters of the both the general framework and of the NHDM car-following model 

require calibration in order to reflect the actual observed behavior of human drivers. Therefore, 

an experiment must be designed in order to collect such behavioral driving data from 

heterogeneous human participants performing under several diverse driving task scenarios. 

These scenarios need to be purposefully tailored around the assumptions inherent in the model, 

so that the collected data can statistically prove or disprove the hypotheses that define the 

structure of the behavioral framework. In addition, the conditions of these scenarios need to be 

designed with the goal of relatively isolating each variable that needs to be calibrated, by 

controlling all other factors and extraneous sources of variation that may affect the outcome of 

the measurement. Finally, using sufficient amount of data it should be possible to ascertain the 

most likely form of functions that represent the relationship between parameters, such as the 

𝜑௡ = 𝑓[𝐷𝑆] function that relates additional reaction time with the Driving State, and the  

𝐸௉
(௡)

(𝑡) =  𝑓ቂ𝐸௖
(௡)

(𝑡)ቃ function that connects performance and compensation effects. 

The level of detail and control of scenario conditions necessary to achieve the above goals, 

as well as safety concerns and the ability to study high-risk events, necessitate the use of a 

driving simulator for the experiment instead of obtaining field data from instrumented vehicles. 

The latter though, can be potentially used as supplementary evaluation regarding the 

applicability and statistical generalization of the behavioral framework and the car-following 

model under field conditions, after the simulation studies have first sufficiently demonstrated 

their validity and calibrated their parameters. 

4.2 Driving Simulator Characteristics 

A driving simulator involves a sensory (primarily visual, but also potentially auditory and 

motion-based) representation of a vehicle, its functions (e.g. moving along a certain trajectory 
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within a timeframe), its surrounding environment (e.g. roadway geometry), and interactions with 

elements of that environment (e.g. other vehicles). Driver simulators accept user input (steering, 

accelerating, breaking) and provide appropriate feedback with varying degrees of realism, but 

they are also recording both the input and its outcome (e.g. vehicle trajectory, headway with 

preceding vehicles or relative speed) for use in data analysis. Additional recording equipment 

(e.g. video cameras, eye-tracking devices, heart-rate monitors, EEC electrodes) can also be 

applied as needed, though usually not natively integrated with the simulator itself. 

The characteristics and capabilities of a driver simulator depend on its respective hardware 

and software configurations. The former refers to the physical equipment used. It can vary from 

a simple chair-and-monitors desktop setup, a partial or full – but static – actual vehicle cabinet 

with projected images across a wide – but not comprehensive – field of view, and up to an 

immersive enclosed (full spherical field of view) cabinet with movement capabilities (degrees of 

freedom) across several axes. The latter involves the computer programs responsible for 

designing and implementing the driving scenarios, interpreting driver inputs and generating the 

virtual environments and the interactions therein. Simulator hardware and software may also 

define the type of measurement techniques available to the researchers. For example, freeze-

probe situational awareness measurement techniques, such as SAGAT, have as prerequisite the 

capability to pause (and then resume) the simulation at any given moment. 

This study is designed so that the suggested experimental procedure can be performed with 

the use of the University of Kansas Transportation Center driving simulator setup, the exact 

specifications of which as of August 2019 are described in Figure 4-1, plus some easy-to-obtain 

additional equipment. This is a static (zero degrees of freedom) simulator which consists of a 

fixed-base half cab Acura MDX vehicle chassis, three front projector screens which combined 

provide a 120o horizontal field of view, and a fourth rear screen that is used by the mirror 

displays. A digital instrument panel is also included, as well as a surround sound and vibration 

system. The described configuration is seen in Figure 4-2, and depictions of the simulation setup 

are shown in Figure 4-3. The simulation software running the scenarios is miniSim 2.2.2, 

provided by the National Advanced Driving Simulator (NADS). It provides SAE level 0, 1, or 2 

capabilities, but does not have the capability to pause the simulation for application of freeze-

probe techniques. Equipment available but not directly integrated with the simulation software 
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includes (i) four high-definition digital cameras recording facial cues, the pedals, the dashboard, 

and the front view, (ii) eye-tracking equipment capable of eyelid tracking, gaze tracking (60Hz), 

head tracking with six degrees of freedom and automatic task-evoked pupillary response (TERP) 

analysis (1Hz) using the Index of Cognitive Activity Protocol (ICA), (iii) a 3D (depth-capturing) 

video rendering Kinect 2.0 Sensor, and (iv) a heart rate (1Hz) chest strap monitor. DRT, EEG, 

and ECG devices can become provisionally available as well. 

 

Figure 4-1: KU driving simulator specifications. 
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Figure 4-2: Configuration and layout of the KU driving simulator. 
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Figure 4-3: KU driving simulator equipment and setup depictions. 
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4.3 Population Sample Selection 

Population sample selection is a crucial first step of the experimental process in order to avoid 

biased results or conclusions that cannot be reasonably generalized for a broader population. The 

subjects must exhibit diversity in their static driver characteristics and be adequately 

representative of the overall driver population. The sample needs to include enough participants 

to allow for statistically confident research results, while also being manageable in terms of cost, 

convenience, and time.  

For this reason, the use of a pre-screening questionnaire is suggested. The questionnaire is 

used to determine personal, demographic, and driving information such as age, gender, 

possession of a valid U.S. driver’s license, model/year of current vehicle, experience with ACC 

systems, estimate of what constitutes a safe car following distance, existing medical conditions 

(including history of motion sickness), willingness to use automation systems (ACC, lane-

keeping assistance), and willingness to participate in a simulator-based study. Some of that 

information serves to exclude participants not suitable for the experiment (e.g. people without an 

active driving license, with less than a minimum one year of driving experience, with medical 

conditions, motion sickness, or not comfortable with using a simulator), but the rest of the data 

can be used to ensure the presence of varied static driver characteristics among the study 

population. 

Specifically, it is desirable that the sample includes a balanced (ideally equal) gender split, 

participants that represent each of the following four age cohorts: (i) less than twenty-five years 

old, (ii), twenty-five to forty years old, (iii) forty to sixty years old, and (iv) over sixty years old, 

and both drivers with experience and willingness to use automation systems as well as those 

without. 

The required sample size depends on various factors, such as inter-driver heterogeneity, 

which will affect the standard deviation and thus the estimation confidence of the measured 

variables. The quality of the design of the experimental scenarios also matters. Most of the 

parameters, such as vehicle trajectory, driver workload, and situational awareness can be 

measured for all participants. However, it is possible due to different driver characteristics (e.g. 

greater than average driving capability) or the design of the driving scenarios (e.g. lack of high 

enough task complexity), that some of the variables, such as the compensation effects, manifest 
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for only some of the participants. Such an occurrence necessitates the use of a greater sample 

size in order to ensure that a sufficient number of performance effects are captured. As there is 

no available data in the literature for either the expected driver variance nor the expected 

percentage of high-performance subjects that can avoid experiencing performance effects, the 

most economical way to determine the required sample size is through estimates obtained from 

conducting a smaller pilot study (chapter 4.5). Since the subjects are not tested simultaneously, it 

is also possible to expand the scope of the study and subsequently the sample size after analyzing 

the first results. Considering realistic budgetary and time constrains of an average study of that 

type, it is suggested that the performance effects of at least thirty participants need to be 

measured. Then, if a conservative assumption is made that high-performance drivers are at most 

25% of the sample, it can be concluded that a minimum sample of forty participants is necessary 

in order to collect enough data on performance effects to use in the statistical analysis. 

4.4 Measured Variables and Data Collection Techniques 

The following static and dynamic (functions of time t) variables need to be measured in the 

experiment for the purpose of calibrating the target variables of the model: 

 Static Driver Characteristics (age, gender, years of driver experience, experience with 

automated driving systems); 

 Longitudinal Vehicle Factors: Speed 𝑉௡(𝑡) and Spacing 𝑆௡(𝑡); 

 Baseline (static) Desired Speed 𝑉෨௡ and Desired Time Gap 𝑇෨௡; 

 Cognitive Workload (objective): WLob (t); 

 Cognitive Workload (subjective): WLsub (t); 

 Situational Awareness: SA (t); 

 Presence of Compensation (adaptation) Effects: 𝐸௖(𝑡) ≠ 0; 

 Presence of Performance (adaptation) Effects: 𝐸௣(𝑡) ≠ 1; 

 Standard (or ideal) reaction time 𝜏௡ of the driver of vehicle (n); and 

 Additional reaction time 𝜑௡(𝑡)of the driver of vehicle (n) at time t due to human factors. 

Appropriate techniques must be utilized in order to obtain the above measurements. 

Following are candidate measurement methods for each variable, and a discussion of why these 

methods are deemed the most suitable for the purposes of this study: 
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 The Static Driver Characteristics are captured through the use of the pre-screening 

questionnaire applied during the population sample selection. 

 Speed 𝑉௡(𝑡) and Spacing 𝑆௡(𝑡) are automatically recorded by the simulation software. 

 The Baseline Desired Speed 𝑉෨௡ and Desired Time Gap 𝑇෨௡ need to be measured in control 

scenarios with average task complexity and difficulty, where no adaptation effects are 

present. 

 Objective Cognitive Workload WLob (t) can be measured dynamically through an objective 

psychophysiological measurement. Eye-tracking (task-invoked pupillary response) using 

the Index of Cognitive Activity Protocol is an automated and non-intrusive process that can 

provide dynamic workload measurements. An alternative or additional method is the use of 

Secondary-task performance objective measurement. This is a more intrusive measurement 

technique, but serves a dual purpose (measuring another variable – reaction time – as 

discussed below), so using it as a second way to measure objective workload only increases 

the robustness of the collected data. For the purposes of this study a Tactile (vibrating) 

Detection-Response Task (TDRT) technique is suggested, because the tactile input is less 

intrusive to the visual demands of the primary driving task and to situational awareness 

than visual stimuli.  The TDRT uses an electrical vibrator taped on the subject’s shoulder to 

deliver the stimulus, and the driver needs to respond to it by pressing a button on the 

steering wheel. And additional advantage of using the TDRT in addition to the eye-tracking 

ICA is that the results of this technique interpret workload directly on a scale of 0 to 1, 

according to the method developed by Manjunatha and Elefteriadou (2018), as discussed in 

Chapter 2.3.1.3.2. On the other hand, the eye-tracking ICA provides a continuous 

assessment of workload which is necessary for the equations of the NHDM car-following 

model. Thus, it is suggested that both methods are employed, with the less frequent TDRT 

results used as a guide to rescale the eye-tracking ICA results between the values of 0 and 

1. 

 Subjective Cognitive Workload WLsub (t) can be measured through on-line self-report, such 

as the Instantaneous self-assessment (ISA) and the Continuous Subjective Ratings (CSR) 

techniques. The main difference between the two is that ISA involves drivers self-rating 

their workload during a task on a scale of 1 (low) to 5 (high) on standard intervals 

(normally every two minutes), while with CSR drivers give a new rating whenever they 
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perceived a change of their subjective workload, instead of at specific trigger points. 

Adaptations of these techniques aim to reduce their high intrusiveness: ISA can use 

auditory instead of visual triggers and vocal numeric responses instead of pressing buttons 

on a keyboard, while CSR can also be administered offline: post-hoc, using video 

recordings of the drive instead, with the obvious disadvantage of introducing memory 

issues. A pilot study is required to determine the most suitable of these two techniques (and 

the most appropriate of their variations), taking into account potential conflicts with the 

intrusive workload measurement techniques (TDRT) and the situational awareness 

measurement techniques, to ensure that the drivers are not overwhelmed with secondary 

tasks. A post-study multidimensional self-report workload technique such as the NASA 

Task Load Index (NASA-TLX), the Driver Activity Load Index (DALI) or the Subjective 

Workload Assessment Technique (SWAT) can also be considered, in order to increase the 

diagnosticity of the unidimensional on-line techniques, by contextualizing the causes of 

workload. 

 Situational Awareness SA(t) can be measured through a non-intrusive real-time objective 

process index technique such as eye-tracking (measuring gaze overlay and eye fixation), or 

a real-time probe technique that delivers questions about the driver’s environment during the 

driving task. Due to the limitations of the driving simulator, the Situational Awareness 

Global Assessment Technique (SAGAT) cannot be applied, but the Situation Present 

Assessment Method (SPAM) is a possibility. The latter, however is an intrusive method, 

especially in conjunction with the various workload measurement techniques discussed 

above, especially since measuring changes in workload is more important for the purposes 

of the study than changes in situational awareness. On the other hand, the non-intrusive eye-

tracking techniques are generally considered insufficient in effectively measuring situational 

awareness due to their indirect nature (cannot verify whether drivers perceived what they 

looked at) and because they do not capture all three levels of Situational Awareness. Thus, a 

concurrent verbal protocol analysis (VPA) is usually required for interpretation of these 

results, and SPAM can assume that role (examples of questions that address all three levels 

of SA are shown in Table 4-1). Finally, a third option that can be considered is to perform a 

smaller-scale preliminary study focusing on eye-tracking and SPAM measurements of 

situational awareness in order to derive sufficient correlation between their results that 
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would allow for the use of only the non-intrusive process index technique for SA 

measurement in the full study.  

Table 4-1: SPAM example questions across the three levels of Situational Awareness 

SA Level Example Questions 

Level 1 - 
Perception 

 Did you notice passing a wild animal at the edge of the roadway? 
 Are you travelling above or below the speed limit? 

Level 2 - 
Comprehension 

 Is an off ramp approaching soon? (after an exit sign has passed by) 
 What is the relative speed of the traffic compared to your vehicle? 

Level 3 - 
Projection 

 Is the green car two vehicles ahead in the adjacent lane about to 
initiate a lane-changing maneuver into your lane? 

 Are you losing or gaining on the preceding vehicle? 

 

 The presence of Compensation Effects can be inferred by changes in the longitudinal 

driving variables that are not consistent with the car-following model equations when 

𝐸௖(𝑡) = 0 (thus it is necessary to assume that 𝐸௖(𝑡) ≠ 0). 

 The presence of Performance Effects can be inferred through primary task performance 

measurements. Longitudinal indexes such as speed or headway could be applied, but they 

may be the results of car-following factors other than performance degradation. Thus, 

lateral variation/instability measures, such as the standard deviation of the lateral position 

(SDLP) or the standard deviation of the steering wheel movements (SDSTW) are more 

suited for this occasion. In addition, significantly increased reaction times results from the 

TDRT technique can also indicate the presence of Performance Effects.  

 The standard reaction time 𝜏௡ of the driver of vehicle (n) can be assumed based on the 

existing literature or measured through the TDRT process in control scenarios with average 

task complexity and difficulty, and no adaptation effects (the same as the desired speed and 

time gap measurements). 

 Finally, the additional reaction time 𝜑௡(𝑡)of the driver of vehicle (n) at time t due to 

human factors is also measured through the TDRT process by subtracting the standard 

eaction time 𝜏௡ from total reaction time 𝜏̇௡ measured. This measurement is only necessary 

to take place if performance effects are present. 
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Table 4-2 summarizes the variables that need to be measured and the candidate 

measurement methods by which that data can be collected. 

 

Table 4-2: Measured Variables and Candidate Measurement Methods 

Variable Measurement Method Description 

Static Driver Characteristics 
Pre-screening 

Questionnaire 

Age, gender, years of driver experience, experience with 

automated driving systems 

Speed and Spacing 

Driving Simulation 

Equipment 

Vehicle Trajectory under all scenarios 

Desired Speed & Time Gap 
Vehicle Trajectory under control scenarios 

Standard reaction time 

Compensation Effects Changes in the longitudinal variables (speed & spacing)  

Performance Effects 
Deviation of the lateral position (SDLP) or the standard 

deviation of the steering wheel movements (SDSTW) 

Situational Awareness (SA) 

Eye-tracking (gaze 

overlay and eye 

fixation) 

Real-time objective technique. Concurrent verbal 

protocol analysis (VPA) required for interpretation of 

results 

Situational Awareness 

Assessment Method 

(SPAM) 

Real-time probe technique (questions about the driver’s 

environment). Objective technique 

Workload (WL) 

Eye-tracking (task-

invoked pupillary 

response) 

Physiological objective measurement. Using the Index of 

Cognitive Activity Protocol (ICA) 

 Continuous Subjective 

Rating (CSR)  

Subjective measurement, based on the unidimensional 

Self-Assessment (ISA) scale, using an auditory trigger to 

which the driver must elicit a numeric verbal response 

Tactile (vibrating) 

Detection-Response 

Task (DRT) 

Secondary-task performance objective measurement. 

Both reaction time and misses taken into account 

Additional reaction time 𝜑 

Tactile (vibrating) 

Detection-Response 

Task (DRT) 

Only reaction time is considered 

 

4.5 Pilot Study 
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The need to simultaneously measure situational awareness and cognitive workload (both 

objective and subjective) on a continuous basis creates a conflict between the more intrusive 

measurement methods (SPAM, CSR, and DRT) which compete for the same cognitive resources 

that the driver requires to perform the driving task. For this reason, a pilot study with a limited 

number of participants should be performed in order to evaluate whether the data collection 

process can be simplified by relying on more non-intrusive methods, such as eye-tracking. 

Specifically, the correlation between SPAM and eye-tracking should be assessed for the 

measurement of situational awareness, with the purpose of relying only on eye-tracking for 

measuring SA in the final study scenarios. Similarly, the participants of the pilot study should be 

asked to answer questions of comfort after the experiment with regards to using the two intrusive 

workload measurement techniques (CSR and DRT) at the same time. As mentioned in chapter 

4.3, the pilot study also serves as a guide for determining the desired sample size for the study 

scenarios. 

4.6 Practice and Control Scenarios 

A five-minute long practice scenario should be designed for participants to get acclimated to the 

simulator environment, since participants generally take between four to six minutes for a 

satisfactory initial acclimation (Ariën et al, 2013). A Simulator Sickness Questionnaire (SSQ) 

(Kennedy et al, 1993) should then be administered to check for simulator sickness.  

Then, participants should then be asked to drive in two control scenarios in order to infer 

their Desired Speed and Time Gap and measure their standard reaction time: 

1. A five-minute scenario on a straight, two-lane highway, operating at HCM LOS A, with 

varying speed limits, while recording their speed limit compliance. 

2. A five-minute scenario in which the participants are required to follow a vehicle which was 

scripted to travel straight at a constant speed under the speed limit, with no other traffic on 

the road in order to observe the car following patterns of the participants. Three different 

lead vehicle speeds should be employed. 

4.7 Study Scenarios 

The study scenarios should be designed in a way that allows for the drivers to experience 

significant variation in task complexity, with regards to their driver capabilities, in order to 
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produce measurable compensation and performance effects. It is also essential to provide 

opportunities and reasons for the drivers to activate or deactivate the automation capabilities of 

their vehicles. Though not all drivers are required to inhabit the full range of the capability-

difficulty spectrum (on account of the differences between drivers), nor it is necessary for all of 

them to exhibit performance effects, it is desirable that as many of them as possible do so. For 

this reason, a multi-dimensional matrix of scenarios of escalating complexity should be 

developed. The components of the scenario matrix include: three levels of traffic density (low, 

medium, and high) which correspond approximately to HCM LOS B/C, D and E respectively, 

with freeway merge segments included for every density level, two levels of visibility settings 

(daytime and nighttime), two levels of vehicle interaction difficulty (low lane-changing activity 

versus the presence of aggressive drivers who perform sudden dangerous lane-changing 

maneuvers with small gaps) and two levels of information density (typical, and workzone with 

an overload of signs and variable message billboards). This leads to a total of twenty-four short-

length (two to three minute) scenarios. These are then split into two half-hour sessions, one 

during daytime (twelve scenarios) and one during nighttime (twelve scenarios).  

The order by which the participants will experience the short-length scenarios during their 

drive is a potential source of unwanted order and sequence effects, that can confound the results 

of the experiment. This problem can be solved through counterbalancing, a systematic variation 

of the order of conditions in the study. A counterbalanced design across subjects reduces the 

chances of the order of scenarios influencing the results. A complete counterbalancing method 

would require the use of each possible sequence, and thus one participant for each of them. Due 

to complexity of the experiment, and the multiple conditions, the great number of possible 

permutations make complete counterbalancing unpractical. However, if there are not enough 

participants, incomplete (or partial) counterbalancing is a possible compromise. Incomplete 

counterbalanced measures include the Latin Square, where each scenario only occurs once at 

each order position (1st, 2nd, 3rd, etc.). Another possibility is to randomize the allocation of 

scenarios across the sample subgroups, a technique called randomized partial counterbalanced 

design.  

4.8 Variable Calibration and Model Validation 
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The following target variables, coefficient, and thresholds for both manual and automated 

conditions need to be calibrated in order to be incorporated into the NHDM car-following model 

and the broader behavioral framework: 

 Workload Perception Threshold (PTWL): The threshold is calibrated based on the objective 

and subjective workload measurements. Since this study does not measure the components of 

the Competence-Complexity Interface (CCI), this threshold will reflect what is the minimum 

change in objective workload that causes a change in subjective workload. 

 Indifference Adaptation Threshold (ITDS): This threshold is calibrated in order to indicate 

what value of the Dynamic Observed Driver Capability to Relative Driving Task Difficulty 

[𝐶௡̅(𝑡)  𝐷ഥ௡(𝑡)⁄ ] ratio is sufficient to result in driver compensation effects. 

 Unconscious Performance Threshold: This threshold is also calibrated via the [𝐶௡̅(𝑡)  𝐷ഥ௡(𝑡)⁄ ] 

ratio. However, this time the query is which value is sufficient to result in driver performance 

effects. 

 Automation Transition: A discrete choice model can be used to describe automation 

transition choices, where the longitudinal vehicle factors and the automation trust derived 

from the static driver characteristics are used as inputs in the utility function, while the 

weights assigned to each of them are the parameters than require calibration. 

 The sensitivity parameter (𝛽௡)  that indicates how sensitive the desired speed of the driver of 

vehicle (n) is to compensation effects can be calibrated through the observed change in 

desired speed, given the calculated magnitude of 𝐸௖
(௡)

(𝑡) from Equation 3.3. 

 The sensitivity parameter (𝛾௡)  that indicates how sensitive the desired time headway of the 

driver of vehicle (n) is to compensation effects can be calibrated through the observed change 

in desired time headway, given the calculated magnitude of 𝐸௖
(௡)

(𝑡) from Equation 3.3. 

 The sensitivity parameter (𝛿௡) to the driving task difficulty can be calibrated through 

substituting the measured quantities [𝑆𝐴௡(𝑡), 𝑊𝐿௡(𝑡), 𝜑௡(𝑡)] in equations 3.3 to 3.7 and 

solving for (𝛿௡). 

 The Action Point Threshold (𝐼𝑇஺௉) has two components that both need to be individually 

calibrated: ∆𝑉௡ and ∆𝑆௡. These values represent the acceptable deviation of the current speed 

and space gap from the desired speed and space gap of the driver of vehicle (n). 
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 Finally, the magnitude of the performance effect 𝐸௉
(௡)

(𝑡) can be calibrated via 3.12 by 

substituting all other known values. 

Subject of the statistical analysis also need to be the functional forms of the following two 

equations: 𝐸௉
(௡)

(𝑡) = 𝑓ቂ𝐸௖
(௡)

(𝑡)ቃ and 𝜑௡(𝑡) = 𝑓[𝐷𝑆(𝑡)]. 

The behavioral framework, NHDM car-following model and the calibrated parameters can 

be validated by means of cross-validation. This includes partitioning the data sample into 

unequal in size but complementary subsets, using the largest partition for the analysis and model 

calibration, and then using the smallest partition as a validation data set that can provide an 

estimate of the model’s predictive strength. Additionally, follow-up studies can be conducted in 

order to validate the results, either with the use of driving simulators or instrumented vehicles in 

field conditions.  
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CHAPTER 5 – SUMMARY AND FUTURE RESEARCH STEPS 

5.1 Research Summary 

This thesis aimed to develop a driver behavior framework that considers human factors and can 

be applied to describe both traditional manual driving, as well as driving of vehicles with varied 

automation capabilities, and driver-initiated transitions between the manual and the automated 

driving states.  

For this purpose, a comprehensive literature review of driver car-following behavior 

research, human psychology and cognition during the driving task, as well as vehicle automation 

characteristics and effects was conducted. Advantages and limitations of the most prominent car-

following models, with emphasis on those that consider human factors were analyzed. 

Psychological factors and cognitive concepts that have been developed in order to explain human 

driving behavior were defined in a manner that allows for their quantification and 

implementation in the driving behavior framework. Various measurement techniques of these 

cognitive concepts were evaluated, with regards to their advantages and disadvantages, as well as 

their applicability to this study. Finally, vehicle automation classification systems were 

presented, as well as a review of studies investigating how car-following behavior and driving-

related cognitive concepts are impacted by the introduction vehicle automation features.  

The proposed behavioral framework, car-following model and control transition system are 

described in detail in the methodology chapter. This includes the model’s independent input 

variables, the dependent target variables and thresholds, which require calibration and validation, 

and the output variables that serve as the calibration performance measures. Finally, the 

equations of the proposed car-following model, the Naturalistic Human Driving Model 

(NHDM), including its calibration coefficients and sensitivity parameters, are listed. 

A theoretical data collection experiment using a driving simulator that can be applied to 

calibrate and validate the proposed framework and car-following model is also detailed, 

including candidate strategies for measuring and analyzing the required parameters. The data 

collection plan proposes experimental processes that would capture the impact of varying levels 

of automation and traffic conditions on manual and automated driving preferences of 

demographically diverse test subjects (drivers with different individual static characteristics) via 
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measurable changes in their workload and situational awareness under purposefully designed and 

implemented scenarios. 

5.2 Future Research Steps 

Following the proposed theoretical behavioral framework and car-following model, several 

future research steps can be pursued. The most obvious includes applying the data collection 

methodology and analysis plan with human subjects (drivers) with the goal of validating or 

rejecting the assumptions of the framework. Additional studies involving instrumented vehicles 

in the field instead of simulated scenarios can then further investigate the applicability of the 

model and framework in actual driving conditions. 
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