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Abstract. The goal of this paper is to study a comprehensive system
called differential variational–hemivariational inequality which is com-
posed of a nonlinear evolution equation and a time-dependent
variational–hemivariational inequality in Banach spaces. Under the gen-
eral functional framework, a generalized existence theorem for differ-
ential variational–hemivariational inequality is established by employ-
ing KKM principle, Minty’s technique, theory of multivalued analysis,
the properties of Clarke’s subgradient. Furthermore, we explore a well-
posedness result for the system, including the existence, uniqueness, and
stability of the solution in mild sense. Finally, using penalty methods to
the inequality, we consider a penalized problem-associated differential
variational–hemivariational inequality, and examine the convergence re-
sult that the solution to the original problem can be approached, as a
parameter converges to zero, by the solution of the penalized problem.
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1. Introduction

The problems called differential variational inequalities (DVIs, for short) is
a kind of dynamic systems which consist of a differential equation combined
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with a time-dependent variational inequality. The notion of differential vari-
ational inequalities was initially introduced and systematically studied by
Pang–Stewart [29] in Euclidean spaces. After that many researchers are at-
tracted to boost the development of theory and applications of DVIs. Because
DVIs are useful for the study of models involving both dynamics and con-
straints in the form of inequalities. They arise in many applications: electrical
circuits with ideal diodes, Coulomb friction problems for contacting bodies,
economical dynamics, dynamic traffic networks. The most representative re-
sults are as follows: Loi [20] applied the method of integral guiding functions
to explore a multi-parameter global bifurcation theorem for differential in-
clusions with the periodic condition and then employed the abstract results
to the study of the two-parameter global bifurcation of periodic solutions
for a class of differential variational inequalities in Euclidean spaces; Liu–
Zeng–Motreanu [13,17,18] and Liu–Migórski–Zeng [16] proved the existence
of solutions for a class of differential mixed variational inequalities in Banach
spaces through applying the theory of semigroups, Filippov implicit func-
tion lemma and fixed point theorems for condensing multivalued operators;
Chen–Wang [1] in 2014 used the idea of DVIs to investigate a dynamic Nash
equilibrium problem of multiple players with shared constraints and dynamic
decision processes; Nguyen–Tran [28] considered a model of infinite dimen-
sional differential variational inequalities formulated by a parabolic differen-
tial inclusion and an elliptic variational inequality, and utilized the theory
of measure of noncompactness to prove the existence of global solutions as
well as global attractor for the semi-flow governed by the differential varia-
tional inequality. For more details on these topics the reader is welcome to
consult [2,6,8,10,11,14,15,21,22,24,34,35] and the references therein.

Recently, the concept of differential hemivariational inequalities was
first proposed by Liu–Zeng–Motreanu [19]. However, a natural question why
there is a need to study the differential hemivariational inequalities has been
raised. More recently, the papers [23] and [37] have delivered a positive an-
swer to this question. In the paper [23], the authors used a temporally semi-
discrete method based on the backward Euler difference scheme, i.e., the
Rothe method, and a feedback iterative technique to prove the existence of
solutions for a class of differential hemivariational inequalities of hyperbolic–
parabolic type, and employed the theoretical results to a dynamic adhesive
viscoelastic contact problem with friction. However, the paper [37] was de-
voted to adopt the idea of differential hemivariational inequalities to analyze
a frictional quasistatic contact problem for viscoelastic materials with adhe-
sion in which the friction and contact conditions are described by the Clarke’s
generalized gradient of nonconvex and nonsmooth functionals, and the con-
stitutive relation is modeled by the fractional Kelvin–Voigt law.

The aim of the present paper is devoted to develop new mathematical
tools and methods for differential hemivariational inequalities. Let (V, ‖ · ‖V )
and (E, ‖ · ‖E) be reflexive and separable Banach spaces. Also, let K be a
nonempty, closed, and convex subset of V . In what follows, we denote by 〈·, ·〉
the duality pairing between V and its dual V ∗. Assume that A : D(A) ⊂ E →
E is the infinitesimal generator of a C0-semigroup eAt in E. Let 0 < T < ∞,
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and (X, ‖ ·‖X) be a separable Banach space with its dual (X∗, ‖ ·‖X∗). Given
nonlinear functions f : [0, T ] × E × V → E and g : [0, T ] × E × V → V ∗, a
locally Lipschitz function J : X → R, a bounded linear operator γ : V → X,
and a bifunction ϕ : V × V → R ∪ {−∞,+∞}, this paper is concerned with
the study of the following generalized differential variational–hemivariational
inequality: find functions x : [0, T ] → E and u : [0, T ] → K such that

⎧
⎨

⎩

x′(t) = Ax(t) + f(t, x(t), u(t)) for a.e. t ∈ [0, T ],
u(t) ∈ SOL(K; g(t, x(t), ·), J, ϕ) for a.e. t ∈ [0, T ],
x(0) = x0,

(1)

where SOL(K; g(t, x(t), ·), J, ϕ) stands for the solution set of the following
generalized variational–hemivariational inequality: given t ∈ [0, T ] and x(t) ∈
E, find u(t) ∈ K such that

〈g(t, x(t), u(t)), v − u(t)〉 + J0(γu(t); γ(v − u(t)))
+ϕ(v, u(t)) ≥ 0 for all v ∈ K. (2)

From the previous work [13,16–18], we now provide the definition of
solutions of problem (1) in the mild sense.

Definition 1.1. A pair of functions (x, u), with x ∈ C([0, T ];E) and u : [0, T ] →
K integral, is called a mild solution of problem (1) if

x(t) = eAtx0 +
∫ t

0

eA(t−s)f(s, x(s), u(s)) ds

for all t ∈ [0, T ], where u(s) ∈ SOL(K; g(s, x(s), ·), J, ϕ) for a.e. s ∈ [0, T ]. If
(x, u) is a mild solution of problem (1), then x is called the mild trajectory
and u is the variational control trajectory.

The main contributions of the paper are threefold. First, using KKM
principle, Minty’s approach, and the properties of Clarke’s subgradient, we
prove that the solution set of variational–hemivariational inequality (2) is
nonempty, bounded, closed, and convex. As a result, the measurability and
upper semicontinuity for variational–hemivariational inequality (2) with re-
spect to the time variable and state variable are illustrated. Second, by apply-
ing a fixed point theorem for history-dependent operators, a well-posedness
result for differential variational–hemivariational inequality (1), including the
existence, uniqueness, and stability of the solution in mild sense, is estab-
lished. Finally, the penalty methods are employed to differential variational–
hemivariational inequality (1) to consider a penalized problem, problem (20)
corresponding to original problem (1) (see Sect. 4), and examine the conver-
gence result that the solution to the original problem can be approached, as
a parameter converges to zero, by the solution of the penalized problem.

The outline of the paper is as follows. Basic notation and preliminary
material needed in the sequel are recalled in Sect. 2. In Sects. 3 and 4, we
deliver the main results of the paper which include existence, uniqueness, sta-
bility and convergence of the solution in mild sense for differential variational–
hemivariational inequality (1). Section 5 gives a conclusion of the paper .
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2. Mathematical background

In this section, we briefly review basic notation and some results which are
needed in the sequel. For more details, we refer to monographs [3,4,25,36].

Throughout the paper, we denote by 〈·, ·〉Y ∗×Y the duality pairing be-
tween a Banach space Y and its dual Y ∗. The norm in a normed space Y is de-
noted by ‖ ·‖Y . Given a subset D of Y , we write ‖D‖Y = sup{‖v‖Y | v ∈ Y }.
If no confusion arises, we often drop the subscripts. For any nonempty set
X, we denote by P (X) the collection of its nonempty subsets. Besides, we
denote by L(Y1, Y2) the space of linear and bounded operators from a normed
space Y1 to a normed space Y2 endowed with the usual norm ‖ · ‖L(Y1,Y2).
In what follows, the symbols “→” and “⇀” denote the strong and the weak
convergence in various spaces which will be specified.

Definition 2.1. Let (X, ‖ · ‖X) be a reflexive Banach space with its dual X∗

and A : X → X∗. We say that

(i) A is monotone, if for all u, v ∈ X, we have 〈Au − Av, u − v〉 ≥ 0.
(ii) A is strongly monotone with constant mA > 0, if 〈Au − Av, u − v〉 ≥

mA‖u − v‖2
X for all u, v ∈ X.

(iii) A is pseudomonotone, if A is a bounded operator and for every sequence
{xn} ⊆ X converging weakly to x ∈ X such that lim sup〈Axn, xn−x〉 ≤
0, we have 〈Ax, x − y〉 ≤ lim inf〈Axn, xn − y〉 for all y ∈ X.

(iv) A is hemicontinuous, if for all u, v, w ∈ X, the function λ 
→ 〈A(u +
λv), w〉 is continuous on [0, 1].

It is obvious that A : X → X∗ is pseudomonotone if and only if A is
bounded and xn ⇀ x in X with lim sup〈Axn, xn−x〉 ≤ 0 imply lim〈Axn, xn−
x〉 = 0 and Axn ⇀ Ax in X∗. Furthermore, if A ∈ L(X,X∗) is nonnegative,
then it is pseudomonotone.

Let X be a Banach space with its dual space X∗. A function f : X →
R := R ∪ {+∞} is called proper, convex, and lower semicontinuous, if it
fulfills, respectively, the following conditions:

D(f) := {u ∈ X | f(u) < +∞} �= ∅,

f(λu + (1 − λ)v) ≤ λf(u) + (1 − λ)f(v) for all λ ∈ [0, 1] and u, v ∈ X,

f(u) ≤ lim inf
n→∞ f(un) for all sequences {un} ⊂ X with un → u.

In the meantime, we review the definitions and properties of semicon-
tinuous multivalued mappings.

Definition 2.2. Let X and Y be topological spaces, and F : X → P (Y ) be a
multivalued mapping. We say that F is

(i) upper semicontinuous (u.s.c., for short) at x ∈ X if, for every open set
O ⊂ Y with F (x) ⊂ O there exists a neighborhood N(x) of x such that
F (N(x)) := ∪y∈N(x)F (y) ⊂ O. If this holds for every x ∈ X, then F is
called upper semicontinuous.

(ii) closed at x0 ∈ X, if for every sequence {(xn, yn)} ⊂ Gr(F ) such that
(xn, yn) → (x0, y0) in X × Y , we have (x0, y0) ∈ Gr(F ), where Gr(F ) is
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the graph of the multivalued mapping F defined by

Gr(F ) := {(x, y) ∈ X × Y | y ∈ F (x)}.

We say that F is closed (or F has a closed graph), if it is closed at every
x0 ∈ X.

The following theorem gives a criterium for upper semicontinuity.

Proposition 2.3. Let F : X → P (Y ), with X and Y topological spaces. The
statements below are equivalent:

(i) F is upper semicontinuous;
(ii) for every closed set C ⊂ Y , the set F−(C) is closed in X

F−(C) := {x ∈ X | F (x) ∩ C �= ∅};

(iii) for every open set O ⊂ Y , the set F+(O) is open in X

F+(O) := {x ∈ X | F (x) ⊂ O}.

Definition 2.4. Let E and V be Banach spaces and let I ⊂ R be an interval.
We say that F : I × E → P (V ) is superpositionally measurable if, for every
measurable multivalued mapping Q : I → P (E) with compact values, the
superposition Φ: I → P (V ) given by Φ(t) = F (t,Q(t)) is measurable.

Indeed, it is quite difficult to examine if a multivalued mapping is super-
positionally measurable using definition. Fortunately, the following theorem
provides a necessary criterion to validate whether a multivalued mapping is
superpositionally measurable.

Theorem 2.5. Let F : I×E → P (V ) be a multivalued mapping. If t 
→ F (t, u)
is measurable on I for all u ∈ E and u 
→ F (t, u) is upper or lower semicon-
tinuous for a.e. t ∈ I, then F is superpositionally measurable.

Furthermore, we recall the well-known result, KKM principle, see Ky
Fan [5], which will be used in Sect. 3 to verify the existence of solutions to
generalized variational–hemivariational inequality (2).

Lemma 2.6. Let K be a nonempty subset of a Hausdorff topological vector
space V , and let G : K → P (V ) be a multivalued mapping satisfying

(i) G is a KKM mapping, namely for any {v1, v2, . . . , vn} ⊂ K, one has
that its convex hull co{v1, v2, ..., vn} is contained in ∪n

i=1G(vi);
(ii) G(v) is closed in V for every v ∈ K;
(iii) G(v0) is compact in V for some v0 ∈ K.

Then it holds ∩v∈KG(v) �= ∅.
A function J : X → R is called locally Lipschitz continuous at u ∈ X, if

there exist a neighborhood N(u) of u and a constant Lu > 0 such that

|J(w) − J(v)| ≤ Lu‖w − v‖X for all w, v ∈ N(u).
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Definition 2.7. Given a locally Lipschitz function J : X → R, we denote by
J0(u; v) the generalized (Clarke) directional derivative of J at the point u ∈ X
in the direction v ∈ X defined by

J0(u; v) = lim sup
λ→0+, w→u

J(w + λv) − J(w)
λ

.

The generalized gradient of J : X → R at u ∈ X is given by

∂J(u) = { ξ ∈ X∗ | J0(u; v) ≥ 〈ξ, v〉 for all v ∈ X }.

In fact, the generalized gradient and generalized directional derivative of
a locally Lipschitz function enjoy many nice properties and rich calculus. Here
we just collect below some basic and critical results, see cf. [25, Proposition
3.23].

Proposition 2.8. Assume that J : X → R is a locally Lipschitz function. Then
we have

(i) for every x ∈ X, the function X � v 
→ J0(x; v) ∈ R is positively
homogeneous and subadditive, i.e., J0(x;λv) = λJ0(x; v) for all λ ≥ 0,
v ∈ X and J0(x; v1 + v2) ≤ J0(x; v1) + J0(x; v2) for all v1, v2 ∈ X,
respectively.

(ii) for every v ∈ X, it holds J0(x; v) = max { 〈ξ, v〉 : ξ ∈ ∂J(x) }.
(iii) the function X × X � (u, v) 
→ J0(u; v) ∈ R is upper semicontinuous.

Additionally, we recall the notion of the penalty operators, see [31].

Definition 2.9. Let X be a Banach space and K be a nonempty subset of
X. An operator P : X → X∗ is called a penalty operator of set K if P is
bounded, demicontinuous, monotone and K = {u ∈ X | Pu = 0X∗ }.

Note that if K is a nonempty, closed and convex subset of reflexive
Banach space X, then the operator P = J (I − PK) is a penalty operator of
K, where J : X → X∗ is the duality map on X defined by

J (x) = {x∗ ∈ X∗ | 〈x∗, x〉 = ‖x‖2
X = ‖x∗‖2

X∗ } for x ∈ X,

I is the identity map on X, and PK : X → X is the projection operator of
K (see [4, Proposition 1.3.27]).

Definition 2.10. An operator R : C([0, T ];X) → C([0, T ];X) is called history
dependent if there exists a constant LR > 0 such that

‖(Ru)(t) − (Rv)(t)‖X ≤ LR
∫ t

0

‖u(s) − v(s)‖X ds

for all u, v ∈ C([0, T ];X) and t ∈ [0, T ].

An important property of history-dependent operators is provided by
the following fixed point result, see, e.g. [32, Theorem 67].

Lemma 2.11. If R : C([0, T ];X) → C([0, T ];X) is a history-dependent opera-
tor then there exists a unique function u∗ ∈ C([0, T ];X) such that Ru∗ = u∗.
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3. A well-posedness result for differential
variational–hemivariatinal inequalities

This section is devoted to prove a well-posedness result for differential
variational–hemivariational inequality, problem (1), including the existence,
uniqueness, and continuous dependence of solution with respect to initial
data.

We assume that the data of problem (1) read as follows.
H(A): A : D(A) ⊂ E → E is the infinitesimal generator of a C0-semigroup
eAt in E such that supt∈[0,T ] ‖eAt‖ ≤ MA for some MA > 0.
H(K): K is a nonempty, closed, and convex subset of V .
H(J): J : X → R is a locally Lipschitz function.
H(γ): γ : V → X is a linear, bounded, and compact operator.
H(g): g : [0, T ] × E × V → V ∗ is such that

(i) g(·, ·, u) : [0, T ] × E → V ∗ is continuous for all u ∈ V ;
(ii) the following inequality holds:

lim inf
λ→0+

〈g(t, x, λv + (1 − λ)u), v − u〉 ≤ 〈g(t, x, u), v − u〉

for all u, v ∈ K and (t, x) ∈ [0, T ] × E;
(iii) there exist a bounded function ρ : [0, T ]×R+ → R, a function r : R+ → R

with r(s) → +∞ as s → +∞ and an element u0 ∈ K such that

〈g(t, x, v), v − u0〉 + inf
ξ∈∂J(γv)

〈ξ, γ(v − u0)〉X∗×X

≥ r(‖v‖V )‖v‖V +
(
1 + ‖v‖V

)
ρ(t, ‖x‖E);

(iv) for each (t, x) ∈ [0, T ] × E, the multivalued mapping u 
→ g(t, x, u) +
γ∗∂J(γu) is monotone.

H(ϕ): The function ϕ : V × V → R ∪ {−∞,+∞} is such that

(i) v 
→ ϕ(v, u) is convex for all u ∈ V ;
(ii) u 
→ ϕ(v, u) is concave and upper semicontinuous for all v ∈ V ;
(iii) for all v ∈ K, we have ϕ(v, v) = 0.

H(f): The nonlinear function f : [0, T ] × E × V → E satisfies the following
conditions:

(i) for every (t, x) ∈ [0, T ] × E and every convex set D ⊂ K, the set
f(t, x,D) is convex in E;

(ii) there exists ψ ∈ L1
+(0, T ) such that

‖f(t, x, u)‖E ≤ ψ(t)(1 + ‖x‖E + ‖u‖V ) for all (t, x, u) ∈ [0, T ] × E × K;

(iii) t 
→ f(t, x, u) is measurable on [0, T ], for every (x, u) ∈ E × V ;
(iv) f(t, ·, ·) : E × V → E is continuous for a.e. t ∈ [0, T ];
(v) there exists k ∈ L1

+(0, T ) such that

‖f(t, x0, u) − f(t, x1, u)‖E ≤ k(t)‖x0 − x1‖E

for x0, x1 ∈ E, all u ∈ K and a.e. t ∈ [0, T ].
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To establish the existence result for problem (1), first, we will exploit
the following generalized elliptic variational–hemivariational inequality: find
u ∈ K such that

〈Q(u), v − u〉 + J0(γu; γ(v − u)) + ϕ(v, u) ≥ 0 for all v ∈ K, (3)

where Q : K → V ∗ is a given mapping. For simplicity, in what follows, denote
by SOL(K;Q, J, ϕ) the solution set of problem (3).

Theorem 3.1. Assume that H(J), H(ϕ), H(γ), H(K) and the following con-
ditions are satisfied

(i) Q : K → V ∗ is monotone such that

lim inf
λ→0+

〈Q(λv + (1 − λ)u), v − u〉 ≤ 〈Q(u), v − u〉 for all u, v ∈ K;

(ii) if the set K is unbounded in V , there exists u0 ∈ K such that

lim inf
v∈K,‖v‖V →∞

〈Q(v), v − u0〉 + infξ∈∂J(γv)〈ξ, γ(v − u0)〉X∗×X

‖v‖V
= +∞.

Then the solution set of problem (3), SOL(K;Q, J, ϕ), is nonempty, bounded
and weakly closed in V .

Proof. We first show that the solution set of problem (3), SOL(K;Q, J, ϕ),
is nonempty. To do so, we shall consider two situations that K is bounded
and K is unbounded.

Suppose that K is bounded in V . Consider a multivalued mapping
G : K → P (K) defined by

G(v) :=
{
u ∈ K : 〈Q(v), v − u〉 + J0(γu; γ(v − u)) + ϕ(v, u) ≥ 0

}
for all v ∈ K.

Obviously, for each v ∈ K, the set G(v) is nonempty, owing to v ∈ G(v)
for each v ∈ K. Besides it asserts that G has weakly closed values. Let
{un} ⊂ G(v) be a weakly convergent sequence, namely un ⇀ u as n → ∞
for some u ∈ V . Hence, for each n, one has

〈Q(v), v − un〉 + J0 (γun; γ(v − un)) + ϕ(v, un) ≥ 0. (4)

Notice that K is closed and convex, so it has u ∈ K. On the other side, the
compactness of γ, hypothesis H(ϕ)(ii) and the fact (u, v) 
→ J0(u; v) is upper
semicontinuous reveal that

lim sup
n→∞

J0(γun; γ(v − un)) ≤ J0 (γu; γ(v − u)) and lim sup
n→∞

ϕ(v, un) ≤ ϕ(v, u).

Passing to the upper limit as n → ∞ in inequality (4) and taking into account
the above inequalities, it finds

〈Q(v), v − u〉 + J0(γu; γ(v − u)) + ϕ(v, u)
≥ lim sup

n→∞
〈Q(v), v − un〉 + lim sup

n→∞
J0(γun; γ(v − un)) + lim sup

n→∞
ϕ(v, un)

≥ lim sup
n→∞

[〈Q(v), v − un〉 + J0(γun; γ(v − un)) + ϕ(v, un)
]

≥ 0;

thus is u ∈ G(v). Therefore, G(v) is weakly closed for each v ∈ K.
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Multifunction G is a KKM mapping. Indeed, arguing by contradiction,
there exist a finite subset {v1, v2, . . . , vN} ⊂ K and u0 =

∑N
i=1 tivi with

ti ∈ [0, 1] and
∑N

i=1 ti = 1 such that

u0 �∈
N⋃

i=1

G(vi).

This means that

〈Q(vi), vi − u0〉 + ϕ(vi, u0) + J0(γu0; γvi − γu0) < 0.

The monotonicity of Q ensures that

〈Q(u0), vi − u0〉 + ϕ(vi, u0) + J0 (γu0; γvi − γu0) < 0

for each i = 1, . . . , N . Employing the convexity of v 
→ ϕ(v, u), as well as the
positive homogeneity and subadditivity of v 
→ J0(u; v), we obtain

0 = 〈Q(u0), u0 − u0〉 + ϕ(u0, u0) + J0 (γu0; γu0 − γu0)

= 〈Q(u0),
N∑

i=1

tivi − u0〉 + ϕ

(
N∑

i=1

tivi, u0

)

+ J0

(

γu0; γ
N∑

i=1

tivi − γu0

)

≤
N∑

i=1

ti
[〈Q(u0), vi − u0〉 + ϕ (vi, u0) + J0 (γu0; γvi − γu0)

]

< 0.

This generates a contradiction, so, we conclude that G is a KKM mapping.
Keeping in mind that K is bounded, closed and convex, it follows from

reflexivity of V that K is also weakly compact. This implies that G(v) is
weakly compact too, for every v ∈ K, since G has weakly closed values. By
invoking KKM principle, Lemma 2.6, with respect to the weak topology of
V , it has

⋂

v∈K

G(v) �= ∅.

Hence, we can find an element u∗ ∈ K such that

〈Q(v), v − u∗〉 + J0 (γu∗; γ (v − u∗)) + ϕ (v, u∗) ≥ 0

for all v ∈ K. For any w ∈ K and t ∈ (0, 1), we take v = vt := tw + (1 − t)u∗

into the above inequality to get

〈Q(vt), w − u∗〉 + J0 (γu∗; γ (w − u∗)) + ϕ (w, u∗) ≥ 0,

where we have utilized the condition H(ϕ)(iii). Passing to the lower limit as
t → 0+ in the above inequality and using condition (i), one obtains

〈Q(u∗), w − u∗〉 + J0 (γu∗; γ (w − u∗)) + ϕ (w, u∗) ≥ 0.

Since w ∈ K is arbitrary, this signifies that u∗ ∈ K is a solution to problem
(3).

Furthermore, we consider the situation that K is unbounded. For each
n ∈ N, define Kn ⊂ K by

Kn : = {x ∈ K : ‖x − u0‖V ≤ n},
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where u0 is given in the hypothesis (ii). So, for each n ∈ N, we are able to
find a solution un ∈ Kn to the following problem:

〈Q(un), v − un〉 + J0 (γun; γ (v − un)) + ϕ (v, un) ≥ 0 (5)

for all v ∈ Kn. We affirm that there exists an integer N0 ≥ 1 such that

‖uN0 − u0‖V < N0. (6)

If it does not hold, then for each n ∈ N, the equality ‖un − u0‖V = n is true.
This points out ‖un‖V → ∞ as n → ∞. Putting v = u0 into (5), it turns
out

〈Q(un), u0 − un〉 + J0 (γun; γ (u0 − un)) + ϕ (u0, un) ≥ 0. (7)

However, Proposition 2.8(ii) says that there is an element ξn ∈ ∂J(γun) such
that

J0 (γun; γ (u0 − un)) = 〈ξn, γ (u0 − un)〉X∗×X . (8)

Observe that u 
→ −ϕ(v, u) is convex, see assumption H(ϕ)(ii), from [33,
Proposition 1.29], we have

− ϕ(u0, v) ≥ cϕ + 〈ηϕ, v〉 (9)

for all v ∈ V , where cϕ ∈ R and ηϕ ∈ V ∗ only depend on u0. Combining with
(7)–(9), it yields

〈Q(un), un − u0〉 + inf
ξ∈∂J(γun)

〈ξ, γ(un − u0)〉X∗×X − |cϕ| − ‖ηϕ‖V ∗‖un‖V ≤ 0.

Remembering that ‖un‖V → ∞ as n → ∞ and condition (ii), we imply

+∞ = lim inf
n→∞

〈Q(un), un − u0〉 + infξ∈∂J(γun)〈ξ, γ(un − u0)〉X∗×X

‖un‖V

≤ ‖ηϕ‖V ∗ + lim inf
n→∞

|cϕ|
‖un‖V

= ‖ηϕ‖V ∗ .

This leads a contradiction. Hence, the claim in (6) is valid.
Let w ∈ K be arbitrary. Assume that N0 ∈ N and uN0 are such that (6)

holds. It allows us to pick a sufficiently small t > 0 satisfying

(1 − t)uN0 + tw ∈ KN0 .

Inserting v = (1 − t)uN0 + tw into (5) for n = N0, it reads

〈Q (uN0) , w − uN0〉 + J0 (γuN0 ; γ (w − uN0)) + ϕ (w, uN0) ≥ 0

for all w ∈ K. This concludes that uN0 is a solution to problem (3).
Next, we show that SOL(K;Q, J, ϕ) is weakly closed in V . Let {un} ⊂

SOL(K;Q, J, ϕ) be a weakly convergent sequence, i.e., un ⇀ u in V for some
u ∈ V . Then we have

〈Q(un), v − un〉 + J0 (γun; γ (v − un)) + ϕ (v, un) ≥ 0 for all v ∈ K.

The monotonicity of Q suggests

〈Q(v), v − un〉 + J0 (γun; γ (v − un)) + ϕ (v, un) ≥ 0 for all v ∈ K. (10)
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The upper semicontinuity of w 
→ ϕ(v, w) and (w, v) 
→ J0(w; v) combined
with the compactness of γ and hypothesis H(ϕ)(ii) indicates

lim sup
n→∞

J0 (γun; γ (v − un)) ≤ J0 (γu; γ(v − u)) and lim sup
n→∞

ϕ (v, un) ≤ ϕ(v, u).

Passing to the upper limit in inequality (10) and taking into account the
above inequalities, we have

〈Q(v), v − u〉 + J0 (γu; γ(v − u)) + ϕ(v, u)
≥ lim sup

n→∞
〈Q(v), v − un〉 + lim sup

n→∞
J0 (γun; γ (v − un)) + lim sup

n→∞
ϕ (v, un)

≥ lim sup
n→∞

[〈Q(v), v − un〉 + J0 (γun; γ (v − un)) + ϕ (v, un)
]

≥ 0 for all v ∈ K.

Now, we use the Minty approach again to obtain u ∈ SOL(K;Q, J, ϕ). There-
fore, SOL(K;Q, J, ϕ) is weakly closed in V .

It is enough to demonstrate that SOL(K;Q, J, ϕ) is bounded. Suppose
that SOL(K;Q, J, ϕ) is unbounded. Therefore, we can find a sequence {un} ⊂
SOL(K;Q, J, ϕ) such that ‖un‖V → +∞ as n → ∞. As before we did, a
simple calculation gives

+∞ = lim inf
n→∞

〈Q (un) , un − u0〉 + infξ∈∂J(γun)〈ξ, γ(un − u0)〉X∗×X

‖un‖V

≤ ‖ηϕ‖V ∗ .

This reaches a contradiction. Consequently, we conclude that SOL(K;Q, J, ϕ)
is bounded. �

Additionally, we have the following two corollaries.

Corollary 3.2. Assume that H(J), H(γ), H(K), and conditions (i)–(ii) of
Theorem 3.1 are fulfilled. If φ : K → R := R ∪ {+∞} is a proper, convex
and lower semicontinuous function, then the solution set of the following
variational–hemivariational inequality

find u ∈ K such that 〈Q(u), v − u〉 + J0 (γu; γ(v − u))
+φ(v) − φ(u) ≥ 0 for all v ∈ K

is nonempty, bounded, and weakly closed.

Proof. It is easy to verify that the function ϕ : V × V → R ∪ {−∞,+∞}
defined by ϕ(v, u) = φ(v) − φ(u) reads hypothesis H(ϕ). The conclusion of
the corollary is a direct consequence of Theorem 3.1. �
Corollary 3.3. Under the assumptions H(ϕ), H(K), if conditions (i)–(ii) of
Theorem 3.1 hold with J ≡ 0, then the solution set of the following generalized
variational inequality

find u ∈ K such that 〈Q(u), v − u〉 + ϕ(v, u) ≥ 0 for all v ∈ K,

is nonempty, bounded, and weakly closed.

For more particular cases of Theorem 3.1, Corollaries 3.2 and 3.3, the
reader is welcome to refer [12,13,18,27].

The following lemma delivers a convexity result for set SOL(K;Q, J, ϕ).



   83 Page 12 of 30 G. Tang et al.

Lemma 3.4. Suppose that Q : K → V ∗ is such that

lim inf
λ→0+

〈Q (λv + (1 − λ)u) , v − u〉 ≤ 〈Q(u), v − u〉 for all u, v ∈ K,

the multivalued mapping u 
→ Qu + γ∗∂J(γu) is monotone, and v 
→ ϕ(v, u)
is convex for all u ∈ K and u 
→ ϕ(v, u) is concave for all v ∈ K with
ϕ(u, u) = 0 for all u ∈ K. Then the set SOL(K;Q, J, ϕ) is convex, when it
is nonempty.

Proof. Assume that SOL(K;Q, J, ϕ) is nonempty. Let u1, u2 ∈ SOL
(K;Q, J, ϕ) and t ∈ (0, 1) be arbitrary. Then for i = 1, 2 we have

〈Q(ui), v − ui〉 + J0 (γui; γ (v − ui)) + ϕ (v, ui) ≥ 0

for all v ∈ K. Using the property, Proposition 2.8(ii), we are able to find an
element ξi ∈ ∂J(γui) such that

J0 (γui; γ (v − ui)) = 〈ξi, γ (v − ui)〉X∗×X (11)

for i = 1, 2. Taking into account (11) and monotonicity of u 
→ Qu +
γ∗∂J(γu), it yields

0 ≤ 〈Q (ui) , v − ui〉 + J0 (γui; γ (v − ui)) + ϕ (v, ui)
= 〈Q (ui) + γ∗ξi, v − ui〉 + ϕ (v, ui)
≤ 〈Q(v) + γ∗ξv, v − ui〉 + ϕ (v, ui)

for all ξv ∈ ∂J(γv) and all v ∈ K, i = 1, 2. Denote ut = tu1 + (1 − t)u2. The
above inequalities and the concavity of u 
→ ϕ(v, u) point out

〈Q(v) + γ∗ξv, v − ut〉 + ϕ (v, ut)
≥ t [〈Q(v) + γ∗ξv, v − u1〉 + ϕ(v, u1)] + (1 − t) [〈Q(v)

+γ∗ξv, v − u2〉 + ϕ (v, u2)]
≥ 0 (12)

for all ξv ∈ ∂J(γv) and all v ∈ K. For any w ∈ K, inserting vλ = λw + (1 −
λ)ut into (12) implies

λ〈Q (vλ) + γ∗ξvλ
, w − ut〉

+λϕ (w, ut) + (1 − λ) ϕ (ut, ut) ≥ 0 for all ξvλ
∈ ∂J (γvλ) ,

thus is,

0 ≤ 〈Q (vλ) + γ∗ξvλ
, w − ut〉 + ϕ (w, ut)

≤ 〈Q (vλ) , w − ut〉 + J0 (γvλ; γ (w − ut)) + ϕ (w, ut) .

Passing to the lower limit as λ → 0 in the above inequality and using condition
(i) of Theorem 3.1, it emerges

〈Q (ut) , w − ut〉 + J0 (γut; γ (w − ut)) + ϕ (w, ut) ≥ 0,

here we have applied the upper semicontinuity of (u, v) 
→ J0(u; v), see
Proposition 2.8(iii), and the fact, lim inf

[
f(xn) + g(xn)

] ≤ lim inf f(xn) +
lim sup g(xn). Since w ∈ K is arbitrary, so, we conclude that ut ∈ SOL
(K;Q, J, ϕ), namely the set SOL(K;Q, J, ϕ) is convex. �
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As a byproduct of the proof of Lemma 3.4, we also provide a Minty type
equivalence result for problem (3).

Lemma 3.5. Under the assumptions of Lemma 3.4, u ∈ SOL(K;Q, J, ϕ) if
and only if u solves the following Minty variational-hemivariational inequal-
ity: find u ∈ K such that

〈Q(v), v − u〉 + J0 (γv; γ(v − u)) + ϕ(v, u) ≥ 0

for all v ∈ K.

Combining Theorem 3.1 with Lemma 3.4, we obtain the following the-
orem.

Theorem 3.6. Suppose that the condition (ii) of Theorem 3.1, H(J), H(ϕ),
H(γ) and H(K) are fulfilled. If, in addition, Q : K → V ∗ is such that

lim inf
λ→0+

〈Q (λv + (1 − λ)u) , v − u〉 ≤ 〈Q(u), v − u〉 for all u, v ∈ K,

and the multivalued mapping u 
→ Qu + γ∗∂J(γu) is monotone, then the
solution set of problem (3), SOL(K;Q, J, ϕ), is nonempty, bounded, closed
and convex in V .

Consider a multivalued mapping U : [0, T ] × E → P (K) defined by

U(t, x) :=
{
u ∈ K | 〈g(t, x, u), v − u〉 + J0 (γu; γ(v − u))

+ϕ(v, u) ≥ 0 for all v ∈ K} (13)

for all (t, x) ∈ [0, T ] × E. Moreover, the following theorem reveals that U
is well defined, strongly–weakly upper semicontinuous, and superpositionally
measurable.

Theorem 3.7. Assume hypotheses H(g), H(J), H(ϕ), H(γ) and H(K) are
satisfied. Then multivalued mapping U : [0, T ] × E → P (K) given in (13) is
well defined and satisfies the following properties:
(U1) U is strongly–weakly upper semicontinuous;
(U2) U is superpositionally measurable in the sense of Definition 2.4.

Proof. In fact, Theorem 3.6 implies that for each (t, x) ∈ [0, T ] × E the set
U(t, x) is nonempty, bounded, closed, and convex. So, the mapping U : [0, T ]×
E → P (K) is well defined.

We now apply Proposition 2.3 to verify the assertion (U1). It reminds
us to demonstrate that for each weakly closed subset C ⊂ K, the set

U−(C) : = {(t, x) ∈ [0, T ] × E | U(t, x) ∩ C �= ∅}
is closed in R×E. Let {(tn, xn)} ⊂ U−(C) be a sequence such that (tn, xn) →
(t, x) in R × E as n → ∞. Thus, there exists a sequence {un} ⊂ K with
un ∈ U(tn, xn) ∩ C for each n ∈ N, especially,

〈g (tn, xn, un) , v − un〉 + J0 (γun; γ (v − un)) + ϕ(v, un) ≥ 0 for all v ∈ K

(14)

and all n ∈ N. We prove that the sequence {un} is uniformly bounded.
Arguing by contradiction, passing to a subsequence if necessary, we may say
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that ‖un‖V → ∞ as n → ∞. Taking v = u0 into (14) and using hypothesis
H(g)(iii) imply

0 ≥ 〈g (tn, xn, un) + γ∗ξun
, un − u0〉 − ϕ (u0, un)

≥ r (‖un‖V ) ‖un‖V + (1 + ‖un‖V ) ρ (tn, ‖xn‖E) − ϕ (u0, un)
≥ r (‖un‖V ) ‖un‖V + (1 + ‖un‖V ) ρ (tn, ‖xn‖E) − |cϕ| − ‖ηϕ‖V ∗‖un‖V

for some cϕ ∈ R and ηϕ ∈ V ∗. Then we have

r (‖un‖V ) +
1 + ‖un‖V

‖un‖V
ρ (tn, ‖xn‖E) − |cϕ|

‖un‖V
− ‖ηϕ‖V ∗ ≤ 0.

Recall that ρ is a bounded function, {(tn, xn)} is bounded in [0, T ] × E, and
r(s) → +∞ as s → +∞, it takes the lower limit as n → ∞ in the above
inequality to get

+∞ = lim inf
n→∞

(

r (‖un‖V ) +
1 + ‖un‖V

‖un‖V
ρ(tn, ‖xn‖E)

)

− lim inf
n→∞

|cϕ|
‖un‖V

− ‖ηϕ‖V ∗ ≤ 0.

This generates a contradiction, hence, {un} is uniformly bounded. Without
loss of generality, we may assume that un ⇀ u in V as n → ∞, for some
u ∈ K.

On the other hand, Lemma 3.5 and (14) guarantee

〈g (tn, xn, v) , v − un〉 + J0 (γv; γ (v − un)) + ϕ (v, un) ≥ 0 for all v ∈ K

(15)

and all n ∈ N. Remember that u 
→ ϕ(v, u) is concave and upper semicontin-
uous. Passing to the upper limit as n → ∞ in (15), it yields

0 ≤ lim sup
n→∞

[〈g (tn, xn, v) , v − un〉 + J0 (γv; γ (v − un)) + ϕ (v, un)
]

≤ lim sup
n→∞

〈g (tn, xn, v) , v − un〉 + lim sup
n→∞

J0 (γv; γ (v − un)) + lim sup
n→∞

ϕ(v, un)

≤ 〈g (t, x, v) , v − u〉 + J0 (γv; γ (v − u)) + ϕ(v, u)

for all v ∈ K. We have used the facts, (t, x) 
→ g(t, x, v) is continuous, γ
is compact, u 
→ ϕ(v, u) is weakly upper semicontinuous (because it is con-
cave and upper semicontinuous). Employing Lemma 3.5 again, we conclude
that u ∈ U(t, x). The latter coupled with the weak closedness of C implies
u ∈ U(t, x) ∩ C, i.e., (t, x) ∈ U−(C). Therefore, U is strongly–weakly upper
semicontinuous.

Concerning the proof of (U2), Proposition 6.2.4 of [30] points out that
if, for all x ∈ E and v ∈ V , the function t 
→ d(v, U(t, x)) is measurable, then
U(·, x) is measurable as well. In fact, if for each λ ≥ 0 the set Mλ := {t ∈
[0, T ] | d(v, U(t, x)) ≤ λ} is measurable, then the function t 
→ d(v, U(t, x))
is measurable too. Moreover, here, we will show that for each λ ≥ 0 the set
Mλ := {t ∈ [0, T ] | d(v, U(t, x)) ≤ λ} is closed, so, it is measurable. Notice
that U has closed and convex values, hence, for every n ∈ N, we are able to
take a unique element un ∈ U(tn, x) such that ‖v−un‖V = d(v, U(tn, x)) ≤ λ.
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As before we have done, it is not difficult to see that the sequence {un} is
bounded. This allows us to suppose that un ⇀ u, as n → ∞, for some u ∈ K.
Whereas the strongly–weakly upper semicontinuity of U ensures u ∈ U(t, x).
This infers

d (v, U(t, x)) ≤ ‖v − u‖V ≤ lim inf
n→∞ ‖v − un‖V ≤ λ.

This indicates that Mλ is closed, so, U(·, x) is measurable. Consequently, from
assertion (U1) and Theorem 2.5, we conclude the desired result
(U2). �

Invoking the same arguments with the proof of [18, Lemma 4.2 and
Theorem 4.4], [13, Lemma 3.6] and Theorem 3.6, we are now in a position to
conclude the following existence result to problem (1).

Theorem 3.8. Assume that H(A), H(g), H(f), H(J), H(γ), H(ϕ) and H(K)
hold. Then the solution set of problem (1) in the sense of Definition 1.1 is
nonempty, and the set of all mild trajectories x of problem (1) is compact in
C([0, T ];E).

Moreover, we shall examine a well-posedness result for problem (1). To
do so, we need the following assumptions:
H(J)′: J : X → R is a locally Lipschitz function and enjoys the following
properties

(i) there exist constants αJ ≥ 0 and bJ > 0 such that

‖∂J(w)‖X∗ ≤ αJ + bJ‖w‖X for all w ∈ X;

(ii) there exists a constant mJ ≥ 0 such that

〈ξ − η, w − v〉X∗×X ≥ −mJ‖w − v‖2
X for all w, v ∈ X and all ξ ∈ ∂J(w), η ∈ ∂J(v).

H(g)′: g : [0, T ] × E × V → V ∗ is such that
(i) for all (t, x) ∈ [0, T ] × E, the mapping u 
→ g(t, x, u) is hemicontinuous

and is uniformly strongly monotone, i.e., there exists a constant mg > 0
such that the following inequality holds

〈g(t, x, u) − g(t, x, v), u − v〉 ≥ mg‖u − v‖2
V for all u, v ∈ V

and all (t, x) ∈ [0, T ] × E;
(ii) there exists a constant Lg > 0 such that

‖g (t1, x1, u) − g (t2, x2, u) ‖V ∗ ≤ Lg (|t1 − t2| + ‖x1 − x2‖E)

for all t1, t2 ∈ [0, T ], x1, x2 ∈ E and all u ∈ K.
H(f)′: The nonlinear function f : [0, T ] × E × V → E satisfies the following
conditions:

(i) for all (x, u) ∈ E ×V , the function t 
→ f(t, x, u) is measurable on [0, T ];
(ii) the function t 
→ f(t, 0E , 0V ) belongs to L1([0, T ];E);
(iii) there exists a function ψ ∈ L∞

+ (0, T ) such that

‖f(t, x1, u1) − f(t, x2, u2)‖E ≤ ψ(t)
(‖x1 − x2‖E + ‖u1 − u2‖V

)

for a.e. t ∈ [0, T ] and all (x1, u1), (x2, u2) ∈ E × V .
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H(0): mg > mJ‖γ‖2
L(V,X).

Remark 3.9. Assumption H(J)′(ii) is usually called relaxed monotone con-
dition (see, e.g. [25]) for the locally Lipschitz function J . It is equivalent to
the inequality

J0(u; v − u) + J0(v;u − v) ≤ mJ‖u − v‖2
X

for all u, v ∈ X.

Theorem 3.10. Assume that H(A), H(g)′, H(J)′, H(ϕ) with ϕ(u, v)+ϕ(v, u)
≤ 0 for all u, v ∈ K, H(γ), H(f)′, H(K), and H(0) are fulfilled. Then we
have

(i) for each initial point x0 ∈ E, differential variational–hemivariational in-
equality (1) possesses a unique solution (x, u) ∈ C([0, T ];E)×C([0, T ];K).

(ii) the map x0 
→ (x, u)(x0) : E → C([0, T ];E) × C([0, T ];K) is Lipschitz
continuous.

Proof. (i) For any u0 ∈ K fixed, it follows from hypotheses H(g)′ and H(J)′

that

〈g(t, x, u), u − u0〉 + 〈ξ, γ(u − u0)〉X∗×X

= 〈g(t, x, u) − g(t, x, u0), u − u0〉 + 〈ξ
−ξ0, γ(u − u0)〉X∗×X + 〈g(t, x, u0) + γ∗ξ0, u − u0〉

≥
(
mg − mJ‖γ‖2

L(V,X)

)
‖u − u0‖2

V

− (‖γ‖L(V,X)‖ξ0‖X∗ + ‖g(t, x, u0)‖V ∗
) ‖u − u0‖V

≥
(
mg − mJ‖γ‖2

L(V,X)

)
‖u − u0‖2

V

− (‖γ‖L(V,X)αJ + ‖g (t, x, u0) − g (0, 0E , u0) ‖V ∗
) ‖u − u0‖V

−‖g(0, 0E , u0)‖V ∗‖u − u0‖V

≥
(
mg − mJ‖γ‖2

L(V,X)

)
‖u − u0‖2

V

− (‖γ‖L(V,X)αJ + Lg (|t| + ‖x‖E)
) ‖u − u0‖V

−‖g(0, 0E , u0)‖V ∗‖u − u0‖V

for all ξ ∈ ∂J(γu) and all ξ0 ∈ ∂J(γ0V ). Hence, H(0) indicates that

〈g(t, x, u), u − u0〉 + inf
ξ∈∂J(γu)

〈ξ, γ(u − u0)〉X∗×X

≥ (
mg − mJ‖γ‖2

L(V,X)

)‖u‖2
V

− (‖γ‖L(V,X)αJ + Lg(|t| + ‖x‖E) + ‖g(0, 0E , u0)‖V ∗
) ‖u‖V

− (‖γ‖L(V,X)αJ + Lg(|t| + ‖x‖E) + ‖g(0, 0E , u0)‖V ∗
) ‖u0‖V

−
(
mg − mJ‖γ‖2

L(V,X)

)
‖u0‖2

V

−2‖u0‖V

(
mg − mJ‖γ‖2

L(V,X)

)‖u‖V

≥ r(‖u‖V )‖u‖V + (1 + ‖u‖V )ρ(t, ‖x‖E), (16)
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where r : R+ → R and ρ : [0, T ] × R+ → R are, respectively, defined by

r(s) =
(
mg − mJ‖γ‖2

L(V,X)

)
s

−‖γ‖L(V,X)αJ − ‖g(0, 0E , u0)‖V ∗

−2‖u0‖V

(
mg − mJ‖γ‖2

L(V,X)

)

and

ρ(t, s) = − (‖γ‖L(V,X)αJ + Lg(t + s)
+‖g (0, 0E , u0) ‖V ∗) ‖u0‖V

−
(
mg − mJ‖γ‖2

L(V,X)

)
‖u0‖2

V .

Let x ∈ C([0, T ];E) be fixed. We now consider the following time-
dependent variational–hemivariational inequality: find u : [0, T ] → K such
that

〈g (t, x(t), u(t)) , v − u(t)〉 + J0 (γu(t); γ(v − u(t))) + ϕ(v, u(t)) ≥ 0 for all v ∈ K

(17)

and all t ∈ [0, T ]. We now claim that for t ∈ [0, T ] fixed inequality (17) has
a unique solution u(t). Indeed, under the assumptions H(g)′, H(J)′, H(ϕ),
H(K), H(0) and inequality (16), we can verify all conditions of Theorem 3.6.
This permits us to use Theorem 3.6 to find an element u(t) ∈ K such that
inequality (17) holds. Let u(t) and ũ(t) be two solutions to problem (17).
Then one has

〈g (t, x(t), u(t)) , v − u(t)〉 + J0 (γu(t); γ(v − u(t)))
+ϕ(v, u(t)) ≥ 0 for all v ∈ K

and

〈g(t, x(t), ũ(t)), v − ũ(t)〉 + J0(γũ(t); γ(v − ũ(t))) + ϕ(v, ũ(t)) ≥ 0 for all v ∈ K.

Inserting v = ũ(t) into the above first inequality and v = u(t) into the second
one, we sum the resulting inequalities to get

〈g(t, x(t), u(t)) − g(t, x(t), ũ(t)), u(t) − ũ(t)〉 − (
J0 (γu(t); γ(ũ(t) − u(t)))

+J0 (γũ(t); γ(u(t) − ũ(t)))
) ≤ ϕ (u(t), ũ(t)) + ϕ (ũ(t), u(t)) .

The latter coupled with hypotheses H(g)′(i), H(J)′(ii), and the fact ϕ(w, v)+
ϕ(v, w) ≤ 0 for all w, v ∈ K, implies

(
mg − mJ‖γ‖2

L(V,X)

)
‖u(t) − ũ(t)‖2

V ≤ 0.

However, H(0) ensures u(t) = ũ(t), namely for t ∈ [0, T ] fixed inequality (17)
has a unique solution u(t).

Therefore, we can find a unique function u : [0, T ] → K to solve problem
(17) on [0, T ]. Further, it asserts that u is a continuous function, namely
u ∈ C([0, T ];K). For any t1, t2 ∈ [0, T ], it has
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〈g(ti, x(ti), u(ti), v − u(ti)〉 + J0(γu(ti); γ(v − u(ti))) + ϕ(v, u(ti)) ≥ 0 for all v ∈ K

and i = 1, 2. Taking v = u(t2) and v = u(t1) into the above inequalities for
i = 1 and i = 2, respectively, a simple calculation finds

〈g(t1, x(t1), u(t1)) − g(t2, x(t2), u(t2)), u(t1) − u(t2)〉
− (

J0 (γu(t1); γ(u(t2) − u(t1)))

+J0(γu(t2); γ(u(t1) − u(t2)))
) ≤ ϕ(u(t1), u(t2)) + ϕ(u(t2), u(t1)) ≤ 0.

Then we have
(
mg − mJ‖γ‖2

L(V ;X)

)
‖u(t1) − u(t2)‖2

V

≤ 〈g(t2, x(t2), u(t2)) − g(t1, x(t1), u(t2)), u(t1) − u(t2)〉
≤ ‖g(t2, x(t2), u(t2)) − g(t1, x(t1), u(t2))‖V ∗‖u(t1) − u(t2)‖V

≤ Lg (|t1 − t2| + ‖x(t1) − x(t2)‖E) ‖u(t1) − u(t2)‖V ,

which implies that

‖u(t1) − u(t2)‖V ≤ Lg

mg − mJ‖γ‖2
L(V ;X)

(|t1 − t2| + ‖x(t1) − x(t2)‖E

)
.

This means u ∈ C([0, T ];K), thanks to x ∈ C([0, T ];E).
For i = 1, 2, let xi ∈ C([0, T ];E) and ui ∈ C([0, T ];K) be the unique

solution of problem (17), namely,

〈g(t, xi(t), ui(t)), v − ui(t)〉 + J0(γui(t); γ(v − ui(t))) + ϕ(v, ui(t)) ≥ 0 for all v ∈ K

for all t ∈ [0, T ]. Putting v = u2(t) and v = u1(t) into the above inequalities
for i = 1, 2, accordingly, a easy verification gives

‖u1(t) − u2(t)‖V ≤ Lg

mg − mJ‖γ‖2
L(V ;X)

‖x1(t) − x2(t)‖E (18)

for all t ∈ [0, T ].
For u ∈ C([0, T ];K) fixed, we introduce the following Cauchy problem:

{
x′(t) = Ax(t) + f(t, x(t), u(t)) for a.e. t ∈ [0, T ],
x(0) = x0.

(19)

It is clear from [9, Proposition 5.3, p.66] and [18, Section 4] that problem
(19) admits a unique mild solution x ∈ C([0, T ];E) such that

x(t) = eAtx0 +
∫ t

0

eA(t−s)f(s, x(s), u(s)) ds for all t ∈ [0, T ].

Define a function S : C([0, T ];E) → C([0, T ];E) by

S(x)(t) = eAtx0 +
∫ t

0

eA(t−s)f(s, x(s), ux(s)) ds

for all t ∈ [0, T ], where ux ∈ C([0, T ];K) is the unique solution to problem
(17) corresponding to x. It is obvious that x ∈ C([0, T ];E) is a fixed point of
S, if and only if (x, ux) is a solution to differential variational–hemivariational
inequality (1).
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Next, we will show that S has a unique fixed point in C([0, T ];E). For
any x1, x2 ∈ C([0, T ];E), it has

‖S(x1)(t) − S(x2)(t)‖E

≤
∫ t

0

‖eA(t−s)‖‖f(s, x1(s), ux1(s)) − f(s, x2(s), ux2(s))‖E ds

≤ MA

∫ t

0

ψ(s) (‖x1(s) − x2(s)‖E + ‖ux1(s) − ux2(s)‖V ) ds

for all t ∈ [0, T ]. This combined with (18) derives

‖S(x1)(t) − S(x2)(t)‖E

≤ MA

∫ t

0

ψ(s)
(

1 +
Lg

mg − mJ‖γ‖2
L(V,X)

)

‖x1(s) − x2(s)‖E ds

for all t ∈ [0, T ]; hence,

‖S(x1)(t) − S(x2)(t)‖E ≤ MAcψ

(

1 +
Lg

mg − mJ‖γ‖2
L(V,X)

) ∫ t

0

‖x1(s) − x2(s)‖E ds

for all t ∈ [0, T ], where cψ > 0 is such that ψ(t) ≤ cψ for a.e. t ∈ [0, T ]. This
means that S is a history-dependent operator. Therefore, we are now in a
position to invoke the fixed point principle, Lemma 2.11, that S has a unique
fixed point x ∈ C([0, T ];E). So, differential variational–hemivariational in-
equality (1) admits a unique solution (x, u) ∈ C([0, T ];E) × C([0, T ];K).

(ii) Let x1
0 and x2

0 be two initial points in E. Assertion (i) allows us to
find two unique solutions (x1, u1) and (x2, u2) to problem (1) associated with
initial points x1

0 and x2
0, respectively. Hence, it has

x1(t) = eAtx1
0 +

∫ t

0

eA(t−s)f(s, x1(s), u1(s)) ds,

x2(t) = eAtx2
0 +

∫ t

0

eA(t−s)f(s, x2(s), u2(s)) ds

for all t ∈ [0, T ]. Subtracting the above equalities, it emerges

‖x1(t) − x2(t)‖E

≤ MA

∫ t

0

‖f(s, x1(s), u1(s)) − f(s, x2(s), u2(s)))‖E ds

+MA‖x1
0 − x2

0‖E

≤ MA‖x1
0 − x2

0‖E + MA

∫ t

0

ψ(s)(‖x1(s) − x2(s)‖E

+‖u1(s) − u2(s)‖V ) ds

for all t ∈ [0, T ]. This coupled with inequality (18) finds

‖x1(t) − x2(t)‖E ≤ MA‖x1
0 − x2

0‖E

+MA

∫ t

0

ψ(s)

(

1 +
Lg

mg − mJ‖γ‖2
L(V,X)

)

‖x1(s) − x2(s)‖E ds
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for all t ∈ [0, T ]. By applying Gronwall’s inequality, we can see

max
t∈[0,T ]

‖x1(t) − x2(t)‖E

≤ MA‖x1
0 − x2

0‖E exp

(

MA

∫ T

0

ψ(s)

(

1 +
Lg

mg − mJ‖γ‖2
L(V,X)

)

ds

)

≤ MA exp

(

MA(1 +
Lg

mg − mJ‖γ‖2
L(V,X)

)‖ψ‖L1[0,T ]

)

‖x1
0 − x2

0‖E .

Moreover, we put the above estimate to (18) to obtain

max
t∈[0,T ]

‖u1(t) − u2(t)‖V

≤ LgMA

mg − mJ‖γ‖2
L(V ;X)

exp

(

MA(1 +
Lg

mg − mJ‖γ‖2
L(V,X)

)‖ψ‖L1[0,T ]

)

‖x1
0 − x2

0‖E .

To conclude, we can know that the map x0 
→ (x, u)(x0) : E → C([0, T ];E)×
C([0, T ];V ) is Lipschitz continuous with the Lipschitz constant L > 0,

L =
(

1 +
Lg

mg

)

MA exp

(

MA

(

1 +
Lg

mg − mJ‖γ‖2
L(V,X)

)

‖ψ‖L1[0,T ]

)

,

which completes the proof. �

Remark 3.11. Let Ω ⊂ R
n be a bounded domain with Lipschitz boundary,

E = L2(Ω). Indeed, the assumptions presented in the section are quite mild.
To understand them deeply, we now provide the following particular exam-
ples:

(i) the linear operator A : H2
0 (Ω) ⊂ L2(Ω) → L2(Ω), Ax = Δx for all

x ∈ H2
0 (Ω), is the generator of a C0-semigroup {eAt}t≥0 of contractions

on L2(Ω).
(ii) the embedding operator γ : H1(Ω) → L2(Ω) is linear, bounded and

compact.
(iii) e : [0, T ] × Ω × R → R and h : [0, T ] × Ω × R → R are two continuous

functions such that

|e(t, y, s1) − e(t, y, s2)| ≤ Le|s1 − s2|,
|h(t, y, s1) − h(t, y, s2)| ≤ Lh|s1 − s2|

for all t ∈ [0, T ], y ∈ Ω, s1, s2 ∈ R, with some Le, Lh > 0, then
f(t, x, u)(y) := e(t, y, x(y)) + h(t, y, u(y)) satisfies condition H(f)′.

(iv) the function j : Ω×R → R is measurable such that s 
→ j(y, s) is locally
Lipschitz for a.e. y ∈ Ω and

|∂j(y, s)| ≤ cj(1 + |s|),
j0(y, s1; s2 − s1) + j0(y, s2; s1 − s2) ≤ mj |s1 − s2|2

for all y ∈ Ω, all s, s1, s2 ∈ R, with some cj > 0 and mj ≥ 0, then
the function J : L2(Ω) → R, J(u) =

∫

Ω
j(x, u(x)) dx for all u ∈ L2(Ω),

satisfies hypothesis H(J)′.
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(v) the function p : [0, T ] × Ω × R → R is a continuous function such that

|p(t, y, s1) − p(t, y, s2)| ≤ Lp|s1 − s2| for all t ∈ [0, T ], s1, s2 ∈ R and a.e. y ∈ Ω

with some Lp > 0, then the function g : [0, T ]×L2(Ω)×H1(Ω) → H1(Ω)∗

defined by

〈g(t, x, u), v〉 :=
∫

Ω

(∇u(y),∇v(y))
Rn dy +

∫

Ω

p(t, y, x(y))v(y) dy

for all t ∈ [0, T ], x ∈ L2(Ω) and u, v ∈ H1(Ω), satisfies the condition
H(g)′.

4. Penalty method for differential variational–hemivariational
inequalities

Penalty method as a useful tool has been widely used to the study of vari-
ous optimization problems with constraints, such as Nash equilibrium prob-
lems, optimal control problems with state and input constraints of nonlin-
ear systems, and convection-diffusion problems with characteristic layers.
Recently, penalty methods for variational inequalities and hemivariational
inequalities have been investigated by many authors, for numerical pur-
poses and for proofs of solution existence, see, e.g. [7,26]. However, until
now, there are no results concerning penalty methods for generalized dif-
ferential variational–hemivariational inequality (1). To fill this gap, there-
fore, this section is devoted to provide a theoretical analysis of penalty
methods for differential variational–hemivariational inequality (1), see The-
orem 4.1. More precisely, we introduce a penalized problem corresponding
to problem (1), and prove that the penalized problem has a unique solu-
tion (xρ, uρ) ∈ C([0, T ];E) × C([0, T ];V ). Then a convergence result, the
solution of original differential variational–hemivariational inequality (1) can
be approximated by the penalized problem (20), see below, as the penalty
parameter ρ tends to zero, is established.

Let ρ > 0 and P : V → V ∗ be a penalty operator of constraint set
K, see Definition 2.9. The penalized problem associated with differential
variational–hemivariational inequality (1) is to find functions xρ : [0, T ] → E
and uρ : [0, T ] → V such that
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x′
ρ(t) = Axρ(t) + f(t, xρ(t), uρ(t)) for a.e. t ∈ [0, T ],

uρ(t) ∈ V satisfying

〈g(t, xρ(t), uρ(t)), v − uρ(t)〉 +
1

ρ
〈Puρ(t), v − uρ(t)〉 + J0(γuρ(t); γ(v − uρ(t)))

+ϕ(v, uρ(t)) ≥ 0 for all v ∈ V and for all t ∈ [0, T ],
xρ(0) = x0.

(20)

The main results of the section on existence, uniqueness and convergence
for problem (20) is the following.

Theorem 4.1. Assume that H(A), H(g)′, H(J)′, H(ϕ) with ϕ(u, v)+ϕ(v, u) ≤
0 for all u, v ∈ K, H(γ), H(0), H(K) and H(f)′ are fulfilled, and P : V → V ∗

is a penalty operator of K. Then we have
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(i) for each ρ > 0, there exists a unique solution (xρ, uρ) ∈ C([0, T ];E) ×
C([0, T ];V ) to problem (20).

(ii) (xρ, uρ) converges to the unique solution (x, u) of problem (1) as ρ → 0,
in the following sense:

(xρ(t), uρ(t)) → (x(t), u(t)) as ρ → 0, (21)

for all t ∈ [0, T ].

Proof. (i) For each ρ > 0, consider a function gρ : [0, T ]×E×V → V ∗ defined
by

gρ(t, x, u) = g(t, x, u) +
1
ρ
Pu.

It is not difficult to corroborate that gρ reads hypothesis H(g)′. Therefore,
the assertion (i) is a direct consequence of Theorem 3.10(i).

(ii) Let (x, u) ∈ C([0, T ];E) × C([0, T ];V ) be the unique solution to
differential variational–hemivariational inequality (1). We now discuss the
following time-dependent variational–hemivariational inequality: find ũρ ∈
C([0, T ];V ) such that

〈g(t, x(t), ũρ(t)), v − ũρ(t)〉 +
1
ρ
〈P ũρ(t), v − ũρ(t)〉

+J0 (γũρ(t); γ(v − ũρ(t))) + ϕ (v, ũρ(t)) ≥ 0 (22)

for all v ∈ V and all t ∈ [0, T ]. From Theorems 3.6 and 3.10, it is obvious
that problem (22) admits a unique solution ũρ ∈ C([0, T ];V ).

Let u0 ∈ K be fixed. Inserting v = u0 into (22), it yields

〈g(t, x(t), ũρ(t)), u0 − ũρ(t)〉 +
1
ρ
〈P ũρ(t), u0 − ũρ(t)〉

+J0 (γũρ(t); γ(u0 − ũρ(t))) + ϕ (u0, ũρ(t)) ≥ 0

for all t ∈ [0, T ]. The monotonicity of g and the above inequality infer

mg‖u0 − ũρ(t)‖2
V

≤ 〈g (t, x(t), ũρ(t)) − g (t, x(t), u0) , ũρ(t) − u0〉
≤ 1

ρ
〈P ũρ(t), u0 − ũρ(t)〉 + J0 (γũρ(t); γ (u0 − ũρ(t)))

+ϕ(u0, ũρ(t)) + 〈g(t, x(t), u0), u0 − ũρ(t)〉
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for all t ∈ [0, T ]. Notice the facts that Pv = 0 for all v ∈ K, P is monotone
and u0 ∈ K, it reads

mg‖u0 − ũρ(t)‖2
V

≤ 1
ρ
〈P ũρ(t), u0 − ũρ(t)〉

+J0 (γũρ(t); γ (u0 − ũρ(t)))
+ϕ(u0, ũρ(t)) + 〈g(t, x(t), u0), u0 − ũρ(t)〉

=
1
ρ
〈P ũρ(t) − Pu0, u0 − ũρ(t)〉 + J0(γũρ(t); γ(u0 − ũρ(t)))

+ϕ(u0, ũρ(t)) + 〈g(t, x(t), u0), u0 − ũρ(t)〉
≤ J0(γũρ(t); γ(u0 − ũρ(t))) + ϕ(u0, ũρ(t)) + 〈g(t, x(t), u0), u0 − ũρ(t)〉

for all t ∈ [0, T ]. Recall that v 
→ ϕ(u0, v) is concave and upper semicontinu-
ous. This means that v 
→ −ϕ(u0, v) is convex and lower semicontinuous. The
latter coupled with [33, Proposition 1.29] infers that there exist an element
ηϕ ∈ V ∗ and a constant cϕ ∈ R, which just depend on u0, fulfilling

−ϕ(u0, v) ≥ 〈ηϕ, v〉 + cϕ for all v ∈ V.

Applying hypothesis H(J)′(i) and H(ϕ)(iii), we are able to find

(
mg − mJ‖γ‖2

L(V,X)

)
‖u0 − ũρ(t)‖2

V

≤ mg‖u0 − ũρ(t)‖2
V

− (
J0 (γũρ(t); γ (u0 − ũρ(t))) + J0(γu0; γ(ũρ(t) − u0))

)

≤ −J0 (γu0; γ(ũρ(t) − u0)) + ϕ (u0, ũρ(t))
+〈g(t, x(t), u0), u0 − ũρ(t)〉

≤ −〈γ∗ξu0 , ũρ(t) − u0〉 + ϕ (u0, ũρ(t))
+〈g(t, x(t), u0), u0 − ũρ(t)〉

≤ (‖g(t, x(t), u0)‖V ∗ + ‖γ∗ξu0‖V ∗) ‖ũρ(t) − u0‖V

+‖ηϕ‖V ∗‖ũρ(t)‖V + |cϕ|
≤ (‖g(t, x(t), u0)‖V ∗ + ‖γ‖L(V,X) (αJ + bJ‖γu0‖X)

) ‖ũρ(t) − u0‖V

+‖ηϕ‖V ∗‖ũρ(t)‖V + |cϕ|
≤ (‖g(t, x(t), u0)‖V ∗ + ‖γ‖L(V,X) (αJ + bJ‖γu0‖X)

+‖ηϕ‖V ∗) ‖ũρ(t) − u0‖V

+‖ηϕ‖V ∗‖u0‖V + |cϕ| (23)

for all t ∈ [0, T ], where ξu0 ∈ X∗ is such that

J0 (γu0; γ (ũρ(t) − u0)) = 〈ξu0 , γ (ũρ(t) − u0)〉X∗×X .
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However, hypothesis H(g)′(ii) points out

‖g(t, x(t), u0)‖V ∗

≤ ‖g(t, x(t), u0) − g(0, 0E , u0)‖V ∗ + ‖g(0, 0E , u0)‖V ∗

≤ Lg (|t| + ‖x(t)‖E) + ‖g(0, 0E , u0)‖V ∗

≤ Lg

(
T + ‖x‖C([0,T ];E)

)
+ ‖g (0, 0E , u0) ‖V ∗ . (24)

Combining (23) with (24), we have
(
mg − mJ‖γ‖2

L(V,X)

)
‖u0 − ũρ(t)‖2

V ≤ c1‖ũρ(t) − u0‖V + c2,

where c1 and c2 are defined by

c1 := Lg(T + ‖x‖C([0,T ];E)) + ‖γ‖L(V,X)(αJ + bJ‖γu0‖X)
+‖ηϕ‖V ∗ + ‖g(0, 0E , u0)‖V ∗ ,

c2 := ‖ηϕ‖V ∗‖u0‖V + |cϕ|.
Further, invoking the Cauchy inequality, it finds

(mg − mJ‖γ‖2
L(V,X))

2
‖u0 − ũρ(t)‖2

V ≤ c2
1

2(mg − mJ‖γ‖2
L(V,X))

+ c2.

This reveals that the sequence {ũρ(t)}ρ>0,t∈[0,T ] is uniformly bounded.
Therefore, for each t ∈ [0, T ] fixed, passing to a subsequence if necessary,

we may assume that

ũρ(t) ⇀ ũ(t) in V as ρ → 0,

for some ũ(t) ∈ V . We shall demonstrate that ũ(t) ∈ K. Indeed, the mono-
tonicity of g guarantees

1
ρ
〈P ũρ(t), ũρ(t) − v〉
≤ 〈g(t, x(t), ũρ(t)), v − ũρ(t)〉

+J0(γũρ(t); γ(v − ũρ(t))) + ϕ(v, ũρ(t))
≤ 〈g(t, x(t), v), v − ũρ(t)〉

+J0(γũρ(t); γ(v − ũρ(t))) + ϕ(v, ũρ(t)) (25)

for all v ∈ V . Putting v = ũ(t) into the above inequality, it has

1

ρ
〈P ũρ(t), ũρ(t) − ũ(t)〉

≤ 〈g(t, x(t), ũ(t)), ũ(t) − ũρ(t)〉 + J0(γũρ(t); γ(ũ(t) − ũρ(t))) + ϕ(ũ(t), ũρ(t)).

Combining with the compactness of γ and hypotheses H(J)′, H(ϕ)(ii)–(iii),
it has

lim sup
ρ→0

〈P ũρ(t), ũρ(t) − ũ(t)〉 ≤ 0. (26)
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Recall that P is bounded, monotone and hemicontinuous, so, it is pseu-
domonotone (see [25, Theorem 3.74]), which coupled with (25) and (26) im-
plies

〈P ũ(t), ũ(t) − v〉
≤ lim inf

ρ→0
〈P ũρ(t), ũρ(t) − v〉

≤ lim sup
ρ→0

〈P ũρ(t), ũρ(t) − v〉
≤ 0

for all v ∈ V . Since v ∈ V is arbitrary, this indicates P ũ(t) = 0, so we have
ũ(t) ∈ K.

Additionally, we will prove ũ(t) = u(t) for all t ∈ [0, T ]. Now, we use the
monotonicity of g and P as well as the fact Pv = 0 for all v ∈ K to conclude

〈g(t, x(t), v), ũρ(t) − v〉
≤ 〈g(t, x(t), ũρ(t)), ũρ(t) − v〉
≤ −1

ρ
〈Pv − P ũρ(t), v

−ũρ(t)〉 + J0 (γũρ(t); γ (v − ũρ(t))) + ϕ(v, ũρ(t))

≤ J0 (γũρ(t); γ (v − ũρ(t))) + ϕ(v, ũρ(t)) (27)

for all v ∈ K. Passing to the upper limit as ρ → 0 in the above inequality, it
has

〈g(t, x(t), v), v − ũ(t)〉 + J0(γũ(t); γ(v − ũ(t))) + ϕ(v, ũ(t)) ≥ 0

for all v ∈ K. Nonetheless, utilizing Minty’s approach (see Lemma 3.5 as
well), one has

〈g(t, x(t), ũ(t)), v − ũ(t)〉 + J0(γũ(t); γ(v − ũ(t))) + ϕ(v, ũ(t)) ≥ 0

for all v ∈ K. Keeping in mind that u(t) is the unique solution of the in-
equality (2), so, we conclude that ũ(t) = u(t) for all t ∈ [0, T ].

Because {ũρ(t)} is bounded and for each weakly convergent subsequence
of {ũρ(t)} converges to the same limit u(t), we now use [33, Theorem 1.20] to
obtain that for each t ∈ [0, T ] the whole sequence {ũρ(t)} converges weakly
to u(t). On the other side, taking v = u(t) in (27) and passing to the limit as
ρ → 0 in the resulting inequality, it suggests

lim
ρ→0

〈g(t, x(t), ũρ(t)), ũρ(t) − u(t)〉 = 0,

here we have used the compactness of γ and hypothesis H(ϕ)(iii). Taking
account of the convergence ũρ(t) ⇀ u(t) in V as ρ → 0 and the monotonicity
of g, we get

lim
ρ→0

mg‖u(t) − ũρ(t)‖2
V

≤ lim
ρ→0

〈g(t, x(t), u(t)) − g (t, x(t), ũρ(t)) , u(t) − ũρ(t)〉
= lim

ρ→0
〈g (t, x(t), u(t)) , u(t) − ũρ(t)〉 − lim

ρ→0
〈g(t, x(t), ũρ(t)), u(t) − ũρ(t)〉

= 0



   83 Page 26 of 30 G. Tang et al.

for all t ∈ [0, T ]. Consequently, we are able to conclude

ũρ(t) → u(t) in V as ρ → 0 (28)

for each t ∈ [0, T ].
Assume that (xρ, uρ) ∈ C([0, T ];E)×C([0, T ];V ) is the unique solution

to problem (20). Then we have

〈g(t, xρ(t), uρ(t)), v − uρ(t)〉 +
1
ρ
〈Puρ(t), v − uρ(t)〉

+J0(γuρ(t); γ(v − uρ(t))) + ϕ(v, uρ(t)) ≥ 0 (29)

for all v ∈ V and all t ∈ [0, T ]. Inserting v = ũρ(t) and v = uρ(t) into
(29) and (22), respectively, we sum the resulting inequalities and apply the
monotonicity of P and the fact, ϕ(v, u) + ϕ(u, v) ≤ 0 for all u, v ∈ K, to
deliver

〈g(t, xρ(t), uρ(t)) − g(t, x(t), ũρ(t)), uρ(t) − ũρ(t)〉 − J0(γuρ(t); γ(ũρ(t) − uρ(t)))

−J0(γũρ(t); γ(uρ(t) − ũρ(t))) ≤ 0

for all t ∈ [0, T ]. The latter and conditions H(g)′ hint
(
mg − mJ‖γ‖2

L(V ;X)

)
‖uρ(t) − ũρ(t)‖2

V

≤ 〈g (t, xρ(t), uρ(t)) − g(t, xρ(t), ũρ(t)), uρ(t) − ũρ(t)〉
−J0(γuρ(t); γ(ũρ(t) − uρ(t))) − J0 (γũρ(t); γ (uρ(t) − ũρ(t)))

≤ 〈g(t, x(t), ũρ(t)) − g(t, xρ(t), ũρ(t)), uρ(t) − ũρ(t)〉
≤ ‖g(t, x(t), ũρ(t)) − g(t, xρ(t), ũρ(t))‖V ∗‖uρ(t) − ũρ(t)‖V

≤ Lg‖x(t) − xρ(t)‖E‖uρ(t) − ũρ(t)‖V

for all t ∈ [0, T ]. This coupled with the fact,

‖uρ(t) − u(t)‖V ≤ ‖uρ(t) − ũρ(t)‖V + ‖ũρ(t) − u(t)‖V ,

implies

‖uρ(t) − u(t)‖V ≤ ‖ũρ(t) − u(t)‖V +
Lg

mg − mJ‖γ‖2
L(V,X)

‖x(t) − xρ(t)‖E

(30)

for all t ∈ [0, T ]. As before we have done in the proof of Theorem 3.10, a
simple calculation gives

‖x(t) − xρ(t)‖E ≤ MA

∫ t

0

ψ(s) (‖x(s) − xρ(s)‖E + ‖uρ(s) − u(s)‖V ) ds

(31)
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for all t ∈ [0, T ]. Combining (30) with (31) yields

‖x(t) − xρ(t)‖E

≤ MA

∫ t

0

ψ(s)‖ũρ(s) − u(s)‖V ds

+MA

∫ t

0

ψ(s)

(

1 +
Lg

mg − mJ‖γ‖2
L(V,X)

)

‖x(s) − xρ(s)‖E ds

for all t ∈ [0, T ]. We are now in a position to employ Gronwall’s inequality
to find a constant C0 > 0, which is independent of ρ, such that

‖x(t) − xρ(t)‖E ≤ C0

∫ t

0

ψ(s)‖ũρ(s) − u(s)‖V ds

for all t ∈ [0, T ]. This, together with convergence (28) and the Lebesgue
dominated convergence theorem, implies

‖x(t) − xρ(t)‖E → 0, as ρ → 0 (32)

for all t ∈ [0, T ]. Finally, taking account of (30) and (32), we conclude the
desired result (21), which completes the proof. �

Finally, we provide an example for function ϕ.

Example 4.2. Let Ω be a bounded domain in R
n. Let V = L2(Ω) and K :=

{u ∈ V | u(x) ≥ 0 for a.e. x ∈ Ω}. Then the function ϕ : K × K → R

defined by

ϕ(v, u) =
∫

Ω

v(x)u(x) dx − ‖u‖2
L2(Ω)

satisfies assumptions H(ϕ) with ϕ(v, u) + ϕ(u, v) ≤ 0 for all u, v ∈ K.

5. Conclusion

In this paper, we consider a complicated dynamic system called differential
variational–hemivariational inequality in Banach spaces which consists of a
time-dependent generalized variational–hemivariational inequality combined
with a nonlinear evolution equation. Under quite general assumptions on the
data, first, we proved a useful existence theorem, Theorem 3.8, which extends
the recent result [18, Theorem 4.4]. Then we employed a fixed point theorem
of history-dependent operators to show the uniqueness and stability of the so-
lution to problem (1). Finally, the penalty methods were applied to problem
(1) and a convergence result, the solution of original differential variational–
hemivariational inequality (1) can be approximated by the penalized problem
(20), was obtained. In the future, we plan to apply the theoretical results
established in the current paper to viscoelastic contact problems with dam-
age, and reaction–diffusion systems described by time-dependent nonsmooth
semipermeability problems.
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