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and convergence

Guo-ji Tang, Jinxia Cen, Van Thien Nguyen and Shengda Zeng

Abstract. The goal of this paper is to study a comprehensive system
called differential variational-hemivariational inequality which is com-
posed of a mnonlinear evolution equation and a time-dependent
variational-hemivariational inequality in Banach spaces. Under the gen-
eral functional framework, a generalized existence theorem for differ-
ential variational-hemivariational inequality is established by employ-
ing KKM principle, Minty’s technique, theory of multivalued analysis,
the properties of Clarke’s subgradient. Furthermore, we explore a well-
posedness result for the system, including the existence, uniqueness, and
stability of the solution in mild sense. Finally, using penalty methods to
the inequality, we consider a penalized problem-associated differential
variational-hemivariational inequality, and examine the convergence re-
sult that the solution to the original problem can be approached, as a
parameter converges to zero, by the solution of the penalized problem.
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1. Introduction

The problems called differential variational inequalities (DVIs, for short) is
a kind of dynamic systems which consist of a differential equation combined
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with a time-dependent variational inequality. The notion of differential vari-
ational inequalities was initially introduced and systematically studied by
Pang—Stewart [29] in Euclidean spaces. After that many researchers are at-
tracted to boost the development of theory and applications of DVIs. Because
DVIs are useful for the study of models involving both dynamics and con-
straints in the form of inequalities. They arise in many applications: electrical
circuits with ideal diodes, Coulomb friction problems for contacting bodies,
economical dynamics, dynamic traffic networks. The most representative re-
sults are as follows: Loi [20] applied the method of integral guiding functions
to explore a multi-parameter global bifurcation theorem for differential in-
clusions with the periodic condition and then employed the abstract results
to the study of the two-parameter global bifurcation of periodic solutions
for a class of differential variational inequalities in Euclidean spaces; Liu—
Zeng—Motreanu [13,17,18] and Liu-Migérski-Zeng [16] proved the existence
of solutions for a class of differential mixed variational inequalities in Banach
spaces through applying the theory of semigroups, Filippov implicit func-
tion lemma and fixed point theorems for condensing multivalued operators;
Chen—Wang [1] in 2014 used the idea of DVIs to investigate a dynamic Nash
equilibrium problem of multiple players with shared constraints and dynamic
decision processes; Nguyen—Tran [28] considered a model of infinite dimen-
sional differential variational inequalities formulated by a parabolic differen-
tial inclusion and an elliptic variational inequality, and utilized the theory
of measure of noncompactness to prove the existence of global solutions as
well as global attractor for the semi-flow governed by the differential varia-
tional inequality. For more details on these topics the reader is welcome to
consult [2,6,8,10,11,14,15,21,22,24,34,35] and the references therein.

Recently, the concept of differential hemivariational inequalities was
first proposed by Liu—Zeng—Motreanu [19]. However, a natural question why
there is a need to study the differential hemivariational inequalities has been
raised. More recently, the papers [23] and [37] have delivered a positive an-
swer to this question. In the paper [23], the authors used a temporally semi-
discrete method based on the backward Euler difference scheme, i.e., the
Rothe method, and a feedback iterative technique to prove the existence of
solutions for a class of differential hemivariational inequalities of hyperbolic—
parabolic type, and employed the theoretical results to a dynamic adhesive
viscoelastic contact problem with friction. However, the paper [37] was de-
voted to adopt the idea of differential hemivariational inequalities to analyze
a frictional quasistatic contact problem for viscoelastic materials with adhe-
sion in which the friction and contact conditions are described by the Clarke’s
generalized gradient of nonconvex and nonsmooth functionals, and the con-
stitutive relation is modeled by the fractional Kelvin—Voigt law.

The aim of the present paper is devoted to develop new mathematical
tools and methods for differential hemivariational inequalities. Let (V|| - ||v)
and (E,|| - ||g) be reflexive and separable Banach spaces. Also, let K be a
nonempty, closed, and convex subset of V. In what follows, we denote by (-, -)
the duality pairing between V' and its dual V*. Assume that A: D(4) C E —
E is the infinitesimal generator of a Cy-semigroup e* in E. Let 0 < T < oo,
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and (X, ||-]|x) be a separable Banach space with its dual (X*, ||| x~). Given
nonlinear functions f: [0,7] x ExV — E and ¢g: [0,T] X ExV — V* a
locally Lipschitz function J: X — R, a bounded linear operator v: V' — X,
and a bifunction ¢: V x V — R U {—o0, +o0}, this paper is concerned with
the study of the following generalized differential variational-hemivariational
inequality: find functions z: [0,7] — E and u: [0,7] — K such that

' (t) = Ax(t) + f(t,z(t),u(t)) for a.e. t € 0,77,
u(t) € SOL(K;g(t,z(t),-),J,p)  for ae. t €0,T], (1)
2(0) = xo,

where SOL(K; g(t, z(t),-), J, ) stands for the solution set of the following
generalized variational-hemivariational inequality: given ¢ € [0, 7] and z(t) €
E, find u(t) € K such that

(gt 2(8), u(t)), v —ult)) + J°(yu(t); y(v — u(t)))
+o(v,u(t)) >0 forallveK. (2)

From the previous work [13,16-18], we now provide the definition of
solutions of problem (1) in the mild sense.

Definition 1.1. A pair of functions (x, u), with x € C([0,T]; E) and u: [0,T] —
K integral, is called a mild solution of problem (1) if

z(t) = eay + /0 e £ (s, 2(s),u(s)) ds

for all ¢ € [0, T], where u(s) € SOL(K;g(s,z(s),"), J, ) for a.e. s € [0,T]. If
(z,u) is a mild solution of problem (1), then z is called the mild trajectory
and u is the variational control trajectory.

The main contributions of the paper are threefold. First, using KKM
principle, Minty’s approach, and the properties of Clarke’s subgradient, we
prove that the solution set of variational-hemivariational inequality (2) is
nonempty, bounded, closed, and convex. As a result, the measurability and
upper semicontinuity for variational-hemivariational inequality (2) with re-
spect to the time variable and state variable are illustrated. Second, by apply-
ing a fixed point theorem for history-dependent operators, a well-posedness
result for differential variational-hemivariational inequality (1), including the
existence, uniqueness, and stability of the solution in mild sense, is estab-
lished. Finally, the penalty methods are employed to differential variational—
hemivariational inequality (1) to consider a penalized problem, problem (20)
corresponding to original problem (1) (see Sect. 4), and examine the conver-
gence result that the solution to the original problem can be approached, as
a parameter converges to zero, by the solution of the penalized problem.

The outline of the paper is as follows. Basic notation and preliminary
material needed in the sequel are recalled in Sect. 2. In Sects. 3 and 4, we
deliver the main results of the paper which include existence, uniqueness, sta-
bility and convergence of the solution in mild sense for differential variational—
hemivariational inequality (1). Section 5 gives a conclusion of the paper .



83 Page 4 of 30 G. Tang et al.

2. Mathematical background

In this section, we briefly review basic notation and some results which are
needed in the sequel. For more details, we refer to monographs [3,4,25,36].

Throughout the paper, we denote by (-,-)y«xy the duality pairing be-
tween a Banach space Y and its dual Y*. The norm in a normed space Y is de-
noted by || - |ly. Given a subset D of Y, we write || D]y = sup{|lv|ly |v € Y}.
If no confusion arises, we often drop the subscripts. For any nonempty set
X, we denote by P(X) the collection of its nonempty subsets. Besides, we
denote by £(Y7, Y3) the space of linear and bounded operators from a normed
space Y7 to a normed space Y endowed with the usual norm || - [|z(v;,v,)-
In what follows, the symbols “—” and “—” denote the strong and the weak
convergence in various spaces which will be specified.

Definition 2.1. Let (X, || - ||x) be a reflexive Banach space with its dual X*
and A: X — X*. We say that

(i) A is monotone, if for all u, v € X, we have (Au — Av,u —v) > 0.

(if) A is strongly monotone with constant my4 > 0, if (Au — Av,u — v) >
mallu —v|% for all u, v € X.

(iii) A is pseudomonotone, if A is a bounded operator and for every sequence
{z,} C X converging weakly to € X such that limsup(Az,, x, —z) <
0, we have (Az,z —y) < liminf(Ax,,z, —y) for all y € X.

(iv) A is hemicontinuous, if for all u, v, w € X, the function A — (A(u +
Av),w) is continuous on [0, 1].

It is obvious that A: X — X* is pseudomonotone if and only if A is
bounded and z,, — x in X with lim sup(Ax,,, z, —x) < 0 imply lim(Az,, z, —
x) =0 and Az, = Az in X*. Furthermore, if A € £(X, X*) is nonnegative,
then it is pseudomonotone.

Let X be a Banach space with its dual space X*. A function f: X —
R := RU {+o0} is called proper, convex, and lower semicontinuous, if it
fulfills, respectively, the following conditions:

D(f) :={u e X | f(u) < 400} #0,
FOu+ (1 =XNv) < Af(u) + (1 —=N)f(v) forall Ae[0,1] and u,v € X,
f(u) <liminf f(u,) for all sequences {u,} C X with u, — u.

n— oo

In the meantime, we review the definitions and properties of semicon-
tinuous multivalued mappings.

Definition 2.2. Let X and Y be topological spaces, and F': X — P(Y) be a
multivalued mapping. We say that F' is

(i) upper semicontinuous (u.s.c., for short) at « € X if, for every open set
O C Y with F(z) C O there exists a neighborhood N(x) of x such that
F(N(x)) := Uyen@) F(y) C O. If this holds for every x € X, then F is
called upper semicontinuous.

(i) closed at zp € X, if for every sequence {(x,,yn)} C Gr(F) such that
(TnsYn) — (To,y0) in X XY, we have (zg,yo) € Gr(F), where Gr(F) is
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the graph of the multivalued mapping F' defined by
Gr(F):={(z,y) e X XY | y € F(x)}.

We say that F' is closed (or F' has a closed graph), if it is closed at every
zo € X.

The following theorem gives a criterium for upper semicontinuity.

Proposition 2.3. Let F : X — P(Y), with X and Y topological spaces. The
statements below are equivalent:

(i) F is upper semicontinuous;
(ii) for every closed set C CY, the set F—(C) is closed in X

F~(C):={ze X | Flz)NnC # 0};
(iii) for every open set O C Y, the set F*(O) is open in X
FHO):={rc X | F(z) C O}.

Definition 2.4. Let E and V' be Banach spaces and let I C R be an interval.
We say that F': I x E — P(V) is superpositionally measurable if, for every
measurable multivalued mapping Q: I — P(E) with compact values, the
superposition ®: I — P (V) given by ®(t) = F(t,Q(t)) is measurable.

Indeed, it is quite difficult to examine if a multivalued mapping is super-
positionally measurable using definition. Fortunately, the following theorem
provides a necessary criterion to validate whether a multivalued mapping is
superpositionally measurable.

Theorem 2.5. Let F': I x E — P(V') be a multivalued mapping. If t — F(t,u)
is measurable on I for allu € E and u — F(t,u) is upper or lower semicon-
tinuous for a.e. t € I, then F is superpositionally measurable.

Furthermore, we recall the well-known result, KKM principle, see Ky
Fan [5], which will be used in Sect. 3 to verify the existence of solutions to
generalized variational-hemivariational inequality (2).

Lemma 2.6. Let K be a nonempty subset of a Hausdorff topological vector
space V, and let G: K — P(V) be a multivalued mapping satisfying
(i) G is a KKM mapping, namely for any {vi,vs,...,v,} C K, one has
that its convex hull co{vi, va, ..., v, } is contained in U G(v;);
(ii) G(v) is closed in V for every v € K;
(iil) G(vo) is compact in V for some vy € K.

Then it holds Nyex G(v) # 0.

A function J: X — R is called locally Lipschitz continuous at v € X, if
there exist a neighborhood N (u) of u and a constant L, > 0 such that

|J(w) — J(v)| < Ly|lw —v||x forall w,ve N(u).
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Definition 2.7. Given a locally Lipschitz function J: X — R, we denote by
JO(u;v) the generalized (Clarke) directional derivative of J at the point u € X
in the direction v € X defined by

J%(u;v) = limsup J(w+ ) = J(w).

A—0t, w—u A

The generalized gradient of J: X — R at u € X is given by
AJ(u) = {&€e X* | J%u;v) > (&,0) forall ve X}

In fact, the generalized gradient and generalized directional derivative of
a locally Lipschitz function enjoy many nice properties and rich calculus. Here
we just collect below some basic and critical results, see cf. [25, Proposition
3.23].

Proposition 2.8. Assume that J: X — R is a locally Lipschitz function. Then
we have
(i) for every x € X, the function X > v — J%(x;v) € R is positively
homogeneous and subadditive, i.e., JO(x; \v) = A\J°(x;v) for all X > 0,
v € X and JO(x;v1 + v2) < JO(x501) + JO(m502) for all vi, va € X,
respectively.
(i) for every v € X, it holds J°(x;v) = max{ (£, v) : £ € dJ(z)}.
(iii) the function X x X 3 (u,v) — J°(u;v) € R is upper semicontinuous.

Additionally, we recall the notion of the penalty operators, see [31].

Definition 2.9. Let X be a Banach space and K be a nonempty subset of
X. An operator P: X — X™* is called a penalty operator of set K if P is
bounded, demicontinuous, monotone and K = {u € X | Pu = 0x~ }.

Note that if K is a nonempty, closed and convex subset of reflexive
Banach space X, then the operator P = J(I — Pk) is a penalty operator of
K, where J: X — X* is the duality map on X defined by

J(@) ={a" € X" | (a",2) = |lo[lkx = |2"[%- } for z € X,

I is the identity map on X, and Px: X — X is the projection operator of
K (see [4, Proposition 1.3.27]).

Definition 2.10. An operator R: C([0,T]; X) — C([0,T]; X) is called history
dependent if there exists a constant Lz > 0 such that

[(Ru)(t) — (Ro)(t)[[x < LR/O lu(s) —v(s)||x ds
for all u, v € C([0,7T]; X) and ¢ € [0,T].

An important property of history-dependent operators is provided by
the following fixed point result, see, e.g. [32, Theorem 67].

Lemma 2.11. IfR: C([0,T]; X) — C([0,T]; X) is a history-dependent opera-
tor then there exists a unique function u* € C([0,T); X) such that Ru* = u*.
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3. A well-posedness result for differential
variational-hemivariatinal inequalities

This section is devoted to prove a well-posedness result for differential
variational-hemivariational inequality, problem (1), including the existence,
uniqueness, and continuous dependence of solution with respect to initial
data.

We assume that the data of problem (1) read as follows.
H(A): A: D(A) C E — E is the infinitesimal generator of a Cyp-semigroup
e in E such that sup,c(o 7 [le*| < M for some My > 0.
H(K): K is a nonempty, closed, and convex subset of V.
(J): J: X — R is a locally Lipschitz function.
(7): v: V — X is a linear, bounded, and compact operator.
(9): 9:[0,T) x E x V — V* is such that
(i) (
(i) t

=

=

=

,u): [0,T] x E — V* is continuous for all u € V;
he following inequality holds:

li)\mérif(g(t,x,)\v + (1 =XNu),v—u) < {(g(t,z,u),v —u)
for all u,v € K and (¢,z) € [0,T] x E;

(iii) there exist a bounded function p: [0, T]xR; — R, afunctionr: Ry — R
with r(s) — +00 as s — 400 and an element ug € K such that

<g(t,$,U),U7UO> +£elnf <£a (v7u0)>X*><X

> r(lolv)llvlv + 1+ [lvllv) e, 2] 2):

(iv) for each (t,z) € [0,T] x E, the multivalued mapping u — g(t,x,u) +
~v*0J (yu) is monotone.

H(p): The function ¢: V x V — RU {—o00, +0o0} is such that
(i
ii

) v (v,u) is convex for all u € V;
i) u v p(v,u) is concave and upper semicontinuous for all v € V;
i) for all v € K, we have (v, v) = 0.

H(f): The nonlinear function f: [0,7] x E x V — E satisfies the following
conditions:

(i) for every (t,z) € [0,T] x E and every convex set D C K, the set

f(t,xz, D) is convex in F;
(ii) there exists ¢ € L% (0,T) such that

1f(t2, wlls < e+ lalls + llulv) for all (t,2,u) € [0,T) x E x K;

(iii) t — f(t,x,u) is measurable on [0, 7], for every (x,u) € E x V;
(iv) f(t,-,): E xV — E is continuous for a.e. t € [0,T7;
(v) there exists k € L1 (0,T) such that

1t @0, u) = f(t, 21, u)||p < E()||lzo — 21|
for zg,z1 € E, all u € K and a.e. t € [0,7].

(i
(ii
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To establish the existence result for problem (1), first, we will exploit
the following generalized elliptic variational-hemivariational inequality: find
u € K such that

(Q(u),v —u) + J(yu; y(v — u)) + p(v,u) >0 for all v € K, (3)

where Q: K — V™ is a given mapping. For simplicity, in what follows, denote
by SOL(K;Q, J, ¢) the solution set of problem (3).

Theorem 3.1. Assume that H(J), H(p), H(vy), H(K) and the following con-
ditions are satisfied

(i) Q: K — V* is monotone such that

li)\miorif(Q()\v + (1= MNu),v —u) <{(Q(u),v—u) for all u,v € K;

(i) of the set K is unbounded in V, there exists ug € K such that
i inf (Q),v — uo) + infecn sy (€ V(v — u0)) x+xx
veEK,||v|ly —o0 ||UHV

Then the solution set of problem (3), SOL(K;Q, J, @), is nonempty, bounded
and weakly closed in V.

= +00.

Proof. We first show that the solution set of problem (3), SOL(K;Q, J, ¢),
is nonempty. To do so, we shall consider two situations that K is bounded
and K is unbounded.

Suppose that K is bounded in V. Consider a multivalued mapping
G: K — P(K) defined by

G) = {u € K: (Q(v),v —u) + J*(yu; (v — u)) + ¢(v,u) > 0} for all v € K.

Obviously, for each v € K, the set G(v) is nonempty, owing to v € G(v)
for each v € K. Besides it asserts that G has weakly closed values. Let
{un,} C G(v) be a weakly convergent sequence, namely u, — u as n — o0
for some u € V. Hence, for each n, one has

(Q(v), v = un) + I (ytn; Y(v = un)) + (v, 1) > 0. (4)
Notice that K is closed and convex, so it has u € K. On the other side, the
compactness of v, hypothesis H()(ii) and the fact (u,v) — J°(u;v) is upper
semicontinuous reveal that
limsup J0 (Y15 3(0 — 1)) < J° (us (v — ) and limsup p(v,uy) < (v, u).

Passing to the upper limit as n — oo in inequality (4) and taking into account
the above inequalities, it finds

(Qv), v —u) + J%(vusy(v — w)) + (v, u)
> limsup(Q(v), v — uy,) + limsup JO (yun; (v — uy)) + lim sup @(v, u,)

n—0oo n—oo n—0o0

> lim sup [(Q(v),v - Up) + JO('YUnE”Y(U —up)) + ‘P(U7un)]

n—oo

> 0;
thus is u € G(v). Therefore, G(v) is weakly closed for each v € K.
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Multifunction G is a KKM mapping. Indeed, arguing by contradiction,
there exist a finite subset {vi,vs,..., vy} C K and ug = Zf\;l t;v; with
t; € [0,1] and vazl t; = 1 such that

N
() ¢ U G(UZ)

i=1
This means that

(Q(vs),v; — ug) + @(vi, ug) + J°(Yuo; Yvi — yuo) < 0.
The monotonicity of @ ensures that

(Q(uo), vi — uo) + ©(vi, ug) + J° (yuo; yvi — Yug) < 0

for each ¢ = 1,..., N. Employing the convexity of v — ¢(v,u), as well as the
positive homogeneity and subadditivity of v — J°(u;v), we obtain

0 = (Q(uo), uo — uo) + ©(uo, uo) + J° (yuo; yuo — Yuo)

N N N
= (Q(uo), Ztivi —up) + ¢ (Z tivi,U()) +J° (7“0;72%% - 7U0>

i=1 i=1 i=1

N
< th‘ [(Q(uo), vi — o) + ¢ (viyu0) + J° (Yug; yvi — yuo)]
=1

< 0.

This generates a contradiction, so, we conclude that G is a KKM mapping.

Keeping in mind that K is bounded, closed and convex, it follows from
reflexivity of V' that K is also weakly compact. This implies that G(v) is
weakly compact too, for every v € K, since G has weakly closed values. By
invoking KKM principle, Lemma 2.6, with respect to the weak topology of
V, it has

() Gv) #0.
veEK
Hence, we can find an element u* € K such that
(Q),v —u™) +J° (yu™;y (v —u*)) + ¢ (v,u") > 0
for all v € K. For any w € K and t € (0, 1), we take v = v, :=tw + (1 —t)u*
into the above inequality to get

(Qve),w — ™) + J° (yu™sy (w — ")) + ¢ (w,u”) >0,

where we have utilized the condition H()(iii). Passing to the lower limit as
t — 07 in the above inequality and using condition (i), one obtains

(Qu*),w — ) + J° (yu™sy (w — u)) + ¢ (w,u*) > 0.

Since w € K is arbitrary, this signifies that v* € K is a solution to problem

(3).
Furthermore, we consider the situation that K is unbounded. For each
n € N, define K,, C K by

K,: ={zx € K: |z —uollv <n},
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where wug is given in the hypothesis (ii). So, for each n € N, we are able to
find a solution u,, € K, to the following problem:

<Q(un)avfun> +JO (7un§7(viun))+§0(vaun) >0 (5)
for all v € K,,. We affirm that there exists an integer Ny > 1 such that
un, —uollv < No. (6)

If it does not hold, then for each n € N, the equality ||u, — ug||y = n is true.
This points out ||u,|ly — oo as n — oo. Putting v = wg into (5), it turns
out

<Q(un)a Uo — un> +J° (wn; Y (UO - un)) + @ (UOa un) > 0. (7)

However, Proposition 2.8(ii) says that there is an element &,, € 9J(yu,,) such
that

% (Yu; 7y (w0 = n)) = (€, 7 (o = un)) x+xx- (8)

Observe that u — —¢(v,u) is convex, see assumption H (p)(ii), from [33,
Proposition 1.29], we have

- QD(U(), ’U) 2 Cp + <77Lpav> (9)
for all v € V, where c, € R and 7, € V* only depend on u¢. Combining with
(7)—(9), it yields

n)y Yn inf ) mn * - - * n SO
(Qun),un = o) + _imf (6 3(un — w0)) e x = le] = e v+ unllv

Remembering that |ju, |y — oo as n — oo and condition (ii), we imply

<Q(un)a Un — u0> + inf§€8J(’yun)<§7 ’Y(Un - u0>>X*><X

400 = lim inf

n—00 llunllv
< [mollv- + liminf 1%
n—oo |[uplv
= |Inpllv-.

This leads a contradiction. Hence, the claim in (6) is valid.
Let w € K be arbitrary. Assume that Ny € N and uy, are such that (6)
holds. It allows us to pick a sufficiently small ¢ > 0 satisfying

(1 — t)uNo +tw e KN0~
Inserting v = (1 — t)un, + tw into (5) for n = Ny, it reads
(@Q (uno) w —uny) + 7 (Y y (W — uny)) + @ (w, uny) 2 0

for all w € K. This concludes that uy, is a solution to problem (3).

Next, we show that SOL(K;Q, J, ¢) is weakly closed in V. Let {u,} C
SOL(K;Q, J, ) be a weakly convergent sequence, i.e., u,, — w in V for some
u € V. Then we have

(Q(un), v —up) + J° (Ytn; v (v —up)) + @ (v,u,) >0 forallve K.
The monotonicity of @ suggests
(QV),v — up) + J° (Yun; vy (v —up)) + ¢ (v,u,) >0 for all v € K. (10)
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The upper semicontinuity of w — ¢(v,w) and (w,v) — J°(w;v) combined
with the compactness of v and hypothesis H(¢)(ii) indicates

limsup J° (ytn; v (v — un)) < J° (yu; (v — ) and limsup ¢ (v, upn) < @(v,u).

n— oo n— oo

Passing to the upper limit in inequality (10) and taking into account the
above inequalities, we have

Q) v —u) + J° (yus (v — w)) + (v, u)
> limsup(Q(v), v — uy,) + limsup J® (Yu,; v (v — uy)) + limsup ¢ (v, uy,)

n—oo n—oo n—oo

Z lim sup [<Q(’U), v = un> + JO <7un; 0 (’U - un)) + ¥ (U7 un)]

n—oo

>0 forallveK.

Now, we use the Minty approach again to obtain u € SOL(K; Q, J, ). There-
fore, SOL(K; Q, J, @) is weakly closed in V.
Tt is enough to demonstrate that SOL(K; Q, J, ) is bounded. Suppose
that SOL(K; Q, J, ) is unbounded. Therefore, we can find a sequence {u,} C
SOL(K;Q, J, ) such that ||u,|ly — 400 as n — oo. As before we did, a
simple calculation gives
400 = liminf (Q (un) , un — uo) + inleeaJ‘fyun)<§7’7(un —U0))X*xX
n— o0 wn v

< lnellv--

This reaches a contradiction. Consequently, we conclude that SOL(K; Q, J, )
is bounded. O

Additionally, we have the following two corollaries.

Corollary 3.2. Assume that H(J), H(vy), H(K), and conditions (i)-(ii) of
Theorem 3.1 are fulfilled. If ¢: K — R := R U {400} is a proper, convex
and lower semicontinuous function, then the solution set of the following
variational-hemivariational inequality
find u € K such that (Q(u),v — u) + J° (yu; y(v — u))
+ o) —p(u) >0 forallveK
is nonempty, bounded, and weakly closed.

Proof. Tt is easy to verify that the function ¢: V x V — R U {—o0,+00}
defined by p(v,u) = ¢(v) — ¢(u) reads hypothesis H(p). The conclusion of
the corollary is a direct consequence of Theorem 3.1. 0

Corollary 3.3. Under the assumptions H(p), H(K), if conditions (1)—(ii) of
Theorem 3.1 hold with J = 0, then the solution set of the following generalized
variational inequality

find u € K such that (Q(u),v —u) + o(v,u) >0 forallve K,
is monempty, bounded, and weakly closed.

For more particular cases of Theorem 3.1, Corollaries 3.2 and 3.3, the
reader is welcome to refer [12,13,18,27].
The following lemma delivers a convexity result for set SOL(K; Q, J, ).
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Lemma 3.4. Suppose that Q: K — V* is such that
li\mériﬂQ A+ (1 =Nu),v—u) <(Qu),v—u) foraluveK,

the multivalued mapping u — Qu + v*0J (yu) is monotone, and v — (v, u)
is convex for oll w € K and u — @(v,u) is concave for all v € K with
o(u,u) =0 for all w € K. Then the set SOL(K;Q, J, @) is conver, when it
18 nonempty.

Proof. Assume that SOL(K;Q,J,¢) is nonempty. Let wj,us € SOL
(K;Q,J,¢) and t € (0,1) be arbitrary. Then for i = 1,2 we have
(Q(ui), v — ug) + J° (yuisy (v —1us)) + ¢ (v,u;) > 0

for all v € K. Using the property, Proposition 2.8(ii), we are able to find an
element &; € 0J(yu;) such that

J? (vuisy (v —wi)) = (&, 7 (v — i) xoxx (11)
for ¢ = 1,2. Taking into account (11) and monotonicity of v — Qu +
Y*0J (yu), it yields
0 <AQ () v —wi) + J° (vuiz y (v — wi)) + @ (v,u7)
=(Q (wi) + 7" &, v —wi) + ¢ (v,w;)
< <Q(7)) + v*fv,v - ui> +o (Uvui)
for all &, € 9J(yv) and all v € K, i = 1, 2. Denote u; = tuy + (1 — ¢)uz. The
above inequalities and the concavity of u — ¢(v,u) point out
(Qv) + 76w, v —ur) + ¢ (v, ue)
> Q) +7E0 v —m) + p(0, )] + (1~ D Q)
+7*£v7 v — 'LL2> + 2 (Uv UZ)]
>0 (12)
for all &, € 0J(yv) and all v € K. For any w € K, inserting vy = Aw + (1 —
A)uy into (12) implies
MQ (03) + 70w — u2)
+Ap (wyug) + (1= X) o (ug,ur) >0 for all &, € AJ (yua),

thus is,

0< <Q (’UA) + V*EUMM - ut> +¢ (wv ut)
<{Q(v2) yw —we) + J° (yorsy (w —w)) + ¢ (w, uy) -
Passing to the lower limit as A — 0 in the above inequality and using condition
(i) of Theorem 3.1, it emerges
(Q (ur) ,w — ug) + J° (yug; v (w = ur)) + @ (w, ug) >0,

here we have applied the upper semicontinuity of (u,v) +— J%(u;v), see
Proposition 2.8(iii), and the fact, liminf [f(z,) + g(z,)] < liminf f(z,) +
limsup g(x,,). Since w € K is arbitrary, so, we conclude that u; € SOL
(K;Q,J, ), namely the set SOL(K;Q, J, ) is convex. O
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As a byproduct of the proof of Lemma 3.4, we also provide a Minty type
equivalence result for problem (3).

Lemma 3.5. Under the assumptions of Lemma 3.4, uw € SOL(K;Q, J, ) if
and only if u solves the following Minty variational-hemivariational inequal-
ity: find u € K such that

(Qv),v —u) + J° (yvo;7(v — u)) + p(v,u) > 0
forallv e K.

Combining Theorem 3.1 with Lemma 3.4, we obtain the following the-
orem.

Theorem 3.6. Suppose that the condition (ii) of Theorem 3.1, H(J), H(p),
H(~) and H(K) are fulfilled. If, in addition, Q: K — V* is such that

1i\m(i)rif<Q M+ (1 =Nu),v—u) <(Q(u),v—u) foralu,veK,

and the multivalued mapping u — Qu + v*0J(yu) is monotone, then the
solution set of problem (3), SOL(K;Q, J, ), is nonempty, bounded, closed
and convex in V.

Consider a multivalued mapping U: [0,T] x E — P(K) defined by
Ut,z) == {ue K | (g(t,z,u),v—u) + J° (yu; (v — u))
+o(v,u) >0 for all v e K} (13)
for all (t,x) € [0,T] x E. Moreover, the following theorem reveals that U

is well defined, strongly—weakly upper semicontinuous, and superpositionally
measurable.

Theorem 3.7. Assume hypotheses H(g), H(J), H(p), H(y) and H(K) are
satisfied. Then multivalued mapping U: [0,T] x E — P(K) given in (13) is
well defined and satisfies the following properties:

(Ur) U is strongly-weakly upper semicontinuous;

(Us) U is superpositionally measurable in the sense of Definition 2.4.

Proof. In fact, Theorem 3.6 implies that for each (¢,x) € [0,T] x E the set
U (t, x) is nonempty, bounded, closed, and convex. So, the mapping U : [0, T x
E — P(K) is well defined.

We now apply Proposition 2.3 to verify the assertion (Uy). It reminds
us to demonstrate that for each weakly closed subset C' C K, the set

U (C): ={(t,x) e[0,T]| x E | U(t,z)NC # O}
is closed in Rx E. Let {(t,, z,)} € U~ (C) be a sequence such that (t,,x,) —
(t,z) in R x E as n — oo. Thus, there exists a sequence {u,} C K with
Up € Ulty,x,) N C for each n € N, especially,
(g (tny Ty Un) 0 — ) + T (Ytn;y (v — up)) + @(v,u,) >0 forallve K
(14)

and all n € N. We prove that the sequence {u,} is uniformly bounded.
Arguing by contradiction, passing to a subsequence if necessary, we may say
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that ||u,|ly — oo as n — oo. Taking v = ug into (14) and using hypothesis
H(g)(if) imply

0> <g (tnaxnu un) + ’7*€unaun - u0> — @ (u07un)
=1 (lunllv) lunllv + @+ lunllv) o, |20l £) — ¢ (w0, un)
> 1 (lunllv) lunllv + @+ lunllv) o, [[2all2) = leol = 106 [[v+[unllv

for some ¢, € R and 1, € V*. Then we have

1+ [[unllv _ el
Recall that p is a bounded function, {(¢,,z,)} is bounded in [0, 7] x E, and
r(s) — 400 as s — 400, it takes the lower limit as n — oo in the above
inequality to get

7 ([[unllv) + p (tns [l2n ]| £) = lInellv- <0.

+oo = liminf ( 7 (lun|lv) + —————p(tn, |znllE)
o . f |CLP| _ <
limin Inellv+ < 0.

n—oo [[unlv

This generates a contradiction, hence, {u,} is uniformly bounded. Without
loss of generality, we may assume that u, — u in V as n — oo, for some
ueK.

On the other hand, Lemma 3.5 and (14) guarantee

<g (tn,xn,v) yU— un> +J° (’YUQ’Y(U - un)) + @(Uaun) >0 forallveK
(15)

and all n € N. Remember that u — (v, u) is concave and upper semicontin-
uous. Passing to the upper limit as n — oo in (15), it yields

0 < limsup [(g (tn, n, ) , v = un) + J° (Y037 (v = un)) + ¢ (v, un)]

n—oo

< limsup(g (tn, Tn,v),v — un) + limsup JO (qyv; v (v — un)) + limsup (v, un)

< (g (tz,v), v —u) + J% (yo;7 (v — w)) + @(v, )

for all v € K. We have used the facts, (¢t,x) — ¢(t,z,v) is continuous, =y
is compact, u — ¢(v,u) is weakly upper semicontinuous (because it is con-
cave and upper semicontinuous). Employing Lemma 3.5 again, we conclude
that u € U(t,z). The latter coupled with the weak closedness of C' implies
ueU(t,z)NC, ie., (t,z) € U (C). Therefore, U is strongly—weakly upper
semicontinuous.

Concerning the proof of (Uz), Proposition 6.2.4 of [30] points out that
if, for all x € E and v € V, the function ¢t — d(v,U(t, z)) is measurable, then
U(-,z) is measurable as well. In fact, if for each A > 0 the set M := {t €
[0,T] | d(v,U(t,x)) < A} is measurable, then the function ¢ — d(v,U(t,x))
is measurable too. Moreover, here, we will show that for each A > 0 the set
My :={t €[0,T] | d(v,U(t,x)) < A} is closed, so, it is measurable. Notice
that U has closed and convex values, hence, for every n € N, we are able to
take a unique element u,, € U(t,,x) such that ||[v—u,|v = d(v,U(t,,z)) < A
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As before we have done, it is not difficult to see that the sequence {u,} is
bounded. This allows us to suppose that u, — u, as n — oo, for some u € K.
Whereas the strongly—weakly upper semicontinuity of U ensures u € U(t, x).
This infers

d(,U(t,x)) < ||lv—u|ly <liminf [[v — u,|v <\

This indicates that M), is closed, so, U(-, z) is measurable. Consequently, from
assertion (U;) and Theorem 2.5, we conclude the desired result
(Uz). O

Invoking the same arguments with the proof of [18, Lemma 4.2 and
Theorem 4.4], [13, Lemma 3.6] and Theorem 3.6, we are now in a position to
conclude the following existence result to problem (1).

Theorem 3.8. Assume that H(A), H(g), H(f), H(J), H(v), H(¢) and H(K)
hold. Then the solution set of problem (1) in the sense of Definition 1.1 is
nonempty, and the set of all mild trajectories x of problem (1) is compact in
C([0,T; E).

Moreover, we shall examine a well-posedness result for problem (1). To
do so, we need the following assumptions:
H(J): J: X — R is a locally Lipschitz function and enjoys the following
properties

(i) there exist constants ay > 0 and by > 0 such that
l0J(w)|| x> < ay+bsllw||x forallwe X;

(ii) there exists a constant m; > 0 such that

(€ —mw—v)x xx > —my|lw—v]|% forall w,v€ X and all £ € J(w),n € dJ(v).
H(g):g:[0,T] x ExV — V* is such that
(i) for all (¢t,z) € [0,T] x E, the mapping u — ¢(t,z,u) is hemicontinuous
and is uniformly strongly monotone, i.e., there exists a constant my > 0
such that the following inequality holds
(g(t,z,u) — g(t,z,v),u —v) > myllu —v|[} for all u,v €V
and all (t,z) € [0,T] x E;
(ii) there exists a constant L, > 0 such that
lg (b1, 21, u) — g (t2, 22, u) v < Lg ([tr — t2| + [lz1 — 2| )
for all t1,t3 € [0,T), 21,22 € E and all u € K.

H(f)": The nonlinear function f: [0,7] x E x V — E satisfies the following
conditions:

(i) for all (z,u) € ExV, the function ¢ — f(¢,x,u) is measurable on [0, T;
(ii) the function t — f(t,0g,0y) belongs to L'([0,T]; E);
(iii) there exists a function ¢» € L$°(0,T") such that
I1f(t w1 u1) = f(t, 22, u2) |2 < V() (lor = 22llE + ua — uz2|lv)
for a.e. t € [0,T] and all (x1,u1), (x2,u2) € E X V.




83 Page 16 of 30 G. Tang et al.

H(0): mg > mJ”'Y”ZL(V,X)-

Remark 3.9. Assumption H(J)'(ii) is usually called relaxed monotone con-
dition (see, e.g. [25]) for the locally Lipschitz function J. It is equivalent to
the inequality

JO(us;v —u) + JO(v;u —v) < myllu—v|%

for all u,v € X.

Theorem 3.10. Assume that H(A), H(g)', H(J)', H(p) with o(u,v)+p(v,u)
<0 for all u,v € K, H(v), H(f)', H(K), and H(0) are fulfilled. Then we
have

(i) for each initial point xog € E, differential variational-hemivariational in-
equality (1) possesses a unique solution (z,u) € C([0,T]; E)xC([0,T]; K).
(i) the map xo — (z,u)(xo): E — C([0,T); E) x C([0,T]; K) is Lipschitz

continuous.

Proof. (i) For any ug € K fixed, it follows from hypotheses H(g)" and H(J)
that

(g(t,amu),u - u0> + <577(U - uO))X*XX
= <g(t,x,u) - g(t7x7u0)7u - u0> + <£
—§0,’y(u - u0)>X"><X + <g(ta l‘,’u,o) + 7*£Ovu - u0>

> (mg = mallw.x)) e = woll}

— (IVllzev,xy ol x= + llg(t, 2, uo)]

ve) llu—uollv

> (mg = mallw.x)) e = woll}
— (IMllzev,xyas +1lg (@, u0) — g (0,08, uo) |lv+) lu — uol|v
=119(0, 0E, uo)lv+[lu — uollv

> (mg = mullE ) ) e = woll}

— (Inllzevxyar + Ly (It + 2]l 2)) llu — uollv
—1lg(0,08, uo)|lv+|u — uollv

for all £ € 9J(vyu) and all & € 0J(y0v ). Hence, H(0) indicates that

V*

V*

(g(t,x,u),u—u0>—|— <£7'7(U_U0)>X*><X

inf
€€dJ(yu)
2 (mg - mJ”VH%(V,X))HUH%/

— (INllvixyas + Lo([t] + 1zl 2) + [19(0, 0&, uo) lv=) [[ullv

— (IMllzvixyar + Lg([t] + =] 2) + [|9(0, 05, uo)|

v*) l|luollv
2 2
= (my = mal 2 ) ol

=2|luollv (mg = malV Iz v.x) lullv
z r(l[ullv)lullv + 1+ llullv)o(t 2] 2), (16)



Differential variational-hemivariational inequalities Page 17 of 30 83

where 7: Ry — R and p: [0,7] x Ry — R are, respectively, defined by
r(s) = (mg - mJH’Y||2L(V,X)> s
—Vlleev,x)yes = 119(0, 0k, uo)|

2ol (my = msllZ e x))

V*

and
pt,s) = = (IVlleev,xyor + Lg(t +s)
+||g (0,0E,UO) | V*)
= (mg = ma 2wy ) ol

Let z € C([0,T]; E) be fixed. We now consider the following time-
dependent variational-hemivariational inequality: find w: [0,7] — K such
that

|uollv

(g (t,z(t),u(t),v —u(t)) + J° (yu(t);y(v —u(t))) + (v, u(t)) >0 forallve K

(17)
and all ¢ € [0,7]. We now claim that for ¢ € [0,7] fixed inequality (17) has
a unique solution u(t). Indeed, under the assumptions H(g)’, H(J)', H(p),
H(K), H(0) and inequality (16), we can verify all conditions of Theorem 3.6.
This permits us to use Theorem 3.6 to find an element u(t) € K such that
inequality (17) holds. Let u(t) and () be two solutions to problem (17).
Then one has

(g (t,2(t),u(t)), v —u(t)) + J° (yu(t); v(v — u(t)))
+o(v,u(t)) >0 forallve K

and

(g(t, z(t),u(t)),v — u(t)) + JO(yau(t); y(v — w(t))) + p(v,u(t)) >0 for allv € K.

Inserting v = @(t) into the above first inequality and v = w(t) into the second
one, we sum the resulting inequalities to get

(gt, 2 (1), u(t)) — g(t, x(t), u(t)), u(t) — a(t)) — (J° (yu(t); y(@(t) — u(t)))
+J0 (V) (ult) = a(t)))) < ¢ (ult),u(t)) + ¢ (u(t), u(t))

The latter coupled with hypotheses H(g)'(i), H(J)'(ii), and the fact p(w,v)+
o(v,w) <0 for all w,v € K, implies

(o = mal ) e = @@ <o.

However, H(0) ensures u(t) = u(t), namely for ¢ € [0, T fixed inequality (17)
has a unique solution wu(t).

Therefore, we can find a unique function w: [0, 7] — K to solve problem
(17) on [0,T]. Further, it asserts that w is a continuous function, namely
u € C([0,T]; K). For any t1,ts € [0,T], it has
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(g(ts, x(t:), u(ts),v — u(ts)) + JO(yu(t:);v(v — u(ts))) + @(v,u(t;)) >0 forallv e K

and ¢ = 1,2. Taking v = u(t2) and v = wu(t1) into the above inequalities for
1 =1 and i = 2, respectively, a simple calculation finds

(g(t1, x(tr), u(t1)) — g(ta, x(t2), ultz)), u(t:) — u(tz))
— (2 (yu(tr); y(ultz) — u(tr)))
+ 0 (ulte); y(u(ty) — ults)))) < @(u(ty), u(tz)) + @(ults), u(ty)) < 0.

Then we have
(g = mall Zovx) ) llult) = u(t2)

< (g(ta, 2(t2), ultz)) — gts, z(t1), u(t)), u(ts) — u(t2))
<Hg(t2, (t2),ult2)) — g(tr, z(t1), u(t2))||v-[lu(tr) — u(t)|lv
Lg ([tr — ta| + [|[2(t1) — 2(t2)| ) [u(t1) — ult2)]lv,
which implies that

Ly
[t1 — ta| + [J(t1) — x(t2)||E)-
mg — mJH’Y”L(V :X) ( )
This means u € C([0,T]; K), thanks to z € C([0,T]; E).
For i = 1,2, let z; € C([0,T]; E) and u; € C([0,7]; K) be the unique
solution of problem (17), namely,

[u(tr) — ultz)llv <

(g(t,zi(t),ui(t)), v — ui(t)) + IO (yui(8); (v — ui(t)) + @(v,ui(t)) > 0 forallv € K
for all t € [0, T]. Putting v = uz(¢) and v = u;(¢) into the above inequalities
for ¢ = 1,2, accordingly, a easy verification gives

L
u(t) —u2(®)||v < g
mg — mJH'YH%(v;x)
for all t € [0,T7.

For uw € C([0,T]; K) fixed, we introduce the following Cauchy problem:

{ ’(( )) A;U( )+ f(t,z(t),u(t)) for ae. te]0,T], (19)

It is clear from [9, Proposition 5.3, p.66] and [18, Section 4] that problem
(19) admits a unique mild solution x € C([0,T]; E') such that

[z1(t) = 22() || (18)

t
z(t) = et —|—/ eA=9) f (s, x(s),u(s))ds for all t € [0,T].
0
Define a function S: C([0,T]; E) — C([0,T]; E) by

S(x)(t) = ety —I—/O e (s, 2(s), ux(s)) ds

for all t € [0,T], where u, € C([0,7]; K) is the unique solution to problem
(17) corresponding to x. It is obvious that € C([0,T]; F) is a fixed point of
S, if and only if (x, u,) is a solution to differential variational-hemivariational
inequality (1).
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Next, we will show that S has a unique fixed point in C'([0,T]; E). For
any x1,x2 € C([0,T]; E), it has

15 (x1)(t) = S(22)(t)]| e
S/ e Lf (5, 21(5), o, () = F (5, 22(5), tay (5)) | 2 ds
0

< MA/O b(s) (121 (s) = z2(s)ll & + l[uz, (5) =z, (s)llv) ds
for all ¢ € [0,T]. This combined with (18) derives
15 (x1)(t) = S(22)(8)]|

<ota [ o)1+ B ) - (ol

- mJ”'V”%(V’)()

for all ¢ € [0,T]; hence,

1)) — S(22) () |5 < Macy (1 b ) / 1 (s) — 22(5)]  ds

9 _mJHVH?;(Vyx) 0

for all ¢ € [0, T, where ¢, > 0 is such that 1 (t) < ¢y, for a.e. t € [0,T]. This
means that S is a history-dependent operator. Therefore, we are now in a
position to invoke the fixed point principle, Lemma 2.11, that S has a unique
fixed point € C([0,T]; E). So, differential variational-hemivariational in-
equality (1) admits a unique solution (x,u) € C([0,T]; E) x C([0,T]; K).

(ii) Let 2§ and 23 be two initial points in E. Assertion (i) allows us to
find two unique solutions (x1,u1) and (22, us) to problem (1) associated with
initial points z§ and z2, respectively. Hence, it has

t
ml(t) = eAtx(l) + / eA(t_S)f(87x1(8)7u1(s)) dS,
0

zo(t) = eMad + /Ot A=) f (s, 9(s), ua(s)) ds
for all ¢ € [0, T]. Subtracting the above equalities, it emerges
21 () — z2(t)| £
< My /Ot [1f(s,z1(s),u1(s)) — f(s,22(s), ua(s)))l z ds

+Mallzg — @flle

¢
< Mal|zg 