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ABSTRACT: Generalized Landau−de Gennes theory is proposed
that comprehensively explains currently available experimental data
for the heliconical twist−bend nematic (NTB) phase observed in
liquid crystalline systems of chemically achiral bent-core-like
molecules. A bifurcation analysis gives insight into possible
structures that the model can predict and guides in the numerical
analysis of relative stability of the isotropic (I), uniaxial nematic
(NU), and twist−bend nematic phases. An estimate of constitutive
parameters of the model from temperature variation of the nematic
order parameter and the Frank elastic constants in the nematic
phase enables us to demonstrate quantitative agreement between
the calculated and experimentally determined temperature depend-
ence of the pitch and conical angle in NTB. Properties of order
parameters also explain a puzzling lack of a half-pitch band in resonant soft X-ray scattering. Other key findings of the model are
predictions of I−NTB and NU−NTB tricritical points and insight into biaxiality of NTB.

■ INTRODUCTION

Undoubtedly, the short-pitch heliconical structure formed by an
ensemble of achiral bent-core-like mesogens and commonly
referred to as the nematic twist−bend is one of the most
astonishing liquid crystalline phases. It is the first example in
nature of a structure where the mirror symmetry is
spontaneously broken without any support from a long-range
positional order. The structure itself is a part of an over 130 year-
old tradition of liquid crystal science, demonstrating that even a
minor change in the molecular chemistry can lead to a new type
of liquid crystalline order, which differs in the degree of
orientational and translational self-organization, ranging from
molecular through nano- to macroscales.1−3

Themost common of all known liquid crystalline phases is the
uniaxial nematic phase (NU), where anisotropic molecules or
molecular aggregates orient, on the average, parallel to each
other. Their local, mean orientation at the point r ̃ of coordinates
(x̃,ỹ,z)̃ is described by a single mesoscopic direction n̂(r)̃ (|n̂(r)̃|
= 1) known as the director. Because of the statistical head-to-tail
inversion symmetry of the local molecular arrangement, the
director states n̂(r)̃ and −n̂(r)̃ are equivalent. With an inversion
symmetry and with a rotational symmetry of molecular
orientational distribution about n̂(r)̃, the existence of the
director is a basic property that distinguishes the uniaxial
nematics from an ordinary isotropic liquid. That is, the NU phase
is a nonpolar 3D liquid with a long-range orientational order
characterized by the ∞h point group symmetry.

One important consequence of n̂(r)̃ being indistinguishable
from −n̂(r)̃ is that the primary order parameter of the uniaxial
nematics is the second-rank (3 × 3) traceless and symmetric
alignment tensor (the quadrupole moment of the local angular
distribution function of the molecules’ long axes)
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having the components Q̃ U,αβ; ̃S is the scalar order parameter
describing the degree of (local) molecular orientational ordering
along n̂(r)̃, and I denotes the identity matrix.
Beyond conventional uniaxial nematics, further nematic liquid

phases, that (by definition) have only short-ranged positional
ordering, were recognized. They involve 2h symmetric biaxial
nematics (NB) for nonchiral materials and cholesteric (N*)
along with blue phases (BP) for chemically chiral mesogens,
characterized locally by the 2 point group symmetry. In order
to account for their local orientational order, we need a full,
symmetric, and traceless alignment tensor Q̃(r)̃ with three
different eigenvalues, as opposed to the uniaxial nematic 1,
where only two eigenvalues of Q ≡ Q U are different.
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This four-member nematic family is ubiquitous in nature and
it has not been expanding for many years.1 However, very
recently, the situation has changed with the important discovery
of two fundamentally new nematics: the twist−bend nematic
phase (NTB)

4−7 and the nematic splay phase (NS);
8 it seems that

these discoveries only mark the beginning of a new, fascinating
research direction in soft matter science.3,9−12

Without any doubt, the discovered NTB phase is different than
3D liquids known to date because it exhibits a macroscopic
chirality while formed from chemically achiral, bent-core-like
molecules. A direct manifestation of chirality is an average
orientational molecular order that forms a local helix with a pitch
spanning from several to over a dozen of nanometers, in the
absence of any long-range positional order of molecular centers
of mass. NTB is stabilized as a result of (weakly) first-order phase
transition from the uniaxial nematic phase or directly from the
isotropic phase,13,14 and therefore, (as already mentioned) its
emergence is probably one of the most unusual manifestation of
spontaneous mirror symmetry breaking (SMSB) in three-
dimensional liquids.
At the theoretical level, the possibility of SMSB in bent-

shaped mesogens has been suggested by Meyer already in 1973.
He pointed out that bend deformations, which should be
favored by bent-shaped molecules, might lead to flexopolariza-
tion-induced chiral structures.15 About 30 years later, Dozov16

cons idered the Oseen−Frank (OF) free energy

∫= ̃ ̃−
̃F V f rd

VOF
1

OF
3 of the director field n̂(r)̃,17,18 where

∇= [ ∇∼· ̂ + ̂·∼ × ̂ + ̂ × ∇∼ × ̂ ]f K K Kn n n n n
1
2

( ) ( ) ( )OF 11
2

22
2

33
2

(2)

where K11, K22, and K33 are splay, twist, and bend elastic
constants, respectively. He correlated the possibility of SMSB in
nematics with the sign change of the bend elastic constant, K33.
In this latter case, in order to guarantee the existence of a stable
ground state, some higher order elastic terms had to be added to
f OF. Limiting to defect-free structures, Dozov predicted
competition between a twist−bend nematic phase, where the
director simultaneously twists and bends in space by precessing
on the side of a right circular cone, and a planar splay−bend
phase with alternating domains of splay and bend, both shown in
Figure 1. If we take into account the temperature dependence of
the Frank elastic constants, then, the uniaxial nematic phase
becomes unstable to the formation of modulated structures at
K33 = 0, which is the critical point of the model. The behavior of
the system depends on the relationship between the splay and
twist elastic constants. As it turns out, the twist−bend ordering
wins if K11 > 2K22, while the splay−bend phase is more stable if
K11 < 2K22. Assuming that the wave vector k̃ of NTB stays parallel
to the z-̂axis of the laboratory reference frame (k̃ = k̃z)̂, the

Figure 1. Schematic depiction of modulated nematic phases formed by achiral bent-shaped molecules. Pure bend distortion in 2D leads to the
emergence of defects (red sphere). Their appearance can be circumvented by alternating the bend direction periodically or allowing nonzero twist by
lifting the bend into the third dimension. These possibilities, respectively, give rise to the two alternative nematic ground states: splay−bend (NSB) and
twist−bend (NTB). The twist−bend nematic has been first observed in the phase sequence of the liquid crystal dimer 1″,7″-bis(4-cyanobiphenyl-4′-
yl)heptane (CB7CB), where two identical cyanobiphenyl mesogenic groups are linked by a heptane spacer (the CB7CB molecule can be viewed as
having three parts: two identical rigid end groups connected by a flexible spacer). Schematic representation of molecular organization in the NTB with
right and left handedness (ambidextrous chirality) has been depicted at the bottom of the image. The right/left circular cone of conical angle θ shows
the tilt between the director n̂ and the helical symmetry axis, parallel to the wave vector k̃. The red arrow represents polarization P̃, where P̃∥n̂ × k̃.
Note that NTB has a local 2 symmetry with a two-fold symmetry axis around P̃.
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symmetry-dictated, gross features of the heliconical NTB
structure are essentially accounted for by the uniform director
modulation

ϕ

ϕ θ ϕ θ θ

̂ ̃ = ̂

= [ ]
̂zn n( ) ( ) (0)

cos( )sin( ), sin( )sin( ), cos( )
z

(3)

where n̂(0) = [sin(θ),0,cos(θ)] and ϕ ϕ= ̃̂ ̂ z( ) ( ( ))z z is the
homogeneous rotation about z ̂ through the azimuthal angle
ϕ(z)̃ =±k̃z ̃ =±2πz/̃p, where p is the pitch. The± sign indicates
that both left-handed and right-handed chiral domains should
form with the same probability, which is the manifestation of
SMSB in the bulk. Note that the molecules in NTB are inclined,
on the average, from k̃ by the conical (tilt) angle θ−the angle
between n̂ and the wave vector k̃ (Figure 1). The symmetry of
NTB also implies that the structure must be locally polar with the
polarization vector, P̃, staying perpendicular both to the director
and the wave vector

ϕ ϕ ϕ̃ ̃ = ̃ = ̃ [ − ]̂z pP P( ) ( ) (0) sin( ), cos( ), 0z 0 (4)

Hence, in the nematic twist−bend phase, both n̂ and P̃ rotate
along the helix direction k̃, giving rise to a phase with constant
bend and twist deformation of no mass density modulation
(Figure 1).
In 2013, Shamid et al.19 developed Landau theory for bend

flexoelectricity and showed that the results of Dozov are in line
with Meyer’s idea of flexopolarization-induced NTB. Their
theory predicts a continuous N−NTB transition, where the
effective bend elastic constant, renormalized by the flexopola-
rization coupling, changes sign for sufficiently large coupling.
The corresponding structure develops a modulated polar order,
averaging to zero globally as in eq 4. Dozov’s model is also
supported by measurements of anomalously small bend elastic
constant (compared to the splay and twist elastic constant) in
the nematic phase of materials exhibiting NTB (see, e.g.,
measurements for the CB7CB dimer of Babakhanova et
al.20−22).
The second most widely used continuum model to character-

ize orientational properties of nematics is the minimal coupling,
SO(3)-symmetric Landau−de Gennes (LdeG) expansion in
terms of the local alignment tensor. It allows us not only to
account for a fine structure of inhomogeneous nematic phases
but also shows important generalizations of the director’s
description in dealing with orientational degrees of freedom
(see, e.g., ref 23). In a series of papers,11,12,24 coauthored by one
of us, we developed an extension of LdeG theory to include
flexopolarization couplings. The extended theory predicted that
the flexopolarization mechanism can make the NTB phase
absolutely stable within the whole family of one-dimensional
modulated structures.11 A qualitatively correct account of
experimental observations in NTB (see, e.g., ref 3) was obtained,
such as trends in temperature variation of the helical pitch and
conical angle and behavior in the external electric field.25 The
theory also predicted weakly first-order phase transitions from
the isotropic and nematic to nematic twist−bend phase, again in
agreement with experiments.14,26 Despite this qualitative success
of the LdeG modelling, one important theoretical issue still left
unsolved is associated with the elastic behavior of the uniaxial
nematic phase for materials with stable NTB. A few existing
measurements of all three elastic constants in the NU phase show
that K11 ≳ 2K22 (K22 ≈ 3−4 pN), while K33 ≈ 0.4 pN near the
transition into NTB.

20 That is, the splay elastic constant is about
20 times larger than the bend elastic constant. On the theoretical

side, the LdeG expansion with only two distinct bulk elastic
terms cannot explain this anomalously large disparity in the
values of K11 and K33. Actually, it predicts that they both are
equal in the OF limit,27,28 where the alignment tensor is given by
eq 1. Therefore, there are anomalously small bend and splay
Frank elastic constants on approaching NTB in the LdeG model
with flexopolarization.12 Although this prediction might suggest
dominance of the structures with splay−bend deformations over
that of the twist−bend ones, the NTB phase, as already discussed
before, can still be found to be more stable than any of one-
dimensional periodic structures, including the nematic splay−
bend phase.11 Most probably, this is due to the remarkable (and
unique) feature of NTB being uniform everywhere in space that
makes the SO(3)-symmetric elastic free-energy density
independent of space variables.11

Central to quantitative understanding of NTB and related
phase transitions is the construction of generalized LdeG theory
that releases the K11 = K33 restriction of the minimal coupling
model and accounts for the experimental behavior of the Frank
elastic constants in the vicinity of NU−NTB phase transition. We
expect that such a theory will allow for a systematic study of
mesoscopic mechanisms that can be responsible for chiral
symmetry breaking in nematics. It will also give a new insight
into conditions that can potentially lead experimentalists to the
discovery of new nematic phases. Although the choice of
strategy has already been worked out in the literature,24,29,30 the
main problem lies in a huge number of elastic invariants in the
alignment tensor, contributing to the generalized elastic free-
energy density of nematics. Here, we show how the problem can
be solved in a systematic way if we start from a theory which
holds without limitations for arbitrary one-dimensional periodic
distortions of the alignment tensor that serve as ground states.
These ground states form the most interesting class of structures
for it obeys the recently discovered new nematic phases. An
additional requirement for generalized LdeG theory is that its
ground state in the absence of f lexopolarization should be that
corresponding to a constant tensor field Q̃. The theory so
constructed will then be applied to characterize properties of
NTB formed in the class of CB7CB-like dimers and its
constitutive parameters will be estimated from experimental
data known for the CB7CB dimers in the NU phase.

■ THEORETICAL METHODS
Alignment Tensor Representation for Homogene-

ously Deformed Nematic Phases. In the NTB phase, the
director n̂ and the polarization vector P̃ are given by eqs 3 and 4,
while the equivalent alignment tensor order parameter, Q̃ U,TB, is
obtained by substituting 3 into 1. Although these models seem
to account for gross features of the orientational order observed
in NTB, they do not exhaust possible nematic structures that can
fill space with twist, bend, and splay. A full spectrum of
possibilities is obtained by studying an expansion of the biaxial
alignment tensor Q̃ and the polarization field P̃ in spin tensor
modes of L = 2 and L = 1, respectively, and in plane waves.12

Within this huge family of states, an important class of nematic
states is represented by uniformly deformed structures (UDSs)
where the elastic, SO(3)-symmetric invariants contributing to
the elastic free-energy density of nematics24,30 are constant in
space. For such structures, the same tensor and polarization
landscape is seen everywhere in space. They are periodic in, at
most, one spatial direction, say z,̃ and uniformly fill space
without defects. In analogy to the conditions 3 and 4 for n̂ and P̃,
they are generated from the tensors Q̃(0) and P̃(0) for z ̃ = 0 by
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t h e p r e v i ou s l y d efined homogeneou s r o t a t i on
ϕ± ̃ ̃ ≡̂ ̂kz( ) ( )z z .11,31 More specifically

± ̃ ̃ ̃ = ̃ ̃

± ̃ ̃ ̃ = ̃ ̃

̂

̂

kz z

kz z

Q Q

P P

( ) (0) ( )

( ) (0) ( )

z

z (5)

where ± labels left- (+) and right-handed (−) heliconical
structures. Hence, the most general representations for UDSs
that generalize eqs 3 and 4 can be cast in the form (see Figure
2)11,31
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kz vP( )

cos( )

sin( )

0

0
0
1

p

p1 0

(7)

where c±m = cos(±m ̃ ̃kz + ϕ±m) and s±m = sin(±m ̃ ̃kz + ϕ±m) and
nine real parameters x̃0,±k̃, r±̃i≥ 0, p̃±1≥ 0, ̃v0, ϕ±m, and ϕ±p for
each of the ± labels characterize the fine structure of the phases,
especially its biaxiality. Indeed, an arbitrary symmetric and
traceless tensor field Q̃ fulfills the inequalities (see discussion in
ref 32)

− ≤ =
̃

̃
≤w

Q
Q

1
6 Tr( )

Tr( )
1

3

2 3/2 (8)

which are satisfied as equalities for locally prolate (w = 1) and
oblate (w = −1) uniaxial phases. States of nonzero biaxiality are
realized for−1 <w < 1, with maximal biaxiality corresponding to
w = 0. In particular, the parameter w(Q̃(z)̃) for Q̃(z)̃ given by eq
6 reads

ϕ ϕ
̃ ̃ =

̃ ̃ − + ̃ − ̃ ̃ + ̃

̃ + ̃ + ̃
± ± ± ± ±

± ±
w z

r r x r x x

r r x
Q( ( ))

( 3 cos(2 ) ) 3

( )

3
2 1

2
2 1 2 0 2

2
0 0

3

1
2

2
2

0
2 3/2

(9)

Note that in agreement with definition 5, the parameter
w(Q̃(z)̃) is position-independent and can take an arbitrary
value within the allowed [−1, 1] interval, eq 8. In contrast,
for the uniaxial tensor Q̃ U,TB, corresponding to x̃0 =

θ+(1 3 cos(2 ))S6
12

, r ̃± 1 = θsin(2 )S2
2

, a n d r ̃± 2 =

θsin( ) ,S2
2

2 the parameter w(Q̃ U,TB) = Sign(S) = ±1 (θ is

the conical angle).
We should mention that the fields in eqs 6 and 7 are

insensitive to the choice of the origin of the laboratory reference
frame, which allows us to eliminate one of the phases ϕ±i (i = 1,
2, p), independently for each of the two states with “+” and “−”
subscripts. The coefficients in eqs 6 and 7 are chosen such that
the norms squared of the order parameters are sums of squares
of the coefficients: Tr(Q̃2) = x̃0

2 + r±̃1
2 + r±̃2

2 and Tr(P̃2) = p̃±1
2 +

̃v0
2. Together Q̃ and P̃ characterize a family of all defect-free

uniformly deformed (polar) helical/heliconical nematic phases.
They are gathered in Table 1.

Generalized LdeG Expansion for 1D Periodic Nem-
atics. In this section, we introduce a generalized LdeG free-
energy expansion in Q̃ and P̃, capable of quantitative description
of the systems with stable one-dimensional periodic nematics.
The most important members of this family are the nematic
twist−bend phase3 and recently discovered nematic splay
phase.8 Our main effort in this and next section will concentrate
on the general characterization of LdeG expansion. An example
of the UDS with its prominent representative−the NTB

phase−will be studied in great detail. Parameters entering the
LdeG expansion will be estimated from experimental data for the
CB7CB compound in the uniaxial nematic phase. Then, the
properties of the NTB phase resulting from the so constructed
LdeG expansion will be calculated and compared with available
experimental data.

Figure 2. Visualization of helicity modes introduced in eqs 6 and 7: indices m = 0, m = ±1, and m = ±2 correspond to subscripts 0, ±1, and ±2 of
{ x̃0, ṽ0 }, {r±̃1, p̃±1}, and {r±̃2, p̃±2}, respectively. Change ofm into−m corresponds to replacement of k̃ by−k̃. Bricks represent the tensor Q̃(r)̃ where
the eigenvectors of Q̃(r)̃ are parallel to their arms, while the absolute values of eigenvalues are their lengths. Red arrows represent the polarization field
P̃(r)̃.
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We assume that the stabilization of NTB is due to entropic,
excluded volume flexopolarization interactions,33 induced by
sterically polar molecular bent cores. The direct interactions
between electrostatic dipoles will be disregarded33 and the long-
range polar order will be attributed to the molecular shape
polarity. With Q̃ and P̃, the general LdeG expansion reads24,28

∫ ∫̃ = ̃
̃ ̃ = ̃

̃ + ̃ + ̃ + ̃ ̃
̃ ̃

F
V

f
V

f f f fr r
1

d
1

( )d
V Vtot

3
Qb Qel P QP

3

(10)

where r ̃ is the position vector, ̃V is the system’s volume, and the
free-energy densities ̃fXx and

̃fX are constructed out of the fields

X. They involve the bulk nematic part ̃fQb, the nematic elastic

part ̃fQel, and the parts ̃fP and ̃fQP responsible for the onset of

chirality in the nematic phase. Although the general theory has
plenty of constitutive lparameters, part of them, at least for
CB7CB, can be estimated from existing experimental data for
the NU and at the I−NU and NU−NTB phase transitions. One of
the issues we would like to understand is whether the theory so
constructed allows us to account for the quantitative properties
of the nematic twist−bend phase, below NU−NTB phase
transition.
Bulk Nematic Free Energy. According to phenomeno-

logical LdeG theory, the equilibrium bulk properties of nematics
can be found from a nonequilibrium free energy, constructed as
an SO(3)-symmetric expansion in powers of Q̃. There are only
two types of independent SO(3) invariants that can be
constructed out of Q̃, namely, Tr(Q̃2) and Tr(Q̃3). Hence, ̃fQb
is a polynomial in Tr(Q̃2) and Tr(Q̃3) with the only restriction
on the expansion being that it must be stable against an
unlimited growth of Q̃. The experimental data for ̃S in the
nematic phase of CB7CB fit well to amodel where the expansion
with respect to Q̃ is taken at least up to sixth-order terms. More
specifically, in the absence of electric and magnetic fields,
introducing ̃I2 = Tr(Q̃2) and ̃I3 = Tr(Q̃3), we take for the bulk
free-energy density of the isotropic and the nematic phases

̃ = ̃ [ ̃ ̃ ]

= ̃ − ̃ + ̃ + ̃ ̃ + ̃ − ̃ + ̃

f f I I

a I bI cI dI I e I I f I

,

( 6 )

Qb Qb 2 3

Q 2 3 2
2

2 3 2
3

3
2

3
2

(11)

A full account of phases and critical and tricritical points that
this theory predicts is found in ref 32.

The coefficients of the expansion 11 generally depend on
temperature and other thermodynamic variables, but in Landau
theory, the explicit temperature dependence is retained only in
the bulk part, quadratic in Q̃. In what follows, as a measure of
temperature, we choose the relative temperature distance, Δt,
from the nematic−isotropic phase transition, defined through
the relation

i
k
jjjjj

y
{
zzzzz= − * =

−
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− *

= Δ + Δ

a a
T T

T
a

T T
T

T T
T

a t t
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( )

Q 0Q
NI

0Q
NI

NI

NI

NI

0Q NI (12)

where a0Q > 0, T is the absolute temperature, TNI is the
nematic−isotropic transition temperature, T* is the spinodal for
a first-order phase transition from the isotropic phase to the
uniaxial nematic phase,Δt = (T−TNI)/TNI≤ 0, andΔtNI = (TNI
− T*)/TNI > 0 is the reduced temperature distance of nematic−
isotropic transition temperature from T*. Additionally, b, c, d,
e > 0, and f > 0 are the temperature-independent expansion
coefficients. The last two conditions for e and f guarantee that

̃fQb is stable against an unlimited growth of Q̃.32 The expansion,

eq 11, generally accounts for the isotropic, uniaxial nematic, and
biaxial nematic phases.32,34

We should mention that the fourth-order expansion, where
c > 0 and d = e = f = 0, predicts that the NTB phase can be
absolutely stable within the family of one-dimensional
modulated structures,11 but the theory does not give a
quantitative agreement with the data for ̃S in the nematic
phase of CB7CB unless an unphysically large value of ΔtNI is
taken (Figure S1).

Elastic Free Energy. A spatial deformation of the alignment
tensor Q̃ in the nematic phase is measured by the elastic free-
energy density ̃fQel of the Landau free energy expansion 10. For

the description of elastic properties of nematic liquid crystals,
̃fQel usually is expanded into powers of Q̃ and its first derivatives

∂Q̃≡ ∂Q̃ ij/∂x̃k = Q̃ ij,k, where only quadratic terms in derivatives
of the order parameter field are retained, in line with similar
expansion for the director field, eq 2.
This standard, the so-called minimal-coupling LdeG

expansion for ̃fQel, comprises only two bulk elastic terms:

[L1
(2)] = Q̃ αβ,γQ̃ αβ,γ and [L2

(2)] = Q̃ αβ,βQ̃ αγ,γ. Although again the
theory, eq 10, with ̃fQel containing only these two elastic terms

accounts for absolutely stable NTB among one-dimensional
modulated structures,11 it is not sufficiently general to
quantitatively reproduce, for example, elastic properties of
bent-core systems in the parent nematic phase for it implies
equality of splay and bend Frank elastic constants, which so far is
not an experimentally supported scenario with stable NTB. Thus,
we need to include higher order elastic terms in LdeG theory to
account for the experimentally observed elastic behavior of bent-
core mesogens. A general form of the LdeG elastic free-energy
density has been studied by Longa et al. in a series of
papers.24,28,30 As it turns out, the most important are third-order
invariants of the form Q̃∂Q̃∂Q̃, given explicitly in the Supporting
Information, because they are the lowest order terms removing
splay−bend degeneracy of second-order theory.28 However,
with quadratic and cubic terms alone, the elastic free energy fQ̃el
is unbounded from below and hence cannot represent a correct
theory of nematics. To assure that the nematic ground state is
stable against an unlimited growth of Q̃ αβ and Q̃ αβ,γ, we need to

Table 1. Family of Uniformly Deformed Nematic Structures
(UDSs) That Can Be Constructed out of the Fields Q̃ and P̃a

structure nonzero
amplitudes abbreviation

Nonpolar Structures
(a) uniaxial nematic x̃0 NU

(b) biaxial nematic x̃0, r1̃, r2̃, k̃ → 0 NB

(c) (ambidextrous)
cholesteric

x̃0, r2̃, k̃NC
= 2k̃≠ 0 NC

Locally Polar Structures
(d) locally polar cholesteric as in (c), p̃1 NCl

(e) nematic twist−bend x̃0, r1̃, r2̃, p̃1, k̃ ≠ 0 NTB

Globally Polar Structures
(f) polar (a)−(e) any of (a)−(e), ̃v0 add subscript “p” to

(a)−(e)
aLimiting cases of the constant Q̃ and P̃ are also included.
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add some fourth-order invariants.28 In total, there are 22
deformation modes [Li

(n)] of Q̃ up to the order Q̃ Q̃ ∂Q̃ ∂Q̃ (see
the Supporting Information for details). The next step is to
single out the relevant elastic terms [Li

(n)] that should enter the
expansion ̃fQel. A considerable reduction in the number of

independent terms is obtained if we limit ourselves to a class of
ground states represented by one-dimensional periodic
structures Q̃(z ̃ + p̃) = Q̃(z)̃.11,35 Then, the only relevant linearly
independent [L]-terms (nonvanishing for uniaxial Q̃) are
• ∂Q̃ ∂Q̃ terms: [L1

(2)], and [L2
(2)]

• Q̃ ∂Q̃ ∂Q̃ terms: [L2
(3)], [L3

(3)], and [L4
(3)]

• Q̃Q̃ ∂Q̃ ∂Q̃ terms: [L2
(4)], [L3

(4)], [L5
(4)], [L6

(4)], [L7
(4)], [L10

(4)],
and [L11

(4)].
As mentioned before, the most important are third-order

terms Q̃ ∂Q̃ ∂Q̃ linear in Q̃ and quadratic in ∂Q̃ because they
remove splay−bend degeneracy.28 Hence, in what follows, we
will keep three third-order terms and add three stabilizing terms
of the order Q̃Q̃ ∂Q̃ ∂Q̃. More specifically, for the elastic free
energy ̃fQel, we take a sum of quadratic terms in deformations of

the form

λ
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7
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(4) (14)

where the coefficients, Li
(n), denote temperature−independent

elastic constants that couple with the invariant [Li
(n)] and λ2 =

L2
(3)/(2L14

(4)), λ3 = L3
(3)/(2L6

(4)), and λ4 = L4
(3)/(2L7

(4)). Use of the
[L14

(4)] invariant, which is a linear combination of the invariants
Q̃Q̃ ∂Q̃ ∂Q̃, allows us to write the stability criteria for ̃fQel in a

simple form (see the Supporting Information). Indeed, the
elastic free-energy density ̃fQel is a sum of positive definite terms

if
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The conditions 15 are sufficient ones for ̃fQel to be positive

definite ( ̃fQel ≥ 0). For smooth tensor fields Q̃, the ground state

of ̃fQel(
̃fQel = 0) corresponds to a constant, position-

independent Q̃, which represents an unperturbed isotropic,
uniaxial, or biaxial nematic state. As we show later in the text, the
elastic constants Lm

(n) entering expansion 14 can all be estimated
from the data for Frank elastic constants in the uniaxial nematic
phase. To conclude, the free energy 14 is a thermodynamically
stable expansion of the LdeG free energy in the local alignment
tensor, complete up to third order for deformations realized in

one spatial direction and nonvanishing in the uniaxial limit for
Q̃.
The elastic free energy 14 can still be written in a simpler form

by further selecting terms that are relevant for the UDS. Indeed,
substitution of eq 6 into expansion 14 induces extra relations
between cubic and quartic elastic invariants, namely

[ ] = − [ ] [ ] = [ ]L L L L2 , 42
(3)

3
(3)

14
(4)

6
(4)

(16)

Thus, in seeking for relative stability of the UDS, two elastic
terms in 14 are still redundant. This redundancy becomes
especially transparent in the parameterization where the elastic
constants L2

(3), L3
(3), L6

(4), and L14
(4) are replaced by appropriate

linear combinations of L7
(3), L8

(3), L15
(4), and L16

(4). They are given by
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where, in addition, the inequality L15
(4) > |L16

(4)| is required to fulfill
stability conditions 15. Substitution of 17 into 14 now yields
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where

[ ] = [ ] − [ ]
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where [L8
(3)] and [L16

(4)] terms vanish for the UDS, given by eq 6.
Coupling with Steric Polarization. According to the

current understanding of the formation of the stable twist−bend
nematic phase, its orientational order, being similar to that of
smectic C*,1 should be accompanied with a long-range polar
order of molecular bent cores.36−40 As already pointed out, the
other direct molecular interactions, such as between electro-
static dipoles, are probably less relevant for the thermal stability
of this phase. Up to the leading order in P̃, at least five extra
terms must be included in ̃fP and ̃fQP, eq 10. They read11,12,28

̃ = ̃ + ̃ + ∇∼ ⊗ ̃f a A bP P P( ) ( )P P
2

4
2 2

P
2

(20)

ε̃ = − ̃ · ∇∼· ̃ − Λ ̃ ̃ ̃α αβ βf P Q PP Q( )QP P QP (21)

Here, aP = a0P((T−TP)/TNI) = a0P(Δt +ΔtNI,P), whereΔtNI,P =
(TNI − TP)/TNI > 0, A4 > 0, bP > 0, εP, and ΛQP are further
temperature-independent constitutive parameters of the model.
Again, limitations for A4 and bP stem from stability requirement
of a ground state against unlimited fluctuations of P̃(r)̃. The εP-
term represents lowest order flexopolarization contribution,
while the ΛQP-term is the direct coupling between the
polarization field and the alignment tensor. The presently
existing experimental data seem to be in line with this minimal
coupling expansion for the (flexo)polarization part of the free
energy.11,12 A full structure of (flexo)polarization theory, along
with some of its general consequences, can be found in ref 24.
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Reduced Form of Generalized LdeG Expansion. For
practical calculations, it is useful to reduce the number of model
parameters by rewriting eq 10 in terms of reduced (dimension-
less) quantities. It reveals the redundancy of four parameters in
the expressions 11, 14, 20, and 21 and allows to set them to one
from the start.12,24,28,29 This reduction is a direct consequence of
the freedom to choose a scale for the free energy, F̃ = ΛF F, for
the fields Q̃ =ΛQQ and P̃ =ΛPP, for the position vector r ̃=Λr r,
where Λi are nonzero scaling parameters. Taking this freedom
into account, we introduce the reduced quantities F ( f tot), Q
(equivalently S, x0, r1, and r2), P (equivalently p1 and v0), r, k, tQ,
ρ2,2− ρ4,16, tP, ad, eP, λ, cb, db, and eb with the help of the equations
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The remaining quantities (S, x0, r1, and r2) and (p1 and v0) are
connected with their tilted counterparts by the same relations as
Q with Q̃ and P with P̃, respectively. In addition, the definitions
19 now become reduced to

ρ ρ ρ ρ ρ ρ
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= − = +

= − = +
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Consequently, the generalized LdeG free-energy expansion in
terms of reduced variables Q and P reads
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λ= − · ∇· − α αβ βf e Q P Q PP ( )QP P (28)

where I2 = Tr(Q2) and I3 = Tr(Q3). In this parameterization,
terms proportional to ρ3,8 and ρ4,16 vanish for the UDS.
The expansions 24 −28 are our LdeG theory of modulated

nematics. If we limit ourselves to a family of periodic structures
with periodicity being developed in one spatial direction, the
nonzero cubic and quartic couplings ρ3,4, ρ3,7, ρ4,7, and ρ4,15
should admit the UDS as global minimizers. The remaining two
couplings ρ3,8 and ρ4,16 are solely responsible for one-
dimensional, nonuniform periodic distortions, which makes the
corresponding elastic terms vanish for the UDS. This means that
depending on the choice of ρ3,8 and ρ4,16, we should be able to
eliminate inhomogeneously deformed one-dimensional periodic
structures from the ground states of LdeG, leaving only the
UDS. In the remaining part of this paper, we are going to
concentrate exclusively on this simpler case.

Bifurcation Scenarios for Uniformly Deformed Struc-
tures.Here, we limit ourselves to the UDS given in Table 1 and
determine bifurcation conditions for various symmetry breaking
transitions. Clearly, the isotropic-uniaxial nematic bifurcation
temperature is given by T* 12, which represents spinodal, while
the I−NU phase transition takes place at TNI, slightly above T*.
Likewise, TP entering aP, eq 20, is transition temperature for a
hypothetical phase transition from the isotropic to ferroelectric
phase (P≠ 0), in the absence of the nematic order (Q = 0). Both
T* and TP are examples of bifurcation temperatures from the
less-ordered phase (isotropic) to the more ordered one
(nematic, ferroelectric). There are further bifurcations possible
for the UDSs. Below, we give bifurcation conditions for all
possible phase transitions between UDSs given in Table 1. The
procedure is found in ref 12 and we only briefly sketch it below.
For given material parameters, the equilibrium amplitudes, yi ∈
{r1, r2, p1, x0, v0 }, are found from the minimization of the free
energy F, eq 24, calculated for the UDSs (explicit formula for F is
listed in the Supporting Information). They are solutions of a
system of polynomial equations ψi(tQ, tP, {yα}) ≡ ∂F/∂yi = 0. In
order to employ a bifurcation analysis to {ψα}, we expand yi, tQ,
and tP in an arbitrary parameter ε

ε ε

ε ε

= + + +

= + + + =

y y y y

t t t t m Q P
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i i i i

m m m m

,0 ,1
2

,2

,0 ,1
2

,2 (29)

where nonvanishing yi,0 defines the reference, higher symmetric
phase. For example, if the reference state is the NU phase, only
y4,0≡ x0,0 is nonzero in eq 29. By substituting eq 29 into {ψα = 0}
and letting equations of the same order in ε vanish, we find
equations for yi,α and tm, (m = Q, P). The leading terms,
proportional to ε0, are equations describing the high-symmetric
reference state. Terms of the order ε1 give conditions for
bifurcation to a low-symmetric phase. An equivalent approach
would be to construct from F the effective Landau expansion
δf(yp) in a primary order parameter yp of a low-symmetric phase
by systematically eliminating the remaining parameters {yi}. A
detailed procedure is given in ref 29. For example, in the case of
the NU−NTB phase transition, we could take for the primary
order parameter either y1 ≡ r1 or y3 ≡ p1 with the final formulas
being insensitive to the choice. Before we start, it proves
convenient to introduce the auxiliary variables κ1 and κ2
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and relative phases χ1 and χ2

χ ϕ ϕ

χ ϕ ϕ

= −

= − 2

1 1 p
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which simplify the free energy and consequently also bifurcation
formulas.
Bifurcation Conditions for I−NTB Phase Transition.

Bifurcation conditions for a phase transition from the isotropic
phase to the nematic twist−bend phase can be written down as
an equation connecting tP and tQ

χ
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If we permit the k-vector and χ1 to vary, the bifurcation
temperature tP,I−TB from the isotropic to nematic twist−bend
phases will be the maximal tP, fulfilling the condition 32. Solving
eq 32 for tP and maximizing with respect to k and χ give the
bifurcation values for k, sin(χ1), and tP. They read
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where tNI > 0 is the isotropic-uniaxial nematic transition
temperature. Using formalism of ref 29, one can also show that
the a-term, eq 32, is actually the leading coefficient in the Landau
expansion of the free energy of the NTB phase about the
reference I phase in the primary order parameter p1
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(34)

Generally, the nonzero value kI−TB of the k-vector at the
bifurcation point (eP

2 > 8tQ) indicates that the I−NTB phase
transition is, at least weakly, first order. It can be classified as an
example of weak crystallization introduced by Kats et al.,41 with
fluctuations that should be observed near the k = kI−TB sphere.
Interestingly, for k = kI−TB = 0, a direct inspection of higher order

terms of the expansion 34 shows that = − λb a24
td

2

Q
can change

sign for sufficiently large λ. That is, for c > 0, the I−NTB transition
can be first order (a = 0, b < 0), second order (a = 0, b > 0), or
tricritical (a = 0, b = 0).
Bifurcation Conditions for NU−NTB Phase Transtition.

Bifurcation conditions from NU to NTB expressed in terms of an
equation connecting tP and x0 read:

i
k
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y
{
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2 2
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(35)

where κ3 = ρ3,4 − 4ρ3,7 and κ4 = 5ρ4,7 + 8ρ4,15 and x0 is the
nematic order parameter calculated from the minimization of
fQb in the uniaxial nematic phase. For fixed tQ (x0), the

bifurcation temperature corresponds to the maximal tP, fulfilling
the condition of a = 0, eq 35, where the maximum is taken over k
and χ1. It yields

λ
κ κ κ

= − +
+ +−t

x e
x x6

3
2(6 6 )P,N TB

0 P
2

2 3 0 4 0
2

(36)

for k = 0 and sin2(χ1) = 1. As previously for the I−NTB phase
transition, eq 32, the a-term, eq 35, is the leading coefficient in
Landau expansion of the free energy of the NTB phase about the
reference NU phase in the primary order parameter p1:

29

Δ = + + +− ! ! !f a b cp p p ...N TB
1
2 1

2 1
4 1

4 1
6 1

6 . A direct inspection

of this expansion shows that the NU−NTB transition can be first
order (a = 0, b < 0, c > 0), second order (a = 0, b > 0, c > 0), or
tricritical (a = 0, b = 0, c > 0). Our analysis in the next section
shows that for the case of CB7CB, the predicted NU−NTB
transition is weakly first order. The tricritical conditions for I−
NTB and NU−NTB phase transitions will be studied in detail
elsewhere.

Bifurcations to Globally Polar Phases. In a similar way,
we can derive the bifurcation conditions for phase transitions
from I, NU, and NTB to globally polar structures listed in Table 1.
It reads

λ= − + =a t x a p2 2
2
3

4 0P 0 d 1
2

(37)

where x0 = p1 = 0 for I−NU,p bifurcation, p1 = 0 for NU−NU,p
bifurcation, and both x0 and p1 are nonzero when bifurcation
takes place from NTB to NTB,p. Now, the parameter a is the
lead ing coeffic ient o f Landau expans ion Δ f p =

+ + +! ! !av bv cv ...1
2 0

2 1
4 0

4 1
6 0

6 in v0−the primary order param-

eter for phase transitions to polar structures. Given the form of
the expansion for f P, eq 27, the tricritical point can only be found
for the NTB−NTB,p phase transition.

■ RESULTS AND DISCUSSION
Estimates of Model Parameters from Experimental

Data for CB7CB. Before we explore relative stability of the
nematic phases given in Table 1, we estimate some of the
material parameters entering the expansion 10 from exper-
imental data in the uniaxial nematic phase. This will allow us to
study properties of NTB with only a few adjustable parameters.
Indeed, nearly all of the parameters of the purely nematic parts
the bulk ̃fQb and the elastic ̃fQel can be correlated with the

existing data in the uniaxial nematic phase. The NU phase usually
appears stable at higher temperatures and NU−NTB phase
transition is observed as temperature is lowered.
The very first compound shown to exhibit the stable nematic

and twist−bend nematic phase was the liquid crystal dimer
1″,7″-bis(4-cyanobiphenyl-4′-yl)heptane, abbreviated as
CB7CB.5−7 This compound is constituted of two 4-
cyanobiphenyls (CB) linked by an alkylene spacer (C7H14).
Currently, it is one of the best-studied examples with stable NTB.
In particular, Babakhanova et al.20 have carried out a series of
experiments for this mesogen in the uniaxial nematic phase.
They determined the temperature variation of the nematic order
parameter ̃S (see eq 1), the temperature variation of the Frank
elastic constants Kii (i = 1, 2, 3), the nematic−isotropic
transition temperature TNI, the nematic twist−bend−nematic
transition temperature TNTBN. An interesting fact is that the
twist−bend nematic phase formed by CB7CB can be super-
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cooled to about 304.15 K5 and then, there is a glass transition at
approximately 277.15 K.42 We use the data presented in Table
S1 to estimate some of the parameters of extended LdeG theory.
Bulk Part. Under the assumption that Q̃ is uniaxial and

positionally independent (eq 1 with n̂(r)̃ = const.), the order
parameter ̃S can be determined from the minimum of the free-
energy density ̃fQb, eq 11, which becomes reduced to that of the

uniaxial nematic phase

̃ = Δ + Δ ̃ − ̃ + ̃ + ̃

+ ̃

f a t t S bS cS dS

f S

2
3

( )
2
9

4
9

4
27

4
81

Qb 0Q NI
2 3 4 5

6

(38)

Now, from the necessary condition for minimum, ∂ ̃fQb/∂
̃S =

0, solved for T( ̃S), we determine the ratios b/a0 = b̃, c/a0 = ̃c ,
d/a0 = ̃d , and f/a0 = ̃f by fitting { ̃S ,T( ̃S)} to the experimental
data of Babakhanova et al.20 Independently, the scaling factor a0
can be estimated from the latent heat per mole ΔHNI =

∂ ̃ ∂ → −T f T( / )T TNI Qb NI
for the nematic−isotropic phase transi-

tion.43 It reads
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=
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where ̃SNI is the nematic order parameter at the uniaxial
nematic−isotropic phase transition. For overall consistency, a0
has beenmultiplied onward by ρC = ρ/Mw≈ 2.22× 103 mol/m3,
which is the ratio of the mass density (ρ ≈ 103 kg/m3) to the
relative molecular weight of CB7CB (Mw ≈ 0.45 kg/mol),
yielding the value 6.88 × 104 J m−3 K−1. Thanks to this
operation, it was possible to express all expansion coefficients in
units J m−3. Figure 3 depicts results of fitting to experimental
data, whereas numerical values of the parameters are gathered in
Table S2. Please observe that the expansion parameter e couples
to a purely biaxial part and therefore, it cannot be estimated from
the data in NU.
Flexopolarization Renormalized Elasticity of Uniaxial

Nematics. It is important to realize that although (flexo)-
polarization terms 20, 21 vanish in the uniaxial nematic phase,
any local deformation of the alignment tensor induces
deformation of P̃ because of the flexopolarization coupling εP
≠ 0. Such deformations effectively renormalize elastic constants
Lm
(n) in ordinary nematic phases. The effect cannot be neglected if

we intend to estimate Lm
(n) from experimental data. A

mathematical procedure of taking into account such deforma-
tions in the NU phase is to minimize the free energy, eq 10, over
Fourier modes of the polarization field for given fixed Fourier
modes of the alignment tensor. Assuming that deformation Q̃(r)̃
is small and slowly varying, we obtain with this procedure the Q̃-
induced deformation of P̃(r)̃ expressed in terms of Fourier
modes, which when transformed back to the real space take the
form of a series inQ αμ andQ αμ,μ and in higher order derivatives
of Q αμ. The relevant terms are

ε ε

ε
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(40)

Substituting eq 40 back to ̃fP and ̃fQP, we obtain effective

elastic contributions expressed in terms of only Q̃ αβ and Q̃ γμ,μ.
When added to ̃fQel, they give an effective elastic free energy of

uniaxial and biaxial nematics with Lm
(n) being replaced by Lm,eff

(n) ,
where relevant Lm

(n)’s are
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(41)

An important physical distinction between the bare constant
Lm
(n) and the renormalized constant Lm,eff

(n) is of the same sort as the
one between renormalized and bare Frank elastic constants, as
discussed by Jaḱli, Lavrentovich, and Selinger:3 Lm

(n) gives the
energy cost of Q̃ αβ,γ deformations if we constrain P̃α = 0 during
the deformation, while Lm,eff

(n) relaxes to its optimum value during
the deformation. Assuming that major contribution to
flexopolarization is of the entropic, excluded volume type, any
realistic experiment to measure elastic constants should not put
constraints on the polar field P̃ but rather allows it to relax. In
this case, which is analysed here, Lm,eff

(n) is the relevant
contribution to the elastic constants in eq 14.

Elastic Part. In the hydrodynamic limit where spatial
dependence of ̃S is disregarded and Q̃ is given by 1, the elastic
free energy ̃fQel turns into the OF free-energy density of the

Figure 3. Experimental data from ref 20 representing the temperature
dependence of ̃S in the uniaxial nematic phase of CB7CB. The green
line illustrates the effect of fitting predictions of the theory 38 to the
data. T* represents the maximal supercooling temperature of the
isotropic phase. Our fit is carried out by taking as an ansatz the
experimentally known value of TNI and T*. Then, ̃SNI for CB7CB is
estimated from our fitted function. If we compromise the agreement of
TNI and T* with experimental data, a better fit can be obtained for ̃S
close to the transition temperature without affecting the one in the
vicinity of NU−NTB.
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director field n(r)̃, eq 2, withK11,K22, andK33 being polynomials
in ̃S28

= ̃ + ̃ + ̃ =K K S K S K S i( 1, 2, 3)ii ii ii ii
(2) 2 (3) 3 (4) 4

(42)

The coefficients, Kii
(n), are functions of Lj

(n),28,30 fulfilling the
splay−bend degeneracy relation in the second order:K11

(2) = K33
(2).

For completeness, they are given in the Supporting Information.
As it turns out, Kii

(n) with n = 2, 3, 4 along with flexopolarization
renormalization 41 is sufficient to obtain a good fit of eq 42 to
experimentally observedKii for CB7CB.

20 Importantly, they also
provide an estimate for the (flexo)polar couplings εP andΛQP. In
findingKii

(n), we use the ̃S(T) fit obtained from the analysis of the
bulk free energy, which is a prerequisite to have a consistent
theory of the uniaxial nematic phase for this compound. Results
of fitting are gathered in Table S2. Finally, as the number of
relevant couplings Lα

(n) (n = 3, 4), eq 14, equals that of Kii
(n), we

can correlate Lα
(n) with Kii

(n) using the results of the Supporting
Information and of ref 28. It yields
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Results of fitting of Lα
(n), eq 14, obeying stability ansatz 15 to

experimental data for CB7CB are given in Table S2. The quality
of fit is displayed in Figure 4.
Predictions for the Nematic Twist−Bend Phase of

CB7CB-like Compounds. Within this section, we explore the
relative stability of the UDS, listed in Table 1, for the model 24
with parameters (estimated in previous sections), which are
gathered in Table S3. We limit ourselves to the temperature
interval where the NTB phase appears stable in the experiment
(Table S4).
The temperatures tP and tQ are connected with the absolute

temperature T of the system studied (see eqs 12, 20, and 22).
Because a0P > 0, a0Q > 0, T* > TP, and T > TP, any straight line in
the {tQ, tP} plane with a positive slope and negative tQ-intercept
represents a permissible physical system with no polar order for
Q̃ = 0. Thus, we present the phase diagrams in the general {tQ,
tP} plane for a broader view. In our case, the experimentally
related line has the form:

= +t t4.13 8.29P Q (44)

Results of our in-depth analysis profoundly reduced the
number of adjustable parameters for CB7CB-like compounds to
solely four (λ, eP, ad, and eb). From considerations related to the
elastic constants, Table S2, it turns out that ΛQP (ipso facto λ),
responsible for globally polar structures, is negligible, that is,

λ| | ≈ −e/ 10P
13. Thus, we set λ = 0. Onward, we take eP = 7.1

and ad = 0.75 as the best values to reproduce the temperature
dependance of k. For the bulk biaxial parameter eb, we take two
values: eb = 0 and eb = 1/6. If we recall eq 25, there is a term eb(I2

3

− 6I3
2) + I3

2. If we set eb = 0, it reduces to I3
2; on the other hand,

when we set eb = 1/6, we have only I2
3/6. In the following

discussion, the first scenario (eb = 0) will be referred to as theory
(I3

2) and second one as theory (I2
3). The (I3

2) theory will
enhance phase biaxiality because of its tendency to lower the
equilibrium value of thew parameter, eq 9, while the (I2

3) theory
is promoting the w = ±1 states through cubic and fifth-order
terms in 25.32 In this latter case, the biaxiality of NTB can only be
induced by the elastic terms.
Figure 5a−f depict phase diagrams combined with density

maps of k, θ, w, r1, r2, and p1, which are outcomes of theory (I3
2).

In the analyzed case, being consistent with the experiment,
stable, apart from isotropic, is the uniaxial nematic phase and the
twist−bend nematic phase. The dashed green curve denotes
numerically determined phase transitions and the red
continuous curve marks the results from the bifurcation analysis.
Vertical, dashed white lines designate the temperature span of
NU stability (experimental) mapped on tQ (see Table S4). The
purple straight line described by eq 44 represents the phase
transition sequence I ↔ NU ↔ NTB based on the CB7CB data
from ref 20. From points lying on this line, we have attained
information about the behavior of the pitch (p), tilt angle (θ),
and nematic order parameter ( ̃S) in NTB, alongside the insight
into the NTB’s biaxiality parameter (w) and the remaining order
parameters (r1, r2, and p1) (see Figure 6a−f). With regard to the
w parameter, in the literature, there are no available results
concerning the biaxiality of NTB; thus, it is hard to compare.
Nevertheless, our model permits to estimate the span and
magnitude of the effect on experimentally measurable
parameters.
We set together results of our model with available

experimental data concerning the pitch p (Figure 6a7,44), tilt
angle θ (Figure 6b45−50), and nematic order parameter ̃S (Figure

Figure 4. Temperature dependence of elastic constants acquired from
ref 20. Continuous lines depict the adopted approach for elastic
constants within the model. Note that the model cannot explain a slight
increase in K33 in the vicinity of the NU−NTB phase transition.
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6c20,49−51). At the transition temperature from NU to NTB, the
pitch length is ca. 54 nm and with decreasing temperature, it
saturates at the level of ca. 8 nm (Figure 6a). As one can see, it
goes fairly well with the experimental data. Within the literature,
the methodology regarding the pitch measurements for CB7CB
is consistent, that is, all indicate that the pitch value reaches
plateau at ca. 8 nm,6,7,44 in contradiction to measurements of θ
and ̃S .
Such span of experimental data for θ, Figure 6b, originates

from the adopted method of determination and sample
treatment. In refs,45,46,48 birefringence measurements were
employed; however, the choice of the region in which they
were taken varied across the aforementioned papers (see
discussion in ref 46). In refs 49 and 50, the data regarding the
conical tilt angle were extracted from X-ray methods, wherein in
ref 49, it was small/wide angle X-ray scattering (SAXS/WAXS)
and in ref 50 X-ray diffraction (XRD). In turn, the conical tilt
angle from ref 47 was determined i.a. from 2H nuclear magnetic
resonance (NMR) quadrupolar splittings of CB7CB-d4. Similar
to the tilt angle, discrepancies between the data related to the
order parameter, Figure 6c, arise from themethod of acquisition.
In ref 20, it was extracted from diamagnetic anisotropy
measurements, in ref 49, from SAXS, in ref 50, from XRD, and

in refs 50 and 51, from polarized Raman spectroscopy (PRS). As
one can see, data from ref 20 stand out from the rest of the data
(Figure 6c), although it was the only source that provided
simultaneously the data for the temperature dependence of the
orientational order parameter and elastic constants.
One can see that results of our model are generally in a very

good agreement with experimental results, perhaps except an
immediate vicinity of the NU−NTB phase transition where
fluctuations, not included in the present analysis, may play a role.
Predictions concerning the effect of intrinsic, molecular
biaxiality on NTB seem interesting. Although the pitch, ̃S , and
p1 are practically insensitive to w, the remaining observables are
affected. In particular, for the tilt angle, the green continuous line
associated with eb = 0 (I3

2 model) fits well in between the data
from ref 45 (blue circles) and ref 48 (yellow squares), whereas
the red dashed line, associated with the weakly biaxial case (I2

3

model), markedly departs from the abovementioned exper-
imental data. Based on the results of Babakhankova et al.,20 we
can conclude that biaxiality of NTB, initially small at the NU−NTB
phase transition, considerably increases on departing from the
transition temperature (green line in Figure 6d). Figure 6e
illustrates the behavior of the order parameters r1, r2, and p1 in
the NTB phase of CB7CB, where the ratio σ = r1/r2 can be

Figure 5. Phase diagram combined with density map of the wave vector k (a), tilt angle θ (b), biaxiality parameterw (c), andmode’s amplitudes: r1 (d),
r2 (e) and p1 (f) within the theory (I3

2). The red continuous curve marks the bifurcation between N↔ NTB and I↔ NTB, whereas the dashed green
curve outlines the numerical results. The magenta line (described by eq 44) reflects the phase sequence associated directly with the experimental data
for CB7CB. Vertical, dashed white lines designate the temperature span of NU stability (experimental) mapped on tQ (see Table S4).
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correlated with data acquirable from resonant soft X-ray
scattering (RSoXS).44,53,54 In order to make this correlation,
we translated our formalism into the one presented in ref 52.
Thanks to that, we could tie the results for σ with experimentally
measurable scattering intensities through the following formula

σ
σ θ θ

Ξ = − +
+

1
2

3
2 cos(2 ) 4 sin(2 ) (45)

where Ξ = f1/f 2 and θ is the conical tilt angle. The value of the
parameter Ξ determines the intensity of the 2q0 peak (half-pitch
band) with respect to the intensity of the q0 peak (full-pitch
band) in the NTB phase, where q0 = 2π/p is the magnitude of the
wave vector of the heliconical deformation with the pitch p. As it
was stated in ref 52, if Ξ≥ 1, then the intensity of the 2q0 peak is
approximately 2 orders of magnitude lower than the intensity of
the q0 peak and further strongly decreases with increasing Ξ. On
the other hand, if Ξ < 1, then the intensity of the 2q0 peak
escalates rapidly. As one can see in Figure 6f, which illustrates

the temperature dependence ofΞ for both theories I3
2 and I2

3, all
the data obey the relation Ξ ≥ 1, indicating a significant
weakness of the 2q0 peak. Interestingly, although for I2

3 theory,
the relative magnitude of the intensities should roughly differ by
2 orders of magnitude irrespective of the temperature, the I3

2

model predicts further strong reduction in the relative intensity
with temperature. To the best of our knowledge, the 2q0 signal
has not been detected so far in any of the examined NTB-forming
compounds.44,53−55

■ CONCLUSIONS
The understanding of self-organization in the twist−bend
nematic (NTB) phase is at the forefront of soft matter research
worldwide. This new nematic phase develops structural chirality
in the isotropic and uniaxial nematic phases, despite the fact that
the molecules forming the structure are chemically achiral.
Currently existing experimental data are in favor of the theory
that the NU−NTB phase transition is driven by the flexopolariza-

Figure 6. Comparison between experimental data (hollow points) and theoretical predictions (continuous green and dashed red line) for CB7CB’s
NTB. (a) Temperature dependence of the NTB’s pitch p, (b) tilt angle θ, and (c) order parameter ̃S . (d) Plot depicts the behavior of the biaxiality
parameter w and the plot of (e) mode’s amplitudes r1, r2, and p1 as a function of temperature in the range of NTB stability. (f) Plot illustrates the
temperature behavior of the relevant factor, parameterizing the relative magnitudes of intensities of two leading harmonics of the dispersion tensor that
contribute to the resonant soft X-ray scattering (RSoXS).52 All the data are drawn with respect to the multiplied by factor 100 reduced temperatureΔt,
whereas key temperatures, corresponding to given Δt, are designated above each plot in absolute temperature T.
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tion mechanism. According to this theory, deformations of the
director induce a local polar order which, in turn, renormalizes
the bend elastic constant to a very small value relative to other
elastic constants, eventually leading to the twist−bend
instability. It is dictated by the term coupled with [L2

(2)] (eq
14), which changes sign from positive to negative at the
bifurcation temperature between the nematic and twist−bend
nematic.
However, a fundamental description of orientational proper-

ties of nematics based on minimal coupling LdeG theory of
flexopolarization suggests that softening of K33 does not need to
be a universal mechanism. Even when both K11 and K33 are
simultaneously reduced because of splay−bend degeneracy
(inherent to the minimal coupling LdeG expansion), the NTB
phase can still become absolutely stable among all possible one-
dimensional periodic structures. Because this case has not been
observed experimentally to date, an important question that
arises is whether the flexopolarization mechanism is indeed
sufficient to explain the experimental observations at the level of
“first principles” LdeG theory of the orientational order. To
address this issue, we proposed generalization of mesoscopic
LdeG theory of nematics, where higher order elastic terms of the
alignment tensor are taken systematically into account, in
addition to the lowest order flexopolarization coupling.
We demonstrated that the experimental observations

involving the nematic twist−bend phase and the related uniaxial
nematic phase can be explained if we generalize minimal
coupling theory to the level where the properties of the high-
temperature uniaxial nematic phase are properly accounted for.
Especially, the constructed generalized free-energy density is in
line with experimentally observed temperature variation of the
orientational order parameter and the Frank elastic constants,
except slight pretransitional increase in K22 and K33 on
approaching the N−NTB phase transition. The origin of this
pretransitional elastic response is still not fully understood.
Babakhanova et al.20 attributed increase in the elastic constants
to the formation of clusters with periodic twist−bend
modulation of the director, in analogy to similar pretransitional
increase in K22 and K33 near the nematic-to-smectic A phase
transition.56−58 Shi et al.59 in their Monte Carlo simulations of
an augmented Lebwohl−Lasher lattice model predicted the
temperature behavior of K33 to be in qualitative accordance with
experimental results. Comparison of Figures 2f and 7 in ref 59
suggests that a probable cause of this pretransitional anomaly of
elasticity is flexopolarization-induced short-range polar ordering
in the uniaxial nematic phase. In the present model, none of the
abovementioned scenarios are included. It would require a
phenomenological theory with fluctuating Q̃ and P̃ fields, which
is far beyond our ground-state analysis.
Our generalized theory of uniformly distorted nematics

extends the elastic part of LdeG by additional two terms of third
order. The added elastic terms are the only independent ones for
the UDSs and various UDSs can become minimizers of the free
energy, including the nematic twist−bend. This conclusion
follows directly from the bifurcation analysis and the observation
that the remaining four independent elastic terms of third order,
not included in the theory, can always be written in such a way
that they vanish for UDSs. It is worth noticing that only one
more term is generally needed to extend the studies of the UDS
class to all possible one-dimensional distortions of the alignment
tensor. This sort of hierarchy between various elastic invariants
indicates that the constructed theory can also serve as a starting
point in seeking different mechanisms of softening of the

nematic elastic constants. This can potentially lead to the
discovery of new classes of modulated nematic structures.
The numerical analysis of the model quite well reproduces

measured quantities for the NU and NTB phases of the CB7CB-
like mesogens and gives numerical estimates for its constitutive
parameters including otherwise difficult to access (flexo)
polarization couplings. Overall, the NTB phase is predicted to
be biaxial with theoretical support that major contribution to the
phase biaxiality can originate from the bulk term(s) in the free
energy. Although the phase transitions to NTB are weakly first
order for CB7CB, the theory permits the transitions to NTB be
second order with tricritical I−NTB and NU−NTB points.
Finally, very recent theories of Čopic ̌ and Mertelj60 and

Anzivion et al.,61 also based on Q-tensor LdeG expansion,
address the issue of relative stability of uniaxial, twist−bend, and
splay−bend (NSB) nematic phases for thermotropic bent-core-
like materials60 and for lyotropic colloidal suspensions of bent
rods.61 Their theory uses minimal coupling expansion12,24

extended to include one of the cubic invariants (eq S.2) that
breaks splay−bend degeneracy. Because their thermodynamic
potentials are unbounded from below for the general Q̃-tensor,
they can only study uniaxial tensors, eq 1, of ̃S ≥ 0 to model
twist−bend and splay−bend nematics, in contrast to our theory
which is free of such limitations. They predict a sequence of
phase transitions between N, NTB, and NSB with the modulated
nematic order being observed upon increasing ̃S . Although these
predictions are generally consistent with our bifurcation analysis
of the N−NTB phase transition, eq 36, a more complex behavior
can also be envisaged for nonzero λ, κ3, and κ4, if they all are
allowed to vary independently.
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(58) Blinc, R.; Musěvic,̌ I. In Handbook of Liquid Crystals Set; Demus,
D., Goodby, J., Gray, G. W., Spiess, H. W., Vill, V., Eds.; John Wiley &
Sons, Ltd, 1998; Chapter 2.6, pp 170−197.
(59) Shi, J.; Sidky, H.; Whitmer, J. K. Novel elastic response in twist-
bend nematic models. Soft Matter 2019, 15, 8219−8226.
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I. ELASTIC FREE ENERGY OF NEMATIC LIQUID CRYSTALS

The expansion of the free energy in powers of Q̃αβ and its derivatives up to the order Q̃ Q̃ ∂Q̃ ∂Q̃

contains twenty-two terms. They are [1 ]:

∂Q̃ ∂Q̃: [
L
(2)
1

]
= Q̃αβ, γ Q̃αβ, γ ,[

L
(2)
2

]
= Q̃αβ, β Q̃αγ, γ,[

L
(2)
3

]
= Q̃αβ, γ Q̃αγ, β.

(S.1)

Q̃ ∂Q̃ ∂Q̃: [
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(3)
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]
= Q̃αβ Q̃αβ, µ Q̃µν, ν ,
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(3)
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[
L
(3)
4

]
= Q̃αβ Q̃αµ, ν Q̃βµ, ν ,[
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(3)
5
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= Q̃αβ Q̃αµ, ν Q̃βν, µ,

[
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]
= Q̃αβ Q̃αµ, ν Q̃µν, β.
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In defining stability conditions we will also use the
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II. EFFECTIVE ELASTIC CONSTANTS

The effective elastic constants K
(n)
ii for i = 1, 2, 3 and n = 2, 3, 4 expressed in terms of

[
L
(n)
m

]
,

Equation (S.1 -S.4 ). Included in decomposition is also
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III. A COMPLETE EXPRESSION FOR FREE ENERGY DENSITY OF UNIFORMLY

DEFORMED STRUCTURES (UDSs)
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IV. EXPERIMENTAL DATA AND NUMERICAL RESULTS
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Figure S1. Exemplary results for fitting S̃ predicted by fourth order bulk free energy of LdeG

expansion to experimental data. Please observe a large discrepancy between predicted and

measured TNI − T ∗ difference. As can be seen the smallest value of TNI − T ∗ obtained from

fitting the data for CB7CB is TNI − T ∗ & 7 K, while experimentally TNI − T ∗ < 1 K.
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Table S1. Basic experimental data for CB7CB used for estimating some of the parameters of the

extended LdeG theory, along with other crucial data resulting from the aforementioned approach.

Nematic

Description Parameter Value Unit Source

Temperature of nematic-isotropic

phase transition
TNI 387.15 K Ref. [2 ]

Supercooling temperature

of the isotropic phase
T ∗ 386 K acquired from S̃(T )

Enthalpy of nematic-isotropic phase transition ∆HNI 0.72 kJ/mol Ref. [3 ]

Order parameter at TNI S̃NI 0.3 -
acquired from

S̃(T = TNI)

Twist-bend nematic

Description Parameter Value Unit Source

Temperature of twist-bend nematic

to nematic phase transition
TNTBN 374.15 K Ref. [2 ]

Enthalpy of twist-bend nematic

to nematic phase transition
∆HNTBN 0.83 kJ/mol Ref. [3 ]
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Table S2. Values of fitted coefficients of the bulk (38) and elastic constants (42) expansions,

along with ones resulting from the flexopolarization renormalization. Additionally, according to

(14) and (43) K
(n)
ii elastic constants are provided.

Coefficient Value
[
× 107 J/m3

]
Coefficient Value [pN] Coefficient Value [pN]

a0Q 2.66 K
(2)
11 = K

(2)
33 9.85 L

(2)
1 0.93

b 0.27 K
(2)
22 4.23 L

(2)
2 −0.0045

c 0.60 K
(3)
11 11.08 L

(3)
2 −11.16

d -3.80 K
(3)
22 0.60 L

(3)
3 2.27

f 9.64 K
(3)
33 −15.80 L

(3)
4 0.90

K
(4)
11 9.93 L

(4)
6 6.29

K
(4)
22 1.77 L

(4)
7 1.59

K
(4)
33 13.45 L

(4)
14 11.56

ε2P
4aP

0.08

ΛQPε
2
P

4a2
P

0.00013

TP = 362 K
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Table S3. Dimensionless parameters related to bulk part, elastic constants and bifurcation

equations. Below are provided converters for ∆t↔ tQ, r̃↔ r and k̃↔ k.

Parameter Value Parameter Value Parameter Value

cb 0.67 ρ2,2 −0.0048 l2 −1.58

db -1.29 ρ3,2 −3.64 l3 0.59

∆tNI 0.0029 ρ3,3 0.74 l4 0.93

ρ3,4 0.29 κ1 1.13

ρ4,6 0.62 κ2 5.38

ρ4,7 0.15 κ3 −7.73

ρ4,14 1.14 κ4 6.0054

tQ = 32.36(∆t+ ∆tNI) r̃ [nm] = 1.06 r k̃ [nm−1] = 0.94k

Table S4. Temperature ranges in ∆t and tQ units for stable liquid crystalline structures:

nematic and twist-bend nematic from experiment [2 ].

Range of temperature parameter Description

−0.03 < ∆t ≤ 0 nematic

∆t ≤ −0.03 twist-bend nematic

−0.99 < tQ ≤ 0.09 nematic

tQ ≤ −0.99 twist-bend nematic
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