
Abstract. Bacteria and cancer cells frequently increase
their resistance to chemotherapeutics as a consequence of
therapy. Whenever studied, refractory response to
chemotherapy is due to the over-expression of efflux pumps
that render the bacterium or cancer cell resistant not only to
the agent used for therapy, but to many, if not all other
agents as well. Control over the efflux pump that bestows
multidrug resistance has been a goal of research during the
past decade. As a consequence of this search for inhibitors of
efflux pumps, it has been noted that many agents which affect
the efflux pump system of bacteria also have similar activity
against efflux pumps of drug-resistant cancer cells. This
review aims to identify such agents. 

Phenothiazines: Inhibitors of Bacterial 
Efflux Pumps

The phenothiazines are heterocyclic compounds whose origins
lie in the middle of the 19th century when Bernthsen in 1883
reacted diphenylamine with sulfur (1). The phenothiazine dye
methylene blue was developed soon thereafter and became a
focus of the studies of the German physician Paul Ehrlich for

almost 20 years, during which time he was able to show that
the dye had antibacterial and antimalarial properties, and
malaria could be cured with administration of methylene blue
(2). However, because the patient who received the dye was
noted to become calm, interest in the dye for possible therapy
of psychosis took preference over that of its antimicrobial
properties, and after almost 50 years of study, a colourless
phenothiazine with neuroleptic properties was synthesised by
Rhone Polenc in the 1950s and introduced in the USA as
chlorpromazine (CPZ) and elsewhere as largactil (3). The wide
use of CPZ worldwide resulted in a large number of
observations indicating that the compound had strong anti-
tuberculosis activity (1, 4, 5) but because at that time,
isoniazid and rifampicin were very effective for therapy of
tuberculosis, little interest in CPZ as an anti-tuberculosis drug
developed. Nevertheless, some interest in CPZ as an anti-
tubercular agent remained and a number of in vitro studies
showed that CPZ indeed had anti-tubercular activity (6, 7).
However, the in vitro activities took place at concentrations of
the compound which exceeded by far any that could be
clinically reached (8). Nevertheless, the demonstration by
Crowle et al. that CPZ could promote the killing of
intracellular Mycobacterium tuberculosis (Mtb) with
concentrations in the medium that correspond to those
clinically achievable (9), prompted Amaral et al. to study
another phenothiazine, thioridazine, which is as effective as
CPZ for therapy of psychosis but produces fewer serious
negative side-effects. The in vitro activity of thioridazine was
shown to be as effective as that of CPZ against all antibiotic-
resistant strains of Mtb (10), although, as was the case for
CPZ, the in vitro activities were clinically irrelevant.
Nevertheless, spurred by the work of Crowle et al. (9),
thioridazine was shown by Amaral’s group to promote the
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killing of multidrug-resistant strains of Mtb that had been
phagocytosed by non-killing human macrophages at
concentrations that were below those that are used for chronic
therapy of psychosis (11). Soon thereafter this same group
cured an Mtb infected mouse of an antibiotic-susceptible
infection of Mtb (12) and later cured a mouse infected with a
multidrug-resistant strain of Mtb (MDR Mtb) (13). Using
protocols developed by Amaral et al. (14, 15), Abbate and his
group successfully treated patients infected with extensively
drug-resistant strains of Mtb (XDR Mtb) with combinations of
thioridazine and three antibiotics to which the Mtb strains
were resistant (16). Given the mechanisms by which
thioridazine promotes the killing of intracellular antibiotic-
susceptible, MDR and XDR Mtb, which will be discussed in
sections to follow, it is reasonably expected that thioridazine
will cure patients infected with strains of XDR Mtb (17, 18).

Mechanism of Action by which TZ Promotes 
the Killing of Intracellular Mtb Regardless 
of its Antibiotic Resistance 

Tuberculosis is mainly an intracellular infection caused by
the steadfast human pathogen Mycobacterium tuberculosis.
The bacterium is not killed when ingested by the pulmonary
macrophage soon after it finds its way via inhaled
microdroplets of Mtb-containing sputum expelled someone
with active tuberculosis. Consequently, the individual
remains infected for many decades, and only about 5 to 10%
of such infectious progress to active disease, the infectious
stage of the infection. 

Human pulmonary macrophage does not kill the ingested
organism due to the efflux of K+ and Ca2+ from the
phagolysosome containing the trapped organism. With efflux
of K+ and Ca2+, the required fall in phagolysosomal pH does
not take place and, consequently, the activation of hydrolases
that would normally degrade and kill the bacterium does not
take place (19, 20). Phenothiazines are well known to inhibit
efflux pumps of eukaryotes (21, 22). They are also inhibitors
of calcium binding to proteins and enzymes (23). Verapamil,
an inhibitor of calcium binding, also inhibits efflux activities
of mammalian cells mediated by the transporter ABCB1 (24)
as well as K+ transport (25). Ouabain, also an inhibitor of
K+ transport, and verapamil both promote the killing of
intracellular MDR Mtb (26). Hence, the mechanism by
which thioridazine promotes killing of intracellular Mtb by
non-killing macrophages has been postulated to be due to the
inhibition of K+ efflux from the phagolysosome containing
the ingested bacterium (26-28). In addition, another
mechanism is also affected by thioridazine, namely,
thioridazine is an inhibitor of efflux pumps of bacteria (29-
32) as well as those of mycobacteria (5, 33-36). Because
MDR phenotypes of bacteria are mediated by over-expressed
efflux pumps (5, 29-36), thioridazine probably inhibits the

efflux pumps of MDR, XDR and TDR Mtb strains, thereby
rendering these strains susceptible to antibiotics to which
they were initially resistant (17, 18). 

Inhibition of over-expressed efflux pumps of bacteria that
bestow the organism with an MDR phenotype when inhibited
by a phenothiazine become susceptible to the antibiotics to
which they were initially resistant (37-46). With respect to
Salmonella, the response to a phenothiazine is quite different
because of its efflux pump. During the first 6 to 8 h of
exposure to a phenothiazine, whereas initially susceptible to
the phenothiazine, after this period, resistance builds to the
point that the organism is now resistant to concentrations as
high 125 mg/l (47). During the initial 6 to 8 h the
phenothiazine induces expression of the genes that regulate
and code for the main efflux pump of the organism (48). The
synthesis of the main efflux pump AcrAB-Tol resulting from
exposure to the phenothiazine actually promotes resistance to
the phenothiazine. Therefore, one has to be careful making a
generalization that exposure to a phenothiazine results in the
inhibition of an efflux pump system.

The efflux pumps of bacteria perform functions not
associated with the extrusion of an antibiotic that has
penetrated the cell envelope directly, as may be the case for
lipid-like compounds (49), or via porins (50). Efflux pumps
provide the conduits for elimination of toxins produced from
metabolism (51, 52), enzymes that increase the virulence of
the bacterium (53), quorum sensing signals (54), biofilm (55-
57), and probably many other products of secretion (58).
Consequently, because these efflux pump functions render
the bacterial organism more virulent, the inhibition of the
efflux pump by a phenothiazine would be expected to
reduce, if not obviate the virulence of the organism. Coupled
to the phenothiazine-promoted reversal of resistance of the
organism to antibiotics, the use of phenothiazines as adjuncts
for therapy of a problematic bacterial infection, such as that
produced by MDR bacteria, make these compounds
significant for future use as anti-infectious agents. 

Phenothiazines: Inhibitors of Efflux 
Pumps of Cancer Cells

The first demonstrations that phenothiazines could inhibit
cancer growth were reported during the early 1950s (59, 60).
Since those early years, many reports have been published
showing that indeed, phenothiazines can inhibit the growth
of some types of cancers (61-69). Among the most studied
phenothiazines are benzo-phenothiazines (64, 68-78),
chlorpromazine and its derivatives (22, 79-89), methylene
blue (90-95) and toluene blue (96). Methylene blue in
combination with light is now receiving increasing attention
for therapy of tumors (97, 98).

All of these phenothiazine anticancer compounds have
activity against bacteria (99-107) and their mechanism of
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action as anticancer agents is different for many cancer
tissues. Nevertheless, when studied, these phenothiazine
anticancer agents have activity against the ABC efflux pump
ABCB1 of cancer cells (21, 22, 108-120), thereby rendering
these cells susceptible to anticancer drugs to which they were
initially resistant (108, 112, 114, 116). 

ABCB1 is a member of the ATP binding cassette genetic
family of ABC transporters and is present in many of the
cells of the human body and the gene that codes for it is the
ABCB1 gene. ABC transporters are proteins that are
intimately associated with the plasma membrane of the cell.
ABC transporters contain a pair of ATP-binding domains,
also known as nucleotide-binding folds (NBF), a pair of
substrate binding sites and two sets of transmembrane (TM)
domains, typically containing six membrane-spanning α-
helices. The ATP and the substrate binding sites are located
in the cytoplasmic side of the plasma membrane. The NBF
sites bind ATP when the substrate site binds the agent that is
to be extruded. This is followed by the hydrolysis of the ATP,
and the energy released promotes the conformational change
needed in the transporter for translocation of the agent to the
environmental side of the plasma membrane (120). Certain
cancer cells over-express the ABCB1 transporter when the
patient is under chemotherapy, and when over-expression of
ABCB1 takes place, the cancer becomes resistant not only
to the agent that promoted the over-expression of ABCB1,
but also to other anticancer drugs (108). Consequently, for
the past decade, efforts to obtain agents that will selectively
inhibit ABCB1 activity have intensified. 

Of the phenothiazines that affect the activity of ABCB1,
thioridazine has been shown to be very effective (108).
Usually, the use of a flow cytometer is employed for the
evaluation of an agent against the ABCB1 transporter (121,
122). However, a more effective way to demonstrate the
activity of an agent on the ABCB1 transporter of a cancer
cell has been developed (123, 124). This method evaluates
the activity of ABCB1 on a real time basis and under any
physiological condition required for a given assay. An
example of the assay is provided in Figure 1 for the
evaluation of thioridazine for inhibitory activity against
ABCB1 of the mouse lymphoma cells transfected with the
multidrug resistant gene ABCB1. 

The method is identical to that used for the evaluation of
efflux pumps of bacteria and yields similar real-time data
for the accumulation of ethidium bromide (41). Forty
derivatives of thioridazine that had been shown to have
activity against efflux pumps of bacteria (45) have been
evaluated for activity against cancer cells and an example of
these results is presented in Figure 2. Therefore, one may
conclude that phenothiazines that inhibit efflux pumps of
bacteria have similar properties towards the efflux pumps of
cancer cells. This relationship has been previously noted and
reviewed (125).

Phenothiazines, in general, are well known electron
donors, where they bind by charge transfer complex
formation to target molecules when an electron goes from
the highest filled molecular orbital to the lowest empty
orbital of the acceptor molecule on the target. If the
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Figure 1. The effect of thioridazine (TZ) concentrations on the retention
of the universal efflux pump substrate ethidium bromide. Ethidium
bromide accumulation by mouse T-lymphoma cells overexpressing the
ABCB1 transporter in the presence of verapamil (VP), thioridazine (TZ)
and reserpine (RES). Cells (2×106 cells/ml) were suspended in 100 μl of
phosphate-buffered saline solutions (pH 7.4) supplemented with 1 mg/l
of EB with and without agent at the given concentrations, then the
fluorescence was continuously monitored (108).

Figure 2. The activity of derivatives of thioridazine. Ethidium bromide
(EB) accumulation by mouse T-lymphoma cells overexpressing the
ABCB1 transporter in the presence of thioridazine (TZ), and
thioridazine derivative #1821 and thioridazine derivative #1871. Cells
(2×106 cells/ml) were suspended in 100 μl of phosphate-buffered saline
solution (pH 7.4) and supplemented with 1 mg/l of EB with and without
agent at the given concentrations, then the fluorescence was
continuously monitored.



phenothiazine acts as an electron donor at the surface of
the plasma membrane of the cell or within the lipid bilayer
of the plasma membrane, then the electron transfer on the
outside will result in depolarization of the membrane.
Because this depolarization reduces the activity of the
plasma membrane (conductivity, etc.), phenothiazines have
been referred to as membrane-stabilizing agents. However,
when the phenothazine acts as an electron donor on the
cytoplasmic side of the plasma membrane,
hyperpolarization results and membrane-linked processes
are inhibited. If the biological activity is actually due to
charge transfer complex formation, pharmacological
activity resulting from electron donation by the
phenothiazine should be expected (there are some
exceptions to this rule: CPZ-, sulfon- or, sulphoxides and
methylene blue, where the asymmetric distribution of
charge is a main cause of ineffective activity). 

The electron levels of the classic phenothiazine, CPZ,
were calculated by Karemann, Isenberg and Szent-Györgyi
many years ago (126). These workers obtained K values of
0.217 for the highest filled orbital and –1.000 for the lowest
empty orbitals. These negative values were found also in
leuco-methylene blue (similar results were found in case of
D-lysergic acid diethylamine) and reduced flavin-
mononucleotide (127).

Hydantoins: Activity Against the 
Efflux Pump of Bacteria

Hydantoins play an important role in the purine catabolic
pathway that regulates the purine pool in cells to provide
precursors for nucleic acid synthesis (128). In addition,
hydantoinases have essential metabolic function because they
hydrolyse hydantoin and 5’-monosubstituted hydantoin
derivatives, and for this reason their biotechnological
application is valuable in the production of optically pure
amino acids (129). The nucleobase cation symport-1 (NCS1)
transporters are essential components of salvage pathways
for nucleobases and related metabolites, e.g. NCS1
benzylhydantoin transporter, Mhp1, from Microbacterium
liquefaciens (130). Besides these biochemical processes,
hydantoins have pharmacological properties and are used to
treat many human diseases. A well known example of a
drug featuring a hydantoin is phenytoin (5,5-
diphenylhydantoin, Dilantin), which has been used for
decades to treat epilepsy (131, 132). Hydantoins have
different pharmacological properties depending on the
nature of substitution on the hydantoin ring, e.g. fungicidal,
herbicidal, antitumor, anti-inflammatory, anti-HIV,
hypolipidemic, antiarrhythmic and antihypertensive
activities, have also been identified (133-136). Furthermore,
it has been demonstrated that 5-arylidene-2-thiohydantoins
have in vitro antimycobacterial activity (136).

The activity of 39 hydantoin compounds on the efflux
pumps of bacteria (137, 138) has been evaluated by the real-
time ethidium bromide fluorometric method developed in our
laboratory (41). Many of these compounds had exceptional
activity against Gram-positive and Gram-negative bacteria.
However, although nothing is yet known as to their
mechanism of action, the fact that these hydantoin
compounds were shown to be non-toxic (139, 140), makes
them attractive for therapy of selected bacterial infections
whose MDR phenotype is mediated by an over-expressed
efflux pump system. 

Aromatic hydantoins, such as 5-benzylhydantoin
presented in Figure 3a, display structural similarities to the
most promising inhibitors of MDR efflux pumps of Gram-
negative bacteria from the peptidomimetics family (141).
Various chemical modifications of the aromatic hydantoin
can be considered as cyclic analogs of efflux pump inhibitors
(EPIs), PAβN and MC-04,124 (Figure 3a). Therefore, their
EPI action in Gram-negative bacteria overproducing tripartite
efflux pump AcrAB-TolC has been investigated. The first
study performed for a series of N1-aminealkyl derivatives of
phenytoin (142) allowed identification of compounds with
moderate potency to increase antibiotic effectiveness in
strains of Enterobacter aerogenes overproducing AcrAB-
TolC. Further chemical modifications of the aromatic
hydantoins gave compounds with higher EPI properties. The
compounds have been intensively examined in
microbiological studies using various MDR strains of E.
aerogenes and E. coli (142). They give new hope to finding
nontoxic potent bacterial efflux pump inhibitors useful for
improving antibiotic therapy.

The Effect of Hydantoins on the 
Efflux Pump of Cancer Cells

Hydantoins shown to be active against the efflux pump of
bacteria (137, 138, 142) have also been shown to have
activity against the efflux pumps of cancer cells (139-141).
Moreover, hydantoins have also been shown to have
anticancer properties (142-144). Perturbation of the lipid
membrane may be one of the targets in the inactivation of
ABCB1 or other transmembrane efflux pumps by some
type of intercalation of flavonoids into the phosphatidyl
bilayer (145).

Although the hydantoin moiety seems to promote activity
against cancer efflux pumps, the main role for the activity is
carried out at substituent at positions 1, 3 and 5 of the
hydantoin ring. It should be noted that the hydantoin
phenytoin used for therapy of epilepsy (146-149) has been
shown not to have activity against efflux pumps (150).
However, chemical modifications of phenytoin to give
derivatives substituted with methyl or aromatic aminealkyl
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at positions 1 or 3, significantly increased the compound’s
potency at inhibiting ABCB1 in T-lymphoma cells within
123 rhodamine accumulation assays (141). The effect of 5-
arylidenehydantoin HY84, a very active efflux pump
inhibitor on the real-time retention of the ethidium bromide
substrated by cancer cells is presented in Figure 3b. 

The Activity of SILA Compounds on 
Bacteria and Cancer

SILA 421 (1,3-dimethyl-1,3-bis(4-fluorophenyl)-1,3-bis{3-
[1(4-butylpiperazinyl)]-propyl}-disiloxan-tetrahydrochloride)
is a silicon compound (Figure 4) that was developed as a
modulator of ABCB1 (151-154). Furthermore, it exerts anti-
mycobacterial activity (155) and has the ability to cure
bacteria of plasmids (156). SILA 409 increased the apoptotic
activity of drug resistant pancreatic cancer cells and
exhibited some tumor growth delay (153). Because SILA

421 promotes killing of intracellular XDR Mtb it is currently
being evaluated for its ability to cure mice of a drug-resistant
Mtb infection. SILA 409 has little activity against
intracellular Mtb (155).

Trifluoromethyl Ketones: Activity 
Against Bacterial Efflux Pumps

Trifluoromethyl ketones (TFKs) have been studied over a
number of years and bioactive derivatives, such as those
shown in Figure 5 have a variety of antimicrobial and
antimotility effects on various bacterial species (157-161).
Some of these TFKs inhibit only the growth of various Gram-
positive bacteria, while others exhibit antimicrobial activity
against Gram-negative bacteria and yeasts. The combination
of certain derivatives of TFKs with promethazine results in a
synergistic antibacterial effect (157). Recently, twelve TFKs
(Figure 5) were shown to inhibit quorum sensing of bacteria,
as well as inhibiting the efflux pumps of E. coli (54). Their
mode of action appears to be due to their having a negative
effect on the proton motive force of bacteria (158-161). 

TFKs also have activity against cancer cells (162-166).
However, they have not been studied for any specific activity
against an over-expressed efflux pump of a cancer cell.
Nevertheless, given that inhibitors of efflux pumps of bacteria
may also have similar properties against over-expressed efflux
pumps of cancer cells, they are good candidates for evaluation
for such activity.

Amaral et al: Inhibitors of Efflux Pumps (Review)

2951

Figure 3. a: Structural similarities of 5-benzylhydantoin to potent
bacterial efflux pump inhibitor peptidomimetics PAβN and MC-04,124.
Analogous ring (hydantoin) and open (peptidomimetics) structural
fragments are shown in bold. b: The effect of the hydantoin HY84 on
the accumulation of ethidium bromide by mouse lymphoma cells
transfected with the human ABCB1 gene that codes for the ABCB1
transporter. Mouse lymphoma cells were incubated at 37˚C in saline
containing 0.6% glucose plus 1 mg/l of EB, without and with 20 mg/l of
hydantoin HY84 (144).



Conclusion

Phenothiazines, hydantoins and TFK compounds that inhibit
the efflux pump of bacteria have also been shown to inhibit
the efflux of cancer cells which when over-expressed
mediate the multidrug resistance of these cells. SILA
compounds that are non-toxic, such as SILA 421, have
strong activity against intracellular mycobacteria and
modulate the activity of resistant cancer cells.

These observations suggest that any inhibitor of a bacterial
efflux pump is a promising candidate for evaluation for
similar activity against the over-expressed efflux pumps of
cancer cells.
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