CHARACTERIZATION OF NON-DEGENERATE PLANE CURVE SINGULARITIES

by Evelia R. García Barroso, Andrzej Lenarcik and Arkadiusz Płoski

Abstract. We characterize plane curve germs (non-degenerate in Kouchnirenko's sense) in terms of characteristics and intersection multiplicities of branches.

1. Introduction. In this paper we consider (reduced) plane curve germs C, D, \ldots centered at a fixed point O of a complex nonsingular surface. Two germs C and D are *equisingular* if there exists a bijection between their branches which preserves characteristic pairs and intersection numbers. Let (x, y) be a chart centered at O . Then a plane curve germ has a local equation of the form $\sum c_{\alpha,\beta} x^{\alpha} y^{\beta} = 0$. Here $\sum c_{\alpha,\beta} x^{\alpha} y^{\beta}$ is a convergent power series without multiple factors. The *Newton diagram* $\Delta_{x,y}(C)$ is defined to be the convex hull of the union of quadrants $(\alpha, \beta) + (\mathbb{R}_+)^2$, $c_{\alpha, \beta} \neq 0$. Recall that the *Newton boundary* $\partial \Delta_{x,y}(C)$ is the union of the compact faces of $\Delta_{x,y}(C)$. A germ C is called *non-degenerate* with respect to the chart (x, y) if the coefficients $c_{\alpha, \beta}$, where (α, β) runs over integral points lying on the faces of $\Delta_{x,y}(C)$, are *generic* (see Preliminaries to this Note for the precise definition). It is a well-known fact that the equisingularity class of a germ C *non-degenerate* with respect to (x, y) depends exclusively on the Newton polygon formed by the faces of $\Delta_{x,y}(C)$: if $(r_1, s_1), (r_2, s_2), \ldots, (r_k, s_k)$ are subsequent vertices of $\partial \Delta_{x,y}(C)$, then the germs C and C' with local equation $x^{r_1}y^{s_1} + \cdots + x^{r_k}y^{s_k} = 0$ are equisingular. Our aim is to give an explicit description of the non-degenerate plane curve germs in terms of characteristic pairs and intersection numbers of branches. In particular, we show that if two germs C and D are equisingular,

²⁰⁰⁰ *Mathematics Subject Classification.* 32S55, 14H20.

Key words and phrases. Non-degenerate plane curve singularities, Milnor number, Newton number.

This research was partially supported by Spanish Projet MEC PNMTM2004-00958.

then C is non-degenerate if and only if D is non-degenerate. The proof of our result is based on a refined version of Kouchnirenko's formula for the Milnor number and on the concept of contact exponent.

2. Preliminaries. Let $\mathbb{R}_+ = \{x \in \mathbb{R} : x \geq 0\}$. For any subsets A, B of the quarter \mathbb{R}^2_+ , we consider the arithmetic sum $A + B = \{a + b : a \in$ A and $b \in B$. If $S \subset \mathbb{N}^2$, then $\Delta(S)$ is the convex hull of the set $S + \mathbb{R}^2_+$. The subset Δ of \mathbb{R}^2_+ is a *Newton diagram* if $\Delta = \Delta(S)$ for a set $S \subset \mathbb{N}^2$ (see [\[1,](#page-9-0) [5\]](#page-9-1)). Following Teissier we put $\{\frac{a}{b}\} = \Delta(S)$ if $S = \{(a, 0), (0, b)\}, \{\frac{a}{\infty}\} = (a, 0) + \mathbb{R}^2_+$ and $\{\frac{\infty}{b}\} = (0, b) + \mathbb{R}^2$ for any $a, b > 0$ and call such diagrams *elementary Newton diagrams*. The Newton diagrams form a semigroup $\mathcal N$ with respect to the arithmetic sum. The elementary Newton diagrams generate \mathcal{N} . If $\Delta = \sum_{i=1}^r \{\frac{a_i}{b_i}\}\$, then a_i/b_i are the inclinations of edges of the diagram Δ (by convention, $\frac{a}{\infty} = 0$ and $\frac{\infty}{h} = \infty$ for $a, b > 0$. We also put $a + \infty = \infty$ $a \cdot \infty = \infty$, inf {a, ∞ } = a if $a > 0$ and $0 \cdot \infty = 0$.

Minkowski's area $[\Delta, \Delta'] \in \mathbb{N} \cup \{\infty\}$ of two Newton diagrams Δ, Δ' is uniquely determined by the following conditions:

 (m_1) $\left[\Delta_1 + \Delta_2, \Delta'\right] = \left[\Delta_1, \Delta'\right] + \left[\Delta_2, \Delta'\right],$ $(m_2) \ \ |\Delta,\Delta'| = |\Delta',\Delta|,$ (m_3) $\left[\{\frac{a}{b}\}, \{\frac{a}{b'}\}\right] = \inf \{ab', a'b\}.$

We define the *Newton number* $\nu(\Delta) \in \mathbb{N} \cup \{\infty\}$ by the following properties:

$$
\begin{array}{l} (\nu_1) \ \nu(\sum_{i=1}^k \Delta_i) = \sum_{i=1}^k \nu(\Delta_i) + 2 \sum_{1 \le i < j \le k} [\Delta_i, \Delta_j] - k + 1, \\ (\nu_2) \ \nu(\{\frac{a}{b}\}) = (a-1)(b-1), \ \nu(\{\frac{1}{\infty}\}) = \nu(\{\frac{\infty}{1}\}) = 0. \end{array}
$$

A diagram Δ is *convenient* (resp., *nearly convenient*) if Δ intersects both axes (resp., if the distances of Δ to the axes are \leq 1). Note that Δ is nearly convenient if and only if $\nu(\Delta) \neq \infty$. Fix a complex nonsingular surface, i.e., a complex holomorphic variety of dimension 2. Throughout this paper, we consider *reduced* plane curve germs C, D, \ldots centered at a fixed point O of this surface. We denote by (C, D) the *intersection multiplicity* of C and D and by $m(C)$ the *multiplicity* of C. There is $(C, D) \geq m(C)m(D)$; if (C, D) $m(C)m(D)$, then we say that C and D *intersect transversally*. Let (x, y) be a chart centered at O . Then a plane curve germ C has a local equation $f(x,y) = \sum c_{\alpha\beta} x^{\alpha} y^{\beta} \in \mathbb{C} \{x, y\}$ without multiple factors. We put $\Delta_{x,y}(C) =$ $\Delta(S)$, where $S = \{(\alpha, \beta) \in \mathbb{N}^2 : c_{\alpha\beta} \neq 0\}$. Clearly, $\Delta_{x,y}(C)$ depends on C and (x, y) . We note two fundamental properties of Newton diagrams:

 (N_1) If (C_i) is a finite family of plane curve germs such that C_i and C_j $(i \neq j)$ have no common irreducible component, then

$$
\Delta_{x,y}\left(\bigcup_i C_i\right) = \sum_i \Delta_{x,y}(C_i) .
$$

(N2) If *C* is an irreducible germ (a branch) then

$$
\Delta_{x,y}(C) = \left\{ \frac{(C, y = 0)}{(C, x = 0)} \right\}.
$$

For the proof, we refer the reader to $[1]$, pp. 634–640.

The topological boundary of $\Delta_{x,y}(C)$ is the union of two half-lines and a finite number of compact segments (faces). For any face *S* of $\Delta_{x,y}(C)$ we let $f_S(x,y) = \sum_{(\alpha,\beta)\in S} c_{\alpha,\beta} x^{\alpha} y^{\beta}$. Then C is *non-degenerate* with respect to the chart (x, y) if for all faces *S* of $\Delta_{x,y}(C)$ the system

$$
\frac{\partial f_S}{\partial x}(x,y)=\frac{\partial f_S}{\partial y}(x,y)=0
$$

has no solutions in $\mathbb{C}^* \times \mathbb{C}^*$. We say that the germ *C* is *non-degenerate* if there exists a chart (x, y) such that C is non-degenerate with respect to (x, y) .

For any reduced plane curve germs C and D with irreducible components (C_i) and (D_j) , we put $d(C, D) = \inf_{i,j} \{ (C_i, D_j) / (m(C_i) m(D_j)) \}$ and call $d(C, D)$ the *order of contact* of germs C and D . Then for any C, D and E :

- (d_1) $d(C, D) = \infty$ if and only if $C = D$ is a branch.
- (d_2) $d(C, D) = d(D, C)$,
- (d₃) $d(C, D) \ge \inf \{ d(C, E), d(E, D) \}.$

The proof of (d_3) is given in [\[2\]](#page-9-0) for the case of irreducible C, D, E , which implies the general case. Condition (d_3) is equivalent to the following: at least two of three numbers $d(C, D)$, $d(C, E)$, $d(E, D)$ are equal and the third is not smaller than the other two. For each germ C , we define

 $d(C) = \sup\{d(C, L): L \text{ runs over all smooth branches}\}$

and call $d(C)$ the *contact exponent* of C (see [\[4\]](#page-9-2), Definition 1.5, where the term "characteristic exponent" is used). Using (d_3) we check that $d(C) \leq d(C, C)$.

 (d_4) For every finite family $(Cⁱ)$ of plane curve germs we have

$$
d(\bigcup_i C^i) = \inf \{ \inf_i d(C^i), \inf_{i,j} d(C^i, C^j) \} .
$$

The proof of (d_4) is given in [\[3\]](#page-9-3) (see Proposition 2.6). We say that a smooth germ L has *maximal contact* with C if $d(C, L) = d(C)$. Note that $d(C) = \infty$ if and only if *C* is a smooth branch. If *C* is singular then $d(C)$ is a rational

number and there exists a smooth branch L which has maximal contact with C (see [\[4,](#page-9-2) [1\]](#page-9-0)).

3. Results. Let C be a plane curve germ. A finite family of germs $(C^{(i)})_i$ is called a *decomposition* of C if $C = \bigcup_i C^{(i)}$ and $C^{(i)}$, $C^{(i_1)}$ ($i \neq i_1$) have no common branch. The following definition will play a key role.

DEFINITION 3.1. A plane curve C is *Newton's germ* (shortly an *N*-germ) if there exists a decomposition $(C^{(i)})_{1\leq i\leq s}$ of C such that the following conditions hold

(1) $1 \leq d(C^{(1)}) < \ldots < d(C^{(s)}) \leq \infty$.

- (2) Let $(C_j^{(i)})_j$ be branches of $C^{(i)}$. Then
	- (a) if $d(C^{(i)}) \in \mathbb{N} \cup \{\infty\}$ then the branches $(C_j^{(i)})_j$ are smooth,
	- (b) if $d(C^{(i)}) \notin \mathbb{N} \cup \{\infty\}$ then there exists a pair of coprime integers (a_i, b_i) such that each branch $C_j^{(i)}$ has exactly one characteristic pair (a_i, b_i) . Moreover, $d(C_i^{(i)}) = d(C_i^{(i)})$ for all j.

(3) If
$$
C_l^{(i)} \neq C_k^{(i_1)}
$$
, then $d(C_l^{(i)}, C_k^{(i_1)}) = \inf\{d(C^{(i)}), d(C^{(i_1)})\}.$

A branch is Newton's germ if it is smooth or has exactly one characteristic pair. Let C be Newton's germ. The decomposition $\{C^{(i)}\}$ satisfying (1), (2) and (3) is not unique. Take for example a germ C that has all $r > 2$ branches smooth intersecting with multiplicity $d > 0$. Then for any branch L of C, we may put $C^{(1)} = C \setminus \{L\}$ and $C^{(2)} = \{L\}$ (or simply $C^{(1)} = C$). If C and D are equisingular germs, then C is an N -germ if and only if D is an N -germ.

Our main result is

Theorem 3.2. *Let* C *be a plane curve germ. Then the following two conditions are equivalent*

- *1. The germ* C *is non-degenerate with respect to a chart* (x,y) *such that* C *and* $\{x = 0\}$ *intersect transversally,*
- *2.* C *is Newton's germ.*

We give a proof of Theorem [3.2 i](#page-3-0)n Sectio[n 5](#page-5-0) of this paper. Let us note here

COROLLARY 3.3. If a germ C is unitangent, then C is non-degenerate if *and only if* C *is an* N *-germ.*

Every germ C has the *tangential decomposition* $(\tilde{C}^i)_{i=1,\dots,t}$ such that

- 1. \tilde{C}^i are unitangent, that is for every two branches \tilde{C}^i_j , \tilde{C}^i_k of \tilde{C}^i there is $d(\tilde{C}_i^i, \tilde{C}_k^i) > 1.$
- 2. $d(\tilde{C}^i, \tilde{C}^{i_1}) = 1$ for $i \neq i_1$.

30

We call $(\tilde{C}^i)_i$ tangential components of *C*. Note that $t(C) = t$ (the number of tangential components) is an invariant of equisingularity.

THEOREM 3.4. *If* $(\tilde{C}^i)_{i=1,\dots,t}$ *is the tangential decomposition of the germ* C *then the following two conditions are equivalent*

- *1. The germ C is non-degenerate.*
- 2. All tangential components \tilde{C}^i of C are N-germs and at least $t(C) 2$ of *them are smooth.*

Using Theorem [3.4](#page-4-0), we get

COROLLARY 3.5. Let C and D be equisingular plane curve germs. Then C *is non-degenerate if and only if D is non-degenerate.*

4. Kouchnirenko's theorem for plane curve singularities.

Let $\mu(C)$ be the *Milnor number* of a reduced germ *C*. By definition, $\mu(C)$ = $\dim \mathbb{C}\{x,y\}/(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y})$, where $f=0$ is an equation without multiple factors of *C*. The following properties are well-known (see e.g. [\[9\]](#page-9-4)).

- (μ_1) $\mu(C) = 0$ if and only if *C* is a smooth branch.
- (μ_2) If *C* is a branch with the first characteristic pair (a, b) then $\mu(C) \geq$ $(a-1)(b-1)$. Moreover, $\mu(C) = (a-1)(b-1)$ if and only if (a, b) is the unique characteristic pair of *C* .

 (μ_3) If $(C^{(i)})_{i=1,\dots,k}$ is a decomposition of *C*, then

$$
\mu(C) = \sum_{i=1}^{k} \mu(C^{(i)}) + 2 \sum_{1 \le i < j \le k} (C^{(i)}, C^{(j)}) - k + 1.
$$

Now we can give a refined version of Kouchnirenko's theorem in two dimensions.

THEOREM 4.1. Let C be a reduced plane curve germ. Fix a chart (x, y) . *Then* $\mu(C) \ge \nu(\Delta_{x,y}(C))$ *with equality holding if and only if C is non-degenerate with respect to (x,y).*

PROOF. Let $f = 0, f \in \mathbb{C}\lbrace x, y \rbrace$ be the local equation without multiple factors of the germ *C*. To abbreviate the notation, we put $\mu(f) = \mu(C)$ and $\Delta(f) = \Delta_{x,y}(C)$. If $f = x^a y^b \varepsilon(x,y)$ in $\mathbb{C}\{x,y\}$ with $\varepsilon(0,0) \neq 0$ then the theorem is obvious. Then we can write $f = x^a y^b f_1$ in $\mathbb{C}\{x, y\}$, where $a, b \in$ $\{0,1\}$ and $f_1 \in \mathbb{C}\{x,y\}$ is an appropriate power series. A simple calculation based on properties (μ_2) , (μ_3) and (ν_1) , (ν_2) shows that $\mu(f) - \nu(\Delta(f)) =$ $\mu(f_1) - \nu(\Delta(f_1))$. Moreover, f is non-degenerate if and only if if f_1 is nondegenerate and the theorem reduces to the case of an appropriate power series which is proved in $[8]$ (Theorem 1.1).

REMARK 4.2. The implication " $\mu(C) = \nu(\Delta_{x,y}(C)) \Rightarrow C$ is non-degenerate" is not true for hypersurfaces with isolated singularity (see [\[5\],](#page-9-1) Remarque 1.21).

COROLLARY 4.3. For any reduced germ C, there is $\mu(C) \geq (m(C) - 1)^2$. *The equality holds if and only if* C *is an ordinary singularity, i.e., such that* $t(C) = m(C)$.

PROOF. Use Theore[m 4.1](#page-4-1) in generic coordinates. $□$

5. Proof of Theorem [3.2.](#page-3-0) We start with the implication $(1) \Rightarrow (2)$. Let C be a plane curve germ and let (x, y) be a chart such that $\{x = 0\}$ and C intersect transversally. The following result is well-known ([\[7\],](#page-9-5) Proposition 4.7).

LEMMA 5.1. *There exists a decomposition* $(C^{(i)})_{i=1,\dots,s}$ *of* C *such that*

- $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ 2. Let $d_i = \frac{(C \vee f, g=0)}{m(G(i))}$. Then $1 \leq d_1 < \cdots < d_s \leq \infty$ and $d_s = \infty$ if and only if $C^{(s)} = \{y = 0\}.$
- *3. Let* $n_i = m(\tilde{C}^{(i)})$ *and* $m_i = n_i d_i = (C^{(i)},y = 0)$. *Suppose that* C *is non-degenerate with respect to the chart* (x, y) . *Then* $C^{(i)}$ *has* $r_i =$ $g.c.d.(n_i, m_i)$ *branches* $C_i^{(i)}$: $y^{n_i/r_i} - a_{ij} x^{m_i/r_i} + \cdots = 0$ $(j = 1, ..., r_i)$ $and a_{ij} \neq a_{ij'}$, if $j \neq j'$.

Using the above lemma, we prove that any germ C which is non-degenerate with respect to (x, y) is an *N*-germ. From (d_4) we get $d(C^{(i)}) = d_i$. Clearly, each branch $C_j^{(i)}$ has exactly one characteristic pair $(\frac{n_i}{r_i}, \frac{m_i}{r_i})$ or is smooth. A simple calculation shows that

$$
d(C_j^{(i)}, C_{j_1}^{(i_1)}) = \frac{(C_j^{(i)}, C_{j_1}^{(i_1)})}{m(C_j^{(i)})m(C_{j_1}^{(i_1)})} = \inf\{d_i, d_{i_1}\}.
$$

To prove the implication $(2) \Rightarrow (1)$, we need some auxiliary lemmas.

LEMMA 5.2. Let C be a plane curve germ whose all branches C_i (i = $1, \ldots, s$ are smooth. Then there exists a smooth germ L such that (C_i, L) $d(C)$ *for* $i = 1, \ldots, s$.

PROOF. If $d(C) = \infty$, then C is smooth and we take $L = C$. If $d(C) = 1$, then we take a smooth germ L such that C and L are transversal. Let $k = d(C)$ and suppose that $1 < k < \infty$. By formula (d_4) , we get inf $\{(C_i, C_j) : i, j =$ $1, \ldots, s$ = k. We may assume that $(C_1, C_2) = \ldots = (C_1, C_r) = k$ and $(C_1, C_j) > k$ for $j > r$ for an index $r, 1 \leq r \leq s$. There is a system of

32

coordinates (x, y) such that C_j $(j = 1, ..., r)$ have equations $y = c_j x^k + ...$ It suffices to take $L: y - cx^k = 0$, where $c \neq c_j$ for $j = 1, \ldots, r$.

LEMMA 5.3. Suppose that C is an N-germ and let $(C^{(i)})_{1 \le i \le s}$ be a decom*position of C as in Definition [3.1.](#page-3-1) Then there is a smooth germ L such that* $d(C_i^{(i)}, L) = d(C^{(i)})$ *for all j.*

PROOF. Step 1. There is a smooth germ L such that $d(C_j^{(s)}, L) = d(C^{(s)})$ for all *j*. If $d(C^{(s)}) \in \mathbb{N} \cup \{\infty\}$, then the existence of *L* follows from Lemm[a 5.2.](#page-5-1) If $d(C^{(s)}) \notin \mathbb{N} \cup \{\infty\}$, then all components $C_j^{(s)}$ have the same characteristic pair (a_s, b_s) . Fix a component $C_{j_0}^{(s)}$ and let L be a smooth germ such that $d(C_{j_0}^{(s)}, L) = d(C_{j_0}^{(s)}) = d(C^{(s)})$.

Let $j_1 \neq j_0$. Then $d(C_i^{(s)}, L) \geq \inf \{d(C_i^{(s)}, C_i^{(s)}, L) d(C_i^{(s)}, L)\} = d(C^{(s)})$. On the other hand, $d(C_{i_1}^{(s)}, L) \leq d(C_{i_2}^{(s)}) = d(C^{(s)})$ and we get $d(C_{i_1}^{(s)}, L) = d(C^{(s)})$.

Step 2. Let L be a smooth germ such that $d(C_i^{(s)}, L) = d(C^{(s)})$ for all j. We will check that $d(C^{(i)}_j, L) = d(C^{(i)})$ for each i and j . To this purpose, fix $i < s$. Let $C_{i_0}^{(s)}$ be a component of $C^{(s)}$. Then $d(C_i^{(s)},C_{i_0}^{(s)}) = \inf\{d(C^{(i)}),d(C^{(s)})\}$ = $d(C^{(i)}).$ By (d_3) (d_3) , we get $d(C_j^{(i)}, L) \geq \inf \{ d(C_j^{(i)}, C_{j_0}^{(s)}), d(C_{j_0}^{(s)}, L) \} =$ $\inf\{d(C^{(i)}), d(C^{(s)})\} = d(C^{(i)})$. On the other hand, $d(C_j^{(i)}, L) \leq d(C_j^{(i)}) =$ $d(C^{(i)})$, which completes the proof.

REMARK 5.4. In the notation of the above lemma we have $(C^{(i)}, L)$ $m(C^{(i)})d(C^{(i)})$ for $i = 1, ..., s$.

Indeed, if $C^{(i)}_j$ are branches of $C^{(i)}$, then

$$
(C^{(i)}, L) = \sum_{j} (C_j^{(i)}, L) = \sum_{j} m(C_j^{(i)}) d(C_j^{(i)}, L)
$$

=
$$
\sum_{j} m(C_j^{(i)}) d(C^{(i)}) = m(C^{(i)}) d(C^{(i)}).
$$

LEMMA 5.5. Let C be an N-germ and let $(C^{(i)})_{1 \leq i \leq s}$ be a decomposition *of C as in Definition [3.1](#page-3-1). Then*

$$
\mu(C) = \sum_{i} (m(C^{(i)}) - 1)(m(C^{(i)})d(C^{(i)}) - 1) + 2\sum_{i < j} m(C^{(i)})m(C^{(j)})\inf\{d(C^{(i)}), d(C^{(j)}) - s + 1\}.
$$

PROOF. Use properties (μ_1) , (μ_2) and (μ_3) of the Milnor number. \Box

To prove implication (2) \Rightarrow (1) of Theorem [3.2,](#page-3-0) suppose that C is an N-germ and let $(C^{(i)})_{i=1,\dots,s}$ be a decomposition of C such as in Definition [3.1.](#page-3-1) Let L be a smooth branch such that $(C^{(i)}, L) = m(C^{(i)})d(C^{(i)})$ for $i = 1, \ldots, s$ (such a branch exists by Lemm[a 5.3](#page-6-0) and Remar[k 5.4\).](#page-6-1) Take a system of coordinates such that $\{x = 0\}$ and C are transversal and $L = \{y = 0\}$. Then we get

$$
\Delta_{x,y}(C) = \sum_{i=1}^{s} \Delta_{x,y}(C^{(i)}) = \sum_{i=1}^{s} \left\{ \frac{(C^{(i)}, \{y=0\})}{m(C^{(i)})} \right\} = \sum_{i=1}^{s} \left\{ \frac{m(C^{(i)})d(C^{(i)})}{m(C^{(i)})} \right\}
$$

and consequently

$$
\nu(\Delta_{x,y}(C)) = \sum_{i=1}^{s} (m(C^{(i)}) - 1)(m(C^{(i)})d(C^{(i)}) - 1)
$$

+
$$
2 \sum_{1 \leq i < j \leq s} m(C^{(i)})m(C^{(j)})\inf\{d(C^{(i)}), d(C^{(j)})\} - s + 1
$$

=
$$
\mu(C)
$$

by Lemm[a 5.5](#page-6-2). Therefore, $\mu(C) = \nu(\Delta_{x,y}(C))$ and C is non-degenerate with respect to (x, y) by Theorem [4.1](#page-4-1).

6. Proof of Theorem [3.4](#page-4-0). The Newton number $\nu(C)$ of the plane curve germ C is defined to be $\nu(C) = \sup \{ \nu(\Delta_{x,y}(C)) : (x,y) \text{ runs over all charts} \}$ centered at O .

Using Theorem [4.1](#page-4-1), we get

Lemma 6.1. *A plane curve germ* C *is non-degenerate if and only if* $\nu(C) = \mu(C).$

The proposition below shows that we can reduce the computation of the Newton number to the case of unitangent germs.

PROPOSITION 6.2. *If* $C = \bigcup_{k=1}^{L} C^k$ (t > 1), where $\{C^k\}_k$ are *unitangent germs such that* $(C^k, C^l) = m(C^k)m(C^l)$ *for* $k \neq l$ *, then*

$$
\nu(C) - (m(C) - 1)^2 = \max_{1 \le k < l \le t} \{ (\nu(\tilde{C}^k) - (m(\tilde{C}^k) - 1)^2) + (\nu(\tilde{C}^l) - (m(\tilde{C}^l) - 1)^2) \}
$$

PROOF. Let $\tilde{n}_k = m(\tilde{C}^k)$. Suppose that $\{x = 0\}$ and $\{y = 0\}$ are tangent to C. Then there are two tangential components C^{k_1} and C^{k_2} such that $\{x=0\}$ is tangent to C^{k_1} and $\{y=0\}$ is tangent to C^{k_2} . Now there is

$$
\nu(\Delta_{x,y}(C)) = \nu(\sum_{k=1}^{t} \Delta_{x,y}(\tilde{C}^{k})) = \nu(\Delta_{x,y}(\tilde{C}^{k})) + \nu(\Delta_{x,y}(\tilde{C}^{k}))
$$

+
$$
\sum_{k \neq k_{1},k_{2}} \nu(\Delta_{x,y}(\tilde{C}^{k})) + 2 \sum_{1 \leq k < l \leq t} \left[\Delta_{x,y}(\tilde{C}^{k}), \Delta_{x,y}(\tilde{C}^{l}) \right] - t + 1
$$

=
$$
\nu(\Delta_{x,y}(\tilde{C}^{k})) + \nu(\Delta_{x,y}(\tilde{C}^{k})) + \sum_{k \neq k_{1},k_{2}} (\tilde{n}_{k} - 1)^{2} + 2 \sum_{1 \leq k < l \leq t} \tilde{n}_{k} \tilde{n}_{l} - t + 1
$$

=
$$
\nu(\Delta_{x,y}(\tilde{C}^{k})) - (\tilde{n}_{k_{1}} - 1)^{2}
$$

+
$$
\nu(\Delta_{x,y}(\tilde{C}^{k_{2}})) - (\tilde{n}_{k_{2}} - 1)^{2} + (m(C) - 1))^{2}.
$$

The germs \tilde{C}^{k_1} and \tilde{C}^{k_2} are unitangent and transversal. Thus it is easy to see that there exists a chart (x_1, y_1) such that $\nu(\Delta_{x_1, y_1}(\tilde{C}^k)) = \nu(\tilde{C}^k)$ for $k = k_1, k_2.$

If $\{x = 0\}$ (or $\{y = 0\}$) and C are transversal, then there exists a $k \in \{1, \ldots, t\}$ such that $\nu(\Delta_{x,y}(C)) = \nu(\Delta_{x,y}(C^k)) - (\tilde{n}_k - 1)^2 + (m(C) - 1))^2$ and the proposition follows from the previous considerations. $□$

Now we can pass to the proof of Theore[m 3.4.](#page-4-0) If $t(C) = 1$ then C is nondegenerate with respect to a chart (x, y) such that C and $\{x = 0\}$ intersect transversally and Theorem [3.4](#page-4-0) follows from Theorem [3.2.](#page-3-0) If $t(C) > 1$, then by Propositio[n 6.2 t](#page-7-0)here are indices $k_1 < k_2$ such that

$$
(\alpha) \ \nu(C) - (m(C) - 1)^2 = \nu(\tilde{C}^{k_1}) - (m(\tilde{C}^{k_1}) - 1)^2 + \nu(\tilde{C}^{k_2}) - (m(\tilde{C}^{k_2}) - 1)^2.
$$

On the other hand, from basic properties of the Milnor number we get

$$
(3) \ \mu(C) - (m(C) - 1)^2 = \sum_k (\mu(\tilde{C}^k) - (m(\tilde{C}^k) - 1)^2).
$$

Using (α) , (β) and Lemm[a 6.1,](#page-7-1) we check that C is non-degenerate if and only if $\mu(\tilde{C}^{k_1}) = \nu(\tilde{C}^{k_1}), \mu(\tilde{C}^{k_2}) = \nu(\tilde{C}^{k_2})$ and $\mu(\tilde{C}^k) = (m(\tilde{C}^k) - 1)^2$ for $k \neq k_1, k_2$. Now Theorem [3.4](#page-4-0) follows from Lemma [6.1](#page-7-1) and Corollary [4.3.](#page-5-2)

7. Concluding remark. M. Oka in [\[6\]](#page-9-6) proved that the Newton number like the Milnor number is an invariant of equisingularity. Therefore, the invariance of non-degeneracy (Corollar[y 3.5\)](#page-4-2) follows from the equality $\nu(C) = \mu(C)$ characterizing non-degenerate germs (Lemma [6.1\)](#page-7-1).

Acknowledgements. The third author (A.P.) is grateful to La Laguna University, where a part of this work was prepared.

References

- 1. Brieskorn E., Knorrer H., *Ebene Algebraische Kurven*, Birkhauser, Boston, 1981.
- 2. Chadzynski J., Ploski A., *An inequality for the intersection multiplicity of analytic curves,* Bull. Pol. Acad. Sci. Math., 36, No. 3-4 (1988), 113-117.
- 3. García Barroso E., Lenarcik A., Ploski A., *Newton diagrams and equivalence of plane curve germs,* J. Math. Soc. Japan, 59, No. 1 (2007), 81-96.
- 4. Hironaka H., *Introduction to the theory of infinitely near singular points*, Memorias de Matemática del Instituto Jorge Juan 28, Madrid, 1974.
- 5. Kouchnirenko A. G., *Polyedres de Newton et nombres de Milnor*, Invent. Math., 32 (1976), 1-31.
- 6. Oka M., *On the stability of the Newton boundary,* Proceedings of Symposia in Pure Mathematics, 40 (1983), Part 2, 259-268.
- 7. Oka M., *Non-degenerate complete intersection singularity,* Hermann, 1997.
- 8. Ploski A., *Milnor number of a plane curve and Newton polygons*, Univ. Iagell. Acta Math., 37 (1999), 75-80.
- 9. Ploski A., *The Milnor number of a plane algebroid curve,* Materialy XVI Konferencji Szkoleniowej z Analizy i Geometrii Zespolonej, Lódź, 1995, 73–82.

Received February 28, 2007

Departamento de Matemática Fundamental Facultad de Matematicas Universidad de La Laguna 38271 La Laguna, Tenerife España e -mail: ergarcia@ull.es

Department of Mathematics Technical University Al. 1000 L PP7 25-314 Kielce Poland e -mail: ztpal@tu.kielce.pl

Department of Mathematics Technical University Al. 1000 L PP7 25-314 Kielce Poland e -mail: matap@tu.kielce.pl

36