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C H A R A C T E R IZ A T IO N  OF N O N -D E G E N E R A TE  PLAN E 
CU RVE SIN G U LARITIES

b y  E v e l ia  R. G a r c ía  B a r r o s o , A n d rzej  L e n a r c ik  a n d  A r k a d iu sz  P ło ski

A b stra ct. We characterize plane curve germs (non-degenerate in Kouch- 
nirenko’s sense) in terms of characteristics and intersection multiplicities of 
branches.

1. Introduction. In this paper we consider (reduced) plane curve germs 
C , D , ...  centered at a fixed point O of a complex nonsingular surface. Two 
germs C and D are equisingular if there exists a bijection between their 
branches which preserves characteristic pairs and intersection numbers. Let 
(x, y) be a chart centered at O. Then a plane curve germ has a local equation of 
the form ^  ca,gxay@ =  0. Here ^  ca,gxay@ is a convergent power series with­
out multiple factors. The Newton diagram A x,y(C ) is defined to be the convex 
hull of the union of quadrants (a, 0) +  (R+)2, ca,g =  0. Recall that the Newton 
boundary dAx,y(C) is the union of the compact faces of A x,y(C). A germ C 
is called non-degenerate with respect to the chart (x,y) if the coefficients ca,g, 
where (a, 0) runs over integral points lying on the faces of A x,y(C), are generic 
(see Preliminaries to this Note for the precise definition). It is a well-known 
fact that the equisingularity class of a germ C non-degenerate with respect 
to (x, y) depends exclusively on the Newton polygon formed by the faces of 
A x,y(C): if (r1, si), (r2, s2) , . . . ,  (rk, sk) are subsequent vertices of dAx,y(C), 
then the germs C and C ' with local equation xriySl +  ■ ■ ■ +  xrkysk =  0 are 
equisingular. Our aim is to give an explicit description of the non-degenerate 
plane curve germs in terms of characteristic pairs and intersection numbers of 
branches. In particular, we show that if two germs C and D are equisingular,
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then C is non-degenerate if and only if D is non-degenerate. The proof of our 
result is based on a refined version of Kouchnirenko’s formula for the Milnor 
number and on the concept of contact exponent.

2. Preliminaries. Let R+ =  {x G R : x > 0}. For any subsets A, B 
of the quarter R+, we consider the arithmetic sum A +  B =  {a +  b : a G
A and b G B }. If S C N2, then A (S ) is the convex hull of the set S +  R+. The
subset A of R+ is a Newton diagram if A =  A (S ) for a set S C N2 (see [1, 5]). 
Following Teissier we put {= !} =  A(S) if S =  {(a, 0), (0, b)}, { t t } =  (a, 0 )+  R+ 
and {^=} =  (0, b) +  R+ for any a,b >  0 and call such diagrams elementary 
Newton diagrams. The Newton diagrams form a semigroup N  with respect 
to the arithmetic sum. The elementary Newton diagrams generate N . If 
A =  Y r= i{fi}, then ai/bi are the inclinations of edges of the diagram A (by 
convention, ^  =  0 and t  =  œ  for a,b >  0). We also put a +  œ  =  œ,
a ■ œ  =  œ, inf {a, œ } =  a if a > 0 and 0 ■ œ  =  0.

Minkowski’s area [A, A'] G N U {œ }  of two Newton diagrams A, A' is uniquely 
determined by the following conditions:

(mi) [Ai +  A 2 , A'] =  [Ai, A'] +  [A2, A'],
(m2) [A, A'] =  [A', A],
(m3) [{=!=}, {=r}] =  inf {ab', a'b}.

We define the Newton number v (A) G N U {œ }  by the following properties:

(vi ) v (Yk=i A i) =  Yk=i v(A i) + 2 Y i<i<j<h[̂ î, Aj ] -  k + 1,
(v2) v ( { * } )  =  (a -  1)(b -  1), v({^t}) =  v ( | f }) =  0.

A diagram A is convenient (resp., nearly convenient) if A  intersects both axes 
(resp., if the distances of A to the axes are < 1). Note that A is nearly
convenient if and only if v(A) =  œ. Fix a complex nonsingular surface, i.e.,
a complex holomorphic variety of dimension 2. Throughout this paper, we 
consider reduced plane curve germs C, D , . . .  centered at a fixed point O of 
this surface. We denote by (C, D) the intersection multiplicity of C and D 
and by m(C) the multiplicity of C . There is (C, D) > m(C)m(D); if (C, D) = 
m(C)m(D), then we say that C and D intersect transversally. Let (x,y) 
be a chart centered at O. Then a plane curve germ C has a local equation 
f  (x,y) =  Y  °adxay^ G C {x ,y } without multiple factors. We put A x,y(C ) =  
A (S ), where S =  {(a ,^ ) G N2 : cag =  0}. Clearly, A x,y(C) depends on C and 
(x,y). We note two fundamental properties of Newton diagrams:
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(N1) If (Cj) is a finite family of plane curve germs such that C  and Cj (i =  j ) 
have no common irreducible component, then

For the proof, we refer the reader to [1], pp. 634-640.
The topological boundary of A x,y(C) is the union of two half-lines and a fi­
nite number of compact segments (faces). For any face S of A x,y(C) we let 
f s (x ,y) =  E  (a, /3)es c«,dxay^. Then C is non-degenerate with respect to the

has no solutions in C* x C*. We say that the germ C is non-degenerate if there 
exists a chart (x,y) such that C is non-degenerate with respect to (x,y).
For any reduced plane curve germs C and D with irreducible components (Ci) 
and (D j), we put d(C,D)  =  infi,j{(C i,D j)/(m(Ci)m(Dj ) )}  and call d(C,D)  
the order of contact of germs C and D. Then for any C, D and E:

(di) d(C, D) =  œ  if and only if C =  D is a branch,
(d2) d(C,D)  =  d(D, C ),
(da) d(C, D)  > inf{d(C, E), d(E, D )}.

The proof of (d3) is given in [2] for the case of irreducible C, D, E , which 
implies the general case. Condition (d3) is equivalent to the following: at least 
two of three numbers d(C, D), d(C, E), d(E, D) are equal and the third is not 
smaller than the other two. For each germ C , we define

d(C) =  sup{d(C, L) : L runs over all smooth branches}
and call d(C) the contact exponent of C (see [4], Definition 1.5, where the term 
“characteristic exponent” is used). Using (d3) we check that d(C) < d(C,C). 

(d4) For every finite family (Cl) of plane curve germs we have

The proof of (d4) is given in [3] (see Proposition 2.6). We say that a smooth 
germ L has maximal contact with C if d(C,L) =  d(C). Note that d(C) =  œ 
if and only if C is a smooth branch. If C is singular then d(C) is a rational

(N2) If C is an irreducible germ (a branch) then

chart (x, y) if for all faces S of A x,y(C) the system

d(l lC i) =  inf {inf d(Ci), inf d(C i,Cj ) }  .
w  i i,j
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number and there exists a smooth branch L which has maximal contact with 
C (see [4, 1]).

3. Results. Let C be a plane curve germ. A finite family of germs (C (j))i 
is called a decomposition of C if C =  U C (j) and C (j),C (jl) (i =  A) have no 
common branch. The following definition will play a key role.

D efin ition  3.1. A plane curve C is Newton’s germ (shortly an N -germ) if 
there exists a decomposition (C(j))i<j<s of C such that the following conditions 
hold
(1) 1 < d(C(1)) < . ..  < d(C(s)) < to.
(2) Let (Cjj))j be branches of C (j). Then

(a) if d(C(j)) e N U { to} then the branches (Cjj))j are smooth,
(b) if d(C(j)) e  N U{ to} then there exists a pair of coprime integers (ap bj) 

such that each branch Cj(i) has exactly one characteristic pair (ai,6i). 
Moreover, d(Cjj)) =  d(C(j)) for all j.

(3) If C(j) =  C(jl), then d(C(j),C (jl)) =  inf{d(C(j)) ,d (C (jl))}.

A branch is Newton’s germ if it is smooth or has exactly one characteristic 
pair. Let C be Newton’s germ. The decomposition {C (j)} satisfying (1), (2) 
and (3) is not unique. Take for example a germ C that has all r > 2 branches 
smooth intersecting with multiplicity d > 0. Then for any branch L of C , we 
may put C (1) =  C \ {L } and C (2) =  {L } (or simply C (1) =  C ). If C and D 
are equisingular germs, then C is an N-germ if and only if D is an N-germ.
Our main result is

Theorem  3.2. Let C be a plane curve germ. Then the following two con­
ditions are equivalent

1. The germ C is non-degenerate with respect to a chart (x,y) such that C 
and {x  =  0} intersect transversally,

2. C is Newton’s germ.

We give a proof of Theorem 3.2 in Section 5 of this paper. Let us note here

C o r o lla r y  3.3. If a germ C is unitangent, then C is non-degenerate if 
and only if C is an N -germ.

Every germ C has the tangential decomposition (¿7j)j=1,...,t such that
1. <5j are unitangent, that is for every two branches C j, Cjj of Cj there is 

d(Cj ,C j) > 1.
2. d(Cj ,C jl) =  1 for i =  ¿1.
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We call (Ci)i tangential components of C . Note that t(C ) =  t (the number of 
tangential components) is an invariant of equisingularity.

Theorem  3.4. If (Ci)i=i,...,t is the tangential decomposition of the germ C 
then the following two conditions are equivalent

1. The germ C is non-degenerate.
2. All tangential components C i of C are N-germs and at least t(C ) — 2 of 

them are smooth.

Using Theorem 3.4, we get

C o r o lla r y  3.5. Let C and D be equisingular plane curve germs. Then C 
is non-degenerate if and only if D is non-degenerate.

4. K ouchnirenko’s theorem  for plane curve singularities.
Let |(C) be the Milnor number of a reduced germ C . By definition, |(C) = 
dimC { x , y } / ( ), where f  =  0 is an equation without multiple factors of 
C . The following properties are well-known (see e.g. [9]).

( l i )  |(C) =  0 if and only if C is a smooth branch.
(|2) If C is a branch with the first characteristic pair (a, b) then |(C) > 

(a — l)(b — 1). Moreover, |(C) =  (a — l)(b — 1) if and only if (a, b) is 
the unique characteristic pair of C .

(1 3 ) If (C (i))i=i,.. ,k is a decomposition of C , then
k

l ( C  ) =  £  I,.(C(i)) + 2  £  (C (i),C (j)) — k +  1.
i=1 1<i<j<k

Now we can give a refined version of Kouchnirenko’s theorem in two di­
mensions.

Theorem  4.1. Let C be a reduced plane curve germ. Fix a chart (x,y).  
Then i (C ) > v(Axy (C)) with equality holding if and only if C is non-degene­
rate with respect to (x,y).

P r o o f . Let f  =  0, f  e C {x ,y } be the local equation without multiple 
factors of the germ C . To abbreviate the notation, we put l (f ) =  l (C ) and 
A ( f ) =  A xy (C). If f  =  xaybe(x,y)  in C {x ,y } with e(0, 0 ) =  0 then the 
theorem is obvious. Then we can write f  =  xaybf 1 in C {x ,y }, where a,b e 
{0 ,1 } and f 1 e C {x ,y } is an appropriate power series. A simple calculation 
based on properties (|2) , (|3) and (v1) , (v2) shows that | (f) — v (A (f))  =  
l ( f 1) — v (A (f1)). Moreover, f  is non-degenerate if and only if if f 1 is non­
degenerate and the theorem reduces to the case of an appropriate power series 
which is proved in [8] (Theorem 1.1). □
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R emark 4.2. The implication “^(C) =  v(A x,y(C)) ^  C is non-degenerate” 
is not true for hypersurfaces with isolated singularity (see [5], Remarque 1.21).

C o r o lla r y  4.3. For any reduced germ C , there is ^(C) > (m(C) — 1)2. 
The equality holds if and only if C is an ordinary singularity, i.e., such that 
t(C ) =  m(C ).

Proof. Use Theorem 4.1 in generic coordinates. □

5. P ro o f o f  Theorem  3.2. We start with the implication (1)^ (2). Let 
C be a plane curve germ and let (x,y) be a chart such that {x  =  0} and 
C intersect transversally. The following result is well-known ( [7], Proposition 
4.7).

Lemma 5.1. There exists a decomposition (C (i))i=1)...,s of C such that

1 A - (C(i)) =
2. Let di =  . Then 1 < d1 < ■ ■ ■ < ds < œ  and ds =  œ  if and

(s)only if C (s) =  {y =  0}.
3. Let Ui =  m (C(i)) and mi =  u ^  =  (C (i),y =  0). Suppose that C 

is non-degenerate with respect to the chart (x,y). Then C (i) has ri =  
g.c.d.(ui, mi) branches C ^  : yni/ri — aij xmi/ri +  ■ ■ ■ = 0  (j =  1 ,. . . ,  ri 
and aij =  a,if, if j  =  j').

Using the above lemma, we prove that any germ C which is non-degenerate 
with respect to (x,y) is an N -germ. From (d4) we get d(C(i)) =  di. Clearly, 
each branch Cji) has exactly one characteristic pair ( f f , m ) or is smooth. A 
simple calculation shows that

d(Cj i), Cj il)) =  .J* ’ Lv =  inf{di ,du } .
(Cji),C jil)) 

m(Cj i))m(Cji1))
To prove the implication (2)^ (1), we need some auxiliary lemmas.

Lemma 5.2. Let C be a plane curve germ whose all branches Ci (i =
1 . . . . ,  s) are smooth. Then there exists a smooth germ L such that (Ci , L) =  
d(C) for i =  1 , . . . ,  s.

P r o o f . If d(C) =  to, then C is smooth and we take L =  C . If d(C) =  1, 
then we take a smooth germ L such that C and L are transversal. Let k =  d(C) 
and suppose that 1 < k < to. By formula (d4) , we get inf{(Ci,C j) : i , j  =
1 . . . . , s }  =  k. We may assume that (C1,C 2) =  . ..  =  (C1,Cr) =  k and 
(C1,C j) > k for j  > r for an index r, 1 < r < s. There is a system of
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coordinates (x,y) such that Cj (j =  1 , . . . ,r) have equations y =  Cjxk +  . ..  It 
suffices to take L : y — cxk =  0, where c =  Cj for j  =  1, . . . , r .  □

Lemma 5.3. Suppose that C is an N-germ and let (C (i)) 1<i<s be a decom­
position of C as in Definition 3.1. Then there is a smooth germ L such that 
d(Cj(i), L) =  d(C(i)) for all j .

P r o o f . Step 1. There is a smooth germ L such that d(Cjs), L) =  d(C(s)) 
for all j . If d(C(s)) e N U {to }, then the existence of L follows from Lemma 5.2. 
If d(C(s)) e N U { to}, then all components Cjs) have the same characteristic 
pair (as,bs). Fix a component C js  and let L be a smooth germ such that 
d(Cjos),L) =  d(Cjos)) =  d(C(s)).
Let j 1 =  jo . Then d(Cjxs),L) > in f {d (C £ C jos)),d(C jos),L )} =  d(C(s)). On the 
other hand, d(C(s),L) < d(Cjs)) =  d(C( s)) and we get d(Cjs),L) =  d(C(s)). 
Step 2. Let L be a smooth germ such that d(Cj s),L) =  d(C( s)) for all j . We 
will check that d(Ĉ (i), L) =  d(C(i)) for each i and j . To this purpose, fix i < s. 
Let j  be a component of C (s). Then d(Cji),C jQs)) =  inf{d(C(i)) ,d(C(s))}  =  
d(C(i)) . By (d3) , we get d ( a f , L )  > inf { d(Cf ,C jos)),d(C jos), L)} =  
inf{d(C(i)), d(C(s))}  =  d(C(i)). On the other hand, d ( C f , L )  < d(Cj(i)) =  
d(C(i)), which completes the proof. □

Remark 5.4. In the notation of the above lemma we have (C (i),L) =  
m(C (i))d(C(i)) for i =  1, . . . , s .

Indeed, if Ĉ (i) are branches of C (i), then

(C(i) ,L) =  £ ( C f ,L) =  £  m(Cf )d(Cf ,L)
j j

=  £  m (C f)d (C (i)) =  m(C(i))d(C(i)) . 
j

Lemma 5.5. Let C be an N-germ and let (C (i)) 1<i<s be a decomposition 
of C as in Definition 3.1. Then

l (C ) = £ (  m (C (i)) — 1)(m(C (i))d(C(i)) — 1)
i

+  2 £  m (C (i))m (C(j)) inf{d(C(i)), d(C(j)} — s +  1 .
i<j

Proof. Use properties (|1) ,(|2) and (|3) of the Milnor number. □
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To prove implication (2)^ (1) of Theorem 3.2, suppose that C is an N-germ 
and let (C (i))i=i,...,s be a decomposition of C such as in Definition 3.1. Let L 
be a smooth branch such that (C (i), L) =  m (C(i))d(C(i)) for i =  1 ,. . . ,  s (such 
a branch exists by Lemma 5.3 and Remark 5.4). Take a system of coordinates 
such that {x  =  0} and C are transversal and L =  {y =  0}. Then we get

A (C) =  V '  A (C(i)) =  ^  i (C ^  {y =  0})\ =  ^  im(C(i))d(C(i)))
Ax,y (C) ¿ Ax,y (C ) ¿I m (C(i)) J ¿1 m (C(i)) 1

and consequently

s
V(Ax,y(C)) =  £ ( m ( C (i)) -  1)(m(C(i))d(C(i)) -  1)

i=1
+  2 ^  m (C(i))m (C(j))in f{d (C (i)),d (C (j))}  -  s +  1

1<i<j<s
=^(C )

by Lemma 5.5. Therefore, ^(C) =  v(A x,y(C)) and C is non-degenerate with 
respect to (x,y) by Theorem 4.1.

6. P ro o f o f  Theorem  3.4. The Newton number v(C ) of the plane curve 
germ C is defined to be v(C ) =  sup{v(Ax,y(C)) : (x,y) runs over all charts 
centered at O}.

Using Theorem 4.1, we get

Lemma 6.1. A plane curve germ C is non-degenerate if and only if 
v(C ) =  M C).

The proposition below shows that we can reduce the computation of the 
Newton number to the case of unitangent germs.

P roposition  6.2. If C =  (J^=1 C k (t > 1), where {C k} k are unitangent 
germs such that (Ck, C1) =  m (Ck)m((71) for k =  l, then

v(C ) —(m(C ) - 1 ) 2 =  max1<k<i<t{(v (C k )- (m (C  k ) - 1 ) 2)+ (v  (C1 ) - (m (C 1 ) - 1 ) 2)}.

P r o o f . Let nk =  m (Ck). Suppose that {x  =  0} and {y =  0} are tangent 
to C . Then there are two tangential components C kl and Ck2 such that {x  =  0} 
is tangent to Ckl and {y =  0} is tangent to C k2. Now there is
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v(Ax,y (C )) =  v ( ^  Ax,y (Ck )) =  v (Ax,y (Cki )) +  v (Ax,y (C ̂  ))
k=i

+  v(A x,y(Ck)) +  2 A x,y(Ck), A x,y(C )  — Î +  1
k=ki,k2 i<k<1<t

= v(A x,y(Ckl)) +  v(A x,y(Ck2)) +  (nk — 1)2 +  2^^ nkn1 — Î +  1)2
k=ki,k2 i<k<1<t

2=  v(Ax,y(Ckl)) -  (nki -  1)

+  v(A x,y(Ck2)) -  (nk2 -  1)2 +  (m(C) -  1))2.

The germs C ki and Ck2 are unitangent and transversal. Thus it is easy to 
see that there exists a chart (xi ,y i ) such that v (Axi,yi(Ck)) =  v(Ck) for
k =  ki , k2.
If {x  =  0} (or {y =  0}) and C are transversal, then there exists a k G {1 , . . . ,  t} 
such that v(A x,y(C)) =  v (Ax,y(Ck)) -  (nk - 1)2 +  (m(C) - 1))2 and the propo­
sition follows from the previous considerations. □

Now we can pass to the proof of Theorem 3.4. If t(C ) =  1 then C is non­
degenerate with respect to a chart (x,y) such that C and {x =  0} intersect 
transversally and Theorem 3.4 follows from Theorem 3.2. If t(C ) > 1, then by 
Proposition 6.2 there are indices ki < k2 such that

(a) v(C) -  (m(C) - 1)2 =  v (Cki) -  (m(Cki) - 1)2 +  v(Ck2) -  (m(Ck2) - 1)2 .
On the other hand, from basic properties of the Milnor number we get

(0) M C) -  (m(C) -  1)2 =  E k(M C k) -  (m(Ck) -  1)2) .
Using (a), (0) and Lemma 6.1, we check that C is non-degenerate if and only 
if ^(Cki) =  v(Cki), ^(Ck2) =  v (Ck2) and ^(Ck) =  (m(Ck) - 1)2 for k =  ki,k2 . 
Now Theorem 3.4 follows from Lemma 6.1 and Corollary 4.3.

7. Concluding remark. M. Oka in [6] proved that the Newton number 
like the Milnor number is an invariant of equisingularity. Therefore, the invari­
ance of non-degeneracy (Corollary 3.5) follows from the equality v(C ) =  ^(C) 
characterizing non-degenerate germs (Lemma 6.1).
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