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We consider a version of the Skyrme model where both the kinetic term and the Skyrme term are
multiplied by field-dependent coupling functions. For suitable choices, this “dielectric Skyrme model” has
static solutions saturating the pertinent topological bound in the sector of baryon number (or topological
charge) B = +£1 but not for higher |B|. This implies that higher charge field configurations are unbound,
and loosely bound higher skyrmions can be achieved by small deformations of this dielectric Skyrme

model. We provide a simple and explicit example for this possibility.
Further, we show that the |B| =1 BPS sector continues to exist for certain generalizations of the model
like, for instance, after its coupling to a specific version of the BPS Skyrme model, i.e., the addition of the
sextic term and a particular potential.
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1. Introduction

The Skyrme model [1-3] is one particular proposal for a low-
energy effective field theory (EFT) of strong-interaction physics
[4-6] and, in particular, for the description of baryons and nuclei.
Its primary fields are mesons, whereas baryons and nuclei emerge
as topological solitons (Skyrmions) [7-10] supported by the model.
The Skyrme model incorporates many nontrivial features of low-
energy QCD (baryon number conservation, chiral symmetry and its
breaking, current algebra results, ...) in a completely natural way.
It also reproduces some quantitative properties of nucleons and
several light nuclei with reasonable success [11-19]. Several short-
comings, however, impede its use as a general and quantitatively
precise EFT of nuclear physics. Two major problems of the model
are the too large binding energies of higher-charge Skyrmions and
the absence of alpha-particle clusters inside them. Physical nuclei
have rather small binding energies (always below 1%) and fre-
quently possess an alpha-particle substructure. The Skyrme model
permits many generalizations, e.g., the addition of more terms [20]
and the inclusion of further meson fields [21-25], and some of
these generalizations allow to significantly alleviate these short-
comings [26-34].

The model proposed in the present letter is mainly motivated
by the first problem (the too large binding energies), because
the theory of topological solitons provides simple and system-
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atic methods to search for models with small binding energies. A
systematic method to predict alpha-particle substructures for the
Skyrmions of a particular model, on the other hand, is currently
not known. To answer this question, at present full numerical
calculations of higher charge solitons are required [34]. A better
qualitative understanding of the formation of substructures within
Skyrmions would certainly be desirable.

The original version of the Skyrme model restricts the field con-
tent to pions and is given by the following Lagrangian density

L=Ly+ L4+ Lo (1)
where
Ly =coTr 8, Ud"UT, L4=caTr([Ry, Ry])? (2)

are the kinetic (Sigma model or Dirichlet) term and the Skyrme
term, respectively. Here, the field U takes values in SU(2), and
Ry = 8,UU™! is the right-invariant current. Further, Lo =
—coU(TrU) is a potential term, where a frequent choice is the
pion mass potential U; = (1/2)Tr (I — U). Finally, the ¢; are cou-
pling constants.

In the small-field limit, which is relevant for large distances, the
Dirichlet term quadratic in the pion field dominates and induces
attractive channels between Skyrmions. That is to say, there exist
certain relative orientations between individual B = 1 Skyrmions
(modeling nucleons) such that they attract each other, and they
may be arranged in arrays such that all nearest neighbors attract.
The formation of bound states, i.e., the existence of higher charge
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Skyrmions with rest energies below the total mass of their con-
stituents is, therefore, expected, and this is indeed what happens.
If the pion mass term quadratic in the pion field is included, then
the attractive forces change from power-law to exponential, but
bound states still form. The resulting binding energies are, in fact,
much larger than the binding energies of physical nuclei (see, e.g.,
[7D).

The Skyrme model (1) permits many generalizations. First of all,
more general choices for the potential apart from the pion mass
term are possible. Secondly, terms with higher powers of deriva-
tives may be added. Among these, a particular term of a sixth
power in first derivatives is singled out,

L6 = —(247%)*ce B, BH, (3)

because this term is still quadratic in time derivatives and leads to
a standard Hamiltonian. Here, B* is the baryon current,

Bt = 2417€W°Tr RyRoRs, B= /d3x80, (4)
which allows to calculate the baryon number (topological charge)
B. Thirdly, in addition to the pions, further fields may be included
in the model.

Given this vast landscape of possible generalizations, arbitrar-
ily choosing a model inside it and calculating its higher charge
Skyrmions does not seem to be an efficient strategy for find-
ing models with low binding energies. Topological soliton models
like the generalized Skyrme models, however, allow to find non-
trivial topological energy bounds [35], [36]. For Skyrme models
in Minkowski space-time, they are always exactly linear in the
topological charge (baryon number) [28], [37]. Further, so-called
Bogomolny equations can be found [35], which imply that the cor-
responding bound is saturated. These bounds and their Bogomolny
equations are valuable tools in the search for Skyrme models with
small binding energies. In a first step, certain submodels (so-called
BPS models) must be identified which possess both a topologi-
cal bound and nontrivial solutions (BPS Skyrmions) saturating the
bound. The existence of the BPS Skyrmions implies that the bind-
ing energies in the model are either zero or negative. Models with
small binding energies can then be constructed by certain “small”
deformations of the BPS submodels.

More concretely, a BPS submodel may either support BPS
Skyrmions with arbitrary baryon number. Their energies are then
exactly linear in B and the resulting binding energies are zero. This
is the case of the BPS Skyrme model [26], consisting of the sex-
tic term (3) and an arbitrary potential, or of the Skyrme model
with an infinite tower of vector mesons [32], obtained from a di-
mensional reduction of a higher-dimensional Yang-Mills theory.
The other possibility is that the BPS submodel has a BPS Skyrmion
only in the B = %1 sector. Higher B solutions are then unstable,
and the resulting “binding energies” are negative. In other words,
the induced forces between the B =1 BPS Skyrmions are always
repulsive. This is the case of the BPS submodel discovered by D.
Harland [28], and the model investigated in the present letter also
belongs to this class. We remark that for BPS submodels based
only on pion fields, either the absence of the Dirichlet term or its
suppression in the small-field limit (e.g., by making it effectively
higher than second order, or by enhancing other terms) is a neces-
sary condition, as follows from the attractive forces induced by this
term. Any deformation to a realistic near-BPS model must correct
this behavior in the region of small pion fields.

In the present letter, we further develop the recent observation
that the minimal Skyrme model with a very particular running pion
decay constant enjoys the BPS property [38]. We generalize this
finding to the case of two running coupling constants (the pion
decay constant fr and the Skyrme parameter e). Here, the form of

these functions is arbitrary while their product is fixed by the BPS
condition. Then we show how a near-BPS sector can be reached via
a breaking of the BPS condition. Importantly, already the simplest
and most natural BPS breaking is capable of producing arbitrar-
ily small binding energies and can bring the coupling constants to
their physical values. Finally, we consistently (i.e., preserving the
BPS property) add the usual BPS Skyrme model into the frame-
work.

2. The dielectric Skyrme model

We consider the static energy functional of the minimal Skyrme
model (1),

E=ES+Ed, (5)
consisting of the kinetic term (Dirichlet energy),
gl [ ’ Tr (RiR)d> 6
2= _7 r (RiRy)d°x, (6)
R3
and the quartic Skyrme term
1
d 3
E :/_W Tr ([Ri, Rj1[Ri, RjDd"x. (7)
R3

In contrast to the standard case, however, we assume that instead
of the coupling constants c; and c4 now we have field-dependent
coupling functions f and e. This is explicitly indicated by the
index d (dielectric). In particular, we assume that they are func-
tions of the trace of the Skyrme field Tr U, implying that the
isospin symmetry remains unbroken. Equivalently, using the stan-
dard parametrization (here T are the Pauli matrices)

U =exp(it®)T -0(X)), (8)

of the Skyrme field in terms of a profile function & and an isospin
unit vector n, the coupling functions only depend on the profile,

f=f©), e=e®).
2.1. Topological bound and Bogomolny equations

To find the pertinent topological bound we follow the standard
method based on the three eigenvalues A% of the strain tensor
Djj = —% Tr (R;R;) [39]. Then, the static energy can be rewritten
as

1
Ed =/ [fz (33 +23+23)+ = (3+333 +A§A%)] Px
R3
1 2 1 2
= (fra £ Elz)@) +(fr £ E)GM) + (fAs
R3
1 2) 3 f 3
:I:E)q)\z) d°xF6 ;k]kz)@d X
R3

>6 /g)q)nz)\gdgx :127r2<£>|3|, (9)
3

where (F) is the average value of a target space function F over
the whole S3 target space. The last step follows from the fact that
the baryon density By is just

1
Bo = —=A1A2A3. 10
0= _5hAaks (10)
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The bound is saturated if and only if the following dielectric
Bogomolny equations hold,

1 1 1
f)u]:l:g)uz)qzo, szj:EA1A3:0, f)\.3:|:E)\.‘1)\.2:O, (11)
which after a straightforward manipulation result in

M=r=r=e*¢) ). (12)

In the standard case, where f and e are constant, the Bogomolny
equations can not be satisfied for non-zero B in R3 space. Indeed,
then all eigenvalues must be constant which contradicts the finite-
ness of the energy for solutions of the Bogomolny equations. Here,
on the other hand, the rh.s. of (12) is a function of &, which can
tend to 0 for |[X| — oo. If we require that the Skyrme field U ap-
proaches the perturbative vacuum U =1 (i.e., & — 0) for |x| — oo,
then at least one of the two coupling functions, e or f, must ap-
proach zero at £ = 0. We shall find that the solution presented in
the next section automatically obeys this requirement.

2.2. B =1 BPS solution

It is known that for R3 base space the Bogomolny equations
(12) admit a topologically nontrivial solution if

1
ef—2

=—Tr (I -U) (13)
o

where rp > 0 (we chose the plus sign). In fact, this result was
first obtained in the context of a BPS submodel considered by D.
Harland [28], consisting of the Skyrme term and the particular po-
tential 44 = (Tr (I — U))*. The corresponding Bogomolny equations
are identical to (12) after the identification (ef)* =i and have
solitonic solutions in the B = 41 topological sectors. Skyrmions
with higher values of the baryon charge do not obey the Bo-
gomolny equations and, therefore, do not saturate the pertinent
topological bound.

Following [28], the charge B =1 solution of our model can be
easily found. We assume a natural spherical symmetry provided
by the hedgehog ansatz & = £(r), 1l = (sinf cos ¢, sin@ sin ¢, cosH)
in spherical polar coordinates (r, 6, ¢). The unit three component
isovector i can be expressed via the stereographic projection by a
complex field u

1
o [3%3 o~ _ 2
n= TP (Z.h(u),zms(u),l [u| ) (14)

where u(6, ¢) =tan %eid’. Then the eigenvalues are

2
sin“ &

M=g, p=ii=—0 (15)
The equality of the AIZ leads to a first order ODE

sin&
f=—"". (16)

r

This should be completed with the third equality in (12)

1
& = ——(1 —cos&). (17)

o
These two equations have a common solution

T

E:Zarctan?o (18)

which interpolates between 7 and 0 as r changes from 0 to in-
finity. This finally constitutes a BPS Skyrmion with unit topological

charge. We remark that solution (18) also coincides with the solu-
tion found in [40], where the Skyrme field is coupled to a second,
non-dynamical field.

To compute the energy of the B =1 solution we must decide
how the coupling functions depend on the target space coordinate
&. These functions are, however, arbitrary provided the condition
(13) is fulfilled. Here we consider the following possibility

e=eo(1—cos&)®, f=fo(l—cosg)!™ (19)

with a real parameter «. Further, eg and fo are dimensional con-
stants setting the energy scale Eg = £—8 and the length scale rg =
ﬁ. They do not have to correspond to physical values. Then us-

ing the explicit formula for the target space average integral

T T
<£> = E/Sinz §d¢ = E&/‘Sinzé(l —cos&)1 2 ge
e T )
0 0
gl S _
_ 2.4 &F[2 20] 20
J7T eo T4 —2u]
finally, we get
.4l-a 3 _
Ed=]27'[22 4 fOF[z za] (2])

JT eo M4—2a]’

Despite the appearance of a zero in e (and, for some parameter
values, a singularity in f) the energy integral converges for o < %.
This includes three qualitatively very different cases. Namely, for
o < 1 the coupling function f increases with &, from f(§ =0)=0
to f(¢ =m) =217 fy, which means that it has bigger value inside
the BPS Skyrmion than in the vacuum. For o = 1, the function f is
just a constant. Finally, for o € (1, %) f decreases with &. There-
fore, it has a bigger value in the vacuum than inside the Skyrmion
(here f(¢§ =0)=o00). We remark that the case o« =0 was consid-
ered already in [38], in a slightly different context.

The BPS constraint only determines the ratio between the run-
ning couplings f and e, therefore, the above choice of these func-
tions should be regarded just as an example to get a qualitative
picture of the allowed possibilities in the dielectric Skyrme model.
Indeed, the particular form of one of the functions can be chosen
arbitrarily, e.g., by fitting to the in-medium dependence of cou-
pling constants. These fits, however, should always be done after
breaking the BPS property (see below), where the vacuum con-
stants approach their physical values.

The restrictive form of the Bogomolny equations excludes so-
lutions with higher values of the topological charge for the same
model (the same dielectric functions e and f). The arguments pre-
sented in [28] likewise hold for the dielectric Skyrme model. The
result is that higher charge Skyrmions are not BPS solitons and
have energies higher than B - E(B = 1). Thus, they are energetically
unstable towards a decay into a collection of separated charge one
BPS Skyrmions. To conclude, there are no stable B > 1 Skyrmions.

Obviously, the fact that at least one of the coupling functions
approaches zero at the vacuum may have a significant impact on
the (time-dependence of) non-BPS solutions (solutions of the di-
electric BPS model that do not obey the BPS equations). For exam-
ple, for our choice (19), we find that the profile function of any
non-BPS solution must tend to the vacuum faster than 1/r", where
n > 1/(4a —4) (spherical symmetry assumed). For realistic physical
applications, however, always a near-BPS completion of the dielec-
tric BPS model should be considered, where the coupling functions
tend to their physical values in the vacuum (see below). Then, the
time-dynamics as well as the perturbative properties of the model
close to the vacuum coincide with the standard Skyrme model.
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2.3. Adielectric near-BPS Skyrme model

The behavior (13) of the dielectric functions is not phenomeno-
logically acceptable close to the vacuum & = 0. A rather obvious
proposal for a realistic near-BPS model is a deformation which
changes (13) to a nonzero value for & — 0 but leaves it essentially
untouched for sufficiently large &. This proposal has the twofold
advantage that, i), it recovers the correct small-field limit and,
i), it should provide small binding energies, because small-field
regions only make small contributions to the total energy. For a
fully realistic model one probably prefers smooth dielectric func-
tions f(¢) and e(&), but for the less ambitious goal of finding
estimates for the binding energies of near-BPS models, continuous
functions are sufficient. Concretely, we shall assume e = 1, whereas
f is given by the expression resulting from (13) for & € [&, 7],
but by the constant value f, = f(&,) for the near-vacuum region
& € [0, &]. For our specific example we choose &, = (5 /6) which
is small but not very small. Further, the size parameter rq is irrel-
evant for our energy considerations, therefore we choose ro = 1.
That is to say, we choose de dielectric Skyrme model with the di-
electric functions

:‘l,
) = {f*
T
=% (22)

1—cosé& el ]
l—cos&=1-% ... £€[0,&]

)

For & € [&,, ], the contribution E~ to the energy is given by the
accordingly restricted BPS bound,

e

E” = Ejpg = 12772 (1 — cos &)~ :24n/d§ sin? £(1 — cos£)

ol

=7 (107 + 1+ 3+/3) ~ 118.162. (23)

For & € [0, &,], the contribution to the BPS bound is simply given
by the accordingly restricted Skyrme-Faddeev bound,

Egps =247 f, | désin®& =7 f,(2m —3v/3)~0.4576.  (24)

O\ml:l

For the contribution E= to the true energy, we should, in principle,
find the hedgehog solution of the minimal Skyrme model (with
coupling constants e =1 and f = f,) in the region £ € [0, &,] with
the corresponding boundary conditions. But if we only want to
find an upper bound for the binding energy, then an upper bound
Ey > E= is sufficient. Such upper bounds can be found by insert-
ing certain trial functions instead of the true hedgehog solution
into the energy functional. One first possibility is to use the same
BPS solution (18), but it turns out that this is a lousy approxima-
tion, because it has the wrong large r behavior. The solution of the
minimal Skyrme model behaves like r—2 for large r, so the sim-
plest possible trial function with this behavior is
- r2 1 1
TN =847 T>Ty, Te= =3

Here, r, is the radius where the BPS solution (18) takes the value
&, such that the BPS solution for r <r, and the trial function &<
for r > r, together define a continuous function. Its first derivative
is no longer continuous (has a finite jump at r,), but this is suf-
ficiently regular for our energy estimates. The numerical values of
our parameters are

— (25)
tan 5

fy>~0.1340, r,~3.7320, C= i—‘*r ~7.2928. (26)
For the upper energy bound we finally get
o
E; =E§’2+E§4z4n/drr2(5b,2+€b,4) (27)
Tx
where
102 2
sin“(C/r?)
&= f} ( t2—a— (28)
c2 iod 2
C sin*(C/r
Sb4_8—51 n? +%. (29)
Performing the integrations numerically, this leads to
E5, =47 f7 - 2.0203 = 0.4559, (30)
E;A =47 -0.2359 = 0.2359, (31)
E;:E;2+E§4:O.6918. (32)

For the relative binding energies we, therefore, get the following

upper bound,

BE(1) — E (B)
E(B) - EBPS—i-EBPS

Ey —Egps _ 0.235
118.6

AE(B)
E(B)

=0.00198,

(33)

where E(B) is the energy of a skyrmion with baryon number B.
In other words, relative binding energies for the dielectric Skyrme
model defined by the dielectric functions of Eq. (22) must al-
ways be below 0.2%. This example demonstrates that the dielectric
Skyrme model not only allows to find submodels with small bind-
ing energies. It provides, in fact, an extremely simple and natural
mechanism to construct such models with arbitrarily small binding
energies.

We remark that the same mechanism holds for any other choice
of the running functions, also those where f takes a singular value
at &£ = 0. This is important, since a particular form of f (and, con-
sequently, e) should not only reproduce its vacuum value f, (after
the BPS breaking) but also, at least qualitatively, the experimental
in-medium dependence.

3. Inclusion of the sextic term and potential
3.1. Dielectric BPS Skyrme model

If generalizations of the Skyrme model at most quadratic in
time derivatives are considered, which still lead to a standard
Hamiltonian, then two possible terms may be added. Namely, the
sextic term with static energy Eg = g272/33, and a non-derivative
term, i.e., a potential Eg = U. The two terms together form the
so-called BPS Skyrme model

Egps =E6+ Eo (34)

Here g is a positive constant.

This model is interesting because some of its properties co-
incide with several relevant features of nuclear matter (atomic
nuclei). First of all, it is a BPS theory where the corresponding Bo-
gomolny equation has solitonic solutions in any topological sector.
Thus, stable BPS solitons with arbitrary values of the baryon charge
exist. As a consequence, the model provides zero binding energies
at the classical level. Rather realistic physical binding energies can
be obtained already within the model, if some natural classical and
quantum corrections are included [27]. Secondly, the static energy
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functional enjoys a large symmetry group, i.e., the volume preserv-
ing diffeomorphisms. This means that the energy of a BPS soliton
does not depend on its shape and is constant provided the vol-
ume remains unchanged. In fact, this symmetry is the symmetry
of a liquid if the surface energy is negligible. Furthermore, the BPS
Skyrme Lagrangian describes a perfect fluid. This reproduces at the
field theoretic level the liquid drop model.

Let us now promote the constant g to a function of the target
space variable, Tr U. We do not consider any dielectric function for
Eo, as any functional dependence may incorporated into the poten-
tial. The resulting dielectric version of the BPS Skyrme model still
possesses a non-empty self-dual sector. To see this, we compute
the corresponding topological bound

2
E‘;P5=/<%A%A§A§+u> &x

T
R3
1
:/(ik]kz)g:l:«/a)dBXZF—/g\/a)q)\z)\gdgx
21 T
R3 R3
1
= — /gx/ak1kzxgd3x —27 (g\/&>|3|. (35)
R?:

The bound is saturated if and only if the following Bogomolny
equation is obeyed

%xlxm +vU=0. (36)

This can be transformed into the Bogomolny equation of the stan-
dard (non-dielectric) BPS Skyrme model by introducing a new po-
tential I = g2U. In other words, the dielectric function can always
be incorporated into the potential. As a consequence, the SDiff in-
variance of the BPS solutions survives. To conclude, the dielectric
generalization of the BPS Skyrme model does not change the main
qualitative properties of the model. In realistic applications, the
functions g and U should, of course, be constrained by experimen-
tal data.

3.2. B =1 BPS solution of the generalized dielectric Skyrme model

Owing to the large freedom in the (dielectric) BPS Skyrme
model, it is possible to find such functions g and ¢/ that the Bogo-
molny equation shares some solutions with the Bogomolny equa-
tions for the dielectric minimal Skyrme model (11).

In the unit charge sector, a Skyrmion again can be obtained by
the hedgehog ansatz. Thus, eq. (36) leads to

1 g@sin’es o

= 37
27 r2 (37)

Assuming that the solution should be of the form (18) we can find
that

N 1 3 1
—_—= ] - =
(1 —cosé) 16

Tr (I — U))3 38
2 27”3 mg(r( ) (38)

Thus, we have proven that the generalized dielectric Skyrme model

EY=E9 4+ Ed+ Ed + Eo (39)

has a BPS unit charge solution provided the dielectric functions
and the potential obey relations (13) and (38).

Note that the addition of the minimal (dielectric) Skyrme model
breaks the SDiff symmetry explicitly. Furthermore, higher charge
Skyrmions are again unstable towards decay into separated BPS
Skyrmions.

4. Possible applications and conclusions

A first, general observation is that there exists a rather large
freedom in the construction of near-BPS Skyrme models, where
solitons form bound states with small binding energies. The di-
electric Skyrme models proposed in the present letter constitute a
new and interesting possibility for this phenomenon, which should
be further explored. In particular, the inclusion of the sextic term
(or the BPS Skyrme model) into the full BPS submodel is inter-
esting, because this part of the complete model gives the leading
behavior in the high density (pressure) regime [41].

Small classical binding energies require that the BPS property
in the B =1 sector is weakly broken. This can be achieved by a
deformation of the constraints on the dielectric functions and the
potential (13), (38). For any deformation to a physically relevant
near-BPS model we should impose that close to the perturbative
vacuum (& = 0) the dielectric functions tend to the non-zero vac-
uum values f(¢§ =0) = f; and e(§ =0) = eg. But these conditions
only affect the small-field regions which provide rather small con-
tributions to the total energy of a soliton. In other words, if we
choose deformations such that the coupling functions remain (al-
most) unchanged for large field values, then the resulting binding
energies are expected to be small. We demonstrated in a concrete
and simple example that this is indeed the case, and the resulting
binding energies can be made extremely small. That is to say, the
most natural deformations of the dielectric BPS Skyrme model, i.e.,
those which just recover the phenomenologically correct small-
field limit, automatically provide very low binding energies, by
construction.

A related question concerns possible physical interpretations or
justifications for the (deformed) coupling functions. From an effec-
tive field theory point of view, they simply correspond to higher
order terms in the field expansion which may be taken into ac-
count. They are not forbidden because they respect the relevant
symmetries. Further, after the deformation, they also reproduce the
correct small-field limit. Another possibility is to interpret the di-
electric functions as in-medium coupling constants, in particular,
f as an in-medium pion decay constant. In fact, owing to the arbi-
trariness of one of the coupling functions in the minimal dielectric
Skyrme model, f may be chosen to qualitatively reproduce the in-
medium behavior of the pion decay constant. The same concerns
the dielectric function g and especially the potential &/, which in
the small field-limit in vacuum should tend to the pion mass po-
tential m?Tr (I — U).

The possible relation between (near)-BPS structures and in-
medium properties of Skyrmions (in-medium Skyrme models, see,
e.g., [42-45]) indicated above is an interesting observation which
deserves a more profound investigation.

We remark that the condition (38) also allows to add the model
Eq+ Uy of [28].
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