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We study solvability of the Diophantine equation

n

2n
=

k∑
i=1

ai

2ai
,

in integers n, k, a1, . . . , ak satisfying the conditions k ≥ 2
and ai < ai+1 for i = 1, . . . , k − 1. The above Diophantine 
equation (of polynomial-exponential type) was mentioned in 
the monograph of Erdős and Graham, where several questions 
were stated. Some of these questions were already answered 
by Borwein and Loring. We extend their work and investigate 
other aspects of Erdős and Graham equation. First of all, 
we obtain the upper bound for the value ak given in terms 
of k only. This mean, that with fixed k our equation has 
only finitely many solutions in n, a1, . . . , ak. Moreover, we 
construct an infinite set K, such that for each k ∈ K, 
the considered equation has at least five solutions. As an 
application of our findings we enumerate all solutions of the 
equation for k ≤ 8. Moreover, by applying greedy algorithm, 
we extend Borwein and Loring calculations and check that for 
each n ≤ 104 there is a value of k such that the considered 
equation has a solution in integers n + 1 = a1 < a2 < . . . <
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ak. Based on our numerical calculations we formulate some 
further questions and conjectures.
© 2020 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In the very interesting book [2] Erdős and Graham stated many number theoretic 
problems. Some of them are related to Diophantine equations. At page 63 of this book 
the authors consider the following non-standard Diophantine equation

n

2n =
k∑

i=1

ai
2ai

, where k > 1, (1)

which can be seen as an equation of polynomial-exponential type. The authors stated 
some questions concerning this equation. For example, they asked whether for each 
n ∈ N+ there is a solution of (1), i.e., we look for solutions in k, a1, . . . , ak; or whether 
for each k ∈ N+ there is a solution of (1), i.e., we look for solutions in n, a1, . . . , ak. 
Moreover, the considered related problem of representations of real numbers α ∈ (0, 2)
in the form

α =
∞∑
i=1

ai
2ai

.

These questions were investigated by Borwein and Loring in [1]. In particular, in the 
cited paper, the authors proved that for each k there is a solution of (1). Moreover, 
they proposed an algorithm which, for a given n, allows to find (conjecturally finite) 
representation of n/2n in the form 

∑k
i=1

ai

2ai
[1, Conjecture 1]. However, they do not 

investigate other Diophantine questions related to (1). In particular, we are interested 
in the following questions, which in the light of findings of Borwein and Luring are quite 
natural.

Question 1.1. What can be said about the number of solutions of (1) when k is fixed? Is 
it possible to enumerate all solutions of (1) for small values of k?

Question 1.2. Is it possible to bound ak in terms of k only?

Let us describe the content of the paper in some details. In Section 2 we offer basic 
theoretical results concerning the solutions of (1). We first enumerate all solutions of 
equation (1) for k ≤ 8. However, the most interesting part of this section is the proof 
of the inequality ak ≤ 2k+2 + 2k(log2 k− 1) − 4. This answer Question 1.2 affirmatively. 

http://creativecommons.org/licenses/by/4.0/
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In particular, for any given k, the considered equation has only finitely many effectively 
computable solutions in integers n, a1, . . . , ak.

In Section 3, by solving certain discrete logarithm problems we construct an infinite 
set K, such that for each k ∈ K equation (1) has at least five solutions in positive 
integers n, a1, . . . , ak. Moreover, we apply a modification of greedy strategy of Borwein 
and Loring and prove that for each n ≤ 104 equation (1) has a solution in positive 
integers k, a1, . . . , ak. As an application of our approach we construct an infinite set R of 
rational numbers, such that for each x ∈ R the number x has at least nine representations 
in the form 

∑∞
i=1 ai/2ai . Moreover, based on our numerical data we formulate precise 

conjecture concerning the quantity of ak, i.e., ak ≤ 2(n +k). We prove that our conjecture 
is true for all n satisfying n ≥ 2k − k.

2. Theoretical results

We start with some easy observations related to equation (1).

Theorem 2.1.

(i) Let k be fixed. If the equation (1) has a solution, then n ≤ 2k+1 − k − 2.
(ii) If (1) holds then n + 1 ≤ a1 ≤ n + 3 and 2ak−ak−1 |ak. Moreover, if n ≥ 2j+1 − j for 

some 1 ≤ j < k, then

ai = n + i, for i = 1, . . . , j.

Proof. Let us suppose that (1) has a solution for n. It is clear that a1 ≥ n + 1 and thus 
ai ≥ n + i for each i ∈ {1, . . . , k}. Because the function f(x) = x/2x is decreasing for 
x ≥ 1 We immediately get the inequality

n

2n =
k∑

i=1

ai
2ai

≤
k∑

i=1

n + i

2n+i
= (2k − 1)n + 2k+1 − k − 2

2n+k
.

By solving the resulting inequality we get the upper bound for n in terms of k. Indeed, 
we have n ≤ 2k+1 − k − 2.

To prove the second part of our theorem let us suppose that a1 ≥ n + 4. Thus, 
ai ≥ n + 3 + i for i = 1, . . . , k and in consequence

n

2n =
k∑

i=1

ai
2ai

≤
k∑

i=1

n + 3 + i

2n+3+i
= (2k − 1)n + 5 · 2k − k − 5

2n+k+3 .

By solving the resulting inequality with respect to n we have

n ≤ 5 · 2k − 6
k

< 1
7 · 2 + 1
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and get a contradiction. Thus n + 1 ≤ a1 ≤ n + 3.
The divisibility 2ak−ak−1 |ak is clear. Indeed, multiplying (1) by 2ak−1 we see that the 

number

2ak−1−nn−
k−1∑
i=1

2ak−1−aiai

is an integer equal to ak

2ak−ak−1 and hence 2ak−ak−1 |ak.
Finally, to get the last statement we proceed by induction on j ≥ 1. Let us start with 

j = 1, so n ≥ 3. If a1 �= n + 1, then a1 ≥ n + 2 and

n

2n =
k∑

i=1

ai
2ai

≤
k∑

i=1

n + 1 + i

2n+1+i
<

∞∑
i=n+2

i

2i = n + 3
2n+1 ,

and so n < 3, a contradiction. Let us now take n ≥ 2j+2 − j− 1. Since also n ≥ 2j+1 − j, 
by the induction hypothesis we get that ai = n + i for 1 ≤ i ≤ j. If aj+1 ≥ n + j + 2, 
then

n

2n =
k∑

i=1

ai
2ai

≤
j∑

i=1

n + i

2n+i
+

k∑
i=j+1

n + 1 + i

2n+1+i

<
n(2j − 1) + 2j+1 − j − 2

2n+j
+

∞∑
i=n+j+2

i

2i

= n(2j − 1) + 2j+1 − j − 2
2n+j

+ n + j + 3
2n+j+1 = n(2j+1 − 1) + 2j+2 − j − 1

2n+j+1 .

As a consequence we get n < 2j+2 − j − 1, a contradiction that completes the induction 
step. �
Remark 2.2. We observed that the necessary condition for solvability of (1) is the in-
equality n ≤ 2k+1 − k− 2. This condition can not be improved. Indeed, as was observed 
by Borwein and Luring, if k is fixed and n = 2k+1 − k − 2, then we have the equality

k∑
i=1

n + i

2n+i
= n

2n ,

i.e., equation (1) has a solution ai = n + i, i = 1, . . . , k.

The divisibility property noted in the last part of Theorem 2.1 can be strengthened 
as follows.
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Theorem 2.3. Let a1 < . . . < ak be a solution to equation (1) and 1 ≤ i ≤ k − 2. Then

2ak−ai ≤ (ai+2 · ai+3 · . . . · ak−1 · ak) · ak

Proof. We first note that for i = k − 1 we get 2ak−ak−1 ≤ ak by Theorem 2.1(ii). We 
will proceed by induction on j = k − i, starting with j = 2, i.e. i = k − 2. Multiplying 
equation (1) by 2ak−2 we get

n · 2ak−2−n =
k−2∑
s=1

as · 2ak−2−as + ak−1 · 2ak−ak−1 + ak
2ak−ak−2

and so 2ak−ak−2 |(ak−1 · 2ak−ak−1 + ak) and the second term is non-zero. Consequently 
2ak−ak−2 ≤ ak−1 · 2ak−ak−1 + ak ≤ ak−1 · ak + ak ≤ (ak − 1) · ak + ak = a2

k.
In the induction step we perform the same calculations. The only difference is that 

we multiply equation (1) by 2ak−j . As a result we obtain the equality

n · 2ak−j−n =
k−j∑
s=1

as · 2ak−j−as + ak−j+1 · 2ak−ak−j+1 + . . . + ak−1 · 2ak−ak−1 + ak
2ak−ak−j

,

and thus 2ak−ak−j |ak−j+1 · 2ak−ak−j+1 + . . .+ak−1 · 2ak−ak−1 +ak. Now by the induction 
hypothesis:

2ak−ak−j ≤ ak−j+1 · ak−j+3 · . . . · ak−1a
2
k + . . . + ak−2a

2
k + ak−1ak + ak ≤

≤ (ak−j+2 − 1) · ak−j+3 · . . . · ak−1a
2
k + . . . + (ak−1 − 1)a2

k + (ak − 1) · ak + ak ≤

≤ ak−j+2 · ak−j+3 · . . . · ak−1a
2
k

and the result follows. �
As an immediate consequence from the above result we get the following.

Corollary 2.4. Let a1 < . . . < ak be a solution to equation (1). We have a
k−1
k

2ak
≥ 2−a1 .

Using the last part of Theorem 2.1 and Corollary 2.4 we can try to list all possible 
solutions of equation (1) for small values of k. Indeed, part (i) of Theorem 2.1 provides a 
bound on values of n to check, while part (ii) gives exact values for starting elements in 
(ai) for large n. However, for small values of n, part (ii) of Theorem 2.1 is not effective 
and we need to apply Corollary 2.4 to further reduce the set of possible solutions by 
bounding ak depending on a1. After some considerable amount of computer calculations 
(case k = 8 took more than two days of computing time) we provide complete list of 
solutions of equation (1) for k ≤ 8:
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Theorem 2.5. Let k ∈ {2, 3, 4, 5, 6, 7, 8} and let us put A = (a1, a2, . . . , ak). All solutions 
of the equation (1) are the following:

k = 2 : [n,A] = [4, (5, 6)];
k = 3 : [n,A] ∈ {[1, (3, 6, 8)], [1, (4, 5, 6)], [2, (3, 6, 8)], [2, (4, 5, 6)], [3, (4, 6, 8)],

[11, (12, 13, 14)]};
k = 4 : [n,A] ∈ {[9, (10, 11, 13, 14)], [26, (27, 28, 29, 30)]};
k = 5 : [n,A] ∈ {[5, (6, 7, 11, 13, 14)], [6, (7, 8, 11, 13, 14)], [15, (16, 17, 18, 21, 22)],

[57, (58, 59, 60, 61, 62)]};
k = 6 : [n,A] ∈ {[4, (5, 7, 8, 11, 13, 14)], [12, (13, 14, 15, 20, 21, 24)],

[13, (14, 15, 16, 20, 21, 24)], [21, (22, 23, 24, 26, 27, 32)],
[120, (121, 122, 123, 124, 125, 126)]};

k = 7 : [n,A] ∈ {[1, (4, 5, 7, 8, 11, 13, 14)], [2, (4, 5, 7, 8, 11, 13, 14)],
[7, (8, 9, 11, 15, 20, 21, 24)], [18, (19, 20, 21, 23, 26, 27, 32)],
[247, (248, 249, 250, 251, 252, 253, 254)]};

k = 8 : [n,A] ∈ {[17, (18, 19, 20, 22, 26, 29, 30, 32)],
[19, (20, 21, 22, 24, 26, 29, 30, 32)],
[197, (198, 199, 200, 201, 202, 203, 205, 206)],
[502, (503, 504, 505, 506, 507, 508, 509, 510)]}.

As a consequence of our computations we obtain an explicit family of rational numbers 
having at least three different representations in the form 

∑∞
i=1

ai

2ai
.

Corollary 2.6. There are infinitely many values of x ∈ Q such that the number x has at 
least three representations in the form

x =
∞∑
i=1

ai
2ai

.

Proof. From Theorem 2.5 we see that for n = 1 the equation (1) has two solutions for 
k = 3 and one solution for k = 7. Let (bi)i∈N+ be a sequence of positive integers satisfying 
15 ≤ b1 and bi < bi+1 for i = 1, 2, . . ., and suppose that the number x′ =

∑∞
i=1

bi
2bi

is 
rational. Then we have the representations

1
2 + x′ = 3

23 + 6
26 + 8

28 +
∞∑
i=1

bi
2bi

= 4
24 + 5

25 + 6
26 +

∞∑
i=1

bi
2bi

= 4
24 + 5

25 + 7
27 + 8

28 + 11
211 + 13

213 + 14
214 +

∞∑
i=1

bi
2bi ,
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and from the assumption on the sequence (bi)i∈N+ we know that the presented repre-
sentations are different. In order to make the value of the sum 

∑∞
i=1

bi
2bi

rational it is 
enough to take bi = pi + q, where p, q ∈ N+ and b1 = p + q > 16. Then we have

∞∑
i=1

pi + q

2pi+q
= (q + p)2p − q

2q(2p − 1)2 ,

a rational number. �
Remark 2.7. The above result was also obtained by Borwein and Luring using three 
representations of the number 1

4 . However, based on our computational approach, we 
will show in Corollary 3.6 below, that in fact there are infinitely many rational numbers 
with at least nine representations of the form 

∑∞
i=1

ai

2ai
.

We close this section with the positive answer to Question 1.2.

Theorem 2.8. Let a1 < . . . < ak be a solution to equation (1). Then we have

ak ≤ 2n + 2k log2 k.

Proof. It can be verified that the inequality holds for all solutions given in Theorem 2.5. 
So let us fix k ≥ 8 and suppose that ak > 2n + 2k log2 k holds for some n ≥ 1. Since 

ak > k−1
ln 2 and the function f(x) = xk−1

2x is decreasing for x > k−1
ln 2 we get that a

k−1
k

2ak
<

(2n+2k log2 k)k−1

22n+2k log2 k . By Corollary 2.4 this implies that

(2n + 2k log2 k)k−1 > 22n+2k log2 k−a1 ≥ 2n−3+2k log2 k

since a1 ≤ n + 3. But then
(2n + 2k log2 k

k2

)k−1
=

(2n + 2k log2 k

22 log2 k

)k−1
> 2n−3+2 log2 k.

We will show that this inequality is not satisfied for any n. Indeed, for n = 1 we get: ( 2+2k log2 k
k2

)k−1 ≤
( 2+16 log2 8

64
)k−1

< 1 and 21−3+2 log2 k ≥ 2−2+2 log2 8 > 1, since k ≥ 8
and considered functions are monotonic. Increasing n by one, right hand side of the 
inequality is multiplied by 2, while left hand side by:

(2n + 2 + 2k log2 k

2n + 2k log2 k

)k−1
=

(
1 + 1

n + k log2 k

)k−1
≤

(
1 + 1

2k

)k−1
< e1/2 < 2.

This is a contradiction, so the inequality ak > 2n + 2k log2 k cannot hold. �
Corollary 2.9. Let a1 < . . . < ak be a solution to equation (1). Then

ak ≤ 2k+2 + 2k(log2 k − 1) − 4.
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3. A computational approach to equation (1)

We know that for any given k the number of solutions of (1), say N(k), is bounded, 
and Theorem 2.5 shows that

N(2) = 1, N(3) = 6, N(4) = 2, N(5) = 4, N(6) = 5, N(7) = 3.

We prove that there are infinitely many values of k such that N(k) ≥ 5. More precisely, 
we have

Proposition 3.1. If

k ≡ 10131316054712759135960334995313053617046

(mod 20263657997642451746458664712008831939580),

then the Diophantine equation (1) has at least five solutions, i.e., N(k) ≥ 5.

Before we prove the above proposition, we describe the experimental strategy which 
we used. More precisely, we looked for values of u and corresponding value(s) of k such 
that there is a positive integer solution n of the equation

n

2n =
k−2∑
i=1

n + i

2n+i
+ n + k + u

2n+k+u
+ n + k + u + 1

2n+k+u+1 ,

i.e., we look for integral values of the expression

n = (2k−1 − k)(2u+3 − 3) + 3 · 2k−1 + 3u + 1
2u+3 − 3 = 2k−1 − k + 3 · 2k−1 + 3u + 1

2u+3 − 3 .

Equivalently, we need to consider the polynomial-exponential congruence

3 · 2k−1 + 3u + 1 ≡ 0 (mod 2u+3 − 3). (2)

Note that if for a given u the congruence (2) has a solution in k, then necessarily 
k < r := ord2u+3−3(2), where as usual ordm(a) = min{v ∈ N+ : av ≡ 1 (mod m)}. In 
particular, if k0 is a solution for u, then for each t ∈ N the number k = rt + k0 is also a 
solution. Congruence (2) can be written as

2k−1 ≡ −3u− 1
3 (mod 2u+3 − 3),

hence one has to resolve a discrete logarithm problem. There are exactly 16 values of 
u ≤ 120 such that (2) has a solution, see Table 1.
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Table 1
Solutions for k of (2) for u ≤ 120 together with the value of r = ord2u+3−3(2).

u k0 r

0 4 4
1 5 12
2 22 28
3 48 60
4 83 100
6 221 508
9 242 4092
11 5531 16380
17 66328 1048572
21 2796185 5592404
22 775376 1116130
26 96489490 536870908
55 5843993308712118 26202761468337430
99 364550281031913286431277811782 2535300206192230667655098198606
113 2452672773763126728478631379525174 83076749736557242056487941267521532
119 3303995011423016739508338720636484139 5316911983139663491615228241121378300

Proof of Proposition 3.1. The idea of the proof is the following. If we write fi(x) =
rix + ki, where ki, ri correspond to ith elements in the table above, then to get values 
of k such that (1) has at least m solutions, it is enough to find solutions of the system

fi1(x1) = fi2(x2) = . . . = fim(xm)

for certain 1 ≤ i1 < i2 < . . . < im ≤ 16. We checked all 4368 combinations of five 
elements subsets of the set of linear functions {f1, . . . , f15} and found that in each case, 
the above system has no solutions. In case of four functions we checked 1820 subsets 
and found exactly six subsets such that the above system has solutions. The simplest 
solutions are obtained in the case of the linear Diophantine system

28x1 + 22 = 4092x2 + 242 =

= 26202761468337430x3 + 5843993308712118 =

= 2535300206192230667655098198606x4 + 364550281031913286431277811782.

The corresponding linear functions give (all) solutions of (2) for u = 2, 9, 55, 99, respec-
tively. A standard method gives the solution

x1 = 5192346432901574483898091387790622531230191866907 +

+16989949871052950679749955447565756090108796474835t

x2 = 35529252229043031659126725038645510966384499578 +

+116255766468593015403958639426158643822836339515t

x3 = 5548487715576217653155322603550910 +

+18155284776542563811078158200217566t



454 Sz. Tengely et al. / Journal of Number Theory 217 (2020) 445–459
x4 = 57344569990628045006 +

+187637974874764336230t,

where t ∈ N, and the corresponding common value of k is given by

k = k(t) = 10131316054712759135960334995313053617046 +

+20263657997642451746458664712008831939580t.

In consequence, for given u ∈ {2, 9, 55, 99} and each t ∈ N we get an integer value of n
for k = k(t) together with values of a1, . . . , ak given by ai = n +i, i = 1, . . . , k−2, ak−1 =
n +k+u, ak = n +k+u +1. Thus for any given k = k(t) we have four solutions of (1). One 
additional solution for k corresponds to n = 2k+1−k−2 and ai = n + i, i = 1, . . . , k. �

We finish our discussion with the following:

Conjecture 3.2. Let us put

U = {u ∈ N+ : congruence (2) has a solution}.

The set U is infinite.

Conjecture 3.3. We have lim sup
k→+∞

N(k) = ∞.

Our proof of Proposition 3.1 based on the existence of certain elements in the set U . 
Thus, one can ask the following

Question 3.4. Suppose that Conjecture 3.2 is true. Does Conjecture 3.2 imply Conjec-
ture 3.3?

It seems that the most interesting (and difficult) question concerning equation (1)
is to whether, for a given n, there is k ∈ N+ such that (1) has a solution. Essentially, 
this is [1, Conjecture 1]. Unfortunately, we were unable to answer this question in full 
generality. Borwein and Luring proved that for each n ≤ 103 equation (1) has at last one 
solution. We were able to extend the range of computations and prove the following:

Theorem 3.5. For each 2 ≤ n ≤ 104 the Diophantine equation (1) has a solution in 
variables k, a1, . . . , ak satisfying ai = n + 1 and ai ≥ n + i for i = 2, . . . k.

We now describe a computational method which was used to get the above result. More 
precisely, in order to confirm that equation (1) has a solution, the following “greedy” 
strategy was applied: assuming that we have found the sequence (a1, . . . , al) such that 
n
2n >

∑l
i=1

al

2l , we define al+1 = j where j
2j is the first term that “fits”, that is we take 

the smallest j such that
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n

2n ≥
l∑

i=1

ai
2ai

+ j

2j ,

and hope that this process ends after a finite number of steps. Naive implementation of 
the procedure above leads to a very slow algorithm for large n, so we apply a different 
approach that is a slight modification of Algorithm 2 given in [1].

Let x ∈ Q, 0 < x < 2 and define: k0 = min{k ≥ 1: k
2k < x}. We define a sequence 

S(x) = (xk0 , xk0+1, . . .) as

xk0 = x · 2k0−1

and for i ≥ k0

xi+1 =
{

2 · xi − i, if 2 · xi − i ≥ 0,
2 · xi, otherwise.

We say that the sequence S(x) terminates if xi = 0 for some i ≥ k0 (and for all subsequent 
values in the sequence). It is not difficult to see that xi is precisely the numerator of the 
fraction

xi

2i−1 = x−
i−1∑
j=1

sj ·
j

2j ,

where sj = 1 if j
2j appears in the sum when applying the greedy strategy for x (with 

the exception of sj = 0 if x = j
2j ) and sj = 0 otherwise. Moreover, if the sequence 

S(x) terminates, then sj = 1 (i.e. j
2j appears in the representation of x) if and only if 

xj+1 �= 2xj .
The above algorithm was implemented in Mathematica [3] in the following form:

greedy[x_, maxK_] := Module[{ind = {}, k = 0, v = x, n = 1},
While[2*v < n + 1, v = 2*v; n++];
While[v > 0 && k <= maxK, If[2*v - n >= 0,
AppendTo[ind, n]; k++; v = 2*v - n, v = 2*v]; n++];
If[v == 0, Return[ind]]]

The value maxK is the maximal value of k which is used in calculations. Thus, if 
we evaluate greedy[41/241,10], then our program will terminate without any result. 
However, if we evaluate greedy[41/241,20], then our program returns

{42, 43, 44, 45, 47, 49, 54, 55, 56, 61, 66, 68, 69, 70}.

Our observations show that to find a representation of x using the greedy strategy we 
can calculate S(x) and see if it terminates. This has the advantage of being much faster 
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as the only operations involved are multiplication by 2 and subtraction (of integers if x
has power of 2 as the denominator). Moreover it can be easily verified that xi < i +1 for 
all i ≥ k0 and so xi < k if the sequence S(x) terminates after k steps (or equivalently 
the representation for x has k terms), i.e. the numbers xi are feasible.

First of all, we note that our approach is strong enough to present an improvement 
of Corollary 2.6. More precisely, we prove that

Corollary 3.6. There are infinitely many values of x ∈ Q such that x has at least nine 
representations in the form

x =
∞∑
i=1

ai
2ai

.

Proof. To get the result it is enough to find one rational number x with nine represen-
tations. The idea is very simple. Suppose that we have x =

∑k1
i=1

a1,i
2a1,i and for m ≥ 2 we 

are able to compute the expansion

am−1,km−1

2am−1,km−1
=

km∑
i=1

am,i

2am,i
.

Thus, the number x will have at least m representations

k1∑
i=1

a1,i

2a1,i
,

k1−1∑
i=1

a1,i

2a1,i
+

k2∑
i=1

a2,i

2a2,i
, . . . ,

m−1∑
j=1

⎛
⎝kj−1∑

i=1

aj,i
2aj,i

⎞
⎠ +

km∑
i=1

am,i

2am,i
.

We take x = 8
28 = 1

32 and applying our greedy strategy we compute

1
32 = 9

29 + 10
210 + 12

212 + 14
214 + 18

218 + 19
219 +

21
221 + 22

222 + 24
224 + 26

226 + 29
229 + 30

230 + 32
232 ,

i.e., k1 = 13, ai,k1 = 32. Further values of ki and ai,ki
for i ≤ 9 are as follows

i 1 2 3 4 5 6 7 8 9
ki 13 9 169 5919 71826 252200 182973 10861 1195089
ai,ki

32 46 392 12230 155942 659488 1025582 1047128 3437088

Due to size of the sets {akj ,i : i = 1, . . . , kj}, j = 2, . . . , 9, we do not present them in 
full.

By adding the value of the series 
∑∞

i=1
pi+q
2pi+q = (q+p)2p−q

2q(2p−1)2 , where p, q ∈ N+ are chosen 
that p +q > 3437088, to found representations, we get the statement of our theorem. �
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Table 2
Peak values among values of k = k(n).

n k(n) ak(n) max{k(i) : i < n}
56 6092 12230 189
3113 13370 29752 6092
3817 76072 155942 13370
5588 460536 226913 76072

Fig. 1. The value of k such that n
2n =

∑k
i=1

ai

2ai
for some a1, . . . , ak ∈ N and n ≤ 5000.

With the data needed to get Theorem 3.5 we observed that the behaviour of k =
k(n) and ak = ak(n) behaves quite irregular. For example, from our numerical data we 
collected the following peak (or jump) values of k (see Table 2).

In Fig. 1 we also present the graph of the function

k : N≥2 � n 	→ k(n) ∈ N.

Based on our numerical data we formulate the following.

Conjecture 3.7. If the Diophantine equation

n

2n =
k∑

i=1

ai
2ai

has a solution (n, k, a1, . . . , ak) with a1 < a2 < . . . < ak, then k + n ≤ ak ≤ 2(k + n). In 
particular ak ≤ 4(2k − 1).

On Fig. 2 we present the behaviour of ak(n)/2(k + n), where the values of ai = ai(n)
come from our greedy algorithm.

On Fig. 3 we also present the graph of the function k(n)/n.
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Fig. 2. The value of the quotient ak(n)/2(k+n) from the greedy representation n
2n =

∑k
i=1

ai

2ai for n ≤ 5000.

Fig. 3. Plot of the ratio k(n)/n coming from the greedy algorithm for n ≤ 5000.

Remark 3.8. First of all let us observe that the value n + k in the lower bound cannot 
be replaced by nothing greater. Indeed, if n = 2k+1 − k − 2 then we get the exact value 
ak = n + k.

The upper bound for ak stated in the above conjecture is reasonable. More precisely, 
it is easy to see that our statement is true under additional assumption n ≥ 2k − k. 
Indeed, we have

n

2n =
k∑ ai

2ai
≤

k−1∑ n + i

2n+i
+ ak

2ak
.

i=1 i=1
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Equivalently, we have the inequality

n + k + 1 − 2k

2n+k−1 ≤ ak
2ak

.

Let us assume that ak > 2(k + n) and 2k − k ≤ n ≤ 2k+1 − k − 2. Then, we have the 
inequality

n + k + 1 − 2k

2n+k−1 ≤ ak
2ak

≤ 2(n + k)
22(n+k) ⇐⇒ 2n+k+1(n + k + 1 − 2k) ≤ 2(n + k).

Using the lower bound 2k − k ≤ n on the left hand side of the inequality and the upper 
bound n ≤ 2k+1 − k − 2 on the right hand side we get

2n+k+1 ≤ 2n+k+1(n + k + 1 − 2k) ≤ 2(n + k) ≤ 2(2k+1 − k − 2 + k) = 4(2k − 1)

and thus 2n+k−1 ≤ 2k − 1 - a contradiction.
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