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ABSTRACT: The rational design of coordination frameworks
combining more than two different metal ions using a self-assembly
approach is challenging because it rarely offers sufficient control over
the building blocks at the actual self-assembly stage. In this work, we
present a successful two-step strategy toward heterotrimetallic
coordination frameworks by employing a new bimetallic
[(NC)7MoIV-CN-PtIV(NH3)4-NC-MoIV(CN)7]

4− secondary building
unit (SBU). This anionic moiety has been isolated and characterized
as a s imple sa l t wi th an organic dppipH2

2+ cat ion
(dppipH2)2[(NC)7MoIV-CN-PtIV(NH3)4-NC-MoIV(CN)7]·15H2O
(1) (dppip = 1,4-di(4-pyridinyl)piperazine). The salt presents a
second-order phase transition related to cation conformational change
around 250 K and a photomagnetic effect after irradiation with 450
nm light at 10 K. When combined with aqueous solutions of MnII or CuII complexes, it forms either a one-dimensional chain
[MnII(dpop)][MnII(dpop)(H2O)][(NC)7MoIV-CN-PtIV(NH3)4-NC-MoIV(CN)7]·36H2O (2) (dpop = 2,13-dimethyl-3,6,9,12,18-
pentaazabicyclo-[12.3.1]octadeca-1(18),2,12,14,16-pentaene) or a photomagnetic two-dimensional honeycomb network
[CuII(cyclam)]2[(NC)7MoIV-CN-PtIV(NH3)4-NC-MoIV(CN)7]·40.89H2O (3) (cyclam = 1,4,8,11-tetraazacyclotetradecane), both
characterized by very large cavities in their structure filled with solvent molecules. Both 2 and 3 incorporate three different transition-
metal ions and constitute a new family of 3d-4d-5d coordination frameworks. Moreover, compound 3 inherits the photomagnetic
properties of the MoPtMo SBU.

■ INTRODUCTION
Porous coordination polymers attract nonvanishing interest
due to numerous functionalities arising from their flexible
porous structure1,2 such as gas storage, luminescent sensing, or
nonlinear optical properties.3−6 However, the combination of
magnetism and porosity remains a challenge because long
spacer ligands required to promote large pores in the structure
lead to very weak magnetic interactions7−9 while short bridging
ligands known for providing good electronic contact between
metal ions in magnetic networks (i.e., F−,10−12 C2O4

2−13 or
CN−14,15) usually facilitate the formation of dense structures,
preventing large molecules from entering pores and limiting
sorption to small solvent molecules16−19 and oxygen.20

Magnetization switching by the adsorption of relatively large
molecules (i.e., benzene, naphthalene, or anthracene) was
presented for Hoffman-type frameworks [FeIIL][MII(CN)4] (L
= pyrazine, 1,2-di(4-pyridyl)ethylene; MII = NiII, PdII, PtII)21,22

demonstrating solvent-dependent SCO switching but not long-
range magnetic ordering. In order to counter these drawbacks,
it has been proposed to combine the magnetic functionality
and the elongated character of a spacer-type ligand in a single
entitya secondary building unit (SBU).8,23−26 In principle,
these SBUs can be composed of magnetically coupled centers
that form an elongated bridging unit, enabling the formation of

a porous framework while maintaining strong magnetic
superexchange interactions. Nonetheless, reports regarding
rodlike metallo-ligands or SBUs are scarce, and as far as we
know, a photomagnetic building block for the construction of
porous networks has not yet been presented.
In this work, we have studied the crystal structure and

photomagnet ic act iv i ty of a new complex sa l t
(dppipH2)2[(NC)7MoIV-CN-PtIV(NH3)4-NC-MoIV(CN)7]·
15H2O (1) comprising anionic rodlike [(NC)7MoIV−CN-
PtIV(NH3)4-NC-MoIV(CN)7]

4− (MoPtMo) SBUs similar to
those reported by Podgajny et al.27 This work was inspired by
[Fe(CN)6]-based compound [PtII(NH3)4]2[(NC)5Fe

II-CN-
PtIV(NH3)4-NC-FeII(CN)5]·9H2O (FePtFe) reported by
Bocarsly et al. in 199028 obtained as a product of a redox
reaction between [PtII(NH3)4](NO3)2 and K3[Fe

III(CN)6].
Visible-light irradiation of FePtFe solution within its MMCT
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band regenerates initial substrates PtII and FeIII, which was
demonstrated by the color change from intense red to
yellow.29 Similar behavior was observed by means of IR
spectroscopy for the solid obtained in the reaction of
[PtII(NH3)4]2[(NC)5Fe

II-CN-PtIV(NH3)4-NC-FeII(CN)5]·
9H2O with NiCl2 in water, which after 488 nm light irradiation
gives a powder X-ray diffraction pattern resembling that of
nickel ferricyanide.30 The generation of paramagnetic
components after light irradiation is promising for the
construction of photomagnetic compounds, a group of
materials in which magnetization change can be triggered by
light.14 At the same time, the linear nature of such an anion
could facilitate the formation of extended networks. (See
Figure 1 for a comparison with typical organic linkers used for

MOF synthesis, such as 4,4′-bipyridine31,32 and 1,2-di(4-
pyridyl)ethylene).33,34 However, due to the difficulty in
crystallizing coordination polymers containing hexacyano-
metallates, which often form weakly crystalline Prussian blue
analogues, octacyanometallates are more convenient from a
synthesis viewpoint. Indeed, octacyanomolybdate-based anion
[(NC)7MoIV−CN-PtIV(NH3)4-NC-MoIV(CN)7]

4− was re-
ported to exist in aqueous solution in 2001, but the crystal
structure was determined only for Cs2[Pt

IV(en)2Cl2]-
[(CN)7MoIV-CN-PtIV(en)2-NC-MoIV(CN)7]·10H2O (en =
ethylenediamine).27 Although the substitution of ammonia
with ethylenediamine should not strongly affect the charge-
transfer properties of a molecule, an outer-sphere platinum-
(IV) complex may interact with the anion and complicate the
analysis of light-driven changes in this compound. Therefore,
we decided to reinvestigate the synthesis and prepare a salt of
[(NC)7MoIV-CN-PtIV(NH3)4-NC-MoIV(CN)7]

4− with a
redox-innocent organic cation to facilitate its photomagnetic
studies. Afterward, two heterotrimetallic35 coordination net-
works have been prepared with the use of MoPtMo SBU:
[MnI I(dpop)][MnI I(dpop)(H2O)][(NC)7MoIV-CN-
PtIV(NH3)4-NC-MoIV(CN)7]·36H2O (2) (dpop = 2,13-di-
methyl-3,6,9,12,18-pentaazabicyclo-[12.3.1]octadeca-
1(18),2,12,14,16-pentaene) and [CuII(cyclam)]2[(NC)7MoIV-
CN-PtIV(NH3)4-NC-MoIV(CN)7]·40.89H2O (3) (cyclam =
1,4,8,11-tetraazacyclotetradecane), both of which contain large
water-filled cavities in their structures.

■ SYNTHESIS AND STRUCTURE OF 1
The water solution of the [(NC)7MoIV-CN-PtIV(NH3)4-NC-
MoIV(CN)7]

4− anion is obtained in a redox reaction occurring
immediately after mixing a sodium salt of octacyanomolybdate-
(V) with [PtII(NH3)4](NO3)2 in water for nMo/nPt = 2:1. This
immediately leads to the formation of a dark-red solution
(details in the SI). In an attempt to obtain a binary ionic salt of
this bimetallic anion, we performed test reactions with a variety
of organic cations. No solid product was obtained after the
addition of saturated solutions of tetrabutylammonium
chloride (TBACl) or tetraphenylphosphonium bromide
(Ph4PBr) salts. Reaction with bis(triphenylphosphoranyl-
idene)ammonium chloride (PPNCl) affords a pink precipitate,
which in time transforms into an amorphous solid. In order to
facilitate the formation of a crystalline product, we decided to
use highly charged cations formed by the protonation of
organic bases such as 4,4′-bipyridine and 2,2′-bipyridine with a
small excess of nitric acid. However, even for saturated
solutions of the corresponding salts no solid was obtained.
Upon addition of a protonated 1,4,8,11-tetraazacyclodecane,
we have observed the formation of red columnar crystals. They
were found by single-crystal X-ray diffraction to be
(cyclamH4)[MoIV(CN)8]·1.5H2O, despite the unusual color
and shape of crystals, differing from yellow needles previously
observed for this compound.36 Only the use of a protonated
1,4-di(4-pyridinyl)piperazine similar in size and shape to
[(NC)7MoIV-CN-PtIV(NH3)4-NC-MoIV(CN)7]

4− resulted in
the formation of crystalline compound 1. (See the synthesis
details in the SI for more details.)
Single-crystal X-ray diffraction studies at 120 K revealed that

compound 1 crystallizes in a triclinic P1̅ space group, where
both cations and anions form chains along the crystallographic
a axis (Figure 2a). The asymmetric unit consists of two

[(NC)7MoIV-CN-PtIV(NH3)4-NC-MoIV(CN)7]
4− anions and

four 1,4-di(4-pyridinyl)piperazine cations accompanied by 30
water molecules. The formation of cyanide bridges between
platinum(II) and octacyanomolybdate is confirmed by a short
average Pt−Ncyanide bond length of 1.962(4) Å, similar to
1.972(7) Å reported for Pt−Ncyanide bonds in [(NC)7MoIV-
CN-PtIV(en)2-NC-MoIV(CN)7]

4− 27 and 1.971(11) Å in
[(NC)5Fe

II-CN-PtIV(NH3)4-NC-FeII(CN)5]
4−.28 The two

anionic units differ slightly with respect to Pt−N−C angles,
with 175.4(6) and 167.8(6) ° for Pt1 and 170.3(7) and
165.4(7)° for Pt2. Small differences are also observed for
octacyanomolybdate coordination geometry, which in all cases
is intermediate between square antiprism and dodecahedron,

Figure 1. Shape and size comparison of [(NC)7MoIV-CN-
PtIV(NH3)4-NC-MoIV(CN)7]

4− SBU with 4,4′-bipyridine and 1,2-
di(4-pyridyl)ethylene. Blue arrows demonstrate the bridging
possibilities. H atoms of the amine ligands are omitted for clarity.

Figure 2. Crystal cell of 1 visible along the a axis at (a) 120 and (b)
255 K. White, Pt; green, Mo; red, O; blue, N; gray, C. Hydrogen
atoms were omitted for clarity.
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closer to the former in the cases of Mo1, Mo3, and Mo4 but
approaching the latter for Mo2 (Table S1 in the SI for detailed
SHAPE37 analysis). Similar to anions, all 1,4-di(4-pyridinyl)-
piperazine cations in the structure of 1 differ only slightly. The
twist angle φ between pyridinium rings on average equals
42(2)° as presented in Figure 3a. All piperazinium rings adopt

an unusual twist-boat conformation resembling that observed
in twistane (Figure 3b),41 which was previously observed for
similar cations.42,43 The whole structure is stabilized by
hydrogen bonds between octacyanomolybdate cyanides and
protonated pyridyl rings as well as numerous hydrogen bonds
formed by crystallization water molecules with cyanides and
ammonia ligands coordinated to platinum(IV).
The experimental powder X-ray diffraction pattern for 1

obtained at room temperature and the PXRD pattern
simulated from its crystal structure at 120 K are quite similar;
however, some differences can be easily spotted (Figure S1).
An increased number of diffraction peaks predicted for the
latter cannot be explained only by the thermal expansion of the
crystal lattice and random overlap of reflections. As this may be
a symptom of a phase transition occurring between the
temperature of a single-crystal measurement (120 K) and the
PXRD experiment (room temperature), we decided to perform
a differential scanning calorimetry (DSC) measurement.
Indeed a small but broad feature at around 250 K is observed
(Figure S3), which may suggest that 1 undergoes a second-
order phase transition. Therefore, an additional single-crystal
diffraction experiment was performed at 255 K, above the
transition temperature but much below room temperature, to
prevent desolvation and crystal fracture. The high-temperature
structure was solved and refined in the monoclinic P21/n space
group and differs significantly from the low-temperature phase
(Figure 2b). Moreover, the PXRD pattern simulated from the
high-temperature structural model perfectly matches the
experimental one collected at room temperature (Figure S2)
and suggests that 1 undergoes a phase transition at around 250
K. In the high-temperature phase, the asymmetric unit is
reduced to one 1,4-di(4-pyridinyl)piperazine cation, half of an
anion, and 7.5 water molecules. The anion hardly changes, as

depicted by the elongation of the Pt−Ncyanide bond to
1.971(10) Å and the Pt−N−C angle equal to 165.8(10)°.
On the other hand, there is a visible difference regarding the
cation, as pyridyl rings in the high-temperature phase are
almost coplanar with a twist angle φ equal to 5(1)° (Figure 3c)
and the piperazine ring becomes almost flat (Figure 3d).
Additionally, all thermal ellipsoids of the cation are elongated
perpendicular to the rings’ plane. These changes may indicate
that heating above the transition temperature activates the
conformational freedom of the cation and a new skeletal
vibration. This assumption is partially confirmed by variable-
temperature infrared spectroscopy, where a change in the
structure of the 1200−1270 cm−1 bands is visible during
heating in the 245−275 K range (Figures S4−S6). Therefore,
we conclude that compound 1 displays a second-order phase
transition connected with the change in cation flexibility that
does not visibly influence the structure of Mo−Pt−Mo anions.

■ PHOTOMAGNETIC STUDIES OF 1

In the structure of 1, the platinum(IV) cations are
characterized by a low-spin d6 electronic configuration, and
molybdenum(IV) ions have both their d2 electrons paired on
the single lowest-lying orbital. This leads to a diamagnetic
ground state of the Mo−Pt−Mo SBU at room temperature
and below, but theoretically the paramagnetic state in 1 could
be photoinduced by irradiation within at least one of its UV−
vis bands (Figure 4a). One could expect the photodissociation
of [(NC)7MoIV-CN-PtIV(NH3)4-NC-MoIV(CN)7]

4− into two
[MoV(CN)8]

3− (S = 1/2) components and [PtII(NH3)4]
2+

after irradiation within the MMCT band, similar to the case of
[(NC)5Fe

II-CN-PtIV(NH3)4-NC-FeII(CN)5]
4−.29 However,

despite the MMCT band spanning 700 nm, no photoinduced
magnetism is observed for 1 after irradiation with 690 or 640
nm light at 10 K (Figure 4b). An onset of light-induced change
is observed for 585 nm light, when the MMCT band reaches
half of its maximum intensity, with a weak photomagnetic
effect visible after 530 nm light irradiation (Figure S7). On the
other hand, there is a strong photomagnetic response after 450
nm light irradiation at 10 K (Figure 5, inset), well below λmax =
494 nm for the CT band. Metastable state 1* observed after
450 nm light irradiation was characterized by an M(H)
dependence at T = 2.0 K and a χT(T) dependence in the 2−
100 K range (Figures 5 and 6, respectively). The χT value of
0.35 cm3 K mol−1 at 2 K gradually increases with temperature
to reach a maximum of 0.80 cm3 K mol−1 at 40 K, which slowly
drops upon further heating. The decrease in the χT value is
likely due to the onset of thermal relaxation. The transition to
the metastable state can be reversed by heating to 270 K, but
thermal relaxation to the ground state is incomplete with the
remaining signal equal to 0.07 cm3 K mol−1. The magnet-
ization curve shows no hysteresis and reaches 0.88 Nβ at 7 T,
with its shape visibly differing from the Brillouin function for a
paramagnet44 (Figure 6). Similar to the χT(T) dependence,
the remnant signal is also observed in the magnetization value
at 7 T equal to 0.16 Nβ after thermal relaxation (Figure 6, blue
points).
If the hypothetical photodissociation of [(NC)7MoIV-CN-

PtIV(NH3)4-NC-MoIV(CN)7]
4− is complete (100% photo-

conversion) and the trinuclear molecule breaks into three
separate fragments consisting of a square-planar diamagnetic
[PtII(NH3)4]

2+ and two paramagnetic [MoV(CN)8]
3− units (g

= 2.0), the expected room-temperature χT value would be

Figure 3. 1,4-Di(4-pyridinyl)piperazine cation as visible in the
structure of 1 at (a and b) 120 K and (c and d) 255 K. Blue, N;
gray, C. Hydrogen atoms were omitted for clarity.
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χ
μ μ

= + = −T
k

g S S2
3

( 1) 0.75 cm K molRT
0 B

2

B

2 3 1

(1)

and the saturation magnetization at 2.0 K would amount to

μ β= =M gSN N2 2.0sat B (2)

The photoinduced state undergoes thermal relaxation below
room temperature, and the process seems to start at 40 K, but
the exact relaxation temperature value Trelax cannot be
determined because of the low data quality above 100 K.
However, the hypothetical [MoV(CN)8]

3− centers would be
separated by 9−10 Å, which should lead to very weak exchange
interactions not exceeding |J| = 1 cm−1. Therefore, one can
expect that the χT value at 40 K already approximates the χTRT
value for noninteracting S = 1/2 centers, in which the thermal
energy is much higher than the estimated exchange coupling.
Saturation magnetization at 2 K and χT at 40 K are both
proportionally affected by the photoconversion efficiency, so
the ratio of these two parameters is analyzed further to exclude
the influence of the irradiation efficiency. The expected Msat/
χT40K for two S = 1/2 spins would be 2.7 (Nβ mol)/(cm3 K),
while the experimental value is only 1.1 (Nβ mol)/(cm3 K).
This results from the observed magnetization value at 7 T
being more than twice as small as expected in this scenario.
Such behavior would require S = 1/2 centers to be
antiferromagnetically coupled, producing mS = 0 and mS = 1
states separated in energy by at least several wavenumbers (kbT
= 2 K < JS2). However, as stated above, such strong dipole−
dipole interaction through space is unexpected for localized
spins. On the other hand, such energy splitting is highly
possible for S ≥ 1 systems, which are commonly affected by
the zero-field splitting (ZFS) effect resulting from interelectron
interactions.45 In the absence of ZFS, the S = 1 system with g =
2.0 would afford χTRT = 1 cm3 K mol−1 and Msat = 2 Nβ at 2.0
K with the Msat/χT40K ratio of 2.0 (Nβ mol)/(cm3 K), which is
much closer to the experimental value of 1.1 (Nβ mol)/(cm3

K) than in the case of the S = 1/2 system. Additionally, as a
positive D parameter may split the S = 1 state into mS = 0 and

Figure 4. (a) Solid state UV−vis spectrum for 1 at room temperature.
Cyan and purple dashed lines denote λ = 494 nm (MMCT band) and
λ = 436 nm (approximate position of the MoIV the d−d
transition),38−40 respectively. (b) χT(t) for 1 during irradiation tests
at T = 10 K and H = 0.1 T. The dashed line represents the initial χT
level before irradiation, while labels under the experimental points
indicate the irradiation light wavelength. Black arrows indicate
moments when the irradiation light was turned on and off.

Figure 5. χT(T) dependence for 1 after 450 nm light irradiation (1*,
red points) and after thermal relaxation at 270 K (blue points) under
H = 0.1 T. Note that before irradiation, χT = 0. (Inset) Irradiation of
1 with λ = 450 nm at T = 10 K and under H = 0.1 T.

Figure 6. M(H) dependence on 1 after 450 nm light irradiation (1*,
red points) and after thermal relaxation at 270 K (blue points) at T =
2.0 K. The solid line shows the Brillouin function for two
noninteracting spins (g = 2.0, S = 1/2), and the dashed line shows
the Brillouin function for S = 1, g = 2.0 and no ZFS; a conversion
efficiency of 45% was assumed for simulations.
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1 levels, the nonmagnetic mS = 0 ground state may appear,
explaining the further decrease in Msat at 2 K. Indeed, a large
positive D parameter exceeding +20 cm−1 was recently
presented for S = 1 [K(crypt-2.2.2)]3[MoIV(CN)7]·3CH3CN,
a photoproduct of K4[MoIV(CN)8]·2H2O irradiation.38 More-
over, K4[MoIV(CN)8]·2H2O itself was found to yield Msat/
χTmax = 1.5 (Nβ mol)/(cm3 K) in its metastable S = 1 state
resulting from 405 nm irradiation. A similar formation of the S
= 1 moiety after the irradiation of [MoIV(CN)8]

4− was
reported before,39,46−51 and we conclude that the observed
photomagnetic behavior in 1 results from the spin transition
centered on the Mo(IV) ion and not the charge-transfer-
induced photodissociation of the [(NC)7MoIV-CN-
PtIV(NH3)4-NC-MoIV(CN)7]

4− unit. In order to further
study the behavior of this photomagnetic SBU, attempts to
incorporate it into extended coordination networks were made.

■ STRUCTURAL AND PHOTOMAGNETIC
CHARACTERIZATION OF HETEROTRIMETALLIC
COMPOUNDS 2 AND 3

A water solution of a bimetallic SBU [(NC)7MoIV-CN-
PtIV(NH3)4-NC-MoIV(CN)7]

4− led to undefined precipitates
upon addition of transition metal aqua ions, preventing the
synthesis of crystalline coordination networks in the absence of
additional ligands. Therefore, our synthesis efforts focused on
the use of photomagnetically inactive blocking ligands to
support the crystallization process. In the presence of imines
(e.g., substituted pyridines, imidazole, and 1,2,4-triazole), the
Mo−Pt−Mo SBU decomposed due to the basic environment.
Thus, we focused on strongly binding macrocycles, namely
2,13-dimethyl-3,6,9,12,18-pentaazabicyclo-[12.3.1]octadeca-
1(18),2,12,14,16-pentaene (dpop) and 1,4,8,11-tetraazacyclo-
tetradecane (cyclam). They were both preassembled with
Mn2+ and Cu2+ metal ions [MnII(dpop)(H2O)2](NO3)2 and
[CuII(cyclam)(NO3)](NO3), respectively, according to the
modified literature procedures.52,53 Their reactions with the
Mo−Pt−Mo SBU solution were performed in the presence of
cesium nitrate, which was meant to increase the ionic strength
and slow down the crystallization process (details in the SI).
This approach resulted in the successful isolation of two
heterotrimetallic coordination frameworks: [MnII(dpop)]-
[MnII(dpop)(H2O)][(NC)7MoIV-CN-PtIV(NH3)4-NC-

MoIV(CN)7]·36H2O (2) and [CuII(cyclam)]2[(NC)7MoIV-
CN-PtIV(NH3)4-NC-MoIV(CN)7]·40.89H2O (3).
Compound 2 crystallizes in a monoclinic P21/c space group.

The structure consists of one-dimensional coordination chains
formed by cyanide-bridged [MnII(dpop)] and [(NC)7MoIV-
CN-PtIV(NH3)4-NC-MoIV(CN)7] SBUs along the crystallo-
graphic b direction with pendant [MnII(dpop)(H2O)] arms
attached to the octacyanomolybdate moieties (Figure 7). The
structure is organized by stacking dpop ligands between
[MnII(dpop)] and [MnII(dpop)(H2O)] units along the a
crystallographic direction. Despite the aromaticity of the
dpop’s pyridine rings, these stacks are not stabilized by π−π
interactions but rather by CH3−Npyridine contacts and the
overall hydrophobic character of dpop, as opposed to the rest
of the network. Overall, the structure of 2 is reminiscent of the
framework reported for {[Mn(dpop)(H2O)][Mn(dpop)][Mo-
(CN)8]}n·4nH2O

54,55 with half of [Mn(dpop)]2+ substituted
by [Pt(NH3)4]

4+ units. Charge balance enforces the simulta-
neous elimination of the same number of [Mn(dpop)-
(H2O)]2+ moieties. Effectively, two sterically demanding
units are substituted by a small [Pt(NH3)4]

4+ fragment,
which drastically increases the volume of the water-filled
cavities in the structure. These cavities occupy approximately
40% of the unit cell volume (Figure S10). It was possible to
identify electron density corresponding to 35 water molecules
per formula unit in the model. Additional H2O molecules can
be postulated to account for the remaining 45 Å3 void volume
(using a 1.2 Å probe radius56).
Magnetic studies of 2 render it as a typical paramagnet

presenting only weak antiferromagnetic interactions, giving a
χT value of 8.81 cm3 K mol−1 at 250 K. The thermal
dependence of χT (Figure 8a) was fitted44 to eq 3

χ
χ

μ χ
=

−
T

T

zJ N1 ( / )
calc

A B
2

calc (3)

resulting in zJ = −0.02(1) cm−1 and g = 2.01(2). (Please note
that χT in eq 3 is a function of g as presented in eq 1.) For the
details of the fitting model, see Figure S11 in the SI. This is in
accord with the field dependence of magnetization, resembling
the Brillouin function and reaching 9.9 Nβ at 7 T (Figure S12),
which is very close to 10 Nβ expected for two noninteracting S

Figure 7. Coordination chain in 2 as seen along the a axis. White, Pt; green, Mo; purple, Mn; red, O; blue, N; gray, C. Hydrogen atoms and
crystallization water molecules are omitted for clarity.
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= 5/2 spins. Surprisingly, no photomagnetic effect was
observed for 2 upon irradiation with 585, 530, or 473 nm
light at 10 K. The lack of photomagnetic behavior may be
caused by a very strong absorption of the [MnII(dpop)(NC)2]
unit in this energy range, which obstructs the weak photoactive
d−d transitions centered at MoIV. (See Figure S13 for a
comparison of the UV−vis spectra of [MnII(dpop)(H2O)2]-
(NO3)2 starting material and target compound 2.)
The unit cell of compound 3 represents a triclinic crystal

system in the P1̅ space group. It is organized in a 2D
honeycomb network (Figure 9), where copper(II) and
platinum(IV) ions lie on the (101) plane, while the rest of
the atoms are slightly shifted out of the plane. As a result,
compound 3 forms a crystal lattice similar to the series of
porous [NiII(cyclam)]3[W

V(CN)8]2·n solv networks,17,57,58

with one [NiII(cyclam)] moiety in the formula unit replaced
by [PtIV(NH3)4]. Note that the difference in the charge of
[PtIV(NH3)4]

4+ is balanced by the change in the oxidation state
of octacyanometallate moieties. All of these differences result
in 42% larger cavity volume in 3 compared to
[NiII(cyclam)]3[WV(CN)8]2·n solv (1.2 Å probe radius,56

see Figure S16), similar to 2 and {[Mn(dpop)(H2O)][Mn-
(dpop)][Mo(CN)8]}n·4nH2O.

54,55 Copper(II) centers in the
framework show a strong Jahn−Teller effect, with the average
equatorial Cu−Ncyclam bond length of 2.027(8) Å and the
average axial Cu−Ncyanide bond length of 2.451(3) Å. This
observation is similar to the previously reported networks
based on [Cu(cyclam)]2+ and octacyanometalates.59−63

The thermal dependence of the magnetic susceptibility of 3
(Figure 8b) was fitted to eq 3, yielding g = 2.09(2) and zJ =
−0.07(1) cm−1, assuming one relatively well isolated copper-
(II) center. The antiferromagnetic interaction probably results
from dipole−dipole interactions between copper(II) cations
forming a chain along the crystallographic b axis. This χT(T)
dependence is in line with the field dependence of magnet-
ization at 1.8 K (Figure S17), reaching 2.0 Nβ at 7 T, slightly
lower than 2.18 Nβ expected for two g = 2.09 Cu(II) centers.
The small difference is likely to result from weak
antiferromagnetic interactions, not enabling complete satu-
ration of the magnetization at this temperature. The value of
the g factor determined from magnetic measurements is in line
with the X-band EPR spectrum for 3, which can be reproduced
by assuming gz = 2.20 and gxy = 2.05 (Figure S18).64

Light irradiation of compound 3 (λ = 450 nm, 10 K, 0.1 T)
leads to a small but distinct increase in the χT product of
around 2.5% (Figure S19). This small change is in line with the
temperature dependence of magnetic susceptibility, which
shows consistently higher magnetization level after irradiation
as compared to that of the initial state (Figure 10). The
photoinduced transition is reversible, with the compound
relaxing thermally to the initial state after 1 h of thermal
relaxation at 250 K. The photomagnetic behavior of compound
3 may originate from three different phenomena: (i) charge
transfer within Mo(IV)−Pt(IV) pairs30,65 of the Mo−Pt−Mo
SBU, (ii) charge transfer between Mo(IV) and Cu(II),50,66 and
(iii) a spin transition located solely at Mo(IV).39,46−51 The first
mechanism (i) is unlikely to occur, as it was not observed in 1,
and the 450 nm irradiation wavelength is far from the
maximum of the Mo(IV)−Pt(IV) MMCT band (Figure S20).
The electron transfer from octacyanomolybdate(IV) to
copper(II) (ii) is not expected in the discussed material, as
no additional MMCT band could be observed in the UV−vis
spectrum as compared to starting material 1. This might be
caused by MoIV-CN-CuII cyanide bridge elongation due to the
Jahn−Teller effect, which in turn prevents an efficient charge
transfer along this pathway. To further exclude photoinduced
electron transfer involving CuII, we have performed EPR
measurements at 10 K with 450 nm light irradiation. At first,
these photoexperiments led to the decrease in the CuII signal
after 5 min of irradiation (Figure 11) due to heating effects

Figure 8. χT(T) dependence for (a) 2 and (b) 3 under H = 0.1 T.
Red lines present the best fits to eq 3.

Figure 9. Coordination layer in 3 as seen along the a axis. White, Pt;
green, Mo; orange, Cu; blue, N; gray, C. Hydrogen atoms and
crystallization water molecules were omitted for clarity.
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(laser diode power P ≈ 70 mW). No further changes are
observed upon an additional 30 min of constant irradiation.
After turning the light off, the initial spectrum is fully restored,
confirming that the only light-induced changes in the CuII

signal are related to sample heating effects. Therefore, the
MoIV spin state changing from S = 0 to 1 accompanied by CN-
ligand photodissociation (iii) seems to be the most plausible
explanation of the photoinduced magnetization change in 3, in
accord with the observation of a photomagnetic response only
after irradiation using the same wavelength as in SBU 1. The
possibility of MoIV−CN bond breaking38 would also explain
the low irradiation efficiency, as water-filled crystal pores do
not offer much space to accommodate dissociated cyanide.
The lack of an EPR signal for S = 1 MoIV after the irradiation
of 3 at low temperature is not unexpected, as triplet states are
often considered to be “EPR silent”45 due to zero-field splitting
exceeding the X-band energy range (∼0.3 cm−1), which is the
case for highly anisotropic [MoIV(CN)7]

3− (D > 10 cm−1).38

However, an unambiguous determination of the mechanism

underlying the photomagnetic changes in 3 would require
additional studies using photocrystallography at liquid helium
temperature and/or X-ray magnetic circular dichroism
(XMCD), which will be performed in the future.
Because of the high crystallization water content observed in

both networks 2 and 3, we performed dehydration attempts on
these two frameworks, which may lead to the appearance of
photomagnetic behavior or its strong enhancement.19 How-
ever, both samples lose crystallinity upon dehydration (Figures
S22 and S23), despite the presence of a wide plateau in the
thermogravimetric curves (Figures S24 and S25). This
observation is especially striking for 3, which is similar to the
[NiII(cyclam)]3[W

V(CN)8]2·n solv framework showing good
stability during dehydration−rehydration cycles.57,58 The loss
of stability should not be related to CuII centers, in which the
t r a n s f o r m a t i o n o f a r e l a t e d 1 - D C P
{ [ C u I I ( c y c l a m ) ] 3 [ W

V ( C N ) 8 ] 2 · 5 H 2 O } n t o
{[CuII(cyclam)]3[W

V(CN)8]2}n is a single-crystal−single-
crystal process.59 Therefore, we propose that in the case of 2
and 3 the lack of thermal stability may originate from the
decomposition of Mo−Pt−Mo SBUs involving CN−Pt bond
dissociation or NH3 elimination.

■ CONCLUSIONS
We have successfully isolated and characterized a stable
hexadekacyanometallate SBU [(NC)7MoIV-CN-PtIV(NH3)4-
NC-MoIV(CN)7]

4− in the form of (dppipH2)2[(NC)7MoIV-
CN-PtIV(NH3)4-NC-MoIV(CN)7]·15H2O (1). This com-
pound has a second-order phase transition related to the
cation’s conformational change. It was demonstrated that
[(NC)7MoIV-CN-PtIV(NH3)4-NC-MoIV(CN)7]

4− itself shows
photomagnetic behavior in the solid state after 450 nm light
irradiation, which most probably originates from the spin
transition at the molybdenum(IV) center following the CN
photodissociation. This SBU is stable in aqueous solution,
which in turn enabled its use in the preparation of
heterotrimetallic coordination polymers 2 (coordination
chain) and 3 (coordination layers) containing large water-
filled cavities. Moreover, [CuII(cyclam)]2[(NC)7MoIV-CN-
PtIV(NH3)4-NC-MoIV(CN)7]·40.89H2O (3) retains the photo-
magnetic functionality of the SBU. Thus, MoPtMo can be
considered to be a bimetallic photomagnetic secondary
building unit that is useful in the synthesis of highly
sophisticated heterotrimetallic frameworks, simplifying the
synthesis of this demanding class of compounds.67−72 It can
also be easily modified by the substitution of NH3 at the Pt
center with other N-donor ligands such as ethylendiamine27

and imidazole.73 This line of research is currently being tested
in our laboratories.
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(52) Jimeńez-Sandoval, O.; Ramírez-Rosales, D.; Rosales-Hoz, M. D.
J.; Sosa-Torres, M. E.; Zamorano-Ulloa, R. Magnetostructural
Behaviour of the Complex [MnL(H2O)2]Cl2·4H2O at Variable
Temperature Studied by Electron Spin Resonance (L = 2,13-
Dimethyl -3 ,6 ,9 ,12 ,18-Pentaazab icyc lo[12 .3 .1]Octadeca-
1(18),2,12,14,16- Pentaene). J. Chem. Soc., Dalton Trans. 1998,
No. 10, 1551−1556.
(53) Peŕez-Toro, I.; Domínguez-Martín, A.; Choquesillo-Lazarte, D.;
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