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Abstract: We investigated if greenness and air pollution exposure in parents’ childhood affect
offspring asthma and hay fever, and if effects were mediated through parental asthma, pregnancy
greenness/pollution exposure, and offspring exposure. We analysed 1106 parents with 1949 offspring
(mean age 35 and 6) from the Respiratory Health in Northern Europe, Spain and Australia (RHINESSA)
generation study. Mean particulate matter (PM2.5 and PM10), nitrogen dioxide (NO2), black carbon
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(BC), ozone (O3) (µg/m3) and greenness (normalized difference vegetation index (NDVI)) were
calculated for parents 0–18 years old and offspring 0–10 years old, and were categorised in tertiles.
We performed logistic regression and mediation analyses for two-pollutant models (clustered by
family and centre, stratified by parental lines, and adjusted for grandparental asthma and education).
Maternal medium PM2.5 and PM10 exposure was associated with higher offspring asthma risk
(odds ratio (OR) 2.23, 95%CI 1.32–3.78, OR 2.27, 95%CI 1.36–3.80), and paternal high BC exposure with
lower asthma risk (OR 0.31, 95%CI 0.11–0.87). Hay fever risk increased for offspring of fathers with
medium O3 exposure (OR 4.15, 95%CI 1.28–13.50) and mothers with high PM10 exposure (OR 2.66,
95%CI 1.19–5.91). The effect of maternal PM10 exposure on offspring asthma was direct, while for hay
fever, it was mediated through exposures in pregnancy and offspring’s own exposures. Paternal O3

exposure had a direct effect on offspring hay fever. To conclude, parental exposure to air pollution
appears to influence the risk of asthma and allergies in future offspring.

Keywords: air pollution; greenness; preconception exposure; childhood asthma; childhood hay fever

1. Introduction

Air pollution is a major risk factor for disease worldwide and is estimated to cause almost 500,000
premature annual deaths across Europe [1]. Studies have shown that long-term exposure to high levels
of air pollution affects multiple organs in the human body, causing cardiovascular and respiratory
diseases [2]. Regarding the development of asthma, some studies have found childhood exposure to
air pollution to be a risk factor [3], while other studies did not reveal those effects [4]. Less is known
regarding the intergenerational effects of exposure to lower levels of air pollution, e.g., levels below
recommended limits from the European Union (EU) and the World Health Organisation (WHO) [5,6],
on offspring asthma and hay fever.

Exposure to greenspace has, on the other hand, been associated with beneficial health effects
such as reduced risk of mortality, diabetes, and high blood pressure [7]. However, effects of greenness
on asthma and allergies are less clear [8–11]. Some studies have indicated decreased respiratory
morbidity in adulthood due to living near green areas [7,12–14] while the effects of residential greenness
on childhood allergic rhinitis and aeroallergen sensitization have depended on the region [15–18].
Access to green areas may decrease stress through rest, increase opportunities for physical activity and
increase social interaction [19]. Furthermore, vegetation may remove pollutants such as ozone (O3),
particulate matter (PM) and nitrogen dioxide (NO2) from the air and may reduce exposure to harmful
noise [9,20]. Negative effects of greenness, on the other hand, may be explained by higher exposure to
pollen triggering allergic responses [17].

Asthma and allergies may result from both genetic susceptibility and environmental exposures,
and the importance of early life factors have been widely acknowledged [21–23]. Emerging research
suggests that even preconception exposures may be of relevance, and that epigenetic mechanisms may
be at play across generations [24]. Recent studies have found that father’s smoking and overweight
onset in adolescence was associated with higher asthma risk in their future offspring [25–27], suggesting
vulnerable time windows many years before conception of offspring. There are, however, no studies
investigating such intergenerational effects of exposures to air pollution and greenness.

To address the knowledge gaps of these long-term effects of exposure to air pollution and greenness
on asthma and hay fever, the aims of our study were to (1) explore the associations between parental
childhood exposures of greenness and air pollution in relation to their future offspring asthma and
allergies, in areas with relatively low air pollution and to (2) assess if the observed associations were
direct or mediated by other factors.



Int. J. Environ. Res. Public Health 2020, 17, 5828 3 of 14

2. Materials and Methods

2.1. Study Design and Population

We included participants born after 1975 as well as their offspring from centres with available
pollution data and relatively low air pollution levels in the Respiratory Health in Northern Europe,
Spain and Australia (RHINESSA) generation study, conducted in 2013–2015 [28,29]: Bergen (Norway);
and Umea, Uppsala, and Gothenburg (Sweden), as shown in Figure 1. Individual residential address
history was only available from 1975 onwards and participants born before that were therefore
not included. The participants answered questionnaires regarding their lung health and provided
information on their offspring asthma and allergies. The overall response rate was 40% in Norway
and 44% in Sweden [28]. Informed consent was obtained from each participant, and the study was
approved by regional committees of medical research ethics according to national legislations [30].
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2.2. Residential Address History

We retrieved the parents’ geocoded residential addresses from the Swedish and Norwegian
national population registries for each year ranging from parents’ birth until the age of 18 years, as well
as for offspring from birth until the age of 10 years.
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2.3. Outcomes

The main outcomes in this study were offspring early-onset asthma and hay fever, defined as
affirmative answers to the questions “For each of your biological children, please tick yes if they have
had asthma before 10 years of age”, and “For each of your biological children please tick yes if they
have had hay fever/rhinitis”, respectively.

2.4. Exposure Assessment

2.4.1. Air Pollution

We assigned annual mean concentrations (µg/m3) of 5 different air pollutants—NO2, PM2.5,
PM10, black carbon (BC) and O3—to each participant based on their geocoded residential history.
The exposures were assigned from air pollution rasters developed previously [31–33]. Annual mean
PM10 exposures were extracted for 2005 to 2007 from surfaces (100 × 100 m) based on western
Europe-wide hybrid land use regression (LUR) models [31]. Annual mean NO2, PM2.5 and O3

exposures and BC exposures for 2010 originate from similar hybrid LUR models [32,33]. An overview
of the models used for the different pollutants can be found in the online supplement (Table S1).

We back-and-forth extrapolated the air pollution concentrations from the LUR models using
the ratio method for each year from 1990 to 2015 following the procedure from the European Study
of Cohorts for Air Pollution Effects (ESCAPE) project [34], that is based on the Danish Eulerian
Hemispheric (DEHM) model [35]. For the years before 1990, we used 1990 estimates as proxies.

2.4.2. Greenness

Greenness was assessed using the normalized difference vegetation index (NDVI) [36], which refers
to both structured and unstructured vegetation. NDVI estimates were derived from cloud free Landsat
4–5 TM and 8 OLI satellite images [37] (Table S2). NDVI values range from −1 to +1, with +1 indicating
highly vegetated areas [38].

Satellite images were retrieved for every 5 years during the most vegetation rich months (May, June,
July) (Table S3), and NDVI maps were calculated with mean NDVI in a circular 100 m, 300 m, 500 m
and 1000 m buffer around each participant’s residential address. In the main analysis, we included the
300 m buffer, while the other buffer zones were included in sensitivity analysis (Tables S4 and S6a,b).

2.5. Time Windows for Exposures

We averaged mean annual exposures for the air pollutants and greenness across the period
0–18 years of age for parents and 0–10 years of age for offspring. Although desirable to estimate
separate exposures for parents’ childhood and adolescence, stable residential patterns made this
unfeasible (Table S7a–f).

2.6. Covariates and Mediators

To identify the minimal sufficient covariate adjustment set, we used a directed acyclic graph (DAG)
(Figures S1–S4) [39,40]. To be considered as a confounder variable, the covariate had to be associated
with both the exposure and the outcome and precede them both in time. Based on the DAG, we adjusted
the multivariable analyses for grandparental education and grandparental asthma. Grandparental
asthma was defined based on positive report by the parents on the question: “Have your biological
parents ever had asthma?” with separate answer categories for “mother” and “father”. Grandparental
education level was defined based on the question: “What was the highest level of education your
mother/father has/had?”, with categories primary school, secondary school and college/university.

In addition, parental asthma, offspring’s own pollution/greenness exposures and
pollution/greenness exposures during pregnancy (defined as birth year and the preceding year)
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were included as potential mediators based on a priori hypothesis that they may lie in the pathway
between parental air pollution/greenness exposures and offspring asthma/allergies.

2.7. Statistical Analyses

All statistical analyses were performed using Stata version 16.0.
Descriptive analyses were stratified by parental sex.
We performed multilevel logistic regression analyses to investigate associations between air

pollutants and greenness categorized in tertiles (low, medium and high exposures; see definition for all
categories in Table S5), and early-onset asthma and hay fever as binary outcomes. The analyses were
complete case analyses, clustered by family (to account for siblings) and study centre, and stratified
by parental sex. All models were adjusted for O3 and NDVI (300 m buffer), except for the O3 model
which was adjusted for NO2 and NDVI (300 m buffer) and the NDVI model which was adjusted for O3

and NO2. All models were also adjusted for grandparental education and grandparental asthma.
As sensitivity analyses, we fitted regression models separately for each country (Table S8a,b) and

for parents born after 1985 (Table S9a,b). p-values < 0.05 were considered statistically significant.
Correlation analyses were performed for all exposures to decide which pollutants to include in

the same models (Tables S10a,b and S11a–f).
Mediation analyses were performed to decompose the total effects of parental exposures to

greenness and each air pollutant on offspring’s outcomes into their direct and indirect (mediated)
effects (Figure 2). Parental asthma, offspring’s exposure during pregnancy and offspring’s own
exposure were all evaluated as potential mediators. In order to be a mediator, the exposure must
be associated with the mediator and the mediator must be associated with the outcome. Mediation
tests showed that offspring’s own exposure and exposure during pregnancy were potential mediators
between maternal pollution exposure (PM10) and both offspring’s outcomes. For the paternal line,
exposure during pregnancy (O3) was a potential mediator between paternal O3 exposure and offspring
hay fever.
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Figure 2. Mediation models for the effects of parental exposures (air pollution/greenness) on offspring’s
outcomes (asthma or hay fever).

The mediation analyses were conducted using ldecomp in Stata, a simple counterfactual mediation
method that requires a categorical main exposure variable and a binary outcome, and allows any
distribution of the mediator [41,42]. We used bootstrapping (1000 iterations) to obtain the 95%
confidence interval (95%CI).
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3. Results

The parents were on average 35 years old, and there were more mothers than fathers in the study
population (Table 1). More mothers had asthma and hay fever compared to the fathers. The majority
of the parents were never-smokers.

Table 1. Study population characteristics. N = 706 mothers and 400 fathers and their 1949 offspring.

Characteristics a

RHINESSA

Fathers Mothers

N (%) N (%)

N 400 (36.2) 706 (63.8)
Umea 88 (22.0) 166 (23.5)

Uppsala 85 (21.3) 136 (19.3)
Gothenburg 58 (14.5) 93 (13.1)

Bergen 169 (42.2) 311 (44.1)
Offspring sex (male) 327 (48.2) 630 (49.6)

Offspring mean age (SD) 5.4 (3.6) 6.1 (4.2)
Offspring early-onset asthma (<10 years of age) 60 (15.0) 141 (20.0)

Offspring hay fever 27 (6.8) 70 (9.9)
Parental mean age (SD) 35.0 (3.8) 34.6 (3.9)

Parental asthma 62 (15.5) 128 (18.1)
Early-onset asthma 31 (7.8) 35 (5.0)
Late-onset asthma 28 (7.0) 88 (12.5)
Parental hay fever 125 (31.3) 193 (27.3)

Parental smoking onset
Never-smokers 271 (67.8) 427 (60.5)

Smokers before 18 years old 103 (25.8) 246 (34.8)
Smokers after 18 years old 26 (6.5) 31 (4.4)

Parental education
Primary school 9 (2.3) 22 (3.1)

Secondary school 137 (34.3) 185 (26.2)
College/university 253 (63.3) 498 (70.5)

Grandparental asthma 45 (11.3) 74 (10.5)

Abbreviations: SD, standard deviation. a Missing information (N): parental early-onset asthma (13), parental
late-onset asthma (13), parental hay fever (14), parental smoking onset (4), parental education (4), grandparental
asthma (31).

Mean air pollution exposures in the parents’ childhood were lowest in Umea and highest in
Gothenburg (NO2 14.0 and 38.0µg/m3, PM2.5 10.3 and 24.4µg/m3, PM10 16.5 and 28.6µg/m3, BC 0.09 and
1.09 µg/m3), except for O3, which was lowest in Bergen (62.7 µg/m3) and highest in Umea (68.4 µg/m3)
(Table S12). Only annual mean values for PM2.5 and PM10 exceeded WHO recommendations in some
centres (PM2.5 for parents 0–18 years old in Umea, Uppsala and Bergen; parents 0–18 years old and
offspring 0–10 years old in Gothenburg; PM10 for parents 0–18 years old in Uppsala and Gothenburg).
No annual mean exposures exceeded the recommended EU-values (Table S12).

The correlations between PM2.5, PM10, NO2 and BC were medium to strong, while O3 showed
weaker correlation with the other pollutants (Table S10a,b).

Maternal medium PM2.5 and PM10 exposure was associated with a higher risk of offspring
early-onset asthma when compared to low exposure (Table 2). Maternal high PM10 exposure was
associated with a higher risk of hay fever in offspring. Paternal medium O3 exposure increased the
risk of offspring hay fever, while paternal high BC exposure reduced the risk of offspring early-onset
asthma when compared to low exposure. NO2 and NDVI were not associated with any outcomes,
neither in the maternal nor the paternal line.
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Table 2. Univariable and multivariable analyses: associations between paternal (N = 400) and maternal (N = 706) exposure to air pollutants and NDVI and offspring
(N = 1949) early-onset asthma (a) and hay fever (b) in the RHINESSA generation study.

(a) Early-Onset Asthma.

Univariable Multivariable 3 Univariable Multivariable 3

Exposure 1 Exposure Level 2 Fathers (OR, 95% CI) p 4 Fathers (OR, 95% CI) p 4 Mothers (OR, 95% CI) p 4 Mothers (OR, 95% CI) p 4

NO2 Medium 1.15 (0.58–2.30) 0.690 1.09 (0.51–2.32) 0.824 1.69 (1.05–2.73) 0.032 1.78 (0.96–3.31) 0.067
High 0.70 (0.34–1.44) 0.332 0.50 (0.21–1.20) 0.120 1.68 (1.04–2.72) 0.034 1.79 (0.89–3.60) 0.101

PM2.5 Medium 0.56 (0.27–1.14) 0.111 0.48 (0.20–1.14) 0.098 2.09 (1.30–3.37) 0.002 2.23 (1.32–3.78) 0.003
High 0.70 (0.35–1.41) 0.320 0.53 (0.24–1.17) 0.115 1.55 (0.94–2.57) 0.088 1.66 (0.96–2.88) 0.072

PM10 Medium 0.49 (0.23–1.04) 0.064 0.46 (0.20–1.09) 0.077 2.13 (1.35–3.38) 0.001 2.27 (1.36–3.80) 0.002
High 0.82 (0.42–1.62) 0.567 0.65 (0.31–1.40) 0.273 1.39 (0.83–2.31) 0.209 1.46 (0.84–2.53) 0.183

BC Medium 1.26 (0.64–2.46) 0.501 0.86 (0.40–1.87) 0.707 1.60 (1.00–2.58) 0.051 1.45 (0.83–2.54) 0.186
High 0.48 (0.22–1.04) 0.064 0.31 (0.11–0.87) 0.026 1.57 (0.98–2.53) 0.060 1.33 (0.69–2.58) 0.393

O3 Medium 1.90 (0.95–3.80) 0.071 1.93 (0.93–4.01) 0.079 0.81 (0.52–1.27) 0.366 0.86 (0.53–1.39) 0.542
High 1.25 (0.60–2.60) 0.550 1.09 (0.42–2.82) 0.852 0.67 (0.42–1.06) 0.084 0.97 (0.52–1.82) 0.923

NDVI (300 m) Medium 0.65 (0.30–1.42) 0.279 0.56 (0.26–1.20) 0.138 1.17 (0.74–1.85) 0.505 1.25 (0.79–2.00) 0.341
High 0.76 (0.39–1.47) 0.411 0.67 (0.31–1.42) 0.297 0.78 (0.46–1.31) 0.341 1.00 (0.59–1.72) 0.987

(b) Hay Fever.

Univariable Multivariable 3 Univariable Multivariable 3

Exposure 1 Exposure Level 2 Fathers (OR, 95% CI) p 4 Fathers (OR, 95% CI) p 4 Mothers (OR, 95% CI) p 4 Mothers (OR, 95% CI) p 4

NO2 Medium 1.67 (0.65–4.26) 0.285 2.72 (0.82–9.02) 0.103 1.13 (0.55–2.34) 0.740 1.52 (0.51–4.56) 0.454
High 1.24 (0.45–3.40) 0.680 2.41 (0.60–9.65) 0.213 2.01 (1.04–3.90) 0.039 2.84 (0.88–9.19) 0.081

PM2.5 Medium 1.46 (0.48–4.45) 0.510 1.72 (0.44–6.80) 0.438 1.69 (0.83–3.46) 0.151 1.85 (0.85–4.00) 0.121
High 2.26 (0.75–6.85) 0.149 2.78 (0.77–10.10) 0.120 1.97 (0.99–3.91) 0.052 1.90 (0.91–3.97) 0.086

PM10 Medium 1.24 (0.40–3.88) 0.708 1.90 (0.46–7.87) 0.375 1.71 (0.83–3.52) 0.147 1.85 (0.85–4.01) 0.121
High 2.34 (0.78–7.00) 0.127 3.41 (0.87–13.30) 0.078 2.44 (1.26–4.72) 0.008 2.66 (1.19–5.91) 0.017

BC Medium 2.10 (0.75–5.89) 0.160 2.52 (0.81–7.88) 0.112 1.50 (0.74–3.04) 0.257 1.70 (0.70–4.16) 0.243
High 1.37 (0.46–4.05) 0.575 2.56 (0.70–9.37) 0.157 1.99 (1.00–3.97) 0.052 2.71 (0.96–7.65) 0.060

O3 Medium 3.30 (1.16–9.40) 0.025 4.15 (1.28–13.50) 0.018 1.33 (0.70–2.52) 0.383 1.56 (0.79–3.06) 0.198
High 1.91 (0.63–5.80) 0.253 2.78 (0.58–13.26) 0.199 0.84 (0.42–1.68) 0.618 1.62 (0.54–4.82) 0.389

NDVI (300 m) Medium 0.80 (0.27–2.36) 0.683 0.72 (0.24–2.14) 0.551 1.18 (0.60–2.33) 0.629 1.29 (0.65–2.57) 0.460
High 1.22 (0.48–3.13) 0.681 1.35 (0.44–4.19) 0.602 1.15 (0.58–2.30) 0.683 1.57 (0.72–3.43) 0.257

Abbreviations: BC, black carbon; CI, confidence interval; NDVI, normalized difference vegetation index; NO2, nitrogen dioxide; O3, ozone; OR, odds ratio; PM2.5, particulate matter with
an aerodynamic diameter lower than 2.5 µm; PM10, particulate matter with an aerodynamic diameter lower than 10 µm. 1 All air pollutants exposures were back-extrapolated in time with
the ratio method. 2 The low exposure group was used as the reference group. 3 All models were adjusted for O3 and NDVI (300 m buffer), except for the O3 model which was adjusted for
NO2 and NDVI (300 m buffer) and the NDVI model which was adjusted for O3 and NO2. All models were also adjusted for grandparental education and grandparental asthma. 4 All
p-values < 0.05 = significant and marked bold.



Int. J. Environ. Res. Public Health 2020, 17, 5828 8 of 14

Sensitivity analyses revealed protective associations of paternal high NDVI exposure (1000 m) for
offspring early-onset asthma (Table S6b). Sensitivity analyses stratified by country and for parents born
after 1985 gave roughly the same patterns, but with some variations due to low numbers (Tables S8a,b
and S9a,b).

Maternal PM10 exposure had a direct effect on offspring early-onset asthma (Table 3) and an
indirect effect on offspring hay fever (mediated by offspring’s own exposure and by exposure during
pregnancy) (Table 3). Paternal O3 exposure was associated with increased odds for offspring hay fever
through a direct and total effect, and was not mediated by O3 exposure during pregnancy.

Table 3. Mediation analysis of the association between parental exposure and offspring early-onset
asthma and hay fever (outcome) through exposure during pregnancy and offspring own exposure
(potential mediators).

(a) Early-Onset Asthma.

Mediator Parental exposure

Offspring Early-Onset Asthma

Total Effect Indirect Effect Direct Effect

OR (95% CI) * OR (95% CI) * OR (95% CI) *

Exposure during pregnancy (PM10) PM10 (maternal)
Low 1.00 1.00 1.00

Medium 2.08 (1.31–3.31) 1.10 (0.97–1.25) 1.89 (1.17–3.06)
High 1.36 (0.85–2.19) 1.20 (0.96–1.50) 1.13 (0.67–1.93)

(b) Hay Fever.

Mediator Parental exposure

Offspring Hay Fever

Total Effect Indirect Effect Direct Effect

OR (95% CI) * OR (95% CI) * OR (95% CI) *

Offspring own exposure (PM10) PM10 (maternal)
Low 1.00 1.00 1.00

Medium 1.75 (0.75–4.04) 1.24 (1.08–1.44) 1.40 (0.60–3.27)
High 2.70 (1.20–6.08) 1.73 (1.25–2.39) 1.56 (0.66–3.69)

Exposure during pregnancy (PM10) PM10 (maternal)
Low 1.00 1.00 1.00

Medium 1.79 (0.79–4.08) 1.49 (1.22–1.83) 1.20 (0.52–2.74)
High 2.71 (1.24–5.93) 2.02 (1.49–2.76) 1.34 (0.61–2.94)

Exposure during pregnancy (O3) O3 (paternal)
Low 1.00 1.00 1.00

Medium 5.48 (1.50–20.1) 1.10 (0.80–1.50) 5.00 (1.31–19.1)
High 4.14 (0.69–24.9) 1.16 (0.70–1.94) 3.55 (0.53–24.0)

Abbreviations: CI, confidence interval; O3, ozone; OR, odds ratio; PM10, particulate matter with an aerodynamic
diameter lower than 10 µm. * All p-values < 0.05 = significant and marked bold.

4. Discussion

Exposure to PM2.5 and PM10 in mothers’ childhood was associated with higher risk of offspring
early-onset asthma, and exposure to PM10 was associated with higher risk of offspring hay fever.
Fathers’ exposure to O3 was associated with more offspring hay fever, while fathers’ BC exposure was
associated with less offspring early-onset asthma. NO2 and NDVI were not significantly associated
with any of offspring’s outcomes in neither the maternal nor paternal line, although a protective NDVI
association was suggested with a larger buffer zone. The association between maternal exposure to
PM10 and offspring early-onset asthma was a direct effect, while the effect on offspring hay fever was
indirect, mediated by exposures during pregnancy and offspring’s own childhood. The association
between paternal O3 exposure and offspring hay fever was direct and not mediated by other factors.

To the best of our knowledge, this is the first study to investigate the associations between
individual exposures to air pollution and greenness during childhood of one generation on lung health
and allergy in the second generation. In previous literature, the focus on the parents’ role in offspring’s
health revolves around maternal factors and in particular exposures during pregnancy. Recent studies
associating prenatal air pollution exposure in mothers with childhood asthma show how maternal
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environmental exposure just before and during pregnancy is critical for fetal lung development
and future respiratory health [43–45]. Our results expand and elaborate on this, suggesting that
also exposures as far back in time as the childhood of the parents may play an important role in
offspring health.

A possible explanation for our findings is that potential epigenetic processes can be induced
in response to environmental exposures and influence disease risk also in the next generation [46].
Even air pollution levels that are below recommended limit values may through such epigenetic
processes have a potential harmful effect on the respiratory health of future offspring. While we found
clearer signals in the maternal than in the paternal line, previous studies have identified associations
between paternal exposures and offspring asthma. One study discovered an association between
paternal smoking prior to conception and offspring non-allergic early-onset asthma, while other studies
found associations between smoking and overweight onset in adolescent boys and increased risk of
asthma in the next generation [25,27,47]. A similar pattern was observed in our study were fathers’
exposure to O3 was associated with higher risk of offspring hay fever. However, we also found
a seemingly protective association between paternal BC exposure and offspring early-onset asthma.
The estimates in the paternal line should be interpreted with caution due to low number of fathers in
our analysis, but this is nevertheless a surprising result that should be investigated further. Ideally,
information on both parents should be included in the same analyses to give a complete picture of
the possible epigenetic processes. Unfortunately, we only had information on one parent and his/her
offspring in our study, and not on entire family units. Analyses of offspring with both parents in a long
timeframe should be emphasized in future research.

Our study revealed few associations between exposure to greenness and early-onset asthma or
hay fever in offspring. This may be because we do not have data on the time spent in green spaces.
In the sensitivity analyses performed for wider NDVI buffer zones, we observed protective associations
for offspring early-onset asthma after parental exposure to high levels of NDVI. For offspring hay fever,
NDVI exposure was on the contrary associated with increased risk. The latter is in line with existing
literature, and is possibly due to pollen exposure triggering allergic disease [17,48].

A noteworthy feature in our study was that medium parental exposure levels were associated
with significantly increased risk for offspring asthma and hay fever, despite the fact that these levels
are quite low—even high exposure levels in our study were in fact well beyond the international
recommended limit values. It appears that there were no clear dose–response relation between parental
air pollution exposures and offspring disease risk—for offspring asthma, the risk was actually highest
for those whose parents were medium exposed. This may be related to the importance of the exposure
time window and the epigenetic processes discussed above. In a study by Svanes et al. [25], the age of
smoking onset in the parents was an important risk factor for asthma in their offspring, even after
adjustment for the number of cigarettes they had smoked before conception. Moreover, a recent
epigenome-wide association study showed associations between pre-conception paternal smoking
and DNA methylation characteristics in adult and adolescent offspring—independent of the amount
smoked [49]. Our findings suggest that the same patterns may be present for air pollution exposures
as for smoking exposures. Given the low levels of exposures, these results suggest the need for
re-evaluation of the recommended limit values.

Associations between air pollutants are complex, and one could hypothesize that there are
interactive effects at play. The focus of the present study on inter-generational effects of relatively low
air pollution exposure is however still in its early days. There is a need to establish evidence that there
are certain basic associations before moving on to disentangle whether these exposures depend on
interactions and/or which pollutants are of most importance with regard to respiratory health in the
next generation. The exploration of interactive inter-generational effects of air pollution components
on lung health would be a valuable next step for future studies.

We focused on residential air pollution exposures, but exposures can be substantially higher
when commuting, compared to being at home. Children spend only around 40–50% of their time
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at home [50]. However, in most Scandinavian cities, it is common to live in close proximity of the
children’s school or kindergarten and it is therefore likely that the true everyday air pollution and
greenness exposures are similar to the residential exposure levels.

Associations between maternal PM10 childhood exposure and offspring hay fever were mediated
by offspring’s own exposure and by maternal pregnancy exposure, while the effect was direct and
unmediated with regard to early-onset asthma in offspring. These findings may suggest that asthma
risk is susceptible for an epigenetic transmission across generations, while risk for hay fever is more
likely triggered by own exposures. This could in turn imply a different transmission susceptibility for
allergic asthma and non-allergic asthma. Unfortunately, we could not distinguish between allergic and
non-allergic asthma in our study.

Correlation analyses revealed a strong correlation between pregnancy exposure and
offspring childhood exposure, but weaker correlation between parental childhood exposures and
pregnancy/offspring childhood exposures. Many parents moved to other areas with other levels of
exposures after they grew up, and then settled in the same area during pregnancy and upbringing of
children. This was also illustrated by the mediation analyses, where the effects of maternal childhood
exposures to pollutants on offspring hay fever were mediated in the same manner by exposure during
pregnancy and offspring’s own childhood exposure.

There are several strengths of this study. The RHINESSA generation study was designed to study
respiratory health across generations with detailed information on mothers and fathers and their
offspring, making it possible to investigate different susceptibility time windows for developing disease.
The detailed address history was collected for each participant, together with the standardized exposure
assessment of numerous air pollutants. The extrapolation formulas from the LUR models enabled
us to estimate concentrations for specific areas and time points by integrating data on topography,
road network, traffic information and land use within geographic information systems, resulting in
accurate exposure calculations also for unmonitored locations and years. Although we do not know
the precise accuracy of our selected study centres, previous validation studies from the ESCAPE project
have shown that the model has satisfactory accuracy, with 68 to 71% explained variance for the PM
variables and 82% explained variance for NO2 [32,51].

Another strength is the mediation analysis to disentangle the effects of the exposures on the
outcomes into the direct and indirect (mediated through offspring’s own exposure and maternal
exposure during pregnancy) components, and the use of DAGs to avoid over-adjustment in our
analyses and to identify the possible mediators.

Some limitations should be acknowledged. First, population-based studies are vulnerable to bias.
The response rate in RHINESSA was fairly low (around 40%). However, compared to the general
population in the same age range, the RHINESSA population did not differ substantially when looking
at demographic distributions (e.g., sex, smoking habits, educational level and asthma status) [28].
Additionally, recall bias is a challenge in many population-based studies. However, we do not suspect
this in our study—partly due to exposure data being objectively registered based on residential address
histories from the Norwegian and Swedish population registries, and with air pollution exposures
being modelled by land-use regression models and greenness exposures being assigned through
satellite images. Furthermore, the outcomes (offspring asthma and offspring hay fever) were not
dependent on the parents’ memory far back in time since their offspring were still young (mean age of 6
years). Second, in the current study, we tested numerous exposures for associations with the outcomes.
This multiple testing can increase the possibility of more false positive findings due to type 1 error [52].
However, due to a relatively low sample size, we believe instead that there may be an under-estimation
rather than over-estimation of the associations in our analyses. Thirdly, the use of back extrapolation
methods in the air pollution assignments may be a weakness for assignments before 1990 since the
1990 estimates were used as a proxy for these years. Air pollutants (except for O3) had a large variation
over time, which may cause error in the earliest years. However, in additional analyses where we
excluded all parents born before 1985, the patterns remained roughly unchanged, with pollutants as
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asthma risk factors in the maternal line but not in the paternal line. Lastly, the information on included
parents was self-reported through questionnaires, and information about children and grandparents
was parent-reported, thus, posing a potential information bias. However, validation studies carried
out in RHINESSA showed a minimal risk of bias for asthma, smoking status, body silhouettes and
overweight status reported across generations [28,53,54].

5. Conclusions

In conclusion, this study found that air pollution exposure in a mother’s childhood appeared
to be a risk factor for early-onset asthma and hay fever in her future offspring. The observed effect
of maternal exposures on asthma was direct, while the effect on hay fever was partly mediated
through both offspring’s own exposure and exposure during pregnancy. Results regarding fathers
were inconclusive and should be investigated further. Furthermore, future research with larger study
populations are needed to fully understand the intergenerational effects of air pollution and greenness
on offspring asthma and hay fever. However, our results suggest that the current air pollution limit
values may be too high and that the long-term effects of exposure to air pollution may have harmful
effects even across generations.
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