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Abstract We study the effect of small-scale inhomo-
geneities for Einstein clusters. We construct a spherically
symmetric static spacetime with small-scale radial inhomo-
geneities and propose the Gedankenexperiment. An hypo-
thetical observer at the center constructs, using limited obser-
vational knowledge, a simplified homogeneous model of the
configuration. An idealization introduces side effects. The
inhomogeneous spacetime and the effective homogeneous
spacetime are given by simple solutions to Einstein equa-
tions. They provide a basic toy-model for studies of the
effect of small-scale inhomogeneities in general relativity.
We show that within our highly inhomogeneous model the
effect of small-scale inhomogeneities remains small for a
central observer. The homogeneous model fits very well to
all hypothetical observations as long as their precision is not
high enough to reveal a tension.

1 Introduction

The concept of idealization is one of the basic tools of modern
physics. Macroscopic physical systems could be modelled
only if unimportant details are neglected. Unfortunately, it is
not always easy to decide which elements in the construction
of the model are essential and which are not. It is believed
that the decisive role is played by observational or exper-
imental falsification. Again, this is not always straightfor-
ward. The most famous example is the model of our Universe.
Its foundations have been proposed hundred years ago. This
extremely simple model, which extrapolated by many orders
of magnitude our faith in applicability of general relativity,
turned out to be very successful. A hundred years later the
model is alive and able to accommodate enormous flux of
observational data provided by advances of modern technol-
ogy. But, what some people see as a pure success for others is
a failure. The model seems not to be free from strange coin-
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cidences and tensions. Moreover, 96% of its energy content
has not been previously known and is seen only via gravi-
tational interactions. This apparent contradiction motivated
broad studies of validity of a basic assumption of the model –
exact spatial homogeneity. In our article, we take on this topic
and study an effect of small-scale inhomogeneities which is
especially interesting in the light of the recent presumable
tension between ‘local’ and ‘early’ universe measurements
of the Hubble constant [1–4]. These discrepancies renewed
interest in the role of inhomogeneities [5–9].

The problem of small-scale inhomogeneities may be split
into two topics: the effect of inhomogeneities on geodesics
(light, gravitational waves, test bodies) which alters inter-
pretation of our observations and the so-called backreaction
effect which alters the structure of spacetime in a sense which
will be explained below.

The backreaction problem is usually formulated asafitting
problem [10]. In this approach, one asks how to fit an ideal-
ized solution to a realistic (‘lumpy’) spacetime. The aim of
such approach is to find covariant procedure which uniquely
assigns the best effective spacetime to a realistic one. How-
ever, it is more common in a down-to-earth scientific work
to assume an effective model a priori. A physicist who wants
to describe the complicated system usually neglects ‘details’
and proposes a simplified model. This model is later being
tested in experiments or against observations. In cosmology,
spatial isotropy and homogeneity of the universe was a nat-
ural first guess. These assumptions led to our standard cos-
mological model �CDM . This model, with free parameters
estimated by astronomers, constitutes the ‘effective space-
time.’ Therefore, instead of looking for a fitting procedure
one may formulate backreaction problem in an alternative
way and ask what kind of errors has been introduced by ide-
alization.

In this alternative approach, the effective spacetime is
known from the beginning. An idealised geometry does not
fit to the matter content exactly and a discrepancy between the
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left hand side (geometry) and the right hand side of Einstein
equations (the energy–matter content) arises. If one assumes
that Einstein equations hold, then additional or missing terms
are incorrectly interpreted as a contribution to the energy–
momentum tensor. These artificial terms are known as a back-
reaction tensor. Since the �CDM energy–momentum tensor
is dominated by dark matter and dark energy – the forms of
energy and matter detected so far only through their gravita-
tional interactions, then the backreaction effect has a potential
to clarify our understanding of the Universe.

The results presented in the article by Stephen Green and
Robert Wald [11] suggest that that this potential has not been
realised in nature: within the formalism used there (the so-
called Green-Wald framework) and under appropriate math-
ematical conditions the backreaction tensor is traceless, thus
it may mimic radiation, but it cannot mimic cosmological
constant nor cold dark matter. In the context of the �CDM
model this implies that backreaction effect introduces a minor
correction and it is definitely not the ‘order of magnitude
effect’ (which is needed to explain cosmological observa-
tions without cosmological constant or other forms of dark
energy).

The Green-Wald framework [11] is a generalization to
non-vacuum spacetimes and matter inhomogeneities of the
Burnett’s approach [12]. (Burnett put on a rigorous math-
ematical footing the Isaacson’s shortwave approximation
[13,14].) One may, at least formally, find relevant examples
of spacetimes with small-scale inhomogeneities, such that the
Green-Wald formalism cannot be directly applied to them,

Fig. 1 The solution called ‘Einstein cluster’ is a mean field approxima-
tion of a spacetime filled with a high number of massive particles moving
in their own gravitational field on randomly inclined and directed circu-
lar orbits. (The Cartesian coordinates x , y, z were scaled for simplicity.)

e.g. a vacuum cosmological model with all the mass con-
centrated in a statistically homogeneously distributed black
holes [15]. Moreover, even if the backreaction vanishes, the
effect of small-scale inhomogeneities may still alter interpre-
tation of observations, as will be illustrated by our example.

Our approach is based on a class of solutions to Einstein
equations called an Einstein cluster. This type of solutions
have interesting properties that allow for novel studies of
the effect of small-scale inhomogeneities in an alternative
setting. Our research is restricted to a simple toy-model and,
as such, it is only indirectly relevant for cosmology (for other
studies based on exact solutions see also [16–22]; for the
current review of cosmological backreaction see [23]).

The Einstein cluster was discovered by Albert Einstein
in 1939 [24]. It provides a mean field approximation of a
cloud of massive particles moving in randomly inclined cir-
cular geodesics under the collective gravitational field of all
the masses (see Fig. 1). The spacetime is spherically sym-
metric and static. The radial pressure vanishes because the
whole system is centrifugally supported. Einstein clusters
have been studied extensively in literature (see [25] and ref-
erences therein). In the astrophysical context, they have been
proposed as models of galactic dark matter haloes [26].

The vanishing of radial pressure allows to construct static
spacetimes with small-scale inhomogeneities without intro-
ducing unphysical equation of state. This property suits our
purpose superbly. One of the interesting questions related to
the effect of inhomogeneities is how large this effect might
be. In the studies, as those presented in the article [18], large
overdensities would lead in a short time to the formation of
shell-crossing singularities, thus the magnitude of the effect
is constrained by the construction of the model. This is an
artifact of the simplified energy content which is pressure-
less (a dust). The solutions studied in our article are static and
do not have this limitation. The effect of inhomogeneities is
most interesting in the cosmological context where the struc-
ture formation may play a decisive role. However, it is not
the aim of this research to clarify this aspect of backreac-
tion. Our aims are more humble. We would like to verify the
magnitude of the effect of small-scale inhomogeneities in the
most simple static setting. This direction of studies seems to
be unexplored so far. We point out that majority of authors
by ‘backreaction’ understand a dynamical effect. The effect
studied here is of different nature: we study tensions in the
homogeneous static model due to omission of the small-scale
inhomogeneities.

Another novel property of the model studied is the fact in
which the homogeneous spacetime is chosen. In the studies
based on the swiss-cheese model, the inhomogeneous solu-
tions are constructed out of the Einstein-de Sitter solution.
Therefore, it is natural to compare the inhomogeneity effect
against the Einstein-de Sitter background. However, this is a
simplification. The observer living in a swiss-cheese universe
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would choose a different homogeneous model. Parameters of
the homogeneous model would be based on observations in
the swiss-cheese model interpreted under the homogeneity
assumption. In this study, we elaborate on this topic in con-
text of Einstein clusters.

The aim of the article is to conduct the Gedankenexper-
iment. We construct a solution to Einstein equations which
contains small-scale inhomogeneities. Our choice of the den-
sity profile is inspired by the Green-Wald framework [11] :
the metric is ‘close’ to the homogeneous solution, but the sec-
ond derivatives of the metric are large. We show that in our
model the backreaction vanishes (in the sense of the Green-
Wald framework [11]). Moreover, we present a heuristic
analysis which implies that the backreaction vanishes in
all possible models constructed within an Einstein cluster
class. This motivate us to study the effect of inhomogeneities
beyond the Green-Wald framework. We adopt a point of
view of an astrophysicist who would like to model our inho-
mogeneous spacetime by available idealised exact solutions.
We argue that astronomical observations interpreted within
simplified model would lead to the misinterpretation of the
energy content of the model. Our analysis is restricted to the
particular class of solutions to Einstein equations, but it illus-
trates what the effect of small-scale inhomogeneities could
be in principle.

2 Setting

Any spherically symmetric static spacetime could be written
in the following form

g = −eνdt2 + eλdr2 + r2(dθ2 + sin2 θdϕ2), (1)

where ν, λ are functions of r only. Two of the Killing fields
could be immediately read out from the form of the metric: ∂t ,
∂ϕ . For the centrifugally supported cloud of massive particles
(the so-called Einstein cluster) the energy–momentum tensor
non-vanishing components are [24]

T t
t = −ρ, T θ

θ = T ϕ
ϕ = p,

where ρ = ρ(r) is the energy density and p = p(r) is a
tangential pressure. The Einstein equations imply

λ = ln(1 + rν′), p = rν′

4
ρ, (2)

and

rν′′ + r(ν′)2 + 2ν′ = 8πr(1 + rν′)2ρ. (3)

In order to find a particular solution one may set ρ(r), solve
(3) for ν(r) and calculate λ(r) from (2). The standard pseu-
dopotential analysis reveals [25] that the radial stability con-

ditions have forms

0 < rν′/2 < 1,

rν′′ − r(ν′)2 + 3ν′ > 0. (4)

The Eq. (3) if written in terms of an auxiliary function
λ = ln ζ [using (2)] reduces to the Bernoulli differential
equation

ζ ′ + Pζ = Qζ 2,

where P = −1/r , Q = −1/r + 8πrρ. The substitution
ζ → 1/μ leads to a linear equation of the form

−μ′ + Pμ = Q,

which has a solution

μ = 1 − 8π

r

∫
ρr2dr, (5)

where an integration constant is fixed by regularity at the
center (it depends on the form of ρ). Therefore, for a given
density profile the solution to Einstein equations is given by

ν =
∫

dr

r

(
1

μ
− 1

)
, (6)

λ = ln
1

μ
, (7)

where μ may be calculated from (5).
This solution may be matched to the Schwarzschild exte-

rior. The active gravitational mass inside of the sphere with
an area radius r is given by [25]

M(r) = 4π

∫ r

0
ρ(r̂)r̂2dr̂ = r2

2

ν′

1 + rν′ , (8)

and the total mass of all ‘particles’ inside this sphere is1

MT (r) = 1

2
√

2

∫ r

0

√
μ

√
3 − 1/μ

(−r̂μ′/μ + 1/μ − 1
)
dr̂ .

(9)

The difference between the total mass and the active grav-
itational mass tells us how much energy is needed to ‘dis-
assemble’ the cluster. The fractional binding energy may be
calculated as follows

BE = MT − M

MT
. (10)

3 Small-scale inhomogeneities

We assume that an energy density ρ = ρ(r/ l) is an oscil-
lating function where l is a constant. A small value of l cor-
responds to high frequency oscillations. Using Eqs. (5), (6)

1 There is a misprint in formula (41) in [25]. The minus sign in front
of the integral is unnecessary.
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and (7) one may calculate metric functions ν(r), λ(r) that
correspond to ρ(r/ l). In this way, we construct a spacetime
with small-scale inhomogeneities.

It is not an aim of this paper to model any realistic astro-
physical system, but in order to gain physical intuition one
may pretend that our inhomogeneous spacetime describes
the galactic halo. For simplicity, we choose ρ(r/ l) in such a
way that it oscillates about a constant density ρ0 for a class
of stationary observers. Moreover, our system constitutes a
finite configuration: at some radius r = R it is matched to
the Schwarzschild solution.

We assume that a hypothetical astrophysicist living at the
center of the system does not know ρ precisely, but knows
that ρ is ‘approximately’ constant and that the configura-
tion is finite. Both facts would become basic assumptions
of his idealised model: the Einstein cluster with a constant
energy density and anisotropic pressure, from now on called
the model A.

It follows from the Birkhoff theorem that vacuum space-
time outside a spherically symmetric configuration is given
by the Schwarzschild metric. Thus, any effective spacetime
must be also matched to the Schwarzschild solution. Imagine
a hypothetical astrophysicist living in the center of this clus-
ter who wants to determine its properties. Observations of
trajectories of satellite stars and dwarf galaxies would allow
to estimate gravitational mass of the system M . In addition,
one may measure the blushift z of the most distant stars (at the
matching surface r = R). Alternatively, one may estimate
the sum of all masses (stars, dark matter, …) that constitute
the cluster MT or/and determine the angular diameter dA or
the luminosity distance dL of the most distant objects.

To sum up, assumptions and hypothetical observational
results which are made/known to our astrophysicist:

• the spacetime is static,
• the spacetime is spherically symmetric,
• observer is at the center,
• the matter is distributed uniformly on average (relatively

to the preferred system of coordinates),
• local effects are small (the observer and the sources are

not in under/overdensities),
• the configuration is finite (vacuum outside),
• the state of art observations are not good enough to

resolve individual inhomogeneities (their density pro-
files, etc.) – the observer may detect only the cumulative
effects,

• one of three conditions holds:

– the gravitational mass M of the configuration is
known (based on observations of satellite dwarf
galaxies and orbits of stars encircling the halo) and
the blueshift z of most distant stars in the halo is
known (we assume that z has been corrected for a
perpendicular Doppler shift),

– the gravitational mass M is known and the observer
measured the angular diameter distance dA of the
most distant objects (or alternatively he/she measured
the luminosity distance dL ),

– the total mass MT of all constituents of the cluster is
known and the observer knowns the angular diameter
distance dA to the most distant objects.

It will be more instructive for a reader to start with the
description of a constant density Einstein cluster (our effec-
tive and background spacetime – our approach does not dis-
tinguish between these two concepts).

4 Model A: constant density Einstein cluster

A constant density profile ρ(r) = ρA and the Eq. (5) give
(see also [27])

μ0 = 1 − aAr
2,

where aA = 8πρA/3 is a constant and where an additive
constant was chosen to satisfy regularity at the center r = 0.
We have from (6), (7)

νA = − ln
√

1 − aAr2 + 3 ln
√

1 − aAR2
A,

λA = − ln
(

1 − aAr
2
)
,

where without loss of generality we have chosen the addi-

tive constant 3 ln
√

1 − aAR2
A in ν0 and where RA is a new

constant 0 < RA < 1/
√
aA. Finally, the metric reads

gA = −
√

1 − aAR2
A

3

√
1 − aAr2

dt2 + 1

1 − aAr2 dr
2 + r2d�2. (11)

The metric is regular and of the Lorentzian signature for 0 ≤
r < 1/

√
aA. The Ricci and Kretschmann scalars blow up at

r = 1/
√
aA, so there is a curvature singularity. From now

on we assume that 0 ≤ r ≤ RA < 1/
√
aA. For r = RA the

spacetime is matched to the vacuum exterior Schwarzschild
solution – the active gravitational mass inside of the sphere
with an area radius r is given by (8). For a constant density
profile M(r) = aAr3/2. The radial stability conditions (4)
reduce to 0 < 3aAr2 < 2 and aAr2 < 4/3 which gives
additional restriction on the matching hypersurface r = RA.

5 Inhomogeneous spacetime

A toy-model studied in this paper is constructed as follows.
We assume that ρ(r) = 2ρ0 cos2(πr/ l + π/4σ), where ρ0,
l and σ = ±1 are constant. The parameter ρ0 is an average

123



Eur. Phys. J. C (2020) 80 :397 Page 5 of 10 397

density as measured by stationary observers in our coordinate
system and, at the same time, a local energy density at the
center of the configuration. We introduce auxiliary constant
a such that ρ0 = 3a

8π
. The frequency of density oscillations

is fixed by l (the small value of this parameter l � 1 cor-
responds to high-frequency density oscillations). Note that
an amplitude of these oscillations does not depend on l and
remains large in the limit l → 0. For small l our model repre-
sents highly inhomogeneous system! In order to interpreted
ρ0 as an average density it is necessary to assume that

M(R) = 4

3
πR3ρ0, (12)

which will be valid only for a discrete set of values of R. The
different choices of a phase π/4σ (where σ = ±1) corre-
spond to different matter configurations. The energy density
at the center (at position of the observer) corresponds to its
average value ρ0.

We split μ into two parts: one which does not depend on
l and the second one which is O(l): μ = μ0 + μl . Using (5)
we find

μ0 = 1 − ar2,

μl = 3alσ

4π3

[
− l2

r
+ 2πl sin

(
2πr

l

)

+
(
l2

r
− 2π2r

)
cos

(
2πr

l

)]
, (13)

where an additive constant was chosen to satisfy regularity
at the center. We have ν = ν0 + νl , where from (6), (7)

ν0 = − ln
√

1 − ar2 + 3 ln
√

1 − aR2, (14)

νl = −
∫

dr

r

μl

μ0

1

(μ0 + μl)
,

λ = − ln (μ0 + μl), (15)

where the integration constant in νl should be chosen to sat-
isfy νl(R) = 0. We have gtt = −eν0+νl , grr = 1/(μ0 + μl)

and

g = −
√

1 − aR23

√
1 − ar2

eνl dt2 + 1

1 − ar2 + μl
dr2 + r2d�2.

(16)

One may show that the Ricci and Kretschmann scalars blow
up at μ = 0, so there is a curvature singularity. From now on
we assume that that 0 ≤ r ≤ R < 1/

√
a. The term μl which

is proportional to l can be made arbitrary small, so the metric
is regular and of the Lorentzian signature in R× (0,R)× S2.
For r = R the spacetime is matched to the vacuum exterior
Schwarzschild solution – the active gravitational mass inside
of the sphere with the area radius r is given by (8).

The radial stability conditions (4) have complicated form
for this solution. We have verified that they hold for our inho-
mogeneous density profiles for R � 6M . The second radial

stability condition may be marginally violated for some shells
in certain more compact configurations, but this is not essen-
tial for our considerations.

5.1 Green-Wald framework

Our model corresponds to a one-parameter family of solu-
tions to Einstein equations (with l being a free parameter).
One may verify by inspection2 that our model satisfies all
assumptions of the Green-Wald framework [11] with the
background spacetime g(0) which corresponds to gA with
aA → a, RA → R, ρA → ρ0.

We define h(l) = g(l) − g(0). The non-zero components
of hαβ for small l are

htt ≈ νl√
1 − ar2

, hrr ≈ − μl

(1 − ar2)2 .

It follows from the Eqs. (13) and (15) that μl , νl and the first
derivatives of νl vanish in the high frequency limit l → 0
(or n → ∞). The derivative ∂rμl is not pointwise conver-
gent, but it remains bounded. We have liml→0 hαβ = 0 as
expected. Although w-liml→0(∇δhαβ∇γ hκι) does not vanish
for δ = α = β = γ = κ = ι = r , the backreaction tensor
is zero (w-lim denotes a weak limit as defined in [11] and a
connection is associated with the spacetime g(0)).

In summary, the one-parameter family of spacetimes (16)
has a high frequency limit liml→0 g = gA. It satisfies
assumptions of the Green-Wald framework [11]. Although
one component of ∇δhαβ is not pointwise convergent, the
backreaction tensor vanishes.

Vanishing of backreaction gives rise to another interesting
question: does there exist one-parameter families of solutions
within Einstein cluster class [different choices of ρ(r)] with
non-trivial backreaction in the Green-Wald framework? We
think that the answer to this question is no. We justify it as
follows.

The possible source of backreaction is a nonlinear term
(ν′)2 in (3). In order to be a source of the backreaction it
would have to be non-zero in the high-frequency limit – it
should be at least O(l0). However, if ν′ does not vanish for
l → 0, then it follows from (2) that λ is not pointwise conver-
gent which contradicts one of the Green-Wald assumptions
about behavior of hαβ as l → 0. Taking the high-frequency
limit is a covariant procedure provided that the background
(effective) spacetime is fixed. Therefore, all one parameter
families of Einstein clusters to which the Green-Wald frame-
work may be applied have vanishing backreaction.

2 We put forward a hypothesis that any exact periodic density profile
within the Einstein cluster class may be generalized to a one-parameter
family of solutions satisfying the Green-Wald assumptions.
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6 Gedankenexperiment

Our inhomogeneous spacetime is defined by three
parameters

• an average energy density ρ0,
• a size – an area radius R,
• a size of inhomogeneities l.

These parameters are fixed. The density ρ0 must satisfy
ρ0 ≤ 3/(8πR2) to avoid curvature singularity.3 The addi-
tional parameter σ = ±1 fixes phase of density perturba-
tions. We will derive all our results for both values of σ to
grasp phase dependence. The effective model A is defined
by two parameters: ρA, RA.

Let M be gravitational mass of the cluster, MT the total
mass of its constituents and z, dA, dL , redshift, angular diam-
eter distance, luminosity distance (respectively) of the most
distant objects in the cluster. We assume that the observa-
tional data allow to determine one of the pairs: (M , z) or (M ,
dA) or (M , dL ) or (MT , dA).

From (8), we have for the inhomogeneous spacetime

M(R) = 4

3
πR3ρ0 − r

2
μl(R), (17)

which together with the condition (12) gives a transcendental
equation for R, namely, μl(R) = 0. This equation does not
depend on σ and may be written as

1 − (1 − x2

2
) cos(x) − x sin(x) = 0,

where x = 2πR/ l. We solve this equation numerically. We
skip three smallest roots and denote remaining subsequent
roots with xk , where n ∈ N and xk < xk+1. Using floor and
ceiling functions we have � xk

2π
� = k/2�, thus

2π < x1 < x2 < 4π < x3 < x4 < 6π < · · · .

Moreover, we define Rk = xkl/(2π).
Since the spacetime is spherically symmetric and static

the blueshift z for the inhomogeneous spacetime is given by

1 + z =
√
gtt (r = 0)

gtt (r)
= e

ν(0)−ν(r)
2 ,

where ν(r) = ν0(r) + νl(r) must be computed numerically
from (14), (15). The matching to the Schwarzschild solution
implies ν(Rk) = ln (1 − 2M/Rk).

For the effective spacetime gA [given by (11)], the mass
M and the blueshift z may be calculated as follows. Let aA =
2M/R3

A, then at some r = RA the metric gA will match to the

3 In practice, we choose M as a unit and calculate numerical value of
ρ0 from the Eq. (12).

Schwarzschild solution. Since we have also aA = 8π/3ρA,
then

M = 4

3
πR3

AρA. (18)

The blueshift is

1 + z =
(

1 − 2Mr2

R3
A

) 1
4

. (19)

Finally, unknown parameters of the model A (the effective
spacetime), namely, ρA, RA in terms of a first pair M , z of
the ‘observational parameters’ and parameters of the inho-
mogeneous spacetime ρ0, Rk , k are given by

ρA = 3

32π

((−z)(2 + z)[(2 + z)z + 2])3

M2

= 33

29π3

(1 − e2ν(0)

(1−8/3πR2
kρ0)2 )3

(
R3
kρ0

)2 ,

RA = 2M

−z(2 + z)[(2 + z)z + 2] =
8
3πR3

kρ0

1 − e2ν(0)

(1−8/3πR2
kρ0)2

.

It follows from the radial stability inequalities (4) that the
most compact stable/metastable configurations [25] in the
homogeneous case correspond to RA = 6M , RA = 3M ,
respectively. The Eq. (19) implies that the blueshifts for these
configurations are given by z = −1 + (2/3)1/4 � −0.096,
z = −1 + 1/31/4 � −0.240, thus both systems are relativis-
tic.

Using observational data in the form of M and z within the
homogeneous model the observer at the center will estimate
ρA to a different value than physical ρ0. Therefore, other
measurements of the energy density, i.e., from radiation that
originates in decay of dark matter particles of the galactic
halo (assuming that this will be known one day) will lead to a
disagreement with ρA. We show for the configuration studied
that the inhomogeneity effect vanishes in the limit of small
inhomogeneities l → 0. Let n = �R/ l� denote the number
of inhomogeneous regions. The inhomogeneity effect as a
function of n is presented in Fig. 2. For R = 4M and l =
2πR/x100 (this implies n = 50) we have at the boundary
of the configuration z � −0.15908 (r = R corresponds to
an overdensity), z � −0.15913 (r = R corresponds to an
underdensity) for σ = 1, σ = −1, respectively.

There are four points for each n in Fig. 2 (two choices
of phase σ = ±1 and two values of xk , xk+1 such that
2π j < xk < xk + 1 < 2π( j + 1), where j ∈ N). If r = R
corresponds to an underdensity/overdensity, then ρA > ρ0,
ρA < ρ0, respectively. This may be understood intuitively
in terms of photons and gravitational potential well. How-
ever, a careful inspection of Fig. 2 reveals that situation is
not symmetric: an observer would most likely overestimate
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Fig. 2 The discrepancy between the average energy density ρ0 in the
inhomogeneous model and the estimated energy density in the homo-
geneous model ρA for R = 4M as a function of a number of inhomo-
geneous regions. Circles and boxes correspond to different choices of
a phase: σ = 1, σ = −1, respectively. The filled symbols indicate that
the outermost shell has higher than ρ0 density (empty symbols indicate
otherwise). The value of ρA was estimated from the observed gravi-
tational mass M of the cluster and the redshift z of outermost objects

the local energy density based on many such observations.
This asymmetry seems to be an artifact of the model studied.

Now, one can imagine an alternative procedure to deter-
mine the effective density. It follows from the form of the met-
ric (1) that the angular diameter distance for radial beams and
the central observer is dA = r . If the observer knows gravi-
tational mass of the cluster and angular diameter distance to
the most distant astronomical objects in the cluster, then RA

may be found directly as RA = R. Since we assumed that
the equality (17) holds, then ρA = ρ0 and the effect of inho-
mogeneities would be absent. However, if instead of angular
diameter distance the luminosity distance to the most dis-
tant objects is known and the homogeneous model formula
(19) is used to calculate the redshift and estimate RA, then
a mismatch between ρA and ρ0 arises. This discrepancy is
of similar nature, but slightly smaller amplitude than the one
presented in Fig. 2.

Finally, one may consider different set of observations. Let
us assume that instead of gravitational mass of the cluster M
an observer knows the sum of masses of all its constituents
(e.g. stars, particles of dark matter,…) MT . If the diameter
distance to the most distant objects is known dA, then the
average density ρA (under an assumption of homogeneity)
may be calculated. The appropriate algebraic equation is too
large to be usefully presented here. It may be derived as fol-
lows. The Eq. (9) gives MT (r = dA) in terms of dA, ρA,
M . The gravitational mass is unknown, but it may be written
in terms of dA and ρA under the homogeneity assumption
[with the help of the formula (18)]. The resulting algebraic
equation may be solved numerically for ρA in terms of MT

and dA. The results are presented in Fig. 3. Since the redshift

Fig. 3 The discrepancy between the average energy density ρ0 in the
inhomogeneous model and the estimated energy density in the homo-
geneous model ρA for R = 4M as a function of a number of inhomo-
geneous regions. Circles and boxes correspond to different choices of
a phase: σ = 1, σ = −1, respectively. The filled symbols indicate that
the outermost shell has higher than ρ0 density (empty symbols indi-
cate otherwise). The value of ρA was estimated from the observed total
mass of cluster constituents MT and the angular diameter distance dA
of outermost objects

z was not involved in our calculations it may be expected
that an outermost (near R = dA) underdensity/overdensity
will not play decisive role. This did not turn out to be true.
A heavy shell with large area radius enlarges the volume, so
such configurations will have lower density than configura-
tions for which the same amount of particles is contained in
a lower volume ρ0 < ρA. The effect of outermost underden-
sities/overdensities is opposite to what has been observed in
Fig. 2 and the discrepancy is smaller.

In this paper, we investigate Einstein clusters with differ-
ent density profiles. We approximate them by homogeneous
Einstein cluster (model A) and study what kind of tensions
are induced by such idealisation. These clusters may occupy
different volumes and the outermost objects in them may
have different redshifts. Another contribution to the effect of
inhomogeneities is related to their fractional binding ener-
gies (10). We show in Fig. 4 how fractional binding energies
for different Einstein clusters of the same gravitational mass
M and the same coordinate radius R depend on R/M .

The fractional binding energy BE for all clusters
approaches asymptotically zero as R/M → +∞. It has a
maximum between R = 4M and R = 6M . The very compact
configurations exhibit negative binding energies. For small
and large R/M , the fractional binding energy of the homo-
geneous cluster (dotted line) lies between fractional binding
energies of clusters with outermost underdensities (dashed
lines) and overdensities (solid lines). Their order flip near
the maximum, but this cannot be directly seen in Fig. 3 (it
seems that the binding energy does not play a decisive role
in the discrepancy of the densities presented in this figure).

In our model, the effect of inhomogeneities for tens of
inhomogeneous regions is not larger than a few percent. As
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Fig. 4 The fractional binding energy BE as a function of compact-
ness parameter R/M . The black/gray lines lines correspond to a phase
σ = 1, σ = −1, respectively. The solid/dashed lines correspond to
the outermost inhomogeneity being overdesnity, underdensity, respec-
tively. All curves were plotted for n = 1. The thick dotted line represent
the homogeneous cluster (model A)

the number of inhomogeneities grows, the effect vanishes
(the limit l → 0 or n → +∞) in accordance with the anal-
ysis within the Green-Wald framework (the high-frequency
limit). The density contrast remains constant in this limit.
What is interesting, the effect of inhomogeneities slightly
decreases with the ratio R/M (the area radius over the grav-
itational mass of the system) – see Fig. 5. Since there is no
backreaction in the sense of the Green-Wald framework, the
misinterpretation of the energy content is of trivial nature. It
reduces to misinterpretation of the parameters of the model.
A new form of the energy content cannot appear here because
the effective spacetime belong to the same class of solutions
to Einstein equations as the original one.

It was not an aim of our paper to model a realistic astro-
physical system, but we find it instructive to calculate the
effect of inhomogeneities for parameters corresponding to
the dark matter halo of our Milky Way. We assume that in
geometrized units the mass is M = 1012M� = 1.477 ×
1015m and the radius R = 4 × 105 ly = 3.784 × 1021m
which gives R/M = 2.563×106. The Schwarzschild radius
is one order smaller than stellar distances 2M = 0.312ly. The

Fig. 5 The discrepancy between the average energy density ρ0 in the
inhomogeneous model and the estimated energy density in the homo-
geneous model ρA as a function of compactness parameter R/M . The
black/gray lines correspond to a phase σ = 1, σ = −1, respectively.
The solid/dashed lines correspond to the outermost inhomogeneity
being overdesnity, underdensity, respectively. The curves were plotted
for n = 1, 3, . . . , 21. The amplitude of the effect of inhomogeneities
decreases with growing number of inhomogeneities

energy density for the system compressed million times to the
minimal configuration R = 3M would be 5.45×10−6kg/m3

which still qualifies as a high vacuum for Earth standards. If
the local clustering scale is assumed to be l ≈ 1kpc (the size
of satellite dwarf galaxies), then n ≈ 40. For these param-
eters the inhomogeneity effect (calculated from the gravita-
tional mass M and the redshift z) is small |(ρ0 − ρA)/ρ0| ≈
0.03%.

7 Summary

We have constructed the spherically symmetric static Ein-
stein cluster with small-scale radial inhomogeneities and
applied the Green-Wald framework to show that the effec-
tive energy–momentum tensor vanishes. Although the inho-
mogeneities did not generate artificial contribution to the
energy–momentum tensor, they altered light propagation and
observables. In order to quantify these effects, we extended
our analysis beyond the Green-Wald framework. We have
conducted the Gedankenexperiment: an observer at the cen-
ter of this configuration modelled surrounding spacetime by
an effective solution – an homogeneous Einstein cluster. The
parameters of this effective spacetime are based on straight-
forward astronomical ‘observations.’ The idealization of the
inhomogeneous spacetime resulted in the misinterpretation
of the energy content. The effective energy density was dif-
ferent than the original average energy density. The sign of
the effect depends on the configuration of matter studied and
set of observables being used. The effect is not bigger than
a few percent (assuming existence of more than a few inho-
mogeneous regions) and, as expected, it vanishes in the limit
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in which the size of inhomogeneous regions goes to zero, but
the density contrast is kept constant.

Our result does not generalize directly to the cosmological
setting (which seems to be most interesting in the context of
the inhomogeneity effect). Nevertheless, we have shown that
in our model the homogeneous solution approximate quite
well the inhomogeneous one, thus the effect of small-scale
inhomogeneities is not an ‘order of magnitude effect’, but
it introduces a small correction. This conclusion is consis-
tent with results obtained using different approaches [16,18]
(assuming that local effects are negligible) and the current
state-of-the-art of this topic (see the article [23] and refer-
ences therein).

Since the effect of inhomogeneities is not large, the dif-
ferent sets of not very precise observations would be ini-
tially consistent with the homogeneous model. The increased
precision would reveal a tension between values of parame-
ters based on different observations (under the homogeneity
assumption). This tension will disappear only if the observa-
tional data would be reinterpreted within the inhomogeneous
model.
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