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The dynamical evolution of an inhomogeneous ultracold atomic gas quenched at different controllable rates
through the Bose-Einstein condensation phase transition is studied numerically in the premise of a recent
experiment in an anisotropic harmonic trap. Our findings based on the stochastic (projected) Gross-Pitaevskii
equation are shown to be consistent at early times with the predictions of the homogeneous Kibble-Zurek
mechanism. This is demonstrated by collapsing the early dynamical evolution of densities, spectral functions
and correlation lengths for different quench rates, based on an appropriate characterization of the distance to
criticality felt by the quenched system. The subsequent long-time evolution, beyond the identified dynamical
critical region, is also investigated by looking at the behavior of the density wavefront evolution and the
corresponding phase ordering dynamics.
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I. INTRODUCTION

The Kibble-Zurek (KZ) mechanism originated from the
scenario for defect creation in cosmological symmetry-
breaking phase transitions [1]. As the Universe cools, causally
disconnected regions choose symmetry-breaking vacuum in-
dependently. The randomly oriented domains result in topo-
logically nontrivial configurations that survive as topological
defects. This general scenario was substantiated with a dy-
namical theory [2,3] that predicts the size of the domains, and
therefore also the initial density of defects, employing critical
exponents of the transition and the quench time τQ. The
KZ mechanism has been numerically studied across diverse
condensed matter systems, including superconducting junc-
tion arrays and holographic superconductors, superfluid 3He
and 4He, and driven-dissipative exciton-polaritons [4–24].
There have been numerous supportive laboratory experiments
[25–43], including recent ones in the context of ultracold
atomic gases across different geometries and dimensionalities
[42,44–52]. In recent years, the KZ mechanism has been
generalized to quantum phase transitions [53–58]. Theoretical
developments [12,59–86] and experimental tests [44,87–95]
of the quantum KZ mechanism followed, with a recent exper-
iment [94] emulating a quantum Ising chain in the transverse
field using Rydberg atoms being fully consistent with the
predicted scaling [55,56].
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In this paper, we focus on the evolution of a trapped
ultracold atomic gas across the transition to a Bose-Einstein
condensate. We perform a detailed numerical analysis of
externally-driven spontaneous symmetry breaking and dy-
namical growth of an elongated, harmonically confined,
three-dimensional (3D) condensate by solving the stochastic
(projected) Gross-Pitaevskii equation (SPGPE) in realistic
experimental parameter regimes, previously identified in our
quantitative analysis of the late-time relaxation dynamics
probed experimentally [19,46,47,51].

Our numerical results are interpreted in terms of the ho-
mogeneous KZ mechanism by comparing the solutions of
the full 3D stochastic nonlinear equation against analytical
predictions of the linearized limit of the same equation. At
short times from the transition, where the system is close to
criticality, we find excellent agreement with the KZ scaling
laws predicted by the linearized theory, with our numerical
curves for different quench timescales appropriately collaps-
ing onto a unified curve. In particular, the growth of the
condensate is delayed with respect to the critical point by a
delay time proportional to the KZ timescale. Remarkably, we
also find that the KZ delay persists at later times as long as
the system is ramped linearly in time. Specifically, density
growth is found to occur along elliptically expanding regions
of phase space which mimic the underlying trap geometry,
with the rescaled expanding wavefronts collapsing to a single
(nonuniversal) curve for different quench rates.

Despite the inhomogeneous nature of the harmonically
trapped gas, our present work seems to indicate that the tem-
perature quenches probed in the experiments [19,46,47,51]
were such that transition effectively occurs within the remit of
the “homogeneous” KZ mechanism; the predicted modifica-
tions due to the interplay of causality and geometry [11,96,97]
seem not to be needed in this case.
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FIG. 1. Schematic of the homogeneous KZ mechanism, marking
the interplay between the diverging system relaxation time τ (black
dashed line) and the time |t | = |ε/ε̇| to the transition (solid blue
lines). The intersection points of these two curves mark the crossover
times −t̂ and +t̂ .

II. QUENCHED PROTOCOL AND MODELING

A. Temperature quench and KZ mechanism

The gas is initially prepared in a thermal state above the
critical temperature Tc and then ramped across the phase
transition, where a symmetry breaking occurs and an order
parameter appears. During such evolution, the effective dis-
tance from the critical point can be measured by a dimension-
less parameter ε = 1 − T/Tc. Close to the critical point this
parameter can be assumed to be linear in time, as

ε(t ) = t

τQ
, (1)

where τQ is referred to as the quench time. While the system
approaches Tc from above, but still far from it, the evolu-
tion is adiabatic, i.e., the gas follows its adiabatic thermal
equilibrium state. Such adiabaticity fails at a characteristic
time, −t̂ , when the relaxation time becomes longer than the
instantaneous timescale |ε/ε̇| = |t | at which ε is ramped.
The relaxation time diverges as |ε|−zν , where ν and z are
the equilibrium (correlation length) and dynamical critical
exponents, respectively. From the equation |t | � |t/τQ|−zν ,
one obtains

t̂ ∝ τ
zν/(1+zν)
Q , (2)

which corresponds to a deviation from criticality

ε̂ = t̂

τQ
∝ τ

−1/(1+zν)
Q . (3)

In the “cartoon” version of the homogeneous KZ mecha-
nism (see Fig. 1), during the system evolution, started at large
negative initial value of ε, the state of the gas freezes-out at −t̂
and subsequently remains unchanged until a time +t̂ , when
the adiabatic evolution starts again. During that period, the
correlation length ξ is frozen at the value ξ̂ of the equilibrium
correlation length at −ε̂, given by

ξ̂ ∝ ε̂−ν ∝ τ
ν/(1+zν)
Q . (4)

The above scenario (adiabatic-impulse-adiabatic approxima-
tion) is of course a simplification of the actual dynamics,
as physical quantities still evolve during the time the sys-
tem spends in the critical (impulse) region, as qualitatively
demonstrated, e.g., in Ref. [19], and characterized in detail in

Ref. [98]. However, the notable importance of the simplistic
KZ mechanism, which also explains its broad applicability
to a range of different physical systems, is that it correctly
predicts the scaling of the characteristic lengthscale ξ̂ and the
timescale t̂ with the quench time τQ. It is noteworthy that the
two scales are related by

t̂ � ξ̂ z. (5)

They both diverge in the adiabatic limit, τQ → ∞, where they
become the unique relevant scales in the KZ scaling ansatz
[99–101]. For instance, a two-point correlation function CR(t ),
between two points separated by a distance R, should satisfy

ξ̂ d−2+η CR(t ) = G(t/ξ̂ z, R/ξ̂ ). (6)

Here, d is the number of dimensions, η is a universal critical
exponent, and G is a nonuniversal scaling function. Equation
(6) is expected to be accurate in the long-wavelength and
low-frequency limit. The adiabatic-impulse-adiabatic approx-
imation is consistent with the scaling hypothesis, Eq. (6), but
it implies a particular form of the scaling function G that does
not depend on t/ξ̂ z during the freeze-out between −t̂ and +t̂ .

B. Stochastic projected Gross-Pitaevskii equation

The dynamical quench of a weakly interacting ultracold
Bose gases across the phase transition can be modelled
by classical-field simulations [15,102–108], and, in partic-
ular, by the stochastic (projected) Gross-Pitaevskii equation
[11,12,16,19,20,22,23,45,109–118], with many such works
demonstrating notable quantitative success when directly
compared against experimental observations of quenched
phase transitions [19,23,45,109], and related dynamical set-
tings [103,105], making this approach ideal in the present
context.

The stochastic projected Gross-Pitaevskii equation
(SPGPE) models the dynamics of the low-lying highly
populated “classical field” ψ , through [103]

dψ = P
[
− i

h̄
L + γ

h̄
(μ − L)

]
ψdt + dW , (7)

where

L = − h̄2∇2

2M
+ Vtrap(r) + g|ψ |2 , (8)

is the Gross-Pitaevskii term including single-particle evolu-
tion and mean-field potential (nonlinearity), and dW denotes
complex Gaussian white noise with a correlator

〈dW ∗(r, t )dW (r′, t ′)〉 = 2γ kBT

h̄
δ(r − r′)δ(t − t ′)dt . (9)

The projection operator P in Eq. (7) restricts the dynamics
below the energy cutoff Ecut, which is fixed here as 2.5μ f ,
where μ f is the chemical potential of the gas at the end of
the quench. The interaction strength g = 4π h̄2as/M is set by
the s-wave scattering length as. The dimensionless parameter
γ controls the rate of relaxation of the classical field modes
to the equilibrium state set by the chemical potential μ and
temperature T of the reservoir of atoms located above the
cutoff, which are treated as a heat bath.
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The detailed numerical simulations performed in this
work are based on earlier stochastic dynamics simulated by
some of us in different geometries, dimensionalities, plat-
forms, and systems [19,22–24,118–120] (and related work
[110–112,114,121]).

C. Parameter choice and quench protocol

Our study is performed for the parameters correspond-
ing to a recent experiment [19,51], performed with few
×107 23Na atoms in the |F, mF 〉 = |1, −1〉 state (with
as = 2.91 nm), trapped in an anisotropic harmonic poten-
tial, Vtrap(r) = (1/2)M[ω2

x x2 + ω2
⊥(y2 + z2)], with longitudi-

nal and transversal trap frequencies ωx = 2π × 13 Hz, ω⊥ =
2π × 131.4 Hz, yielding a highly elongated 3D system. In
the experiment, after creating a thermal cloud above the
critical temperature, evaporative cooling is used to ramp the
temperature down in an approximately linear manner to much
below Tc, where the system exhibits significant condensation.
The experiment performed a detailed study of the late-time
evolution of vortex defects originally generated during the
symmetry-breaking phase transition [51], finding a power-
law decay within the range expected by the KZ mechanism.
Our previous SPGPE simulations (conducted by means of
the quench protocol discussed in Eq. (10) below) [19] were
found to be in good agreement with observations in the late-
time regime where experimental data were available; however,
experimental limitations could not facilitate such quantitative
analysis of the system dynamics at earlier times. Here we
focus on the early-time regime of the condensate formation.
Our starting point is a better numerical estimate of the distance
to criticality ε which enables us to cast the dynamics in the
standard language of the KZ mechanism and characterize it in
terms of t̂ .

In our SPGPE simulations, after initially equilibrating the
system via Eq. (7) to the desired initial thermal state defined
by its chemical potential μ and temperature T , we linearly
vary T and μ over a timescale 2τQ, with the ramp initiated at
t = −τQ and finished at t = τQ, based on the imposed quench
protocol (for |t | � τQ)

T (t ) = T0 − �T
t

τQ
and μ(t ) = μ f

t

τQ
. (10)

This “hybrid” quench protocol was already discussed and
implemented in Ref. [19], where it was found to lead to good
agreement with available experimental observations [51]. The
rationale for such a protocol is to account for both the ex-
perimentally observed decreasing temperature and decreasing
atom number numerically within the context of the SPGPE:
following Ref. [19], initial and final values for both these pa-
rameters were chosen to match typical experimental numbers,
giving T0 = 500 nK, �T = 290 nK, and μ f = 22h̄ω⊥. These
correspond to initial and final temperature and atom num-
ber combinations (Ti = 790 nK, Ni = 22 × 106) and (Tf =
210 nK, Nf = 6.6 × 106), noting that the above atom numbers
refer to total atoms, i.e., also explicitly including above cutoff
atoms (under the usual assumption that they are static, see
below). Note that, after the end of this linear ramp at t = τQ,
the “input” parameters T and μ remain fixed at their final
values.

Equation (7) is solved dynamically in a ≈314.1 ×
34.92 μm3 cuboid box with 1170 × 1302 grid points (with
a grid size ≈0.27 μm in all directions) using a plane-wave
basis, with nearly 1.3 million modes below the cutoff, with
occupation at the cutoff ncut � 1.

D. Equilibrium phase diagram

We first characterize the precise location of the equilibrium
critical point (ε = 0). For this purpose, we numerically calcu-
late the equilibrium configuration of the gas for a given set of
T and μ, in order to construct the corresponding equilibrium
phase diagram of condensate fraction vs. temperature.

Equilibrium calculations are performed within the self-
consistent Hartree-Fock approximation [103,123,124]. The
total atom number Ntot = Nc + NI includes atoms in the
c field, Nc = ∫

dr 〈|ψ (r)|2〉, and in the thermal bath, NI.
The atoms NI located above Ecut are assumed to be in
a thermal reservoir at the given T and μ, with NI =
(2π )−3

∫∫ ∞
ε(r,k)>Ecut

dkdr FI(r, k), where

FI(r, k) = 1

exp[{ε(r, k) − μ}/kBT ] − 1
(11)

and ε(r, k) = h̄2k2

2M + Vtrap(r). For a given Ntot, one can
estimate the transition temperature for the corresponding
ideal Bose gas, given by Tc,0 ≈ 0.94h̄ω̃N1/3

tot /kB, where ω̃ ≡
(ωxω

2
⊥)1/3. This can only serve as a useful reference value for

an actual interacting system, due to the competition between
thermal fluctuations and inter-particle interactions [125], and
the relevance of finite size effects [126,127].

Following a standard procedure [103], we can calculate
the condensate atom number, N0, from the classical-field
wave function ψ by means of the Penrose-Onsager criterion,
through identification of the largest eigenvalue, and the cor-
responding eigenfunction ψ0(r), of the single-particle density
matrix

ρ(r, r′) = 〈ψ∗(r)ψ (r′)〉 , (12)

where 〈· · · 〉 denotes a short-time average over 100 samples
[128]. The resulting condensate fraction N0/Ntot is plotted in
Fig. 2(a) together with experimental data of the Trento group
[122]. Our equilibrium simulations, in agreement with the
experiment, clearly reveal that the condensate fraction arises
at T/Tc,0 ∼ 0.9 rather than 1, with the corresponding critical
chemical potential μ shifting to a positive value due to the
finite-size and interaction effects [126,129,130].

In order to better identify the critical region, in addition to
the condensate fraction we calculate three further quantities
exhibiting critical behavior in a narrow temperature region
[115,116,118,127,131–134], namely, the correlation length
lcoh, the Binder cumulant Cb, and the order parameter m.
The longitudinal correlation length can be extracted by an
appropriate fit to the first-order correlation function via [19]

G(1)(dx ) =
∫∫

dy dz
∫ Lx/2

−Lx/2
dx wPO(r)〈ψ∗(r + dxx̂)ψ (r)〉

≈
(

1 − dx

Lx

)
e−dx/lcoh . (13)
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FIG. 2. (a) SPGPE results (black circles) and experimental data [122] (purple diamonds) for the equilibrium condensate fraction N0/N
vs Tc,0. The dashed orange curve shows the ideal Bose gas prediction as a reference. The vertical yellow band marks the location of the
numerically identified critical region in SPGPE simulations, Tc ∼ 445.5 ± 7.3 nK; in this range, the total particle number is (5.6 ± 0.1) × 106,
which corresponds to the ideal gas critical temperature Tc,0 = (488 ± 5) nK. Background color indicates the value of the chemical potential at
each temperature during a quench, with μ(t ) and T (t ) proceeding from the rightmost to the leftmost point. (b) Filled blue squares: longitudinal
correlation length lcoh, extracted as in Eq. (13), during a SPGPE simulation of a quench with τQ = 150 ms. Time is measured from the
equilibrium critical time tc, i.e., the center of the yellow vertical band [the same as in (a)]. Open black circles: same quantity calculated in
SPGPE simulation for equilibrium states with input values μ(t − tc ) and T (t − tc ). During the quench the growth of lcoh is delayed with respect
to the instantaneous equilibrium: we find such delay to correspond to (t − tc ) ∼ 1.3t̂ (dotted vertical cyan line), where t̂ (solid vertical cyan
line) is the timescale predicted by the KZ mechanism. The scaled deviation, δlcoh, between dynamical and equilibrium correlation lengths,
defined by Eq. (15), is shown by the purple squares and exhibits a very rapid increase in the critical region, followed by a slower decay
during the re-equilibration process, which reflects the phase ordering process. The end of the ramp is denoted by the vertical black dashed
line. (c) Corresponding characteristic single-trajectory evolution of the Penrose-Onsager condensate density profiles (τQ = 150 ms): plotted
yellow and green regions respectively map out the density isosurfaces for 0.1% and 3% of the peak value of the final post-quench equilibrium
condensate density; purple filaments denote region of high velocity field, corresponding to the location of spontaneously generated vortices.

Here, Lx ≈ 54.4 μm denotes a central portion of the axial
extent of the inhomogeneous system over which the correla-
tion function is evaluated (for comparison, the final equilib-
rium condensate spans the range ≈ [−114, 114] μm). The
weighting function wPO is introduced here to reduce the
contribution of low-density regions in the transverse direction.
Details of our procedure to calculate lcoh, Cb, and m are given
in Appendix A, with different extraction protocols showing
excellent agreement between them. As a result, we identify the
equilibrium transition temperature in the range Tc ∼ 445.5 ±
7.3 nK, roughly corresponding to T/Tc,0 ∼ [0.91, 0.93]. The
corresponding critical chemical potential is μc = (4.13 ±
0.55)h̄ω⊥ > 0. Based on such values we can extract, for each
quench τQ, the dynamical critical time, tc, during the quench
when μ(t ) and T (t ) reach their corresponding critical values
μc and Tc. Specifically, we find

tc = μc

μ f
τQ ∼ (0.188 ± 0.026) τQ. (14)

We can identify the time tc as the reference time from where to
measure the distance ε, which enables us to cast all dynamical
behavior and relation to the KZ mechanism in terms of the
shifted time (t − tc) from the equilibrium phase transition.

E. Quenched dynamics

The quenched dynamical growth of the system can be
visualized by means of a particular simulation example.

Building on our earlier work which focused on the
(late-time) re-equilibration dynamics of a quenched Bose
gas [19], Figs. 2(b) and 2(c) shows the evolution of the
correlation length and density profiles for the particular case
of τQ = 150 ms.

Examining the evolution of the correlation length during
a quench as a function of (t − tc), shown in Fig. 2(b), we
notice that the growth of the dynamical correlation length
lcoh(t ) starts, as expected, at a later time to that of the cor-
responding equilibrium correlation length lequil

coh , evaluated at
equilibrium with the same μ(t ) and T (t ). In accordance with
KZ mechanism, our simulations indicate a delay proportional
to t̂ .

To complement our findings, Fig. 2(c) shows correspond-
ing 3D single-trajectory density profile snapshots during
the quenched evolution. Shortly after t̂ , the system remains
dominated by fluctuations as shown in Figs. 2(c)(i). The
first evidence of condensation onset appears around 1.3t̂ , in
the form of a localized elongated higher density condensate
region containing multiple spontaneously generated defects
(purple filaments) as in Fig. 2(c)(ii). Subsequent dynamics
[Figs. 2(c)(iii)–2(c)(v)] are dominated by the interplay be-
tween condensate growth (driven by the increasing μ(t ) >

μc and decreasing T (t ) < Tc) and phase ordering through
defect relaxation, which was previously shown to lead to a
decoupling of number and coherence growth [19]. Figure 2(c)
(v) shows a typical long-term profile after both density and
coherence have saturated to their equilibrium values, which
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for the particular example displayed here occurs after the end
of the external driving.

The evolution of coherence during the quench can also be
visualized through the ‘auxiliary’ variable [19]

δlcoh(t ) = lequil
coh (t ) − lcoh(t )

lequil
coh (t )

(15)

where lequil
coh (t ) is the equilibrium correlation length at time t .

Early on in the quench, during the adiabatic regime, the dy-
namical correlation length closely follows the corresponding
equilibrium one, until the system enters the critical region and
δlcoh(t ) quickly increases from 0 to 1. The value of δlcoh(t )
remains ≈ 1 until (t − tc) ∼ 1.3t̂ , after which time it clearly
starts decreasing, but at a much slower rate that its initial
increase: the latter decay, previously characterized in Ref. [19]
is evidence of defect relaxation and phase ordering, until
reaching values δlcoh(t ) ∼ 0, at which late time the dynamical
system has grown sufficiently to become practically indistin-
guishable from the corresponding equilibrium one.

III. LINEARIZED SPGPE

In the symmetric phase before the phase transition, when
μ(t ) < μc, there are small thermal fluctuations around the
symmetric vacuum ψ = 0. In the noninteracting limit, μc =
0. We expect that during the nonequilibrium linear quench
these fluctuations remain small until some time after the
critical point. Therefore, the out of equilibrium evolution near
the critical point can be reasonably described by a linearized
version of Eq. (7) where the interaction term g|ψ |2 in Eq. (8)
is neglected. Furthermore, as the initial growth occurs around
the center of the trap, we assume here for simplicity that
Vtrap(r) ≈ 0.

With these two approximations (and omitting the projector
in our analytical considerations)

dψ =
[

(γ + i)
h̄∇2

2M
+ γ

h̄
μ(t )

]
ψdt + dW. (16)

In this framework the small fluctuations become dynamically
unstable towards exponential growth of a condensate when
μ(t ) crosses 0 towards positive values. This can be understood
by noticing that the dissipative terms on the right hand side of
Eq. (7), that are proportional to γ , include a minus gradient of
a Mexican-hat-like potential, −∂V/∂ψ∗, where

V (|ψ |) = 1
2 g|ψ |4 − μ(t )|ψ |2. (17)

When μ(t ) > 0 the symmetry is broken and the potential has
instantaneous minima at a ring

|ψ |2eq(t ) = μ f

g

(
t

τQ

)
, (18)

with the dissipation driving ψ towards this instantaneous
vacuum manifold.

Before proceeding with such analytical treatment below,
which will guide our subsequent numerical analysis of the
full nonlinear dynamics, we make two important comments.
Firstly, the presented analytical discussion implies that the
critical point arises exactly at t = 0. However, the experi-
mentally relevant equilibrium phase diagram of Fig. 2(a) has

already revealed a shift in time, which we will subsequently
account for by replacing t by (t − tc). Secondly, the linearized
discussion neglects the role of the nonlinearity g|ψ |2ψ up to t̂ ,
at which point it will be argued to slow down the exponential
blow-up of |ψ |. However, its effect is not completely negli-
gible even before t̂ in the simulation. As shown in Sec. II D,
in equilibrium there is a range of values 0 < μ < μc where
the symmetry breaking Mexican hat potential is too shallow to
prevent restoring the symmetry by thermal fluctuations. In this
way, the actual symmetry breaking transition is shifted from
the simplistic approximation of μ = 0 to the more appropriate
μ = μc > 0.

With those “caveats” in mind, we proceed next with
our analytical predictions, initially conducted for a homoge-
neous system, and subsequently generalized to modes beyond
k = 0.

A. Uniform field

Let us first consider a uniform field ψ (t ) when Eq. (16)
becomes

dψ = γ

h̄
μ(t )ψdt + dW. (19)

Here dW is also assumed uniform. When μ < 0 then ψ = 0
is stable and its instantaneous relaxation time [21] is

τ =
(γ

h̄
|μ(t )|

)−1
. (20)

Below the critical temperature, when μ > 0 and the sym-
metric state becomes dynamically unstable, Eq. (20) is the
characteristic timescale on which small perturbations grow
exponentially. In general, τ is a timescale on which the system
can adjust to the time-dependent μ(t ). The timescale diverges
at the critical point μ = 0. Near the critical point the system
is too slow to adjust, no matter how long τQ is, and its state is
effectively frozen between the two crossover times, ∓t̂ , when
the reaction time of the system equals the time to the transition
(see Fig. 1):

τ = |t |t=t̂ , (21)

Solution of this equation with respect to t̂ yields the crossover
time:

t̂ = τ
1/2
Q

√
h̄

γμ f
. (22)

This is the KZ timescale. Near −t̂ the uniform ψ goes out
of equilibrium with the instantaneous μ(t ), hence its fluctu-
ations do not diverge at μ = 0—as might be suggested by
Eq. (19)—but remain small in consistency with the linearized
approximation. The linearization remains self-consistent until
near +t̂ when ψ begins to catch up with the varying μ(t ) again
and the dynamical instability begins to blow up exponentially.

B. Reciprocal space

In order to go beyond the uniform case, k = 0, we consider
a (modified) Fourier transform,

ψ̃ (t, k) = e
ih̄k2

2M t
∫

d3k

(2π )3/2
e−ik·rψ (t, r) , (23)
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with an extra dynamical phase prefactor included. In the
reciprocal space, the linearized SPGPE, Eq. (16), becomes a
Wiener-like stochastic equation

˙̃ψ = γ

h̄

[
μ(t ) − h̄2k2

2M

]
ψ̃ + ζ̃ , (24)

where ζ̃ (t, k) is a Gaussian white noise with a correlator

〈ζ̃ ∗(t, k)ζ̃ (t ′, k′)〉 = 2γ kBT

h̄
δ(t − t ′)δ(k − k′). (25)

For k = 0, Eq. (24) becomes the uniform Eq. (19).
When μ > 0 then all modes ψ̃ (t, k) with h̄2k2

2M < μ are
dynamically unstable. At +t̂ , when the dynamical instability
begins to blow up, all modes with k up to

k̂ = τ
−1/4
Q

(
4M2μ f

γ h̄3

)1/4

(26)

are already unstable. This borderline k̂ is a solution of h̄2 k̂2

2M =
μ(t̂ ). They are amplified by the dynamical instability and
dominate the power spectrum near and after +t̂ . An inverse
of k̂,

ξ̂ = τ
1/4
Q

(
4M2μ f

γ h̄3

)−1/4

, (27)

is the KZ correlation length. The power spectrum is dominated
by modes with wave lengths longer than ξ̂ .

The power laws in Eq. (22), (26), and (27) are consistent
with the general KZ predictions in Eqs. (2)–(4) involving the
critical exponents z and ν. Indeed, Eq. (20) implies that τ is
proportional to an inverse of the distance from the critical
point, here measured by |μ|, hence zν = 1. At the critical
point, μ = 0, the right hand side of Eq. (24) implies relaxation
with a rate ∝ k2, hence z = 2. Therefore the general KZ
formulas (2)–(4) predict

t̂ ∝ τ
1/2
Q and ξ̂ ∝ τ

1/4
Q , (28)

in agreement with Eqs. (22) and (27), respectively.

C. KZ scaling hypothesis

For large τQ, the length scale ξ̂ and the timescale t̂ become
longer than any other scales and, therefore, they become the
only relevant scales in the low frequency and long wave length
regime. Therefore, according to the KZ scaling hypothesis, in
this regime physical observables depend on time t , distance
r, and wave vector k through scaled variables t/t̂ and r/ξ̂ ,
and ξ̂k, respectively. Here we verify the hypothesis for the
linearized Eq. (24).

A formal solution of stochastic Eq. (24) is

ψ̃ (t, k) =
∫ t

−∞
dt ′ζ̃ (t ′, k)e

− γ h̄k2

2M (t−t ′ )+ γμ0
2h̄τQ

(t2−t ′2 )
. (29)

An equal-time correlator of these Gaussian fluctuations fol-
lows from Eq. (25) as

〈ψ̃∗(t, k)ψ̃ (t, k′)〉 ≡ δ(k − k′) f (t, k) , (30)

where the spectral function is

f (t, k) = 2γ kBT

h̄
e

γμ f
h̄τQ

(t−tk )2
∫ t

−∞
dt ′e− γμ f

h̄τQ
(t ′−tk )2

= 2γ kBT

h̄
t̂eu2

∫ u

−∞
du′e−u′2

. (31)

Here, tk = τQ(h̄2k2/2M )/μ f is the time when the Fourier
mode ψ̃ (t, k) becomes dynamically unstable.

The spectral function depends on t and k through a single
variable

u = t/t̂ − ξ̂ 2k2. (32)

This demonstrates not only the anticipated KZ scaling in the
form

f (t, k) = t̂ F (t/t̂, ξ̂k) (33)

but an even stronger relation

f (t, k) = t̂ F (t/t̂ − ξ̂ 2k2). (34)

Here, F and F are nonuniversal scaling functions.

D. Near +t̂

The spectral function of Eq. (31) is monotonically increas-
ing with u. Consequently, for any time it peaks at k = 0 and
for any k it is increasing with time. The peak value begins to
blow up like e(t/t̂ )2

near t/t̂ ≈ 1:

f (t, 0) = 2γ kBT

h̄
t̂e(t/t̂ )2

∫ t/t̂

−∞
du′e−u′2

≈ 2
√

πγ kBT

h̄
t̂e(t/t̂ )2

. (35)

The blow-up enhances the peak of the spectral function in a
neighborhood of k = 0 where u becomes large enough for the
integral in Eq. (31) to be approximated by

√
π :

f (t, k) ≈ 2
√

πγ kBT

h̄
t̂e(t/t̂−ξ̂ 2k2 )2

. (36)

In its regime of validity ξ̂ 2k2 � t/t̂ , hence it can be further
simplified to a Gaussian:

f (t, k) ≈ 2
√

πγ kBT

h̄
t̂e(t/t̂ )2

e−2(t/t̂ )ξ̂ 2k2
. (37)

This Gaussian neglects fluctuations with wave lengths shorter
than ξ = 2ξ̂ (t/t̂ )1/2 that have not been enhanced by the blow-
up yet. The Gaussian spectral function translates to a coarse-
grained equal-time correlation function

〈ψ∗(t, r)ψ (t, r′)〉 =
∫

d3k

(2π )3
e−ik(r−r′ ) f (t, k)

= γ kBT

2π3/2h̄

(
t̂

ξ 3

)
e(t/t̂ )2

e−(r−r′ )2/2ξ 2
. (38)

As anticipated, near t̂ its range ξ becomes the KZ correlation
length ξ̂ .

It is noteworthy that for any t/t̂ this correlation function
is proportional to t̂/ξ̂ 3 ∝ ξ̂−1 which is consistent with the
general scaling hypothesis, Eq. (6), given that d = 3 and, in
our linearized Gaussian theory, η = 0.
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Setting r′ = r we obtain average strength of the coarse-
grained fluctuations:

〈|ψ (t, r)|2〉 = γ kBT

16π3/2 h̄

(
t̂

ξ̂ 3

)(
t̂

t

)3/2

e(t/t̂ )2
. (39)

accurate near t̂ or later. These are also times when Eq. (39)
blows up and the linearized SPGPE begins to break down.
This suggests a scaling behavior that

τ
1/4
Q 〈|ψ (t, r)|2〉 ∝

(
t̂

t

)3/2

e(t/t̂ )2
. (40)

Further growth is halted by the interaction term in the Mexican
hat potential, Eq. (17), that was neglected in the linearized
equation. The nonlinear interaction begins to be felt already at
the inflection point of the potential:

|ψ |2 = μ f

3g

(
t

τQ

)
. (41)

Therefore equating 〈|ψ (t, r)|2〉 to Eq. (41) is a good indicator
when the linearized approximation breaks down. Thanks to
the exponential nature of the blow-up Eq. (39) the breakdown
time is close to t̂ up to logarithmic corrections.

It is noteworthy that, at t ≈ t̂ , the KZ correlation length
equals the healing length in the instantaneous Mexican hat
potential. The healing length is a width of a vortex core, hence
it is not possible to stabilize a tangle of vortex lines whose
separations are less than the healing length. This justifies a
posteriori our coarse-graining over wave lengths shorter than
the KZ coherence length. The shorter fluctuations are not
relevant for formation of stable vortex lines.

E. Beyond +t̂

According to the linearized theory, near t̂ the magnitude
〈|ψ |2〉 should come close to the inflection point of the Mexi-
can hat potential. Near the inflection the potential is approxi-
mately a linear function, hence its gradient is a constant and
the magnitude |ψ | should grow linearly in time. This is a
significant slow-down after the initial exponential blow-up.
Nevertheless, eventually |ψ | grows enough to get close to the
instantaneous equilibrium magnitude, Eq. (18), at the bottom
of the potential (true vacuum). This equilibrium depends on
time through t/τQ, rather than t/t̂ characteristic for the early
times before and around t̂ , because it follows the linear ramp
that depends on t/τQ.

However, as the equilibrium magnitude depends on time,
the equilibration cannot be perfect and 〈|ψ |2〉 must be de-
layed with respect to the instantaneous equilibrium, Eq. (18).
The delay time should be proportional to a relaxation time
towards the bottom of the Mexican hat potential at the moment
when the magnitude’s growth slows down near its inflection
point. This relaxation time is proportional to the universal
KZ timescale, t̂ . Therefore we expect that the instantaneous
equilibrium Eq. (18) should be replaced by a crude formula:

〈|ψ (t, r)|2〉 ≈ |ψ |2eq(t − αt̂ ) = μ f

g

(
t − αt̂

τQ

)
, (42)

where α is a nonuniversal constant, excepted to be ∼O(1).
This is approximately valid long after t̂ , when the KZ scaling

hypothesis no longer applies, but there is still a delay propor-
tional to the KZ delay time t̂ .

It is worth emphasizing that even after the near-
equilibration of the magnitude, the phase of ψ should remain
random with a characteristic KZ coherence length ξ̂ . The
phase is the Goldstone mode for this symmetry breaking,
hence it is not subject to the aforementioned relaxation. It
is only in the subsequent evolution that the phase undergoes
slow phase ordering kinetics [135] that proceeds by gradual
annihilation of the randomly generated vortex networks. In
this sense, the KZ coherence length ξ̂ is a more robust imprint
of the KZ physics that survives to very late times.

F. Shift of the critical point

In the proceeding discussion, the nonlinearity g|ψ |2ψ was
neglected up to t̂ where it was argued to slow down the
exponential blow-up of |ψ |. However, its effect is not com-
pletely negligible even before t̂ in the simulation. As shown
in Sec. II D, in equilibrium there is a range of μ > 0 up to
μc ≈ 4.13h̄ω⊥ where the symmetry breaking Mexican hat
potential is too shallow to prevent restoring the symmetry
by thermal fluctuations. In this way, the actual symmetry
breaking transition is shifted to μ = μc. In addition to the
shift, the equilibrium universality class is also altered with
the mean-field correlation length exponent ν = 1/2 replaced
by the exact ν = 0.67. Correspondingly, given the dynamical
exponent z = 2, the predicted t̂ ∝ τ

zν/(1+zν)
Q should be altered

from t̂ ∝ τ 0.50
Q to t̂ ∝ τ 0.57

Q .
In the following we assume validity of the physical picture

developed within the Gaussian theory but incorporate the crit-
icality shift from t = 0 to tc, into predictions of the linearized
S(P)GPE by making a replacement t → t − tc. Regarding
the scaling of t̂ with τQ, we note that due to the statistical
uncertainties, it is not possible to discriminate between the
similar power laws: t̂ ∝ τ 0.50

Q (our Gaussian approximation)
and the improved scaling t̂ ∝ τ 0.57

Q , a point further discussed
in Appendix B.

G. Homogeneous assumption

For the harmonically trapped system considered in this
work, the instability addressed above is considered to be
occurring in the volume where μ(t ) − Vtrap(r) > 0. Due to the
anisotropy, this volume is enclosed in an ellipsoid x2/ax(t )2 +
(y2 + z2)/a⊥(t )2 = 1, where

ax(t ) =
√

2μ f

Mω2
x

(
t

τQ

)

a⊥(t ) =
√

2μ f

Mω2
xλ

2
⊥

(
t

τQ

)
= ax(t )

λ⊥
. (43)

with λ⊥ = ω⊥/ωx. Such an ellipsoid defines a critical volume
of the system, Vc ≡ 4πax(t )a2

⊥(t )/3, and expands along its
principle semiaxes with velocities

vx = dax

dt
=

√
μ f

2Mω2
xτQt

and v⊥ = vx

λ⊥
. (44)
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These velocities diverge in the center of the trap where the
instability appears first at t = 0.

An investigation of possible corrections due to the system
inhomogeneity requires us to compare these velocities of the
critical front (vx, v⊥) with the perturbation velocity v̂ within
the critical regime given by

v̂ ≈ ξ̂

t̂
=

(
γ 3h̄μ f

4M2

)1/4

τ
−1/4
Q . (45)

The quench is effectively homogeneous when the critical front
velocities (vx, v⊥) are larger than v̂. As the critical front
velocities diverge in the center of the trap, the quench is ef-
fectively homogeneous there. In the longitudinal (transverse)
direction, the quench remains homogeneous until the moment
when vx = v̂ (v⊥ = v̂). The latter equations can be solved
with respect to ax (a⊥) to respectively define

âx �
(

4μ3
f

M2ω8
xγ

3h̄τ 3
Q

)1/4

, â⊥ = âx

λ2
⊥

. (46)

Inside the ellipsoid with semi axis âx and â⊥, where both vx

and v⊥ are faster than v̂, the system is effectively homoge-
neous, and we find that these two quantities are respectively
larger than ax and a⊥.

The ratio of âx(⊥)/ax(⊥)(t = t̂ ) for a given τQ pro-
vides a guidance of the homogeneity of a quench. When
âx(⊥)/ax(⊥)(t = t̂ ) > 1, the quench is homogeneous in the x
(transverse) direction. We can compare the instability front
ax(⊥)(t ) and âx(⊥) up to t = t̂ . The conditions for a quench to
be longitudinally/transversally homogeneous thus are

τQ � t̂
for quasi − instantaneous quench
(homogeneous in both directions) , (47)

t̂ < τQ <
1

λ2
⊥

μ f

γ h̄ω2
x

for homogeneous quench
in both directions , (48)

1

λ2
⊥

μ f

γ h̄ω2
x

< τQ <
μ f

γ h̄ω2
x

for longitudinally homogeneous
but transversally inhomogeneous

quench
,

(49)

and

τQ >
μ f

γ h̄ω2
x

for inhomogeneous quench
inbothdirections . (50)

Identification of different criteria for a homogeneous
quench across the longitudinal and transverse directions gives
rise to a rich diagram of possible behavior, based on our
quenched input parameter μ(t ). The types of quenches pos-
sible for the considered trapping potential, characterized in
terms of their (in)homogeneity up to t̂ are summarized in
Fig. 3. In the blue region, âx(⊥) > ax(⊥) and the quenches
are effectively homogeneous. As τQ is increased to cover
the green regime, the quenches are effectively longitudinally
homogeneous when âx > ax but transversally inhomogeneous
as â⊥ < a⊥. In the red region, the quenches are effectively
inhomogeneous, since âx,⊥ < ax,⊥. We also note here that,
shortly after the transition, the quenches are all effectively ho-
mogeneous, as the critical wavefront starts growing outwards
from the trap center at t = tc.

FIG. 3. Types of quench classified by comparing the critical
wavefront ax,⊥ and âx,⊥ for times up to t̂ . When the quench duration
is comparable with t̂ , it becomes quasi-instantaneous, with momenta
beyond 1/ξ̂ excited. Increasing τQ leads to a broad homogeneous
quench regime (blue), which fully encompasses all experimentally
relevant quenches probed in this work, whose range is marked by
the vertical arrow. Slower quenches can lead to regimes where the
quench is inhomogeneous only in the transverse direction (green),
or in both directions (red), but both of these would require ramp
durations exceeding 10 s for the current trap. Note that, since
the critical wavefront starts from the trap center at tc, the quench
is always homogeneous at t − tc = 0. The black dashed lines are
boundaries estimated by Eqs. (47)–(50).

The experimentally relevant quench parameters investi-
gated in our present study lie well within the homogeneous
quench regime, and hence the above linearized SPGPE anal-
ysis is expected to be applicable. When the quench duration
becomes comparable to t̂ , the quenches can be regarded as
quasi-instantaneous quench (yellow region): in such cases, the
presence of the nonlinearity allows for momenta beyond 1/ξ̂

to be excited after the termination of the fast ramp. To see
the inhomogeneous effects in a quench, one could consider
much slower quenches or increase the trapping frequencies
and aspect ratio, tuning the boundaries according to Eq. (47)
to (50).

IV. EARLY TIME KZ SCALING AND SPGPE

Having demonstrated the relevance of the homogeneous
KZ mechanism for the parameter regime considered in this
work, we now examine the extent to which the linearized
SPGPE—supplemented with the time shift (t − tc)—can ac-
curately explain the results of the full nonlinear SPGPE nu-
merical simulations.

Firstly, we consider the spectral function, defined in
Sec. III C. The time evolution of the spectral function can be
extracted from the full SPGPE simulations. Figure 4 shows the
evolution of the peak value f (t, 0) as a function of t − tc. The
same curves are plotted in panel (b), but rescaled according
to the analytic scaling law predicted by the linearized theory,
Eq. (33). We see that the curves corresponding to different
quench rates collapse onto each other in the approximate
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FIG. 4. (a) Evolution of the peak spectral function f (t, k = 0)
in the SPGPE simulations as a function of (t − tc ); (b) same curves
but rescaled according to the KZ scaling predicted by the linearized
theory. The scaled curves for different τQ collapse to a common scal-
ing function F [(t − tc )/t̂, 0] in the approximate regime (t − tc )/t̂ ∈
(0, 2). Furthermore, as predicted by Eq. (35), in the same regime
there is a blow-up that begins near/shortly after (t − tc )/t̂ ∼ 1, with
the light blue vertical solid and dotted lines in the inset respectively
marking the positions of t̂ and 1.3t̂ . The hollow squares mark t̂ as
defined in Eq. (22), while the hollow circles mark the end of the
linear ramp. The black dashed line plots the Gaussian divergent trend
∝ exp{[(t − tc )/t̂]2} in Eq. (35).

range (t − tc) � 2t̂ , thus demonstrating the validity of the KZ
scaling hypothesis. Furthermore, the collapsed curves blow-
up near the scaled time (t − tc)/t̂ = 1 as predicted by Eq. (35).
At later times, as the field fluctuations approach the inflection
point of the Mexican hat potential, the slope of the curves
decreases as an effect of the nonlinear interaction term in the
SPGPE not included in the linearized theory.

The evolution of the whole spectral function f (t, k) is in-
vestigated in Fig. 5, which shows raw (left column) and scaled
(right column) numerical data for different values of τQ as a
function of the shifted time (t − tc). The raw data demonstrate
a strikingly different behavior for different quench times.
Nonetheless, plotting the same data scaled according to the
law, Eq. (33), reveal great similarity, particularly for the three
slowest quenches (bottom three panels). In other words, for
long enough τQ, the scaled spectral functions collapse to a
common scaling function thus confirming the KZ scaling
hypothesis. In the same panels we also attempt a test of

the scaling law in its stronger form of Eq. (34). The added
grey parabolas satisfy u = (t − tc)/t̂ − ξ̂ 2k2 = 1. According
to Eq. (34), the spectral functions should be constant along
these lines, which appears to be the case here, up to statistical
fluctuations.

Nonlinear effects becomes relevant when the density is
large. In Fig. 6, we plot the time evolution of the number
of atoms in the classical field near the center of the trap,
defined as

Nc,cen =
∫

Vcen

dr 〈|ψ (r)|2〉 , (51)

where, upon accounting for the system anisotropy, Vcen has
been chosen as the ellipsoid around the center within half
harmonic lengths in all directions. The results for different
ramps are shown in panel (a) as a function of t − tc, while
in panel (b) the same curves are plotted according to the
scaling law Eq. (40) predicted by the linearized theory. Again,
the curves nicely collapse onto each other in the same early
time regime (t − tc) � 2t̂ , where the spectral function also
collapses, while for larger times, the scaling is less effective.

Finally, in Fig. 7, we show that the longitudinal correlation
length growth defined by Eq. (13) also collapses onto a
single scaling function by applying the same KZ rescaling
previously used for the spectral function. All quenches exhibit
an initial growth at some delayed time after (t − tc) = 0, with
faster quenches displaying a faster initial growth. In the case
of the slower quenches, lcoh grows smoothly to the final value
of around 430 μm. However, the three fastest quenches (72,
150, and 200 ms) reveal evident fluctuations in the value of
lcoh during its growth. These have been previously identified
[19] as being due to the persistence/dynamics of defects
(vortices) within the region |x| � 27.2 μm over which this
correlation function is evaluated. This is more pronounced
for the very fast quench [ τQ = 72 ms (red)], for which the
cooling ramp terminates at t − tc ≈ 2t̂ [dashed black vertical
lines in Figs. 5(a) (i) and 5(a) (ii)], thereafter exciting higher
momentum modes. Nonetheless, within (t − tc) � 2t̂ , and
after rescaling, lcoh reveals excellent collapse for all curves,
as evident from Fig. 7(b).

V. LATE TIME DYNAMICS

Up to now, we have accounted for the early time dynam-
ical phase transition crossing within SPGPE, interpreting the
result in the context of the homogeneous KZ mechanism and
the linearized theory. In this section we examine the extent
to which the late-time dynamics of the nonlinear SPGPE—
based on our quench protocol of fixed initial and final states,
and different quench duration τQ—are also collapsible onto a
single curve in a way dictated by the KZ mechanism.

Firstly, we examine the late-time evolution of the central
particle number, defined by Eq. (51), in Fig. 8(a). While
the raw density evolution curves corresponding to different
quench rates differ widely [see earlier Fig. 6(a)], when plotted
as a function of (t − tc − αt̂ )/τQ as suggested by Eq. (42),
instead of (t − tc)/t̂ , the different curves collapse nicely for

033183-9



I-KANG LIU et al. PHYSICAL REVIEW RESEARCH 2, 033183 (2020)

FIG. 5. Evolution of the spectral function, (31), in SPGPE simulations for different quench times. Left columns: raw data. Right column:
same results but rescaled according to Eq. (33). Vertical bands mark the uncertainty of tc obtained from equilibrium analysis. The scaled curves
for different τQ (at least for the three slower quenches) collapse to a common scaling function F [(t − tc )/t̂, 0] in the approximate regime
(t − tc ) � 2t̂ . Grey lines in right column represent the parabola u = (t − tc )/t̂ − ξ̂ 2k2 = 1, along which the spectral function is predicted to be
constant according to the stronger relation of Eq. (34), with t → t − tc, within their regime of validity. The horizontal pink dashed line marks
the value of 1/ξ̂ , which corresponds to the largest wave number being excited up to t − tc = t̂ as discussed in Sec. III B.

the nonuniversal constant α = 1.3. There is only one notable,
but not unexpected, outlier: the fastest quench with τQ =
72 ms. This quench has t̂ close to the end of the linear ramp,
hence its late time evolution is largely after the end of the
linear ramp.

A similar behavior is also found for the evolution of the
position of the density wave fronts in Fig. 8(b), determined
by tracing a near constant value of the classical-field density
|ψ (r)|2, arbitrarily chosen here in the range [16, 20] μm−3

to ensure relatively smooth curves (more details on this are
given in Appendix C). Again, all data nicely collapse onto a
single curve along both directions once the ellipsoidal growth
mimicking the underlying anisotropic harmonic confinement
is accounted for, consistent with the arguments exposed earlier
in Sec. III G, namely that the growth always occurs along
an ellipsoid. The slightly different dynamical behavior of the
wave front for the 72 ms ramp at intermediate times can be
understood by the fact that this particular fast ramp terminates
at (t − tc − 1.3t̂ )/τQ ∼ 0.3, as marked by the hollow red
circle.

VI. DISCUSSION AND CONCLUSIONS

We performed a detailed analysis of the early stage
quenched symmetry-breaking dynamics of an elongated har-
monically trapped three-dimensional ultracold atomic gas
evaporatively cooled from above the Bose-Einstein condensa-
tion phase transition temperature at variable rates. Our study
was conducted by means of the stochastic projected Gross-
Pitaevskii equation for parameters corresponding to a recent
experiment, and cast in the language of the Kibble-Zurek
mechanism.

Schematically, as the quenched system approaches the
critical point from above, it enters a regime where it can-
not follow the adiabatic evolution of the equilibrium state,
due to the quench proceeding faster than the characteristic
diverging relaxation time of the corresponding equilibrium
system. Adiabaticity is resumed at a certain time around +t̂
(actually we find a short delay prefactor of ∼O(1) compared
to the standard Kibble Zureck prediction) and the overall
process leads to the spontaneous emergence of defects (in
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FIG. 6. (a) Evolution of the central particle number Eq. (51) in
the SPGPE simulations as a function (t − tc ); (b) same curves but
rescaled according to the KZ scaling predicted by the linearized
theory. Vertical lines and hollow points have the same meaning as
in Fig. 4.

this case vortices), with some of those gradually becoming
embedded in the growing condensate. Although the system is
still evolving during its quenched evolution within the critical
region—rather than remaining frozen in the “impulse” limit
of the “cartoon” KZ version—such evolution still exhibits
scaling properties predicted by the KZ mechanism.

In order to properly characterize the scaling laws for the
observables in our SPGPE, we needed to first extract the equi-
librium critical temperature of the interacting system numeri-
cally. Identification of the equilibrium critical point is crucial
to correctly apply the KZ model to a shifted evolution time
after the time tc when the system crosses the corresponding
equilibrium critical point.

Then we used the analytical predictions based on the
linearized form of the stochastic Gross-Pitaevskii equation
and KZ ordering considerations. Such predictions were found
to be valid, allowing quantities like spectral functions, correla-
tion lengths and density growth to collapse onto unique curves
for all different quench times probed here and performed in
the experiments motivating this work.

At later times, the growth of the k = 0 mode and of
the (ellipsoidal) density wave front proceed on similar
timescales. However, the presence of highly excited k modes
associated with the existence of defects in the growing

FIG. 7. Evolution of the longitudinal correlation length defined
by Eq. (13) and calculated in the SPGPE simulations for different
quench times: (a) raw data as a function of (t − tc ); (b) same curves
rescaled according to the KZ scaling predicted by the linearized
theory. The light blue vertical solid and dotted lines in the inset
respectively mark the positions of t̂ and 1.3t̂ .

condensate—which are more pronounced for the fastest
quenches—implies that the phase-ordering process
and coherence growth depend on τQ and system
geometry/inhomogeneity in a more complicated manner.
This highlights the important nature of the decoupling of
density and coherence degrees of freedom [19]. Although
phase ordering for homogeneous systems is an established
topic with known scaling laws, the presence of inhomogeneity
and anisotropy introduces finite-size effects from the early
stages of the evolution, making a collapse of the late-time
dynamics particularly tricky even in numerical simulations.

Our work fills the gap between the experimentally ob-
served long time evolution of a temperature quenched con-
densate and the Kibble-Zurek dynamics at earlier times, near
the transition. The study of the early time dynamics is relevant
for at least three reasons: (i) it is needed to prove that there
is an overall consistency in the interpretation of the SPGPE
simulations over the whole range of timescales, including the
effects of the KZ mechanism which can be understood in
terms of a linearized theory and can be related to the later time
evolution of the condensate; (ii) it clarifies the role of different
time and spatial scales in the quench, thus helping to place the
homogeneous versus inhomogeneous KZ mechanism in the
proper context of realistic trapped condensates; and (iii) to our
knowledge, new experiments are already planned to observe
the early time dynamics during a temperature quench and this
work is also meant to serve as a guide for the choice of the
appropriate observables and parameters.
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FIG. 8. Evolution of (a) the central particle number and
(b) scaled density wave fronts plotted in terms of (t − tc − 1.3t̂ )/τQ.
(a) Curves corresponding to different values of τQ collapse onto a
single curve, with the exception of the fastest quench τQ = 72 ms
(red). The slope of this curve matches the slope of μ f /g, according
to Eq. (42), which is portrayed by the black dashed line. Hollow
circles mark the ends of linear ramps, while faint bands indicate the
error bar in the determination of Nc, cen. (Inset) Evolution of lcoh with
the same time axis clearly demonstrating that coherence growth does
not follow the same timescale, except for very slow ramps. Vertical
dashed lines label the end of the different ramps. (b) Evolution of the
position of the density wave fronts (see Appendix C) showing both
longitudinal (solid curves) and transverse (dashed curves), scaled
according to the corresponding final equilibrium spatial extents
(∼114 and ∼11 μm for longitudinal and transverse directions).

Data supporting this publication are openly available under
an “Open Data Commons Open Database License” [136].
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APPENDIX A: DETERMINATION OF EQUILIBRIUM
CRITICAL POINT

The numerical identification of the critical point from
SPGPE equilibrium simulations is performed by using three
quantities: the Binder cumulant, the correlation length and the
order parameter m.

Two closely related definitions of the Binder cumulant
appear in the literature [116,118,127,131,132,134,137]. In the
first definition, appropriate for a homogeneous system, it is
defined in terms of the full classical-field ψ via [116,118,137]

Cb ≡ 〈|A|4〉
〈|A|2〉2

, with A =
∫

dr ψ (r). (A1)

The second definition has been implemented in the context of
the trapped Bose gas, and extracts a similar information but
from the condensate mode only [127]:

CPO
b = 〈|Acon|4〉

〈|Acon|2〉2
, with Acon =

∫
dr ψ∗

0 (r)ψ (r). (A2)

In both cases, one expects a sharp jump from the value 1,
below Tc, to the value 2, above. The critical value of the
Binder cumulant at the transition in the thermodynamic limit
is C∞

b, critical ∼ 1.2430 [131], while for trapped Bose gases it is
expected to be smaller than C∞

b, critical and affected by finite-
size effects [127]. Figure 9(a) shows our numerical results
based on both definitions, with their results convincingly
overlapping with each other. The jump from 1 to 2 is clearly
visible and the critical value C∞

b, critical in found in the range
T/Tc,0 ∈ (0.91, 0.93), corresponding to T ∈ (438, 453) nK.

In the critical region, the correlation length is also expected
to diverge as |1 − (T/Tc)|−ν [127,138]. Based on our chosen
extraction method for the correlation length, lcoh, defined by
Eq. (13), we indeed find lcoh starts increasing rapidly in the
above probed region, as evident from Fig. 9(b). However,
the inhomogeneous finite-size nature of the system, our cho-
sen definition of an integrated coherence length, and our
numerical accuracy do not allow for the identification of a
sharp critical point, and thus cannot facilitate an accurate
determination of the static critical exponent ν.

Finally, we also follow Refs. [116,118,137] and investigate
the behavior of the order parameter m defined within our
computational volume V by

m ≡ 1√
V

〈∣∣∫ dr ψ (r)
∣∣〉√〈∫

dr |ψ (r)|2〉 . (A3)

This quantity, plotted in Fig. 9(c), is expected to be m ∼ 0
above the phase transition and m = 1 for a pure condensate
at T = 0 [116,137]. Again we see that m starts increasing
within the same critical region of the Binder cumulant and
the correlation length.

The verification that both lcoh and m start increasing within
the critical regime identified by the Binder cumulant, and
the fact that this also coincides with the region when the
condensate fraction decreases to zero, provide strong evidence
for the consistency of the identification of our critical regime.

The vertical yellow area in Fig. 9 highlights the above
determined range T/Tc,0 ∈ (0.91, 0.93). In our system, the
corresponding critical chemical potential is μc = (4.13 ±
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FIG. 9. Numerical identification of the critical point from
SPGPE equilibrium simulations. We compare our findings based on
(a) the Binder cumulant, (b) the correlation length, and (c) the order
parameter m. The critical point is found to lie in the yellow band, dur-
ing which region the Binder cumulant rapidly decreases from 2 to 1,
by lowering T , while the correlation length and order parameter start
increasing. For comparison, all plots also depict the corresponding
SPGPE condensate fraction already shown in Fig. 2(a). Insets show
zoomed in versions of the main plots. Horizontal lines in (a) indicate
limiting values of Cb, and corresponding homogeneous critical value.
Horizontal dashed line in inset to (b) indicates the value of the
thermal de Broglie wavelength λdB whose value in the critical region
is ∼0.55 μm.

0.55)h̄ω⊥ and the critical time tc in our quench protocol is

tc = τQ
μc

μ f
∼ (0.188 ± 0.026)τQ. (A4)

APPENDIX B: MEAN-FIELD VERSUS EXACT CRITICAL
BEHAVIOUR

In Sec. III, we introduced the linearized SPGPE approach
with the Gaussian approximation. Within this approach, the
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FIG. 10. (a) Quantities t̂ ′ and ξ̂ ′ given in Eqs. (B1) as a function
of τQ, compared to t̂ and ξ̂ used in the main text. The former corre-
spond to the exact equilibrium critical exponent ν = 0.67; the latter
to mean-field value ν = 0.5. (b) Longitudinal correlation length, as
in Fig. 7, but rescaled by using (t − tc )/t̂ ′ and ξ̂ ′.

equilibrium critical exponent should coincide with the mean-
field exponent ν = 1/2, leading to the scaling law t̂ ∝ τ

1/2
Q .

A natural question arises about whether the
scalings/collapses presented in the main text would be
significantly affected upon using instead the exact value of
ν = 0.67. This would in fact lead to the slightly amended
scalings:

t̂ ′ = τ 0.43
0 τ 0.57

Q and ξ̂ ′ = ξ0(τQ/τ0)0.29 (B1)

with τ0 = h̄/(γμ f ) and ξ0 = (2Mμ f /h̄2)−1/2. The differ-
ences between the above expressions and the corresponding
mean-field values of t̂ and ξ̂ are shown in Fig. 10(a). They
are not significant in the considered regime of parameters.
In panel (b) of the same figure, we present the correlation
length and its rescaling with t̂ ′ and ξ̂ ′. Similarly to Fig. 7,
except for the fastest quench with τQ = 72 ms, the curves
for different quench times τQ collapse onto a single curve for
short times. Overall, this analysis suggests that our dynamical
results cannot accurately distinguish between the two values
of ν. The KZ exponents they imply do not differ enough.

APPENDIX C: DENSITY DISTRIBUTIONS AND
SPECTRAL FUNCTION

In the main text, we have identified the shifted time (t −
tc − 1.3t̂ ) as the time when the system exits the KZ self-
similar regime where evolutions corresponding to different
quench times τQ collapse onto one another. At later times,
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FIG. 11. (a) Density distribution of atoms in the classical field for different quench times, plotted as a function of (t − tc − 1.3t̂ )/τQ.
(b) Spectral function (29) for the same cases. In both columns, the dashed red line is the numerically traced position of the density wave front
for the density within [16, 20] μm−3, while the pink line is spectral function f of the k = 0 mode. (c) and (d) show the profiles of the density
distribution and the spectral function, respectively, at the time (t − tc − 1.3t̂ )/τQ ≈ 0.9, revealing the extent of excitation still present for the
faster quenches.

the dominant timescale governing the system is the quench
time, which determines the rate at which the system is ramped
to its low-T state (with the exception of the fastest ramp,
τQ = 72 ms, which ends while the system is still well within
the self-similar regime).

As a complement to our previous analysis, here we fur-
ther investigate the behavior of the density and the spec-
tral function of the gas during a quench. Figures 11(a) and
11(b) compares the evolution of density wavefront and k = 0
mode alongside the evolution of the full density distribu-
tion and spectral function. Specifically, Fig. 11(a) shows
how the axial system density grows as a function of time.
The front of the growing density area has been traced for
the lowest value of the density which allows a relatively
smooth curve, and is shown by the dashed red line. The
corresponding wave fronts for different τQ have already been
discussed in Fig. 8(b), where they were shown not only to
collapse on top of each other, but also on top of the corre-
sponding transversal evolution wave front, once the system
geometry/anisotropy were appropriately accounted for. In
Figs. 11(c) and 11(d), we also plot the long term evolution
of the density distribution and the spectral function at time
(t − tc − 1.3t̂ )/τQ ≈ 0.9

We can thus draw various conclusions already briefly
commented upon in the main text: (i) From Figs. 11(a) and
11(b), we see that the growth of the density wavefronts
(dashed red lines) overlaps almost perfectly with that of the
k = 0 modes (solid pink lines). This suggests that growth
on this timescale is driven by the k = 0 mode, consistent
with bosonic amplification. However, (ii) although density
and k = 0 mode grow in parallel, the spectrum of higher
excited modes looks very different on such scaled time
[Fig. 11(b)]. For comparison, the instantaneous spectral
function at time (t − tc − 1.3t̂ )/τQ ≈ 0.9 (when densities
have mostly saturated) is plotted in Fig. 11(d). We thus see
that although low momentum modes are mostly excited for
slow quenches, whose late-time momentum distribution is
consistent with the Bose-Einstein distribution, faster quenches
generate more modes with higher k, with the highest excited
modes subsequently relaxing only gradually, and on a much
longer timescale. Importantly, faster ramps are still in a
far-from-equilibrium state at (t − tc − 1.3t̂ )/τQ ≈ 0.9, even
though both density wavefronts and k = 0 mode occupations
are close to saturating at such a time. This offers a clear
perspective of the previously inferred decoupling between
density and momentum/coherence relaxation.
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