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LIFTING VECTOR FIELDS FROM MANIFOLDS TO THE r-JET
PROLONGATION OF THE TANGENT BUNDLE

JAN KUREK AND W LODZIMIERZ M. MIKULSKI

Abstract. If m ≥ 3 and r ≥ 0, we deduce that any natural linear operator
lifting vector fields from an m-manifold M to the r-jet prolongation JrT M of
the tangent bundle T M is the composition of the flow lifting J r corresponding
to the r-jet prolongation functor Jr with a natural linear operator lifting
vector fields from M to T M . If 0 ≤ s ≤ r and m ≥ 3, we find all natural
linear operators transforming vector fields on M into base-preserving fibred
maps JrT M → JsT M .

1. Introduction

All manifolds considered in this paper are assumed to be finite dimensional,
without boundary, and smooth. Maps between manifolds are assumed to be smooth
(of class C∞).

The general concept of bundle functors and natural operators can be found in
the fundamental monograph [4].

In [1], J. Gancarzewicz proved that any natural linear operator A lifting vector
fields X ∈ X (M) on an m-manifold M into vector fields A(X) ∈ X (TM) on the
tangent bundle TM of M is of the form A(X) = aXC + bXV for real numbers a
and b, where XC = T X ∈ X (TM) is the complete (flow) lift of X to TM and
XV ∈ X (TM) is the vertical lift of X to TM .

In this paper, we prove that if m ≥ 3 then any natural linear operator A lifting
vector fields X ∈ X (M) on an m-manifold M into vector fields A(X) ∈ X (JrTM)
on the r-jet prolongation JrTM of TM is of the form

A(X) = aJ rXC + bJ rXV (1.1)

for (uniquely determined) real numbers a and b.
Moreover, if 0 ≤ s ≤ r and m ≥ 3, we find all natural linear operators A

transforming vector fields X ∈ X (M) on an m-manifold M into base-preserving
fibred maps A(X) : JrTM → JsTM .
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Natural operators lifting functions and vector fields are applied in almost all
investigations of prolongation of geometric structures, see e.g. [8, 9]. That is why
such natural operators are studied in many papers, see e.g. [1, 2, 3, 4, 5, 6, 7].

From now on, let x1, . . . , xm denote the usual coordinates on Rm and ∂1, . . . , ∂m
be the canonical vector fields on Rm.

2. Preliminaries

LetMfm be the category of m-dimensional manifolds and their local diffeomor-
phisms; let FM be the category of fibred manifolds (i.e. surjective submersions
between manifolds) and their fibred maps; let FMm be the category of fibred
manifolds with m-dimensional bases and their fibred maps with local diffeomor-
phisms as base maps; and let VB be the category of vector bundles and their
vector bundle homomorphisms.

The r-jet prolongation JrY of an FMm-object Y = (Y → M) is the space of
r-jets jrxσ at points x ∈ M of local sections σ of Y . It is a fibre bundle over Y
with projection jrxσ 7→ σ(x). Every FMm-map f : Y → Y1 with the base map
f : M →M1 induces the fibred map Jrf : JrY → JrY1 by jrxσ 7→ jrf(x)(f ◦σ◦f

−1).
The resulting functor Jr : FMm → FM is a bundle functor in the sense of [4].

Let Y = (Y → M) be an FMm-object. A vector field Z ∈ X (Y ) is called
projectable if there is a vector field Z ∈ X (M) on M being related with Z with
respect to the projection Y →M . We denote by Xproj(Y ) the space of projectable
vector fields on Y . Equivalently, Z ∈ X (Y ) is projectable if and only if the flow
{FlZt } of Z is formed by FMm-maps. Thus for any Z ∈ Xproj(Y ) we have J rZ ∈
X (JrY ) given by J rZ = ∂

∂t |t=0J
rFlZt .

Let T :Mfm → FMm be the (usual) tangent functor sending any m-manifold
M into the tangent bundle TM of M and any Mfm-map ϕ : M → M1 into the
tangent map Tϕ : TM → TM1 of ϕ. Composing T with Jr we obtain the bundle
functor JrT :Mfm → FM sending any m-manifold M into the space JrTM of r-
jets jrxX at points x ∈M of vector fields X on M and everyMfm-map ϕ : M → N
of two m-manifolds into JrTϕ : JrTM → JrTN given by JrTϕ(jrxX) = jrϕ(x)(Tϕ◦
X ◦ ϕ−1). We see that JrTM is (in the obvious way) a vector bundle over M and
JrTϕ : JrTM → JrTN is a vector bundle map. So, JrT :Mfm → VB.

3. Natural operators

AnMfm-natural linear operator A : T|Mfm  T (JrT ) (lifting vector fields from
m-manifolds to the r-jet prolongation of the tangent bundle) is anMfm-invariant
family of R-linear operators (R-linear functions)

A : X (M)→ X (JrTM)

for all m-manifolds M , where X (M) is the vector space of vector fields on M .
The invariance of A means that if X ∈ X (M) and X1 ∈ X (M1) are ϕ-related
(i.e. Tϕ ◦X = X1 ◦ ϕ) for a Mfm-map ϕ : M → M1, then A(X) and A(X1) are
JrTϕ-related.
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Example 3.1. Let X ∈ X (M) be a vector field on an m-manifold M . We have
the (complete) flow lift XC = T X ∈ Xproj(TM) of X to TM . So, we have
J rXC ∈ X (JrTM). Alternatively, J rXC is the flow lift of X to JrTM via the
bundle functor JrT . The function X (M) → X (JrTM) given by X 7→ J rXC

is R-linear. The resulting family T|Mfm  T (JrT ) is an Mfm-natural linear
operator.

Example 3.2. Let X ∈ X (M) be as above. We have the vertical lift XV ∈
Xproj(TM) of X to TM . So, we have J rXV ∈ X (JrTM). Clearly, J rXV

|jrxY
=

d
dt |t=0(jrxY + tjrxX). The function X (M) → X (JrTM) given by X 7→ J rXV

is R-linear. The resulting family T|Mfm  T (JrT ) is an Mfm-natural linear
operator.

Similarly, an Mfm-natural linear operator T|Mfm  (JrT, JsT ) (transforming
vector fields on m-manifolds into fibred base-preserving maps from the r-jet pro-
longation of the tangent bundle into the s-jet prolongation of the tangent bundle)
is an Mfm-invariant family of R-linear operators (R-linear functions)

A : X (M)→ C∞M (JrTM, JsTM)

for all m-manifolds M , where X (M) is the vector space of vector fields on M and
C∞M (JrTM, JsTM) is the vector space of base-preserving fibred maps JrTM →
JsTM . The invariance of A means that if X ∈ X (M) and X1 ∈ X (M1) are
ϕ-related vector fields for anMfm-map ϕ : M →M1, then so are A(X) : JrTM →
JsTM and A(X1) : JrTM1 → JsTM1 (i.e. JsTϕ ◦A(X) = A(X1) ◦ JrTϕ).

Example 3.3. Let k be an integer such that 0 ≤ k ≤ r − s. Given a vector field
X ∈ X (M) on an m-manifold M we have a base-preserving fibred map

A〈k〉(X) : JrTM → JsTM, A〈k〉(X)(jrxY ) = jsx(adkY (X)),

where adY : X (M) → X (M) is the adjoint map given by adY (X) = [Y,X] and
adkY = adY ◦ · · · ◦ adY (k times). Thus we have the resulting Mfm-natural linear
operator A〈k〉 : T|Mfm  (JrT, JsT ).

4. Preparatory lemmas

Lemma 4.1. Let A : T|Mfm  (JrT, JsT ) be an Mfm-natural linear operator
with A((x1)q∂2)(jr0∂1) = 0 for q = 0, . . . , r. If 0 ≤ s ≤ r and m ≥ 2, then A = 0.

Proof. First, prove that

A(xα∂j)(jr0∂1) = 0 (4.1)

for any α ∈ (N ∪ {0})m and any j = 1, . . . ,m. Let us consider three cases.

(I) Let α = (α1, . . . , αm) ∈ (N ∪ {0})m be such that |α| ≤ r and let j ∈
{2, . . . ,m}. By the Frobenius theorem there exists a local embedding ϕ : Rm →
Rm of the form idR × ψ such that ϕ∗∂2 = ∂2 + (x2)α2 . . . (xm)αm∂j on some
neighborhood of 0. Then ϕ∗∂1 = ∂1 and ϕ∗((x1)α1∂2) = (x1)α1∂2 + xα∂j in some
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neighborhood of 0. On the other hand, since α1 ≤ r, by the assumption of the
lemma we have

A((x1)α1∂2)(jr0∂1) = 0.

Then, using the invariance of A with respect to ϕ, we obtain

A((x1)α1∂2 + xα∂j)(jr0∂1) = 0.

Hence, we have (4.1) for any α = (α1, . . . , αm) ∈ (N∪ {0})m with |α| ≤ r and any
j ∈ {2, . . . ,m}.

(II) Let α = (α1, . . . , αm) ∈ (N ∪ {0})m be such that |α| ≤ r and let j = 1. For
any τ ∈ R, the linear isomorphism (x1 + τx2, x2, . . . , xm) preserves ∂1 and sends
xα∂2 into (x1 − τx2)α1(x2)α2 . . . (xm)αm(∂2 + τ∂1). Further, from the case (I) we
have A(xα∂2)(jr0∂1) = 0. So, using the invariance of A with respect to (x1 +
τx2, x2, . . . , xm), we obtain

A((x1 − τx2)α1(x2)α2 . . . (xm)αm(∂2 + τ∂1))(jr0∂1) = 0.

Both sides of the last equality are polynomials in τ . Considering the coefficients of
the polynomials on τ , we obtain

A(xα∂1)(jr0∂1)− α1A((x1)α1−1(x2)α2+1 . . . (xm)αm∂2)(jr0∂1) = 0.

(If α1 = 0 the term α1A(. . . )(jr0∂1) does not occur.) Further, from the case (I) we
have α1A((x1)α1−1(x2)α2+1 . . . (xm)αm∂2)(jr0∂1) = 0. Hence we have (4.1) for any
α ∈ (N ∪ {0})m with |α| ≤ r and j = 1.

(III) Now, let α ∈ (N ∪ {0})m be such that |α| ≥ r + 1 and j = 1, . . . ,m. Then
jr0(∂2 + xα∂j) = jr0∂2. So, by Lemma 42.4 in [4], there exists a local diffeomor-
phism ϕ : Rm → Rm such that jr+1

0 ϕ = jr+1
0 id and ϕ∗∂2 = ∂2 + xα∂j on some

neighborhood of 0. Clearly, ϕ preserves jr0∂1. Further, from the case (I) for j = 2
and α = (0, . . . , 0), we have A(∂2)(jr0∂1) = 0. Then by the invariance of A with
respect to ϕ we obtain A(∂2)(jr0∂1) = A(∂2 + xα∂j)(jr0∂1). Then we have (4.1) for
any α ∈ (N ∪ {0})m such that |α| ≥ r + 1 and j = 1, . . . ,m.

We are now in a position to complete the proof. From the cases (I)–(III) we get
(4.1) for any α ∈ (N ∪ {0})m and any j = 1, . . . ,m. Then from the linearity of A
and the Peetre theorem it follows that A(X)(jr0∂1) = 0 for any X ∈ X (Rm). Now,
since the Mfm-orbit of jr0∂1 is dense in JrTM and A is Mfm-invariant, we get
that A(X) = 0 for any X ∈ X (M), i.e. A = 0. �

Lemma 4.2. Let 0 ≤ s ≤ r and m ≥ 2. Let A : T|Mfm  (JrT, JsT ) be an
Mfm-natural linear operator. Given k = 0, . . . , r we have

A((x1)k∂2)(jr0∂1) =
min(k,s)∑
l=0

µkl j
s
0((x1)l∂2) (4.2)

for some (uniquely determined) real numbers µkl for k = 0, . . . , r and l = 0, . . . ,
min(k, s).
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Proof. We can write

A(a(x1)k∂2)(bjr0∂1) =
m∑
j=1

∑
|α|≤s

λj,kα (a, b)js0(xα∂j),

where λj,kα are some (uniquely determined) smooth maps. Using the invariance
of A with respect to (τ1x1, . . . , τmx

m) for τ1 = 1, τ2 6= 0, . . . , τm 6= 0, we get the
homogeneity condition

τ2λ
j,k
α (a, b) = τj

τα
λj,kα (a, b).

Then λj,kα (a, b) = 0 if τ2 6= τj
τα . Hence

A(a(x1)k∂2)(bjr0∂1) =
s∑
l=0

µkl (a, b)js0((x1)l∂2),

where µkl are (uniquely determined) smooth maps. Now, using the invariance of A
with respect to (τx1, x2, . . . , xm) for τ 6= 0, we obtain the homogeneity condition

1
τk
µkl (a, τb) = 1

τ l
µkl (a, b).

Consequently, µkl (a, b) = 0 if l > k. The proof of the lemma is complete. �

Lemma 4.3. Let 0 ≤ s ≤ r and m ≥ 3. The vector space of all Mfm-natural
linear operators A : T|Mfm  (JrT, JsT ) has dimension ≤ r − s+ 1.

Proof. Let A : T|Mfm  (JrT, JsT ) be an Mfm-natural linear operator. Let µkl
for k = 0, . . . , r and l = 0, . . . ,min(k, s) be the real numbers from Lemma 4.2. By
Lemma 4.1, A is uniquely determined by this system (µkl ) of real numbers. So,
it remains to show that the system (µkl ) is uniquely determined by the subsystem
(µk0) of real numbers µk0 for k = 0, . . . , r − s. Let us consider two cases.

(I) s = 0. Then (µkl ) = (µk0). So, this case is trivial.

(II) s ≥ 1. We have µkl = µ0
0 for k = 0 and l = 0, . . . ,min(k, s) = 0. So,

we can assume k ≥ 1. For a real number τ , let ψτ : Rm−1 → Rm−1 be a local
diffeomorphism such that (ψτ )∗∂2 = ∂2 + τx2∂2 on some neighborhood of 0. Then
from the invariance of A with respect to idR × ψτ and (4.2) for k − 1 instead of k
it follows that

A((x1)k−1(∂2 + τx2∂2))(jr0∂1) =
min(k−1,s)∑

l=0
µk−1
l js0((x1)l(∂2 + τx2∂2)).

Consequently, if we consider the coefficients on τ of both sides, we get

A((x1)k−1x2∂2)(jr0∂1) =
min(k−1,s)∑

l=0
µk−1
l js0((x1)lx2∂2). (4.3)
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Similarly, from the invariance of A with respect to (x1 + τx2, x2, . . . , xm) and (4.2)
it follows that

A((x1 − τx2)k(∂2 + τ∂1))(jr0∂1) =
min(k,s)∑
l=0

µkl j
s
0((x1 − τx2)l(∂2 + τ∂1)).

So, we have

− kA((x1)k−1x2∂2)(jr0∂1) +A((x1)k∂1)(jr0∂1)

= −
min(k,s)∑
l=0

lµkl j
s
0((x1)l−1x2∂2) +

min(k,s)∑
l=0

µkl j
s
0((x1)l∂1).

(4.4)

From (4.3) and (4.4) we get

A((x1)k∂1)(jr0∂1) = k

min(k−1,s)∑
l=0

µk−1
l js0((x1)lx2∂2)

−
min(k,s)∑
l=0

lµkl j
s
0((x1)l−1x2∂2) +

min(k,s)∑
l=0

µkl j
s
0((x1)l∂1).

(4.5)

(If l = s then js0((x1)lx2∂2) = 0. If l = 0, then lµkl js0((x1)l−1x2∂2) does not occur.)
Using the invariance of A with respect to the embedding switching x2 and x3 (we
use the assumption m ≥ 3) and preserving the other coordinates, from (4.5) we get

A((x1)k∂1)(jr0∂1) = k

min(k−1,s)∑
l=0

µk−1
l js0((x1)lx3∂3)

−
min(k,s)∑
l=0

lµkl j
s
0((x1)l−1x3∂3) +

min(k,s)∑
l=0

µkl j
s
0((x1)l∂1).

(4.6)

By (4.5) and (4.6), we see that the coefficients on js0((x1)l−1x2∂2) (on the right
hand side of (4.5)) must be 0, i.e.

−lµkl + kµk−1
l−1 = 0

for l = 1, . . . ,min(k, s). So, by induction, the system (µkl ) is uniquely determined
by µ0

0, . . . , µ
r−s
0 . The proof of the lemma is complete. �

Lemma 4.4. Let 0 ≤ s ≤ r and m ≥ 1. The system of Mfm-natural linear
operators A〈k〉 from Example 3.3 for k = 0, . . . , r − s is linearly independent.

Proof. Suppose
∑r−s
k=0 λkA

〈k〉 = 0. We prove that λ0 = · · · = λq = 0 for q =
0, . . . , r − s. We proceed by induction with respect to q.

(i) We start with q = 0. Since A〈0〉(∂1)(jr0∂1) = js0∂1 and A〈k〉(∂1)(jr0∂1) = 0 for
k = 1, . . . , r − s, then 0 =

∑r−s
k=0 λkA

〈k〉(∂1)(jr0∂1) = λ0j
s
0∂1. Then λ0 = 0.

(ii) Now, we make the inductive step. Let r − s − 1 ≥ q ≥ 0 and assume that
λ0 = · · · = λq = 0. Then 0 =

∑r−s
k=0 λkA

〈k〉
(

1
(q+1)! (x

1)q+1∂1

)
(jr0∂1) = λq+1j

s
0∂1,
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because A〈q+1〉
(

1
(q+1)! (x

1)q+1∂1

)
(jr0∂1) = js0∂1 and A〈k〉((x1)q+1∂1)(jr0∂1) = 0 for

k = q + 2, . . . , r − s. Then λq+1 = 0, i.e. λ0 = · · · = λq+1 = 0, as well.
Thus we have proved that λ0 = · · · = λq = 0 for q = 0, . . . , r − s. For q = r − s

we get λ0 = · · · = λr−s = 0. The proof of the lemma is complete. �

5. Main results

Theorem 5.1. Let 0 ≤ s ≤ r and m ≥ 3. Any Mfm-natural linear operator
A : T|Mfm  (JrT, JsT ) is the linear combination of A〈k〉 for k = 0, . . . , r− s with
(uniquely determined) real coefficients.

Proof. It is an immediate consequence of Lemmas 4.3 and 4.4. �

Theorem 5.2. Let m ≥ 3 and r ≥ 0 be integers. AnyMfm-natural linear operator
A : T|Mfm  T (JrT ) is of the form (1.1) for (uniquely determined) reals a and b.

Proof. Let A : T|Mfm  T (JrT ) be an Mfm-natural linear operator.
Using the source projection πr : JrTM → M we produce the Mfm-natural

linear operator Tπr ◦A : T|Mfm  (JrT, J0T ). By Theorem 5.1 for s = 0,

Tπr ◦A =
r∑

k=0
λkA

〈k〉,

where λk are the real numbers. First, we are going to prove that λ1 = · · · = λr = 0.
It is easy to see that A〈k〉

(
1
q! (x

1)q∂1

)
(jr0∂1) = δk,q∂1|0 (the Kronecker delta).

So, Tπr ◦A
( 1
k! (x

1)k∂1
)

(jr0∂1) = λk∂1|0. Then

A

(
1
k! (x

1)k∂1

)
(jr0∂1) = λkJ r∂C1 (jr0∂1) + v (5.1)

for some (depending on k) πr-vertical vector v over jr0∂1.
Since jr0∂1 = jr0

(
∂1 + 1

(r+1)! (x
1)r+1∂1

)
, there exists a local diffeomorphism

ϕ with jr+1
0 ϕ = id sending the germ at 0 of ∂1 into the germ at 0 of ∂1 +

1
(r+1)! (x

1)r+1∂1. Such ϕ preserves jr0∂1 and preserves jr+1
0
( 1
k! (x

1)k∂1
)

if k ≥ 1.
So, if k ≥ 1, ϕ preserves the left-hand side of (5.1) because of the order argument.
Indeed, by Lemma 42.5 in [4], A is of order ≤ r+1 because JrT is of order ≤ r+1.
Moreover, ϕ preserves v. Indeed, the vertical bundle V JrT of JrT is of order r+ 1
because JrT is of order r + 1.

On the other hand, ϕ does not preserve J r∂C1 (jr0∂1), because

J r
(

1
(r + 1)! (x

1)r+1∂1

)C
(jr0∂1) = jr0

(
1
r! (x

1)r∂1

)
6= 0,
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where we identify Ex with VvE in the obvious way, for any vector bundle E →M ,
v ∈ Ex, and x ∈M . Indeed, if ϕt is the flow of 1

(r+1)! (x
1)r+1∂1, then

J r
(

1
(r + 1)! (x

1)r+1∂1

)C
(jr0∂1) = d

dt |t=0
JrTϕt(jr0∂1) = d

dt |t=0
jr0((ϕt)∗∂1)

= jr0

(
d

dt |t=0
(ϕt)∗∂1

)
= jr0

([
∂1,

1
(r + 1)! (x

1)r+1∂1

])
= jr0

(
1
r! (x

1)r∂1

)
.

Consequently, λk = 0 for k ∈ {1, . . . , r}, as well. Then Tπr ◦ A(X)(jrxY ) =
λ0X(x) for any X ∈ X (M) and any jrxY ∈ JrTM . Then replacing A(X) by
A(X)−λ0J rXC , we may assume that A(X) is vertical for any X ∈ X (M) and any
m-manifold M . Let pr : V JrTM → JrTM be the projection given by d

dt |t=0(jrxY +
tjrxY1) 7→ jrxY1. Then the composition pr ◦ A : T|Mfm  (JrT, JrT ) is an Mfm-
natural linear operator. So, by Theorem 5.1, pr ◦A is a constant multiple of A〈0〉.
Then A(X) is a constant multiple of J rXV .

The proof of the theorem is thus complete. �
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