REVISTA DE LA UNIÓN MATEMÁTICA ARGENTINA Vol. 61, No. 1, 2020, Pages 161–168 Published online: June 30, 2020 https://doi.org/10.33044/revuma.v61n1a10

LIFTING VECTOR FIELDS FROM MANIFOLDS TO THE *r*-JET PROLONGATION OF THE TANGENT BUNDLE

JAN KUREK AND WŁODZIMIERZ M. MIKULSKI

ABSTRACT. If $m \geq 3$ and $r \geq 0$, we deduce that any natural linear operator lifting vector fields from an *m*-manifold M to the *r*-jet prolongation J^rTM of the tangent bundle TM is the composition of the flow lifting \mathcal{J}^r corresponding to the *r*-jet prolongation functor J^r with a natural linear operator lifting vector fields from M to TM. If $0 \leq s \leq r$ and $m \geq 3$, we find all natural linear operators transforming vector fields on M into base-preserving fibred maps $J^TTM \to J^sTM$.

1. INTRODUCTION

All manifolds considered in this paper are assumed to be finite dimensional, without boundary, and smooth. Maps between manifolds are assumed to be smooth (of class C^{∞}).

The general concept of bundle functors and natural operators can be found in the fundamental monograph [4].

In [1], J. Gancarzewicz proved that any natural linear operator A lifting vector fields $X \in \mathcal{X}(M)$ on an *m*-manifold M into vector fields $A(X) \in \mathcal{X}(TM)$ on the tangent bundle TM of M is of the form $A(X) = aX^C + bX^V$ for real numbers aand b, where $X^C = \mathcal{T}X \in \mathcal{X}(TM)$ is the complete (flow) lift of X to TM and $X^V \in \mathcal{X}(TM)$ is the vertical lift of X to TM.

In this paper, we prove that if $m \geq 3$ then any natural linear operator A lifting vector fields $X \in \mathcal{X}(M)$ on an *m*-manifold M into vector fields $A(X) \in \mathcal{X}(J^rTM)$ on the *r*-jet prolongation J^rTM of TM is of the form

$$A(X) = a\mathcal{J}^r X^C + b\mathcal{J}^r X^V \tag{1.1}$$

for (uniquely determined) real numbers a and b.

Moreover, if $0 \leq s \leq r$ and $m \geq 3$, we find all natural linear operators A transforming vector fields $X \in \mathcal{X}(M)$ on an *m*-manifold M into base-preserving fibred maps $A(X) : J^rTM \to J^sTM$.

²⁰¹⁰ Mathematics Subject Classification. Primary: 58A20, 53A55.

Key words and phrases. Natural bundle; natural operator; vector field; jet prolongation functor; tangent bundle.

Natural operators lifting functions and vector fields are applied in almost all investigations of prolongation of geometric structures, see e.g. [8, 9]. That is why such natural operators are studied in many papers, see e.g. [1, 2, 3, 4, 5, 6, 7].

From now on, let x^1, \ldots, x^m denote the usual coordinates on \mathbf{R}^m and $\partial_1, \ldots, \partial_m$ be the canonical vector fields on \mathbf{R}^m .

2. Preliminaries

Let $\mathcal{M}f_m$ be the category of *m*-dimensional manifolds and their local diffeomorphisms; let \mathcal{FM} be the category of fibred manifolds (i.e. surjective submersions between manifolds) and their fibred maps; let \mathcal{FM}_m be the category of fibred manifolds with *m*-dimensional bases and their fibred maps with local diffeomorphisms as base maps; and let \mathcal{VB} be the category of vector bundles and their vector bundles.

The r-jet prolongation $J^r Y$ of an \mathcal{FM}_m -object $Y = (Y \to M)$ is the space of r-jets $j_x^r \sigma$ at points $x \in M$ of local sections σ of Y. It is a fibre bundle over Y with projection $j_x^r \sigma \mapsto \sigma(x)$. Every \mathcal{FM}_m -map $f: Y \to Y_1$ with the base map $\underline{f}: M \to M_1$ induces the fibred map $J^r f: J^r Y \to J^r Y_1$ by $j_x^r \sigma \mapsto j_{\underline{f}(x)}^r (f \circ \sigma \circ \underline{f}^{-1})$. The resulting functor $J^r: \mathcal{FM}_m \to \mathcal{FM}$ is a bundle functor in the sense of [4].

Let $Y = (Y \to M)$ be an \mathcal{FM}_m -object. A vector field $Z \in \mathcal{X}(Y)$ is called projectable if there is a vector field $\underline{Z} \in \mathcal{X}(M)$ on M being related with Z with respect to the projection $Y \to M$. We denote by $\mathcal{X}_{\text{proj}}(Y)$ the space of projectable vector fields on Y. Equivalently, $Z \in \mathcal{X}(Y)$ is projectable if and only if the flow $\{\text{Fl}_t^Z\}$ of Z is formed by \mathcal{FM}_m -maps. Thus for any $Z \in \mathcal{X}_{\text{proj}}(Y)$ we have $\mathcal{J}^r Z \in \mathcal{X}(J^r Y)$ given by $\mathcal{J}^r Z = \frac{\partial}{\partial t}_{|t=0} J^r \text{Fl}_t^Z$.

Let $T: \mathcal{M}f_m \to \mathcal{F}\mathcal{M}_m$ be the (usual) tangent functor sending any *m*-manifold M into the tangent bundle TM of M and any $\mathcal{M}f_m$ -map $\varphi: M \to M_1$ into the tangent map $T\varphi: TM \to TM_1$ of φ . Composing T with J^r we obtain the bundle functor $J^rT: \mathcal{M}f_m \to \mathcal{F}\mathcal{M}$ sending any *m*-manifold M into the space J^rTM of r-jets j_x^rX at points $x \in M$ of vector fields X on M and every $\mathcal{M}f_m$ -map $\varphi: M \to N$ of two *m*-manifolds into $J^rT\varphi: J^rTM \to J^rTN$ given by $J^rT\varphi(j_x^rX) = j_{\varphi(x)}^r(T\varphi \circ X \circ \varphi^{-1})$. We see that J^rTM is (in the obvious way) a vector bundle over M and $J^rT\varphi: J^rTM \to J^rTN$ is a vector bundle map. So, $J^rT: \mathcal{M}f_m \to \mathcal{VB}$.

3. NATURAL OPERATORS

An $\mathcal{M}f_m$ -natural linear operator $A: T_{|\mathcal{M}f_m} \rightsquigarrow T(J^r T)$ (lifting vector fields from *m*-manifolds to the *r*-jet prolongation of the tangent bundle) is an $\mathcal{M}f_m$ -invariant family of **R**-linear operators (**R**-linear functions)

$$A: \mathcal{X}(M) \to \mathcal{X}(J^r T M)$$

for all *m*-manifolds M, where $\mathcal{X}(M)$ is the vector space of vector fields on M. The invariance of A means that if $X \in \mathcal{X}(M)$ and $X_1 \in \mathcal{X}(M_1)$ are φ -related (i.e. $T\varphi \circ X = X_1 \circ \varphi$) for a $\mathcal{M}f_m$ -map $\varphi : M \to M_1$, then A(X) and $A(X_1)$ are $J^rT\varphi$ -related. **Example 3.1.** Let $X \in \mathcal{X}(M)$ be a vector field on an *m*-manifold *M*. We have the (complete) flow lift $X^C = \mathcal{T}X \in \mathcal{X}_{\text{proj}}(TM)$ of *X* to *TM*. So, we have $\mathcal{J}^r X^C \in \mathcal{X}(J^r TM)$. Alternatively, $\mathcal{J}^r X^C$ is the flow lift of *X* to $J^r TM$ via the bundle functor $J^r T$. The function $\mathcal{X}(M) \to \mathcal{X}(J^r TM)$ given by $X \mapsto \mathcal{J}^r X^C$ is **R**-linear. The resulting family $T_{|\mathcal{M}f_m} \rightsquigarrow T(J^r T)$ is an $\mathcal{M}f_m$ -natural linear operator.

Example 3.2. Let $X \in \mathcal{X}(M)$ be as above. We have the vertical lift $X^V \in \mathcal{X}_{\text{proj}}(TM)$ of X to TM. So, we have $\mathcal{J}^r X^V \in \mathcal{X}(J^r TM)$. Clearly, $\mathcal{J}^r X^V_{|j_x^r Y|} = \frac{d}{dt}_{|t=0}(j_x^r Y + t j_x^r X)$. The function $\mathcal{X}(M) \to \mathcal{X}(J^r TM)$ given by $X \mapsto \mathcal{J}^r X^V$ is **R**-linear. The resulting family $T_{|\mathcal{M}f_m} \rightsquigarrow T(J^r T)$ is an $\mathcal{M}f_m$ -natural linear operator.

Similarly, an $\mathcal{M}f_m$ -natural linear operator $T_{|\mathcal{M}f_m} \rightsquigarrow (J^r T, J^s T)$ (transforming vector fields on *m*-manifolds into fibred base-preserving maps from the *r*-jet prolongation of the tangent bundle into the *s*-jet prolongation of the tangent bundle) is an $\mathcal{M}f_m$ -invariant family of **R**-linear operators (**R**-linear functions)

$$A: \mathcal{X}(M) \to C^{\infty}_{M}(J^{r}TM, J^{s}TM)$$

for all *m*-manifolds M, where $\mathcal{X}(M)$ is the vector space of vector fields on M and $C_M^{\infty}(J^rTM, J^sTM)$ is the vector space of base-preserving fibred maps $J^rTM \to J^sTM$. The invariance of A means that if $X \in \mathcal{X}(M)$ and $X_1 \in \mathcal{X}(M_1)$ are φ -related vector fields for an $\mathcal{M}f_m$ -map $\varphi : M \to M_1$, then so are $A(X) : J^rTM \to J^sTM$ and $A(X_1) : J^rTM_1 \to J^sTM_1$ (i.e. $J^sT\varphi \circ A(X) = A(X_1) \circ J^rT\varphi$).

Example 3.3. Let k be an integer such that $0 \le k \le r - s$. Given a vector field $X \in \mathcal{X}(M)$ on an m-manifold M we have a base-preserving fibred map

$$A^{\langle k \rangle}(X): J^rTM \to J^sTM, \quad A^{\langle k \rangle}(X)(j^r_xY) = j^s_x(\mathrm{ad}^k_Y(X)),$$

where $\operatorname{ad}_Y : \mathcal{X}(M) \to \mathcal{X}(M)$ is the adjoint map given by $\operatorname{ad}_Y(X) = [Y, X]$ and $\operatorname{ad}_Y^k = \operatorname{ad}_Y \circ \cdots \circ \operatorname{ad}_Y (k \text{ times})$. Thus we have the resulting $\mathcal{M}f_m$ -natural linear operator $A^{\langle k \rangle} : T_{|\mathcal{M}f_m} \rightsquigarrow (J^rT, J^sT)$.

4. Preparatory Lemmas

Lemma 4.1. Let $A : T_{|\mathcal{M}f_m} \rightsquigarrow (J^rT, J^sT)$ be an $\mathcal{M}f_m$ -natural linear operator with $A((x^1)^q \partial_2)(j_0^r \partial_1) = 0$ for $q = 0, \ldots, r$. If $0 \le s \le r$ and $m \ge 2$, then A = 0.

Proof. First, prove that

$$A(x^{\alpha}\partial_{j})(j_{0}^{r}\partial_{1}) = 0 \tag{4.1}$$

for any $\alpha \in (\mathbf{N} \cup \{0\})^m$ and any $j = 1, \ldots, m$. Let us consider three cases.

(I) Let $\alpha = (\alpha_1, \ldots, \alpha_m) \in (\mathbf{N} \cup \{0\})^m$ be such that $|\alpha| \leq r$ and let $j \in \{2, \ldots, m\}$. By the Frobenius theorem there exists a local embedding $\varphi : \mathbf{R}^m \to \mathbf{R}^m$ of the form $\mathrm{id}_{\mathbf{R}} \times \psi$ such that $\varphi_* \partial_2 = \partial_2 + (x^2)^{\alpha_2} \dots (x^m)^{\alpha_m} \partial_j$ on some neighborhood of 0. Then $\varphi_* \partial_1 = \partial_1$ and $\varphi_*((x^1)^{\alpha_1} \partial_2) = (x^1)^{\alpha_1} \partial_2 + x^{\alpha} \partial_j$ in some

neighborhood of 0. On the other hand, since $\alpha_1 \leq r$, by the assumption of the lemma we have

$$A((x^1)^{\alpha_1}\partial_2)(j_0^r\partial_1) = 0.$$

Then, using the invariance of A with respect to φ , we obtain

$$A((x^1)^{\alpha_1}\partial_2 + x^{\alpha}\partial_j)(j_0^r\partial_1) = 0.$$

Hence, we have (4.1) for any $\alpha = (\alpha_1, \ldots, \alpha_m) \in (\mathbf{N} \cup \{0\})^m$ with $|\alpha| \leq r$ and any $j \in \{2, \ldots, m\}$.

(II) Let $\alpha = (\alpha_1, \ldots, \alpha_m) \in (\mathbf{N} \cup \{0\})^m$ be such that $|\alpha| \leq r$ and let j = 1. For any $\tau \in \mathbf{R}$, the linear isomorphism $(x^1 + \tau x^2, x^2, \ldots, x^m)$ preserves ∂_1 and sends $x^{\alpha}\partial_2$ into $(x^1 - \tau x^2)^{\alpha_1}(x^2)^{\alpha_2} \ldots (x^m)^{\alpha_m}(\partial_2 + \tau \partial_1)$. Further, from the case (I) we have $A(x^{\alpha}\partial_2)(j_0^r\partial_1) = 0$. So, using the invariance of A with respect to $(x^1 + \tau x^2, x^2, \ldots, x^m)$, we obtain

$$A((x^1 - \tau x^2)^{\alpha_1}(x^2)^{\alpha_2}\dots(x^m)^{\alpha_m}(\partial_2 + \tau \partial_1))(j_0^r \partial_1) = 0.$$

Both sides of the last equality are polynomials in τ . Considering the coefficients of the polynomials on τ , we obtain

$$A(x^{\alpha}\partial_{1})(j_{0}^{r}\partial_{1}) - \alpha_{1}A((x^{1})^{\alpha_{1}-1}(x^{2})^{\alpha_{2}+1}\dots(x^{m})^{\alpha_{m}}\partial_{2})(j_{0}^{r}\partial_{1}) = 0.$$

(If $\alpha_1 = 0$ the term $\alpha_1 A(\dots)(j_0^r \partial_1)$ does not occur.) Further, from the case (I) we have $\alpha_1 A((x^1)^{\alpha_1-1}(x^2)^{\alpha_2+1}\dots(x^m)^{\alpha_m}\partial_2)(j_0^r\partial_1) = 0$. Hence we have (4.1) for any $\alpha \in (\mathbf{N} \cup \{0\})^m$ with $|\alpha| \leq r$ and j = 1.

(III) Now, let $\alpha \in (\mathbf{N} \cup \{0\})^m$ be such that $|\alpha| \ge r+1$ and $j = 1, \ldots, m$. Then $j_0^r(\partial_2 + x^\alpha \partial_j) = j_0^r \partial_2$. So, by Lemma 42.4 in [4], there exists a local diffeomorphism $\varphi : \mathbf{R}^m \to \mathbf{R}^m$ such that $j_0^{r+1}\varphi = j_0^{r+1}$ and $\varphi_*\partial_2 = \partial_2 + x^\alpha \partial_j$ on some neighborhood of 0. Clearly, φ preserves $j_0^r \partial_1$. Further, from the case (I) for j = 2 and $\alpha = (0, \ldots, 0)$, we have $A(\partial_2)(j_0^r \partial_1) = 0$. Then by the invariance of A with respect to φ we obtain $A(\partial_2)(j_0^r \partial_1) = A(\partial_2 + x^\alpha \partial_j)(j_0^r \partial_1)$. Then we have (4.1) for any $\alpha \in (\mathbf{N} \cup \{0\})^m$ such that $|\alpha| \ge r+1$ and $j = 1, \ldots, m$.

We are now in a position to complete the proof. From the cases (I)–(III) we get (4.1) for any $\alpha \in (\mathbf{N} \cup \{0\})^m$ and any $j = 1, \ldots, m$. Then from the linearity of A and the Peetre theorem it follows that $A(X)(j_0^r\partial_1) = 0$ for any $X \in \mathcal{X}(\mathbf{R}^m)$. Now, since the $\mathcal{M}f_m$ -orbit of $j_0^r\partial_1$ is dense in J^rTM and A is $\mathcal{M}f_m$ -invariant, we get that A(X) = 0 for any $X \in \mathcal{X}(M)$, i.e. A = 0.

Lemma 4.2. Let $0 \le s \le r$ and $m \ge 2$. Let $A : T_{|\mathcal{M}f_m} \rightsquigarrow (J^rT, J^sT)$ be an $\mathcal{M}f_m$ -natural linear operator. Given $k = 0, \ldots, r$ we have

$$A((x^{1})^{k}\partial_{2})(j_{0}^{r}\partial_{1}) = \sum_{l=0}^{\min(k,s)} \mu_{l}^{k} j_{0}^{s}((x^{1})^{l}\partial_{2})$$
(4.2)

for some (uniquely determined) real numbers μ_l^k for k = 0, ..., r and $l = 0, ..., \min(k, s)$.

Rev. Un. Mat. Argentina, Vol. 61, No. 1 (2020)

Proof. We can write

$$A(a(x^1)^k \partial_2)(bj_0^r \partial_1) = \sum_{j=1}^m \sum_{|\alpha| \le s} \lambda_{\alpha}^{j,k}(a,b) j_0^s(x^{\alpha} \partial_j),$$

where $\lambda_{\alpha}^{j,k}$ are some (uniquely determined) smooth maps. Using the invariance of A with respect to $(\tau_1 x^1, \ldots, \tau_m x^m)$ for $\tau_1 = 1, \tau_2 \neq 0, \ldots, \tau_m \neq 0$, we get the homogeneity condition

$$\tau_2 \lambda_{\alpha}^{j,k}(a,b) = \frac{\tau_j}{\tau^{\alpha}} \lambda_{\alpha}^{j,k}(a,b).$$

Then $\lambda_{\alpha}^{j,k}(a,b) = 0$ if $\tau_2 \neq \frac{\tau_j}{\tau^{\alpha}}$. Hence

$$A(a(x^{1})^{k}\partial_{2})(bj_{0}^{r}\partial_{1}) = \sum_{l=0}^{s} \mu_{l}^{k}(a,b)j_{0}^{s}((x^{1})^{l}\partial_{2}),$$

where μ_l^k are (uniquely determined) smooth maps. Now, using the invariance of A with respect to $(\tau x^1, x^2, \ldots, x^m)$ for $\tau \neq 0$, we obtain the homogeneity condition

$$\frac{1}{\tau^k}\mu_l^k(a,\tau b) = \frac{1}{\tau^l}\mu_l^k(a,b).$$

Consequently, $\mu_l^k(a, b) = 0$ if l > k. The proof of the lemma is complete.

Lemma 4.3. Let $0 \le s \le r$ and $m \ge 3$. The vector space of all $\mathcal{M}f_m$ -natural linear operators $A: T_{|\mathcal{M}f_m} \rightsquigarrow (J^rT, J^sT)$ has dimension $\le r - s + 1$.

Proof. Let $A: T_{|\mathcal{M}f_m} \rightsquigarrow (J^rT, J^sT)$ be an $\mathcal{M}f_m$ -natural linear operator. Let μ_l^k for $k = 0, \ldots, r$ and $l = 0, \ldots, \min(k, s)$ be the real numbers from Lemma 4.2. By Lemma 4.1, A is uniquely determined by this system (μ_l^k) of real numbers. So, it remains to show that the system (μ_l^k) is uniquely determined by the subsystem (μ_0^k) of real numbers μ_0^k for $k = 0, \ldots, r - s$. Let us consider two cases.

(I) s = 0. Then $(\mu_l^k) = (\mu_0^k)$. So, this case is trivial.

(II) $s \geq 1$. We have $\mu_l^k = \mu_0^0$ for k = 0 and $l = 0, \ldots, \min(k, s) = 0$. So, we can assume $k \geq 1$. For a real number τ , let $\psi_{\tau} : \mathbf{R}^{m-1} \to \mathbf{R}^{m-1}$ be a local diffeomorphism such that $(\psi_{\tau})_*\partial_2 = \partial_2 + \tau x^2\partial_2$ on some neighborhood of 0. Then from the invariance of A with respect to $\mathrm{id}_{\mathbf{R}} \times \psi_{\tau}$ and (4.2) for k-1 instead of k it follows that

$$A((x^1)^{k-1}(\partial_2 + \tau x^2 \partial_2))(j_0^r \partial_1) = \sum_{l=0}^{\min(k-1,s)} \mu_l^{k-1} j_0^s((x^1)^l (\partial_2 + \tau x^2 \partial_2)).$$

Consequently, if we consider the coefficients on τ of both sides, we get

$$A((x^1)^{k-1}x^2\partial_2)(j_0^r\partial_1) = \sum_{l=0}^{\min(k-1,s)} \mu_l^{k-1} j_0^s((x^1)^l x^2\partial_2).$$
(4.3)

Rev. Un. Mat. Argentina, Vol. 61, No. 1 (2020)

Similarly, from the invariance of A with respect to $(x^1 + \tau x^2, x^2, \dots, x^m)$ and (4.2) it follows that

$$A((x^{1} - \tau x^{2})^{k}(\partial_{2} + \tau \partial_{1}))(j_{0}^{r}\partial_{1}) = \sum_{l=0}^{\min(k,s)} \mu_{l}^{k} j_{0}^{s}((x^{1} - \tau x^{2})^{l}(\partial_{2} + \tau \partial_{1})).$$

So, we have

$$-kA((x^{1})^{k-1}x^{2}\partial_{2})(j_{0}^{r}\partial_{1}) + A((x^{1})^{k}\partial_{1})(j_{0}^{r}\partial_{1})$$

$$= -\sum_{l=0}^{\min(k,s)} l\mu_{l}^{k}j_{0}^{s}((x^{1})^{l-1}x^{2}\partial_{2}) + \sum_{l=0}^{\min(k,s)} \mu_{l}^{k}j_{0}^{s}((x^{1})^{l}\partial_{1}).$$
(4.4)

From (4.3) and (4.4) we get

$$A((x^{1})^{k}\partial_{1})(j_{0}^{r}\partial_{1}) = k \sum_{l=0}^{\min(k-1,s)} \mu_{l}^{k-1} j_{0}^{s}((x^{1})^{l} x^{2} \partial_{2}) - \sum_{l=0}^{\min(k,s)} l \mu_{l}^{k} j_{0}^{s}((x^{1})^{l-1} x^{2} \partial_{2}) + \sum_{l=0}^{\min(k,s)} \mu_{l}^{k} j_{0}^{s}((x^{1})^{l} \partial_{1}).$$

$$(4.5)$$

(If l = s then $j_0^s((x^1)^l x^2 \partial_2) = 0$. If l = 0, then $l\mu_l^k j_0^s((x^1)^{l-1} x^2 \partial_2)$ does not occur.) Using the invariance of A with respect to the embedding switching x^2 and x^3 (we use the assumption $m \ge 3$) and preserving the other coordinates, from (4.5) we get

$$A((x^{1})^{k}\partial_{1})(j_{0}^{r}\partial_{1}) = k \sum_{l=0}^{\min(k-1,s)} \mu_{l}^{k-1} j_{0}^{s}((x^{1})^{l} x^{3} \partial_{3}) - \sum_{l=0}^{\min(k,s)} l \mu_{l}^{k} j_{0}^{s}((x^{1})^{l-1} x^{3} \partial_{3}) + \sum_{l=0}^{\min(k,s)} \mu_{l}^{k} j_{0}^{s}((x^{1})^{l} \partial_{1}).$$

$$(4.6)$$

By (4.5) and (4.6), we see that the coefficients on $j_0^s((x^1)^{l-1}x^2\partial_2)$ (on the right hand side of (4.5)) must be 0, i.e.

$$-l\mu_l^k + k\mu_{l-1}^{k-1} = 0$$

for $l = 1, ..., \min(k, s)$. So, by induction, the system (μ_l^k) is uniquely determined by $\mu_0^0, \ldots, \mu_0^{r-s}$. The proof of the lemma is complete.

Lemma 4.4. Let $0 \le s \le r$ and $m \ge 1$. The system of $\mathcal{M}f_m$ -natural linear operators $A^{\langle k \rangle}$ from Example 3.3 for $k = 0, \ldots, r - s$ is linearly independent.

Proof. Suppose $\sum_{k=0}^{r-s} \lambda_k A^{\langle k \rangle} = 0$. We prove that $\lambda_0 = \cdots = \lambda_q = 0$ for $q = 0, \ldots, r-s$. We proceed by induction with respect to q.

(i) We start with q = 0. Since $A^{\langle 0 \rangle}(\partial_1)(j_0^r \partial_1) = j_0^s \partial_1$ and $A^{\langle k \rangle}(\partial_1)(j_0^r \partial_1) = 0$ for $k = 1, \ldots, r - s$, then $0 = \sum_{k=0}^{r-s} \lambda_k A^{\langle k \rangle}(\partial_1)(j_0^r \partial_1) = \lambda_0 j_0^s \partial_1$. Then $\lambda_0 = 0$.

(ii) Now, we make the inductive step. Let
$$r - s - 1 \ge q \ge 0$$
 and assume that $\lambda_0 = \cdots = \lambda_q = 0$. Then $0 = \sum_{k=0}^{r-s} \lambda_k A^{\langle k \rangle} \left(\frac{1}{(q+1)!} (x^1)^{q+1} \partial_1 \right) (j_0^r \partial_1) = \lambda_{q+1} j_0^s \partial_1$,

Rev. Un. Mat. Argentina, Vol. 61, No. 1 (2020)

166

because $A^{\langle q+1 \rangle} \Big(\frac{1}{(q+1)!} (x^1)^{q+1} \partial_1 \Big) (j_0^r \partial_1) = j_0^s \partial_1$ and $A^{\langle k \rangle} ((x^1)^{q+1} \partial_1) (j_0^r \partial_1) = 0$ for $k = q+2, \ldots, r-s$. Then $\lambda_{q+1} = 0$, i.e. $\lambda_0 = \cdots = \lambda_{q+1} = 0$, as well. Thus we have proved that $\lambda_0 = \cdots = \lambda_q = 0$ for $q = 0, \ldots, r-s$. For q = r-s

Thus we have proved that $\lambda_0 = \cdots = \lambda_q = 0$ for $q = 0, \ldots, r-s$. For q = r-s we get $\lambda_0 = \cdots = \lambda_{r-s} = 0$. The proof of the lemma is complete.

5. Main results

Theorem 5.1. Let $0 \leq s \leq r$ and $m \geq 3$. Any $\mathcal{M}f_m$ -natural linear operator $A: T_{|\mathcal{M}f_m} \rightsquigarrow (J^rT, J^sT)$ is the linear combination of $A^{\langle k \rangle}$ for $k = 0, \ldots, r-s$ with (uniquely determined) real coefficients.

Proof. It is an immediate consequence of Lemmas 4.3 and 4.4.

Theorem 5.2. Let $m \ge 3$ and $r \ge 0$ be integers. Any $\mathcal{M}f_m$ -natural linear operator $A: T_{|\mathcal{M}f_m} \rightsquigarrow T(J^rT)$ is of the form (1.1) for (uniquely determined) reals a and b.

Proof. Let $A: T_{|\mathcal{M}f_m} \rightsquigarrow T(J^rT)$ be an $\mathcal{M}f_m$ -natural linear operator.

Using the source projection $\pi^r : J^r TM \to M$ we produce the $\mathcal{M}f_m$ -natural linear operator $T\pi^r \circ A : T_{|\mathcal{M}f_m} \rightsquigarrow (J^r T, J^0 T)$. By Theorem 5.1 for s = 0,

$$T\pi^r \circ A = \sum_{k=0}^r \lambda_k A^{\langle k \rangle},$$

where λ_k are the real numbers. First, we are going to prove that $\lambda_1 = \cdots = \lambda_r = 0$.

It is easy to see that $A^{\langle k \rangle} \left(\frac{1}{q!} (x^1)^q \partial_1 \right) (j_0^r \partial_1) = \delta_{k,q} \partial_{1|0}$ (the Kronecker delta). So, $T\pi^r \circ A \left(\frac{1}{k!} (x^1)^k \partial_1 \right) (j_0^r \partial_1) = \lambda_k \partial_{1|0}$. Then

$$A\left(\frac{1}{k!}(x^1)^k\partial_1\right)(j_0^r\partial_1) = \lambda_k \mathcal{J}^r \partial_1^C(j_0^r\partial_1) + v$$
(5.1)

for some (depending on k) π^r -vertical vector v over $j_0^r \partial_1$.

Since $j_0^r \partial_1 = j_0^r \left(\partial_1 + \frac{1}{(r+1)!} (x^1)^{r+1} \partial_1 \right)$, there exists a local diffeomorphism φ with $j_0^{r+1} \varphi$ = id sending the germ at 0 of ∂_1 into the germ at 0 of $\partial_1 + \frac{1}{(r+1)!} (x^1)^{r+1} \partial_1$. Such φ preserves $j_0^r \partial_1$ and preserves $j_0^{r+1} \left(\frac{1}{k!} (x^1)^k \partial_1 \right)$ if $k \ge 1$. So, if $k \ge 1$, φ preserves the left-hand side of (5.1) because of the order argument. Indeed, by Lemma 42.5 in [4], A is of order $\le r+1$ because $J^r T$ is of order $\le r+1$. Moreover, φ preserves v. Indeed, the vertical bundle VJ^rT of J^rT is of order r+1 because J^rT is of order r+1.

On the other hand, φ does not preserve $\mathcal{J}^r \partial_1^C (j_0^r \partial_1)$, because

$$\mathcal{J}^r\left(\frac{1}{(r+1)!}(x^1)^{r+1}\partial_1\right)^C(j_0^r\partial_1) = j_0^r\left(\frac{1}{r!}(x^1)^r\partial_1\right) \neq 0,$$

Rev. Un. Mat. Argentina, Vol. 61, No. 1 (2020)

where we identify E_x with $V_v E$ in the obvious way, for any vector bundle $E \to M$, $v \in E_x$, and $x \in M$. Indeed, if φ_t is the flow of $\frac{1}{(r+1)!}(x^1)^{r+1}\partial_1$, then

$$\mathcal{J}^{r}\left(\frac{1}{(r+1)!}(x^{1})^{r+1}\partial_{1}\right)^{C}(j_{0}^{r}\partial_{1}) = \frac{d}{dt}_{|t=0}J^{r}T\varphi_{t}(j_{0}^{r}\partial_{1}) = \frac{d}{dt}_{|t=0}j_{0}^{r}((\varphi_{t})_{*}\partial_{1})$$
$$= j_{0}^{r}\left(\frac{d}{dt}_{|t=0}(\varphi_{t})_{*}\partial_{1}\right) = j_{0}^{r}\left(\left[\partial_{1}, \frac{1}{(r+1)!}(x^{1})^{r+1}\partial_{1}\right]\right) = j_{0}^{r}\left(\frac{1}{r!}(x^{1})^{r}\partial_{1}\right).$$

Consequently, $\lambda_k = 0$ for $k \in \{1, \ldots, r\}$, as well. Then $T\pi^r \circ A(X)(j_x^r Y) = \lambda_0 X(x)$ for any $X \in \mathcal{X}(M)$ and any $j_x^r Y \in J^r TM$. Then replacing A(X) by $A(X) - \lambda_0 \mathcal{J}^r X^C$, we may assume that A(X) is vertical for any $X \in \mathcal{X}(M)$ and any m-manifold M. Let $pr : VJ^r TM \to J^r TM$ be the projection given by $\frac{d}{dt}_{|t=0}(j_x^r Y + tj_x^r Y_1) \mapsto j_x^r Y_1$. Then the composition $pr \circ A : T_{|\mathcal{M}f_m} \rightsquigarrow (J^r T, J^r T)$ is an $\mathcal{M}f_m$ -natural linear operator. So, by Theorem 5.1, $pr \circ A$ is a constant multiple of $A^{\langle 0 \rangle}$. Then A(X) is a constant multiple of $\mathcal{J}^r X^V$.

The proof of the theorem is thus complete.

References

- J. Gancarzewicz, Liftings of functions and vector fields to natural bundles, *Dissertationes Math. (Rozprawy Mat.)* 212 (1983), 55 pp. MR 0697471.
- [2] J. Gancarzewicz, Relèvements des champs de vecteurs aux fibrés naturels, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 1, 59–61. MR 0691028.
- [3] I. Kolář, On the natural operators on vector fields, Ann. Global Anal. Geom. 6 (1988), no. 2, 109–117. MR 0982760.
- [4] I. Kolář, P. W. Michor and J. Slovák, Natural operations in differential geometry, Springer-Verlag, Berlin, 1993. MR 1202431.
- [5] J. Kurek and W. M. Mikulski, Lifting vector fields to the rth order frame bundle, Colloq. Math. 111 (2008), no. 1, 51–58. MR 2353930.
- [6] M. Kureš and W. M. Mikulski, Natural operators lifting vector fields to bundles of Weil contact elements, *Czechoslovak Math. J.* 54(129) (2004), no. 4, 855–867. MR 2099999.
- [7] W. M. Mikulski, Some natural operations on vector fields, *Rend. Mat. Appl. (7)* 12 (1992), no. 3, 783–803. MR 1205977.
- [8] A. Morimoto, Prolongation of connections to bundles of infinitely near points, J. Differential Geom. 11 (1976), no. 4, 479–498. MR 0445422.
- [9] K. Yano and S. Ishihara, Tangent and cotangent bundles: differential geometry, Marcel Dekker, New York, 1973. MR 0350650.

Jan Kurek Institute of Mathematics UMCS, M. Curie-Sklodowskiej 1, 20-031 Lublin, Poland kurek@hektor.umcs.lublin.pl

Włodzimierz M. Mikulski™

Faculty of Mathematics and Computer Science UJ, ul. Łojasiewicza 6, 30-348 Krakow, Poland Wlodzimierz.Mikulski@im.uj.edu.pl

Received: January 25, 2019 Accepted: May 7, 2019

Rev. Un. Mat. Argentina, Vol. 61, No. 1 (2020)