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LIFTING VECTOR FIELDS FROM MANIFOLDS TO THE r-JET
PROLONGATION OF THE TANGENT BUNDLE

JAN KUREK AND WLODZIMIERZ M. MIKULSKI

ABSTRACT. If m > 3 and r > 0, we deduce that any natural linear operator
lifting vector fields from an m-manifold M to the r-jet prolongation J"T'M of
the tangent bundle T'M is the composition of the flow lifting 7" corresponding
to the r-jet prolongation functor J” with a natural linear operator lifting
vector fields from M to TM. If 0 < s < r and m > 3, we find all natural
linear operators transforming vector fields on M into base-preserving fibred
maps J"TM — J5TM.

1. INTRODUCTION

All manifolds considered in this paper are assumed to be finite dimensional,
without boundary, and smooth. Maps between manifolds are assumed to be smooth
(of class C'°).

The general concept of bundle functors and natural operators can be found in
the fundamental monograph [4].

In [I], J. Gancarzewicz proved that any natural linear operator A lifting vector
fields X € X (M) on an m-manifold M into vector fields A(X) € X(TM) on the
tangent bundle TM of M is of the form A(X) = aX® + bX" for real numbers a
and b, where X¢ = TX € X(TM) is the complete (flow) lift of X to TM and
XV € X(TM) is the vertical lift of X to TM.

In this paper, we prove that if m > 3 then any natural linear operator A lifting
vector fields X € X(M) on an m-manifold M into vector fields A(X) € X(J"TM)
on the r-jet prolongation J"T'M of T'M is of the form

AX)=aJ X + 077XV (1.1)

for (uniquely determined) real numbers a and b.

Moreover, if 0 < s < r and m > 3, we find all natural linear operators A
transforming vector fields X € X(M) on an m-manifold M into base-preserving
fibred maps A(X) : J'TM — J*TM.
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Natural operators lifting functions and vector fields are applied in almost all
investigations of prolongation of geometric structures, see e.g. [8, [@]. That is why
such natural operators are studied in many papers, see e.g. [T, 2] 3] 4} 5] [6] [7].

From now on, let 2!, ..., 2™ denote the usual coordinates on R™ and 0, ..., Om
be the canonical vector fields on R™.

2. PRELIMINARIES

Let M f,, be the category of m-dimensional manifolds and their local diffeomor-
phisms; let FM be the category of fibred manifolds (i.e. surjective submersions
between manifolds) and their fibred maps; let FM,, be the category of fibred
manifolds with m-dimensional bases and their fibred maps with local diffeomor-
phisms as base maps; and let VB be the category of vector bundles and their
vector bundle homomorphisms.

The r-jet prolongation J"Y of an FM,,-object Y = (Y — M) is the space of
r-jets jro at points x € M of local sections o of Y. It is a fibre bundle over Y
with projection j7o +— o(x). Every FM,,-map f :Y — Y; with the base map
f M — M, induces the fibred map J" f : J"Y — J"Y] by jio — j}(z)(foooi_l).
The resulting functor J" : FM,, — FM is a bundle functor in the sense of [4].

Let Y = (Y — M) be an FM,,-object. A vector field Z € X(Y) is called
projectable if there is a vector field Z € X (M) on M being related with Z with
respect to the projection Y — M. We denote by Xpr05(Y") the space of projectable
vector fields on Y. Equivalently, Z € X(Y") is projectable if and only if the flow
{F17} of Z is formed by FM,,-maps. Thus for any Z € Xp0;(Y) we have J"Z €
X(JTY) given by J"Z = %‘tZOJTFltZ.

Let T : M f,, = FM,, be the (usual) tangent functor sending any m-manifold
M into the tangent bundle TM of M and any M f,,-map ¢ : M — M; into the
tangent map T : TM — TM; of ¢. Composing T" with J” we obtain the bundle
functor J"T : M f,, — F.M sending any m-manifold M into the space J"T'M of r-
jets j2 X at points z € M of vector fields X on M and every M f,,-map ¢ : M — N
of two m-manifolds into J"T'¢ : J"TM — J"TN given by J"Tp(jr X) = i) (T'po
X op~1). We see that J"T'M is (in the obvious way) a vector bundle over M and
J"Typ:J'TM — J'TN is a vector bundle map. So, J"T : M f,, — VB.

3. NATURAL OPERATORS

An M f,,-natural linear operator A : Tirqy,, ~ T'(J"T) (lifting vector fields from
m-manifolds to the r-jet prolongation of the tangent bundle) is an M f,,-invariant
family of R-linear operators (R-linear functions)

A: X(M) = X(J'TM)

for all m-manifolds M, where X(M) is the vector space of vector fields on M.
The invariance of A means that if X € X(M) and X; € X(M;) are p-related
(i,e. Tpo X = X; 0 ¢p) for a Mfp,-map ¢ : M — My, then A(X) and A(X;) are
J"Tp-related.
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Example 3.1. Let X € X (M) be a vector field on an m-manifold M. We have
the (complete) flow lift X¢ = TX € Xpoj(TM) of X to TM. So, we have
J"XC e X(JTTM). Alternatively, J"XC is the flow lift of X to J'TM via the
bundle functor J™T. The function X(M) — X(J"TM) given by X — J X
is R-linear. The resulting family T\r¢s, ~ T(J'T) is an M fy,-natural linear
operator.

Example 3.2. Let X € X(M) be as above. We have the vertical lift XV €
Xoroj(TM) of X to TM. So, we have J"X" € X(J'TM). Clearly, J" X, =
%lt:o(j;Y +tjrX). The function X(M) — X(J'TM) given by X — J"XV
is R-linear. The resulting family Tjrs,, ~ T(J"T) is an M fp,-natural linear

operator.

Similarly, an M f,,-natural linear operator Tjrqy,, ~ (J™T,J*T) (transforming
vector fields on m-manifolds into fibred base-preserving maps from the r-jet pro-
longation of the tangent bundle into the s-jet prolongation of the tangent bundle)
is an M f,,-invariant family of R-linear operators (R-linear functions)

A X(M) = C3(J'TM, J*TM)

for all m-manifolds M, where X' (M) is the vector space of vector fields on M and
CR(JTTM,J°TM) is the vector space of base-preserving fibred maps J"T'M —
J°T'M. The invariance of A means that if X € X(M) and X; € X(M;) are
p-related vector fields for an M f,,,-map ¢ : M — My, then so are A(X) : J'TM —
JSTM and A(Xy) : J'TM, — JTM; (i.e. J*Tpo A(X) = A(X1) 0 J'T).

Example 3.3. Let k£ be an integer such that 0 < k < r — s. Given a vector field
X € X(M) on an m-manifold M we have a base-preserving fibred map

AR(X) 2 JTM — J°TM,  AM(X)(57Y) = ji(ady (X)),

where ady : X(M) — X (M) is the adjoint map given by ady (X) = [Y, X] and
ad¥ =ady o---oady (k times). Thus we have the resulting M fp,-natural linear
operator A T\pqy, ~ (J'T, J°T).

4. PREPARATORY LEMMAS
Lemma 4.1. Let A : Tipy,, ~ (J'T,J°T) be an M fy,-natural linear operator
with A((x1)902)(j501) =0 for q=0,...,7. If 0 < s <r and m > 2, then A= 0.
Proof. First, prove that
A(z20;)(j50n) = 0 (4.1)
for any o € (NU{0})™ and any j = 1,...,m. Let us consider three cases.

(I) Let @ = (a1,...,am) € (NU{0})™ be such that |a] < r and let j €
{2,...,m}. By the Frobenius theorem there exists a local embedding ¢ : R™ —
R™ of the form idr X 9 such that .0 = 92 + (2%)%2...(2™)*"9; on some
neighborhood of 0. Then .0 = 9; and . ((z1)*102) = (z')*102 + z°0; in some
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neighborhood of 0. On the other hand, since a; < r, by the assumption of the
lemma we have

A((21)™ ) (jg01) = 0.
Then, using the invariance of A with respect to ¢, we obtain
A((zh)*1 0y + z%0;)(jp01) = 0.

Hence, we have (4.1)) for any oo = (aq,...,am) € (NU{0})™ with |a| <r and any
je{2,...,m}.

(IT) Let o = (a1, ..., ) € (NU{0})™ be such that |a| < r and let j = 1. For
any 7 € R, the linear isomorphism (z! + 722 22,...,2™) preserves d; and sends
%9y into (z! — 72%)1 (22)*2 ... (™) (g + 70y ). Further, from the case (I) we
have A(z%82)(j501) = 0. So, using the invariance of A with respect to (x! +
Ta?, 22, ... 2™), we obtain

A((zh —72?)* ()2 (2™) (83 + 701)) (5 O1) = 0.

Both sides of the last equality are polynomials in 7. Considering the coefficients of
the polynomials on 7, we obtain

A 0n)(50r) — en A((@h) 7 @)L @) ) (j50n) = 0.

(If 1 = 0 the term a1 A(...)(j501) does not occur.) Further, from the case (I) we
have aj A((zt)@ =1 (22)22 L [ (2™)*¥0,)(j501) = 0. Hence we have (4.1)) for any
a € (NU{0})™ with |a| <r and j = 1.

(III) Now, let o € (N U {0})™ be such that || >r+1and j =1,...,m. Then
J0 (02 + %0;) = j402. So, by Lemma 42.4 in [4], there exists a local diffeomor-
phism ¢ : R™ — R™ such that j;™'¢ = ji™'id and ¢.0» = 02 + £*0; on some
neighborhood of 0. Clearly, ¢ preserves jjo;. Further, from the case (I) for j = 2
and @ = (0,...,0), we have A(d2)(j501) = 0. Then by the invariance of A with
respect to ¢ we obtain A(d2)(j501) = A(02 + x*0;)(j;01). Then we have for
any « € (NU{0})™ such that || >r+1land j=1,...,m.

We are now in a position to complete the proof. From the cases (I)—(III) we get
for any « € (NU{0})™ and any j = 1,...,m. Then from the linearity of A
and the Peetre theorem it follows that A(X)(j;01) = 0 for any X € X(R™). Now,
since the M f,,,-orbit of jio1 is dense in J"T'M and A is M f,,-invariant, we get

that A(X) =0 for any X € X(M), i.e. A=0. O
Lemma 4.2. Let 0 < s <7 and m > 2. Let A : Tipy,, ~ (J'T,J°T) be an
M fr-natural linear operator. Given k =0,...,r we have
min(k,s)
A=) a) ) = D wids((h) d) (4.2)
1=0

for some (uniquely determined) real numbers ,ué“ fork=0,...;r andl =0,...,
min(k, s).
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Proof. We can write
Ala(z")k0y) (bjr o) = Z Z (a,b)j5(x%0;),
J=1]al<s

where M;F are some (uniquely determined) smooth maps. Using the invariance
of A with respect to (izt, ..., 7pa™) for 7y = 1, 70 # 0, ..., Ty # 0, we get the
homogeneity condition

G (a,5) = AL (a,b).

Then M;¥(a,b) = 0 if 72 # Z£. Hence
A(a(z")*02)(bjgon) Zﬂz a,b)j5((¢1)'ds),

where pf are (uniquely determined) smooth maps. Now, using the invariance of A

with respect to (7a!,z2,...,2™) for 7 # 0, we obtain the homogeneity condition

1 1
Tik/‘éc(aﬂ ) = ﬁ:ugc(av b).

Consequently, uf (a,b) = 0 if I > k. The proof of the lemma is complete. O

Lemma 4.3. Let 0 < s < r and m > 3. The vector space of all M f,,-natural
linear operators A : Tpqy,, ~ (J'T, J*T) has dimension <1 — s+ 1.

Proof. Let A : Tipmy,, ~» (J'T, J°T) be an M f,,-natural linear operator. Let py
for k=0,...,7rand [ =0,...,min(k, s) be the real numbers from Lemma By
Lemma A is uniquely determined by this system (uf) of real numbers. So,
it remains to show that the system (uf) is uniquely determined by the subsystem
(uf) of real numbers uf for K =0,...,r — s. Let us consider two cases.

(I) s = 0. Then (uf) = (uf). So, this case is trivial.

(IT) s > 1. We have puf = puf for k = 0 and [ = 0,...,min(k,s) = 0. So,
we can assume k > 1. For a real number 7, let ¢, : R™™1 — R™! be a local
diffeomorphism such that (1, )02 = 02 + 72202 on some neighborhood of 0. Then
from the invariance of A with respect to idg X %, and for k — 1 instead of k
it follows that

min(k—1,s)

AN + ) (G50) = D0 i) (92 + adr).

1=0
Consequently, if we consider the coefficients on 7 of both sides, we get

min(k—1,s)

A 2?)(co) = Y () e o). (4.3)

=0
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Similarly, from the invariance of A with respect to (z! + 722, 22 ) and .
it follows that

min(k,s)

A((z" = 72®) (82 + 701))(j5 1) = Z g (' = 7a?) 9y + 7).

So, we have
— kA((a) 7 1228,) (j501) + A((21)*01) (jg o)
min(k,s) min(k,s) (44)
== > @) T e+ Y e o).
=0 =0

From and ( we get
min(k—1,s)
Ao Geoy) =k Y. pf i ((h) 2%0)

=0

| | (4.5)
min(k,s) min(k,s)
= D W) )+ Y i) o).
1=0 =0

(If | = s then j3((x1)!2202) = 0. If I = 0, then 1ufjs((z!)!=12202) does not occur.)
Using the invariance of A with respect to the embedding switching 22 and 3 (we
use the assumption m > 3) and preserving the other coordinates, from (4.5) we get

min(k—1,s)
Ao Geo) =k Y uf (") 2%0s)
=0
4.6
min(k,s) min(k,s) ( )
— > ) T o)+ D uds((ah) o).
=0 1=0
By (4.5) and (4.6), we see that the coefficients on j5((z!)'~'220;) (on the right

hand blde of |-| must be 0, i.e.
—luf + k=0

for [ = 1,...,min(k, s). So, by induction, the system (xf) is uniquely determined
by ud, ...,y °. The proof of the lemma is complete. O

Lemma 4.4. Let 0 < s < r and m > 1. The system of M f,,-natural linear
operators A¥) from Example fork=0,...,r — s is linearly independent.

Proof. Suppose ZZ;‘S MAK) = 0. We prove that \g = --- = Aq = 0 for ¢ =
0,...,7 —s. We proceed by 1nduct10n with respect to q.

(1) We start with ¢ = 0. Smce A© (81)(j631) = js01 and A% (9,)(j501) = 0 for
k=1,...,r—s, then 0 =310 \e A" (91)(j501) = Noj§d1. Then \g = 0.

(i ) Now we make the inductive step. Let r — s —1 > ¢ > 0 and assume that

No = or =g = 0. Then 0 = S 25 MeA® (i (a) 1410 ) (j01) = Agraiisn,
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because A<q+1>( 1 (xl)q“@l)(jg@l) — js0; and A®)((21)719,)(jrdy) = 0 for

(g+1)!
E=q+2,...,7—s. Then A\g11 =0,ie Ag="---=Aj41 =0, as well.
Thus we have proved that \g =--- =X, =0for¢=0,...,7r—s. Forg=r—s
we get A\g = -+ = A\._s = 0. The proof of the lemma is complete. O

5. MAIN RESULTS

Theorem 5.1. Let 0 < s < r and m > 3. Any Mf,,-natural linear operator
A T\pay,, ~ (J'T, J*T) is the linear combination of AR fork=0,...,7r—s with
(uniquely determined) real coefficients.

Proof. Tt is an immediate consequence of Lemmas [1.3] and [£.4] O

Theorem 5.2. Let m > 3 and r > 0 be integers. Any M f,,-natural linear operator
A Tipmy,, ~ T(J'T) is of the form (L.1) for (uniquely determined) reals a and b.

Proof. Let A : Ty, ~ T(J"T) be an M fy,-natural linear operator.
Using the source projection n” : J"TM — M we produce the M f,,-natural
linear operator T7" o A : Tynqy,, ~ (J"T, JOT). By Theorem for s =0,

Tr" o A= Z A ALY
k=0

where Ay are the real numbers. First, we are going to prove that \; =--- = A, = 0.
It is easy to see that A (%(xl)qal)(jgal) = 0k,q01)0 (the Kronecker delta).
So, T7" o A ((x)*01) (j§01) = Akd1jo. Then
1 -7 T =T
A <k!(x1)k(91> (o) = M T"0C (j5on) + v (5.1)
for some (depending on k) 7"-vertical vector v over j{d;.
Since j5o = j5(01 + ﬁ(wl)”’lal), there exists a local diffeomorphism
 with j6+1<p = id sending the germ at 0 of J; into the germ at 0 of 0y +

ﬁ(ml)”lfh. Such ¢ preserves j5d; and preserves jo 't (%(xl)k{h) if £ > 1.
So, if k > 1, ¢ preserves the left-hand side of because of the order argument.
Indeed, by Lemma 42.5 in [4], A is of order < r+1 because J"T is of order < r+1.
Moreover, ¢ preserves v. Indeed, the vertical bundle V' J"T of J"T is of order r+ 1
because J"T is of order r + 1.

On the other hand, ¢ does not preserve J"0f (j50;), because

7 (e a) o =g (Sera) #o
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where we identify F, with V, E in the obvious way, for any vector bundle £ — M,
v € E,, and x € M. Indeed, if ¢; is the flow of —L;(2!)"19;, then

C
jr ((:I'!(l.l)r-&-lal) (]681) _ di

(r+1)!

T T _ d -7
——y :0‘] Tpi(joo1) = %t:oh((%)*aﬂ

=5 (5, e000) =i (o o] ) =i (y6hran)

Tt

Consequently, A, = 0 for k € {1,...,7}, as well. Then T7" o A(X)(j1Y) =
Ao X (x) for any X € X(M) and any j2Y € J"TM. Then replacing A(X) by
A(X)=XJ" XY, we may assume that A(X) is vertical for any X € X' (M) and any
m-manifold M. Let pr : VJ"TM — J"T M be the projection given by %“:O(ng—i—
tjrY1) + jpY1. Then the composition pro A : Tiyyg, ~ (J'T,J"T) is an M fr,-
natural linear operator. So, by Theorem |5.1 pr o A is a constant multiple of A%,
Then A(X) is a constant multiple of J" XV .

The proof of the theorem is thus complete. O
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