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Abstract
Preliminary diagnosis of fungal infections can rely on microscopic examination. However, in 
many cases, it does not allow unambiguous identification of the species due to their visual 
similarity. Therefore, it is usually necessary to use additional biochemical tests. That 
involves additional costs and extends the identification process up to 10 days. Such a delay 
in the implementation of targeted therapy may be grave in consequence as the mortality 
rate for immunosuppressed patients is high. In this paper, we apply a machine learning 
approach based on deep neural networks and bag-of-words to classify microscopic images 
of various fungi species. Our approach makes the last stage of biochemical identification 
redundant, shortening the identification process by 2-3 days, and reducing the cost of the 
diagnosis.

Introduction
Yeast and yeast-like fungi are a component of natural human microbiota [1]. However, as 
opportunistic pathogens, they can cause surface and systemic infections [2]. The leading causes 
of the fungal infections are impaired function of the immune system and imbalanced micro­
biota composition in the human body. Other factors offungal infections include steroid treat­
ment, invasive medical procedures, and long-term antibiotic treatment with a broad spectrum 
of antimicrobial agents [3-5].

The standard procedure in mycological diagnostics begins with collecting various types of 
test materials like swabs, scraps ofskin lesions, urine, blood, or cerebrospinal fluid. Next, the 
clinical materials (marked as B in Fig 1) are directly cultured on special media, while the blood 
and cerebrospinal fluid samples (marked as A in Fig 1) require prior cultivation in automated 
closed systems for additional 2-3 days. Material incubates under specific temperature condi­
tions (usuallyfor 2-4days incase ofyeast-like fungi). The initial identification of fungi bases 
on the assessment ofthe cells' shapes observed under the microscope as well as the growth 
rate, type, shape, color, and the smell ofthe colonies. Such analysis allows the assignment to 
fungi type; however, identification ofthe species is usually impossible due to the significant
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Fig 1. Standard and computer-aided mycological diagnosis. Standard mycological diagnostics (I) require analysis 
with biochemical tests. As a result, the entire diagnostic process can last 4-10 days. In our computer-aided approach 
(II), biochemical tests are replaced with a machine learning approach that predicts fungi species based only on 
microscopic images. It shortens the diagnosis by 2-3 days.

https://doi.org/10.1371/journal.pone.0234806.g001

similarity between them. Because of that, further analysis consisting of biochemical tests, is 
necessary. As a result, the entire diagnostic process from the moment of culture to species 
identification can last 4-10 days (see Fig 1).

In this paper, we apply a machine learning approach based on deep neural networks and 
bag-of-words approaches to classify microscopic images of various fungus species. As a result, 
the last stage of biochemical identification is unnecessary, which shortens the identification 
process by 2-3 days and reduces the cost of diagnosis. It allows accelerating the decision about 
the introduction of an appropriate antifungal drug, which prevents the progression of the dis­
ease and shortens the time of patient recovery.

According to our best knowledge, there are no other methods for classifying fungi species 
based only on microscopic images. Existing methods involve techniques such as morphologi­
cal identification of a type of fungi [6], fluorescence in situ hybridization (FISH) [7], biochemi­
cal techniques, molecular approaches, such as PCR [8], and sequencing [9]. However, all of 
them are costly. On the other hand, our method bases on basic microbiological staining 
(Gram staining) and a simple microscope equipped with a camera, and takes only a few min­
utes, which makes it easily applicable in many laboratories.

The paper is structured as follows. First, we introduce a fungus database and describe a clas­
sification method based on deep neural networks and bag-of-words methods. Then, we pres­
ent experimental setup, results, and conclusion.

Materials and methods
Materials
One of the most common fungal infections is candidiasis [5], mainly caused by Candida albi­
cans (50-70% of cases) [10]. Other species responsible for the diseases are Candida glabrata [2, 
3], Candida tropicalis [4], Candida krusei [11], and Candidaparapsilosis [3, 4]. In high-risk 
patients, severe infections can also be caused by Cryptococcus neoformans [12] and Saccharo­
myces phylum [13]. Taking those facts into consideration, we prepared database, which con­
sists offive yeast-like fungal strains: Candida albicans ATCC 1023 1 (CA), Candida glabrata 
ATCC 15545 (CG), Candida tropicalisATCC 1369 (CT), CandidaparapsilosisATCC 34136 
(CP), and Candida lustianiae ATCC 42720 (CL); two yeast strains: Saccharomyces cerevisae 
ATCC 4098 (SC) and Saccharomyces boulardii ATCC 74012 (SB); and two strains belonging to 
the Basidiomycetes: Maalasezia furfur ATCC 14521 (MF) and Cryptococcus neoformans 
ATCC 204092 (CN). All strains are from the American Type Culture Collection. The species
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Fig 2. Sample images from DIFaS database. Three random images for each of the strains from DIFaS database.

https://doi.org/10.1371/journal.pone.0234806.g002

(c) Candida liLstianiac (CL)
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in our database highly overlap with the most common fungal infections; however, they are not 
identical due to the limitations of our repository.

The strains were cultured on Sabouraud agar at 37°C for 48h (together with olive oil in the 
case ofMaalaseizia furfur). After this time, microscopic preparations were made (2 prepara­
tions for each fungal strain) and stained with Gram method. Images were taken using an 
Olympus BX43 microscope with 100 times a super-apochromatic objective under oil-immer­
sion. The photographic documentation was then produced with an Olympus BP74 camera 
and CellSense software (Olympus).

Altogether, our Digital Images ofFungus Species database (DIFaS) contains 180 images 
(9 strains x 2 preparations x 10 images) of resolution 3600 x 5760 x 3 with 16-bits intensity 
range in every pixel. In Fig 2, we present three random thumbnails for each of the registered 
strains.

Method
Deep Neural Networks (DNN) have shown human-level performance in case oflarge amounts 
of training data; however, they are limited when it comes to the application on small datasets 
due to the large numbers ofparameters. Therefore, in this work, we consider two types of 
domain adaptation, both based on DNN features initially pre-trained on a different task (i.e., 
instance classification [14]). As a baseline method, we fine-tune the classifier's block of the 
well-known network architectures, i.e., AlexNet [15], DenseNet169 [16], InceptionV3 [17], 
and ResNet [18] (with frozen features' block). As we present in results, such architectures are
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Fig 3. Deep bag-of-words algorithm for mycological diagnosis. The multi-step algorithm produces robust image 
features using previously trained deep neural network, aggregates them using one of the bag-of-words approaches, and 
classifies them with Support Vector Machine.

https://doi.org/10.1371/journal.pone.0234806.g003

not optimal due to the small training set (see S1 and S3 Tables). Hence, we propose to apply 
the deep bag-of-words multi-step algorithm shown in Fig 3. In contrast to baseline methods, 
which utilize “shallow” Neural Network to previously calculated features, our strategies aggre­
gate those features using one ofthe bag-of-words approaches and then classify them with Sup­
port Vector Machine (SVM). Such a policy, previously applied to texture recognition [19] and 
bacteria colony classification [20], is more accurate than the baseline methods; however, it is 
not well known. Therefore, to make this paper self-contained, below, we describe its successive 
steps.

To generate robust image representation, AlexNet [15], InceptionV3 [17] or ResNet [18] 
pre-trained on ImageNet [14] database are used. Another option would be to use conventional 
handcrafted descriptors (like ORB [21] or DSIFT [22]); however, they are usually outper­
formed by deep features. Considered network architectures consist oftwo parts: convolutional 
layers, which are responsible for extracting image features (so-called features' block), and fully 
connected layers, which are responsible for the classification (so-called classifier's block). Clas­
sifier's block cannot be directly used because it was trained for other types of images; however, 
features' block encodes more general, reusable information. Therefore, removing the classifier 
block from the network and preserving convolutional layers allows us to generate robust 
image features. In the case of AlexNet, we obtain a set of points in 256-dimensional space, 
whose number depends on the input image's resolution (e.g., in case of resolution 500 x 500 
pixels, 169 points (13 ■ 13) are generated).

Since the classified patches are always ofthe same size, their features' blocks could be used 
directly by the classifier. It, however, would lead to vast data dimensionality (i.e., the feature 
vector ofsize 43264), which according to our experiments, results in the lack ofgeneralization, 
primarily due to the relatively small size ofthe training set (100 images). Therefore, to obtain a 
more reliable representation ofpatches, we pool the acquired set ofpoints using Bag of 
Words, BoW [23, 24], or its more expressive modification called Fisher Vector, FV [25]. The 
idea behind both ofthem is to aggregate a set ofpoints (representing the patch) with a so- 
called codebook. The codebook is usually generated from the subset oftraining data in an 
unsupervised manner using a clustering algorithm (e.g., k-Means or Expectation Maximiza­
tion [26]). Given a codebook, the set of 256-dimensional points obtained with AlexNet for a 
particular image is encoded by assigning points to the nearest codeword. In traditional Bag 
of Words, this encoding leads to a codeword histogram, i.e., a histogram for which each
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codeword contains points closest to this codeword. In the case of the Fisher Vector, the clusters 
are replaced with a Gaussian Mixture Model (GMM), and the representation encodes the log­
likelihood gradients with respect to the parameters of this model. In this paper, we will use 
notations deep Bag of Words and deep Fisher Vector to refer to those two types of pooling 
methods. To make this article self-contained, we recall definitions of BoW and FV in S1 
Appendix.

As a result ofpooling, one fixed-size vector is obtained for each ofthe analyzed patches, 
which can be classified with any machine learning methods to distinguish between various 
fungus species. We decided to use Support Vector Machine and Random Forest classifiers for 
this step.

Experimental setup and results
For the experiments, we split our DIFaS database (9 strains x 2 preparations x 10 images) into 
two subsets, so that both ofthem contain images of all strains, but from different preparation. 
It is because each preparation has its characteristics, and according to our previous studies 
[20], using images from the same preparation both in training and test set can result in over­
stated accuracy. As an example, let us consider the background-size, which depends on the 
size ofthe colony moved by inoculation loop from Sabouraud agar to preparation. Because 
there are only two preparations for each species in the dataset, the classifier could end up learn­
ing clinically irrelevant background-size instead of relevant fungus features. Therefore, images 
from particular preparation should not be shared between training and test set. We decided to 
use 2-fold cross-validation (one fold with 90 images from the first preparations and the second 
fold with 90 images from the second preparations). Moreover, we decided to classify patches 
instead ofthe whole image (see Image preprocessing for details) and introduce additional class 
corresponding to the background (BG) to compensate for the preparation characteristic on 
the final result. Nevertheless, we report accuracy for both patch-level and scan-level classifica­
tion (the latter with majority voting).

For each fold, we optimize the following parameters using internal 5-fold cross-validation: 
number ofclusters in BoW 2 [5, 10, 20, 50, 100, 200, 500]; number ofclusters in FV 2 [5, 10, 
20, 50]; SVM kernel e[linear, RBF]; SVM C 2 [1, 10,100,1000]; SVM y 2 [0.001, 0.0001]. As 
the evaluation metric for grid search optimization, we use the accuracy classification score. 
Best results were obtained for FV with 10 clusters and SVM with RBF kernel, C =1, and y = 
0.0001.

We performed all the experiments on a workstation with one 12 GB GPU and 256 GB 
RAM. On average, feature extraction, pooling, and classification take from 1 to 2 hours when 
training deep Fisher Vector. Such performance was possible thanks to the adaptation ofthe 
VLFeat library [27]. For comparison, the fine-tuning of the well-known architectures takes 
from 70 to 85 hours (see Table 1). Processing time in case of baseline methods was measured 
by multiplying the average time ofan epoch by the number of epochs till the early stopping 
(i.e., the increase in validation loss). In the case ofdeep bag-of-words approaches, processing 
time was computed as a sum ofall three steps ofthe algorithm (i.e., obtaining image represen­
tation, pooling, and classification).

The remaining part of this section is structured as follows. First, we describe image prepro­
cessing, including contrast stretching and background removal. Then, we describe the results 
obtained for patch-based classification using deep bag-of-words approaches and compare 
them with the well-known network architectures. To explain the outcomes ofdeep BoW, we 
introduce an in-depth explanatory analysis ofthe obtained codebooks together with the micro­
biological feedback. We continue this investigation for a deep FV approach. Finally, we present
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Table 1. Test accuracy of patch-based classification averaged over two runs (for two subsets described in Experimental setup).

Method CA CG CL CN CP CT MF SB SC BG Total Training 
time (s)

AlexNet 78.6 ± 4.3 80.0 ± 1.4 55.8 ± 1.4 63.4 ± 14.7 75.0 ± 7.9 35.0 ± 6.4 71.6 ± 16.6 67.9 ± 5.0 72.1 ± 2.1 90.0 ± 0.1 71.6 ± 2.4 250600
DenseNet169 67.9 ± 17.9 72.1 ± 0.7 53.6 ± 0.7 56.3 ± 13.3 60.0 ± 12.7 81.4 ± 0.7 68.7 ± 5.6 85.0 ± 5.0 68.8 ± 8.6 81.2 ± 2.0 72.9 ± 0.6 271600
InceptionV3 67.3 ± 1.5 55.0 ± 2.2 59.3 ± 6.4 67.0 ± 18.2 64.3 ± 1.4 81.4 ± 2.9 61.1 ± 11.1 55.0 ± 0.7 89.3 ± 1.3 84.7 ± 3.1 69.9 ± 1.9 309400
ResNet18 91.4 ± 3.6 67.1 ± 5.7 67.1 ± 5.7 61.9 ± 7.5 65.0 ± 0.7 69.8 ± 2.8 54.8 ± 12.8 93.6 ± 3.2 93.5 ± 1.2 93.1 ± 0.5 75.9 ± 2.6 263900
ResNet50 86.4 ± 3.5 57.9 ± 2.1 89.3 ± 3.5 61.8 ± 11.5 60.0 ± 7.1 64.5 ± 6.0 66.4 ± 19.3 79.3 ± 0.7 64.3 ± 12.4 90.4 ± 2.7 73.9 ± 2.6 276500
AlexNet BoW
RF

87.3 ± 9.7 39.0 ± 0.3 88.3 ± 7.0 64.0 ± 17.0 79.0 ± 11.0 79.3 ± 10.7 55.1 ± 3.3 93.3 ± 2.0 81.3 ± 6.0 92.6 ± 1.0 76.7 ± 1.0 156

InceptionV3
BoW RF

44.3 ± 7.7 51.0 ± 13.7 60.3 ± 0.3 34.2 ± 17.8 28.0 ± 0.7 40.7 ± 11.3 13.3 ± 1.4 39.7 ± 11.7 36.3 ± 8.3 83.5 ± 2.0 44.6 ± 0.3 155

ResNet18
BoW RF

54.3 ± 2.3 39.7 ± 8.3 80.7 ± 12.7 46.2 ± 20.1 72.0 ± 3.3 61.3 ± 11.3 42.1 ± 2.9 58.7 ± 8.7 68.0 ± 4.0 91.6 ± 2.0 62.7 ± 2.4 158

AlexNet BoW
SVM

92.3 ± 3.0 44.3 ± 18.3 88.7 ± 9.3 62.2 ± 22.2 83.0 ± 5.7 71.0 ± 15.0 76.1 ± 11.8 85.0 ± 4.3 76.3 ± 7.0 89.5 ± 3.6 77.6 ± 1.2 5124

InceptionV3
BoW SVM

44.3 ± 10.3 32.3 ± 5.7 57.7 ± 2.3 33.3 ± 17.6 28.3 ± 1.0 39.7 ± 6.3 13.0 ± 1.7 34.7 ± 8.0 32.0 ± 2.0 78.8 ± 2.1 40.8 ± 1.3 5153

ResNet18
BoW SVM

59.0 ± 3.7 32.3 ± 5.7 84.0 ± 11.3 54.7 ± 22.0 66.0 ± 0.0 62.0 ± 4.0 39.7 ± 1.0 59.3 ± 2.0 73.0 ± 12.3 92.9 ± 1.8 63.4 ± 0.7 5195

AlexNet FV
RF

83.3 ± 10.7 54.3 ± 31.7 81.7 ± 0.3 49.3 ± 32.0 78.0 ± 12.0 73.0 ± 15.7 76.5 ± 5.8 89.3 ± 2.0 74.7 ± 6.7 88.0 ± 0.9 75.8 ± 0.4 166

InceptionV3
FV RF

40.7 ± 9.3 53.3 ± 11.3 60.3 ± 5.0 37.3 ± 21.7 27.7 ± 6.3 47.7 ± 13.0 16.5 ± 0.2 35.3 ± 13.3 32.0 ± 10.7 81.4 ± 4.1 44.6 ± 0.7 168

ResNet18 FV
RF

63.7 ± 2.3 37.0 ± 5.7 78.7 ± 12.7 52.5 ± 21.1 73.3 ± 4.0 64.3 ± 5.0 61.8 ± 6.8 61.0 ± 9.7 69.3 ± 7.3 92.7 ± 2.0 66.4 ± 2.1 167

AlexNet FV
SVM

93.7 ± 2.3 53.7 ± 16.3 90.7 ± 4.0 59.6 ± 15.2 77.7 ± 14.3 87.7 ± 9.7 82.8 ± 6.9 97.3 ± 1.3 81.3 ± 10.0 91.1 ± 2.5 82.4 ± 0.2 1541

InceptionV3
FV SVM

46.0 ± 14.0 45.0 ± 20.3 58.3 ± 3.0 42.2 ± 20.4 24.0 ± 5.3 43.7 ± 3.7 13.0 ± 1.1 26.7 ± 5.0 76.7 ± 3.7 41.3 ± 1.9 41.3 ± 1.9 1511

ResNet18 FV
SVM

71.3 ± 11.3 35.3 ± 1.3 59.3 ± 10.3 51.6 ± 31.1 77.0 ± 8.3 76.7 ± 4.7 57.5 ± 0.5 73.3 ± 4.7 77.7 ± 9.7 94.5 ± 1.3 71.3 ± 1.5 1535

https://doi.org/10.1371/journal.pone.0234806.t001

results obtained for scan-based classification, computed by aggregating patch-based scores. 
The code implemented in Python with PyTorch library is available at https://github.com/ 
bziiuj/fungus.

Image preprocessing
DIFaS database contains 180 images of relatively high resolution and intensity range (from 0 
to 65535); however, the actual pixel values are usually between 0 and 1000 (see Fig 4a). There­
fore, in the first step ofpreprocessing, we compute the lower and upper-intensity limits (sepa­
rately for every image) and use them for contrast stretching (see Fig 4b). Moreover, images are 
scaled to the range [0, 1].

To overcome the issues with preparation characteristic (e.g., background-size), as the sec­
ond step ofpreprocessing, we extract and classify only image patches with the reasonable fore­
ground to background proportions (FBP), so patches with a rational number offoreground 
pixels. To obtain foreground-background segmentation on the pixel level, we apply threshold­
ing (with threshold equal 0.5) to a grayscaled and blurred version ofthe scanned image. Such a 
simple segmentation is sufficient and works for all the images from the dataset (see S1 and S2 
Figs) because the background is always much brighter than the areas with fungi cells. We 
tested three possible options of FBP: 1: 2,1: 1, and 2: 1 (see Fig 4d-4f). Based on empirical
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(a) Original histogram (b) Stretched histogram

Fig 4. Example image, its histogram, and foreground-background mask. Original (a) and stretched (b) histogram of 
the 16-bits image; the stretched image itself (c); and its foreground-background masks with the various foreground to 
background proportions (d-f). Center locations of foreground and background patches are marked as yellow and green, 
respectively, while blue color corresponds to the area between them (omitted during classification).

https://doi.org/10.1371/journal.pone.0234806.g004

»

(c) Stretched image

studies, we decided to use FBP equal 2: 1, which gains around 1.5% comparing to the other 
options. As a result, we obtain rough segmentations with approximated locations of fore­
ground patches (those with FBP greater than 2: 1) and background patches (those with FBP 
smaller than 1: 100). Additionally, we experimented with two image scales: the original images 
and images scaled by factor 0.5 (with bicubic interpolation), concluding that the latter gains 
around 4% comparing to the former.

Patch-based classification
In this experiment, we use baseline models (well-known network architectures) as well as deep 
Bag of Words and deep Fisher Vector models to classify each patch of the image separately. As 
baseline models, we fine-tune the classifier's block of the well-known network architectures, 
such as AlexNet [15], DenseNet169 [16], InceptionV3 [17], and ResNet [18] for 100 epochs 
(with frozen features' block). Every baseline model was previously pre-trained on the Ima- 
geNet database [14]. Before running all the experiments, we experimentally chose the optimal 
FBP (2: 1), patch size (500 x 500 pixels), and image scale (0.5) using grid search optimization.
The number offoreground patches overlapped by less than 50% oscillates between 2000 and 
3000, depending on the fold. Moreover, the numberofpatches significantlyvaries depending 
on the strains (see S1 and S3 Tables). Therefore, we apply data augmentation (rotations, mirror 
reflection, and random noise) for better regularization.

The overall comparison of tested methods is presented in Table 1. One can observe that 
deep Fisher Vector works better than all the other techniques, including deep Bag ofWords. 
However, its accuracy drops dramatically in the case ofCandida glabrata (CG) and Cryptococ- 
cusneoformans(CN).InthecaseofCNitismostprobablycausedbyareducednumberof 
samples, while in the case of CG due to its more substantial variance in the arrangement, 
appearance, and quantity (especially between two preparations, see S1 and S2 Figs). Moreover, 
CG images are hard to classify due to partial discoloration (pink color instead ofpurple) and 
vast overlapping of cells. As a result, CG is often classified as Candida lustianiae (CL)
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Fig 5. Test confusion matrices. Normalized test confusion matrices for the best baseline (ResNet18) and the best deep 
bag-of-words approach (deep Fisher Vector).

https://doi.org/10.1371/journal.pone.0234806.g005

belonging to the same genus (see confusion matrix in Fig 5b). However, the classification error 
should decrease if the biological material of microscopic preparation has the smallest possible 
density with separated cells, as overlapping is the leading cause of blurriness.

To further understand the reason for incorrect classification, we prepare a qualitative con­
fusion matrix for deep Fisher Vector to show examples of correctly and incorrectly classified 
patches (see Fig 6). We observe a high morphological similarity between misclassified species 
belonging to genus Candida, Cryptococcus, and Saccharomyces, especially if the preparation

Fig 6. The qualitative confusion matrix for deep Fisher Vector (with AlexNet and SVM). Each cell contains at most 
two patches of a “true” strain (represented by rows) that were classified as “predicted” strain (given by columns). Notice 
that the patches highly overlap, and they are often misclassified due to the artifacts in the background (such as purple 
trail).

https://doi.org/10.1371/journal.pone.0234806.g006
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with the biological material is discolored. Moreover, one can notice that deep Fisher Vector 
can return two different results for two highly overlapped patches from the same scan. It is 
usually caused by the artifacts in the background, such as purple trail in Candida lustianiae 
(CL), predicted as Cryptococcus neoformans (CN), or Maalasezia furfur (MF) in Fig 6. The 
other incorrect classifications appear due to the small number of incomplete (fragmented) 
cells (like Candida glabrata (CG) predicted as CN).

Analysis of deep Bag of Words clusters
In this section, we first analyze deep Bag of Words pooling step by visualizing clusters using 
the patches nearest to their centroids. Then, based on those patches, we introduce a descrip­
tion of the considered species using properties pre-defined by the microbiologists. Finally, we 
present the mean deep BoW for every species. To make our analysis clearer, in this section, we 
limit deep BoW to 10 clusters, although its optimal number obtained with grid search optimi­
zation is 50. Moreover, the presented properties are introduced only to explain the intrinsic 
rules of the method. They are not used in the automatic classification, which requires only a 
scan image as an input.

Ten nearest neighbors of ten deep BoW centroids obtained with k-Means algorithm are 
presented in Fig 7. One can observe that they share common features and, therefore, can be

Fig 7. Ten nearest neighbors of deep Bag of Words centroids.

https://doi.org/10.1371/journal.pone.0234806.g007
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Table 2. A visual description of deep Bag of Words centroids from Fig 7.

Cluster No. Brightness Size Shape Arrangement Appearance color Quantity
0 bright small oval

longitudinal
regular grouped 

fragmentary
black 
pink

high

1 dark medium oval
circular

irregular grouped black low

2 dark large longitudinal 
variform

irregular grouped 
fragmentary

black medium

3 dark medium variform
oval

irregular grouped 
fragmentary

black medium

4 dark large longitudinal irregular grouped 
fragmentary

black
blue

medium

5 bright small longitudinal
oval

irregular grouped blue 
purple

medium

6 dark medium longitudinal
oval

irregular grouped 
fragmentary

black medium

7 bright small longitudinal oval irregular regular grouped fragmentary purple medium

8 dark medium longitudinal 
oval

irregular grouped 
fragmentary

black high

9 dark medium oval irregular grouped black low

https://doi.org/10.1371/journal.pone.0234806.t002

used to determine which visual properties are essential for the classifier. We consider the fol­
lowing properties (see Table 2): brightness (dark or bright), size (small, medium or large), 
shape (circular, oval, longitudinal or variform), arrangement (regular or irregular), appearance 
(singular, grouped or fragmentary), color (pink, purple, blue or black), and quantity (low, 
medium or high). As a result, the standard set of parameters used to describe the species (size, 
shape, arrangement, and appearance) was significantly extended.

To investigate which visual properties are essential for the classifier, we calculate mean deep 
Bag of Words representation for every species (see Fig 8) and then examine how the visual 
information about their main clusters corresponds to the knowledge ofa microbiologist. The 
main conclusions she drew are as follows:

• species ofthe genus Candida mainly belong to cluster 2 with black cells ofmedium or large 
size, and oval or longitudinal shape;

• Maalasezia furfur has been assigned to clusters 0, 2, 5 and 8, mostly representing the black 
and longitudinal shape ofvarious size;

• Saccharomyces boulardii and Saccharomyces cerevisiae are mainly described by clusters 1, 2,
4 and 8, which are characterized by black color, medium or large size and longitudinal 
shape;

• Candida tropicalis and Saccharomyces cerevisiae have very similar mean Bag ofWords, 
which confirms high morphological similarity described in [28], i.e., size 3.O-8.0 x 5.0­
10 gm, oval shape, elongated, and occurring singly or in small groups).

Analysis of deep Fisher Vector and SVM classifier
In this section, we first analyze the power ofdeep Fisher Vector representation using the t- 
SNE algorithm [29] by projecting it on a 2D surface. Then, we analyze classifier certainty 
based on the scores obtained for various patches.
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CA CC

Fig 8. Mean deep Bag of Words for individual species together with the variance.

https://doi.org/10.1371/journal.pone.0234806.g008

Projection ofhigh-dimensional deep Fisher Vector to 2D using the t-SNE algorithm is pre­
sented in Fig 9. One can observe that classes are generally well separated in the case of AlexNet 
and ResNet18 architectures. Nevertheless, species ofthe same genus are not more coherent 
than the other species, in contrast to what we expected. Moreover, one can observe that Incep- 
tionV3 fails domain adaptation in the case ofmicrobiological images, which explains the 
results in Table 1. Direct explanation of this behavior is hard, due to the neural network's 
black-box character. However, it is consistent with the results reported in [30-32], which sug­
gest that ResNet representations are more robust than those obtained from InceptionV3.
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Fig 9. Projection of high-dimensional deep Fisher Vector to 2D using the t-SNE algorithm.

https://doi.org/10.1371/journal.pone.0234806.g009

The second task in this section was to analyze classifier certainty. For this purpose, we 
investigate the distance ofpatches'representations from the classifier hyperplane, which 
roughly corresponds to how sure the classifier is ofits decisions. Most left and right patches in 
Fig 10 are correctly classified with high probability, while the ones in the middle are ambigu­
ous. The most representative fungal Malassezia furfur (MF) cells have oval, longitudinal shape, 
and often occur in the budding form, in which the daughter cells are as wide as the parent 
cells. While in the case of Saccharomyces cerevisae (SC), fungal cells characterize with round 
shapes, more significant in relation to Candida albicans (CA), which are arranged individually 
or in small groups.

Fig 10. Classifier certainty for deep Fisher Vector. From left to right, one can observe the most negative and most 
positive patches according to the classifier of the particular species.

https://doi.org/10.1371/journal.pone.0234806.g010
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Table 3. Test accuracy of scan-based classification obtained by aggregating patch-based classification and determining the most frequent prediction.

Method CA CG CL CN CP CT MF SB SC Total
AlexNet 95.5 ± 5.0 95.0 ± 5.0 70.0 ± 10.0 57.0 ± 6.9 95.0 ± 5.0 45.0 ± 10.0 70.0 ± 10.0 75.0 ± 5.0 85.0 ± 5.0 77.3 ± 4.2
DenseNet169 80.0 ± 10.0 85.0 ± 5.0 45.0 ± 5.0 57.0 ± 21.2 70.0 ± 10.0 100.0 ± 0.0 85.0 ± 15.0 95.0 ± 5.0 75.0 ± 10.0 77.6 ± 6.6
InceptionV3 50.0 ± 10.0 50.0 ± 10.0 80.0 ± 0.0 78.6 ± 14.3 55.0 ± 10.0 60.0 ± 10.0 50.0 ± 10.0 85.0 ± 5.0 85.0 ± 5.0 65.9 ± 4.9
ResNet18 100.0 ± 0.0 75.0 ± 5.0 100.0 ± 0.0 78.6 ± 6.9 50.0 ± 10.0 70.0 ± 0.0 70.0 ± 10.0 95.0 ± 5.0 80.0 ± 10.0 78.3 ± 5.4
ResNet50 100.0 ± 0.0 85.0 ± 15.0 100.0 ± 0.0 57.0 ± 6.9 50.0 ± 10.0 45.0 ± 15.0 80.0 ± 10.0 95.0 ± 5.0 75.0 ± 5.0 78.1 ± 8.3
AlexNet BoW RF 100.0 ± 0.0 75.0 ± 25.0 100.0 ± 0.0 75.0 ± 15.0 100.0 ± 0.0 90.0 ± 10.0 90.0 ± 10.0 100.0 ± 0.0 100.0 ± 0.0 92.2 ± 4.4
InceptionV3 BoW RF 80.0 ± 20.0 75.0 ± 25.0 100.0 ± 0.0 45.0 ± 15.0 40.0 ± 0.0 60.0 ± 30.0 0.0 ± 0.0 70.0 ± 10.0 45.0 ± 15.0 57.2 ± 2.8
ResNet18 BoW RF 100.0 ± 0.0 70.0 ± 10.0 100.0 ± 0.0 45.0 ± 15.0 100.0 ± 0.0 100.0 ± 0.0 80.0 ± 10.0 90.0 ± 10.0 100.0 ± 0.0 87.2 ± 1.7

AlexNet BoW SVM 100.0 ± 0.0 65.0 ± 25.0 100.0 ± 0.0 70.0 ± 10.0 100.0 ± 0.0 100.0 ± 0.0 85.0 ± 5.0 100.0 ± 0.0 100.0 ± 0.0 91.1 ± 2.2
InceptionV3 BoW SVM 70.0 ± 10.0 55.0 ± 15.0 100.0 ± 0.0 40.0 ± 20.0 45.0 ± 5.0 55.0 ± 15.0 0.0 ± 0.0 55.0 ± 15.0 40.0 ± 20.0 51.1 ± 2.3
ResNet18 BoW SVM 100.0 ± 0.0 60.0 ± 20.0 100.0 ± 0.0 65.0 ± 0.0 100.0 ± 0.0 90.0 ± 10.0 60.0 ± 0.0 95.0 ± 5.0 100.0 ± 0.0 85.6 ± 2.2
AlexNet FV RF 100.0 ± 0.0 65.0 ± 35.0 100.0 ± 0.0 55.0 ± 5.0 100.0 ± 0.0 90.0 ± 10.0 95.0 ± 5.0 100.0 ± 0.0 100.0 ± 0.0 89.4 ± 2.2
InceptionV3 FV RF 65.0 ± 5.0 95.0 ± 5.0 100.0 ± 0.0 50.0 ± 10.0 30.0 ± 10.0 75.0 ± 25.0 5.0 ± 5.0 45.0 ± 25.0 45.0 ± 35.0 56.7 ± 3.3
ResNet18 FV RF 95.0 ± 5.0 60.0 ± 0.0 100.0 ± 0.0 65.0 ± 5.0 100.0 ± 0.0 100.0 ± 0.0 95.0 ± 5.0 95.0 ± 5.0 95.0 ± 5.0 89.4 ± 1.7
AlexNet FV SVM 100.0 ± 0.0 75.0 ± 25.0 100.0 ± 0.0 75.0 ± 15.0 100.0 ± 0.0 100.0 ± 0.0 95.0 ± 5.0 100.0 ± 0.0 100.0 ± 0.0 93.9 ± 3.9
InceptionV3 FV SVM 75.0 ± 25.0 60.0 ± 0.0 100.0 ± 0.0 55.0 ± 5.0 45.0 ± 15.0 85.0 ± 5.0 5.0 ± 5.0 25.0 ± 15.0 45.0 ± 25.0 55.0 ± 5.6
ResNet18 FV SVM 100.0 ± 0.0 60.0 ± 0.0 100.0 ± 0.0 45.0 ± 15.0 95.0 ± 5.0 100.0 ± 0.0 95.0 ± 5.0 100.0 ± 0.0 100.0 ± 0.0 88.3 ± 2.7

https://doi.org/10.1371/journal.pone.0234806.t003

Scan-based classification
To analyze classification score for the whole scan (instead ofjust patches, like in previous sec- 
tions),wepredictclassificationforallforegroundpatchesofonescanandaggregatethemto 
obtain the most frequently predicted species. As presented in Table 3, deep Fisher Vector per­
forms better than the other methods, also in this case, obtaining 15.6% better accuracy than 
the best baseline method (ResNet18).

Conclusions and future work
In this paper, we apply deep neural networks and bag-of-words approaches to classify micro­
scopic images ofvarious fungi species. According to our experiments, the combination offea- 
tures from deep neural networks with Fisher Vector works better than fine-tuning the 
classifier's block ofthe well-known network architectures and has the potential to be success­
fully used by microbiologists in their daily practice.

A large part ofthis paper is dedicated to the explainability of deep bag-of-words approaches 
to increase the trust in deep neural networks. For this purpose, we introduce an in-depth visual 
description ofthe properties pre-defined by the microbiologists. We hope that it will help to 
understand similarities and differences between fungi species better.

In our experiment, we assumed that images are obtained from the same laboratory and 
with the same scanner (details are presented in the Materials). However, in our opinion, this 
method could be easily extended to more diversified datasets by using additional preprocess­
ing steps, which unify the input data. Due to the lack of data for such experiments, we did not 
cover this issue in the current article; however, it is planned for future research. Moreover, we 
would like to extend the DIFaS database so that it contains more preparations for all species, 
also gathered from other laboratories and scanners. Finally, we plan to prepare scans contain­
ing more than one species, as the automatic classification ofsuch images would help to exclude 
the culture phase from the microbiological pipeline.
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