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A B S T R A C T

Recent studies focus on usage of blue light of λ = 450 nm in combination with photosensitizers to treat surface skin disorders, including cancers. In search of
convenient therapeutic factor we studied riboflavin analogue 3-methyl-tetraacetylriboflavin (3MeTARF) as potential sensitizer. Riboflavin (Rfl) itself, non -toxic in
the darkness, upon absorption of UVA and blue light, may act as photosensitizer. However, Rfl efficiency is limited due to its susceptibility to photodecomposition.
Riboflavin's acetylated analogue, 3MeTARF, bears substituents in ribose chain, which inhibit intramolecular processes leading to degradation. Upon excitation, this
compound, reveals higher photochemical resistance, remaining a good singlet oxygen generator. Thus, being more stable as the sensitizer, might be much more
efficient in photodynamic processes. The objective of undertaken study was to elucidate mechanisms of 3MeTARF photoreactivity under the irradiation with blue
light in comparison to its mater compound, riboflavin. We approached this goal by using spectroscopic methods, like direct singlet oxygen phosphorescence detection
at 1270 nm, EPR spin trapping and oximetry. Additionally, we tested both riboflavin and 3MeTARF phototoxicity against melanoma cells (WM115) and we studied
mechanism of photodynamic cell death, as well. Moreover, 3MeTARF induces apoptosis in melanoma cells at ten times lower concentration than riboflavin itself. Our
studies confirmed that 3MeTARF remains stable upon blue light activation and is more efficient photosensitizer than Rfl.

1. Introduction

Riboflavin analogues are involved in many biological processes,
such as metabolic processes occurring in living cells [1], reactions oc-
curring in cell membrane, mitochondria and cell plasma [2]. Study of
flavins properties, especially in their excited states, is related to their
significant contribution to the process of blue light photoreception [1].
In therapeutic aspects special interest may arouse their antitumor ac-
tivity and potential role in therapy of many other diseases [3] and cited
therein. Flavins were indicated as the factor in pathogene destruction
and inactivation of many types of viruses and bacteria [4,5].

Their molecules are chromophores active in redox processes in-
volved in a huge number of biotransformations. In flavoproteins, where
FMN and FAD play the role of coenzyme, the active group in redox
processes is the isoalloxazine system. Therefore its spectral and pho-
tophysical properties seems to be very important for better under-
standing flavins function in nature [6].

These compounds undergo reaction of photodynamic oxidation,
which arose much interest in both harmful and potential therapeutic
aspects [7–9]. Fundamental mechanisms of photosensitized oxidation
occur according to Type I, via radicals, and Type II, which involves
singlet oxygen as the transient species. Thus, many endogenous and
exogenous photosensitizers, like flavins or porphyrins, may cause
phototoxic and photoallergic reactions [7]. Riboflavin average

concentration in a cell is too low for its photochemical activity as
photosensitizer, but its potential endogenous activity in vivo and in vitro
should be considered [7,10]. Flavins can sensitized oxidation of amino
acids, proteins, nucleotides, lipids, vitamins. Free radicals of sensitizer,
formed in electron transfer process between DNA basis and riboflavin,
can activate procarcinogens and promutagens, which cause consider-
able risk for living organisms, leading to cell damage, inflammations or
acceleration of aging processes. Photodynamic activity could occur in
tissues and organs, like eyes and skin, particularly exposed to light in-
fluence [11–17].

On the other hand, generation of singlet oxygen became one of the
most important processes in aspects of potential applications in ther-
apeutic processes [18–23], as well as in the photocatalytic processes
[24,25], which require strong oxidative agent. This flavins' property is
the fundamental factor in photodynamic applications.

It was shown that irradiation of tumor cells with visible light in the
presence of riboflavin leads to their destruction [18]. The phototoxic
activity of riboflavin increases along with increasing content of tyrosine
or tryptophan in reaction medium under nitrogen atmosphere.

The presence of the emerging photoproducts additionally causes cells
morphological changes, resembling apoptosis [18–20,22]. Some amino
acids, such as alanine or phenylalanine, inhibit the reaction of photo-
oxidation, probably by quenching the triplet state of riboflavin, and cy-
steine by quenching the singlet oxygen formed in the reaction [26].
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In the last decades, numerous in vitro research in the field of pho-
tophysics and photochemistry of flavins focuses on explaining their
action in living organisms [27–29].

In the aspect of photophysical properties and photochemistry of
these compounds, it was shown that under UV–Vis irradiation, flavins
efficiently populate their triplet state and reacts with oxygen in the
excited state [12]. Riboflavin itself can be a good sensitizer in photo-
degradation of many compounds, but its efficiency is limited due to its
susceptibility to photodecomposition [30–35].

Recent in vivo and in vitro study [36–38], also confirmed, that ri-
boflavin (Rfl) and tetraacetyl riboflavin (RFTA) inactive in dark, reveal
good effectiveness in treating of tumor cells, like melanoma cells [38],
SCC-13 cells (squamous carcinoma) and also towards Leishmania para-
sites [23]. Riboflavin is also proposed as a supportive treatment to re-
duce risk of hematogenous metastasis [36]. It was shown that RFTA
more efficiently inhibits cell proliferation than riboflavin [37].

In the case of 3-methyl-tetraacetylriboflavin (3MeTARF), see Fig. 1,
the presence of acetyl substituents in ribose chain inhibits in-
tramolecular photoreduction [30,35,39], which cause higher photo-
stability of the sensitizer [31]. Thus, 3MeTARF reveals higher photo-
chemical resistance, remaining a good singlet oxygen generator [35].
Previously spectral, photophysical and photochemical properties of 3-
methyl-tetraacetylriboflavin analogue were studied [32]. Properties
such as good singlet oxygen sensitizing and its lower polarity predestine
it to the cell study, as it may enhance permeability through cell mem-
brane in comparison to riboflavin and its better phototoxic effect is
expected [23].

The main goal of this study was to elucidate mechanism of photo-
reactivity of 3MeTARF under blue light irradiation in comparison to
riboflavin, its mater compound, using singlet oxygen phosphorescence
at 1270 nm, EPR spin trapping and oximetry. Additionally, we tested its
photoactivity against melanoma cells (WM115) and we studied me-
chanism of photodynamic cell death.

2. Materials and Methods

2.1. Direct Detection of Singlet Oxygen (1Δg, 1O2*) Phosphorescence at
1270nm

Before measurements, samples were dissolved in methanol or PBS
and DMSO mixture (99:1, v/v), placed in a quartz fluorescence cuvette
(QA-1000; Hellma, Mullheim, Germany) and excited with 455 nm laser
pulse. Excitation light was generated by an integrated nanosecond DSS
Nd:YAG laser system equipped with a narrow bandwidth optical para-
metric oscillator (NT242-1 k-SH/SFG; Ekspla,Vilnius, Lithuania).
Quantum yield of singlet oxygen (1O2*, 1Δg), generation upon

excitation with 455 nm was determined by a comparative method,
employing riboflavin as a standard [40,41]. In these experiments, initial
intensities of singlet oxygen phosphorescence in the studied sample and
in standard excited with laser pulses were measured at increasing laser
energies. Absorbance of standard and studied sample were adjusted to
~0.10 at excitation wavelength 455 nm.

The near-infrared luminescence of generated singlet oxygen was
measured perpendicularly to the excitation beam in a photon-counting
mode using a thermoelectric cooled NIR PMT module (H10330–45;
Hamamatsu, Japan) equipped with a 1100 nm cut-off filter and a di-
chroic narrow band filter NBP, selectable from the spectral range
1150–1355 nm (NDC Infrared Engineering Ltd., Bates Road, Maldon,
Essex, UK). Data were collected using a computer-mounted PCI board
multichannel scaler (NanoHarp 250; PicoQuant GmbH, Berlin,
Germany). Data analysis, including first-order luminescence decay
fitted by the Levenberg–Marquardt algorithm, was performed by
custom-written software.

2.2. EPR Oximetry and Spin Trapping

Measurements were carried out during in situ irradiation of the
samples, placed in the resonant cavity as previously described [42]. Blue
light (445 nm, 1.8 mW/cm2) was derived from a 10 W diode array il-
luminator (High Power LED Chip Royal Blue 445 nm, Shen Zhen Yong
Xing Optoelectronics Co., Ltd., China). Oxygen consumption was mea-
sured by EPR oximetry using 0.1 mM mHCTPO as an oxygen-sensitive
spin probe according to a method described elsewhere [43,44]. The
apparatus settings were as follows: center field 337.67 mT, sweep width
0.3 mT, microwave power 1.06 mW, modulation amplitude 0.006 mT,
time constant 40.960 ms and sweep time 5.243 s. EPR spin trapping
measurements were performed using DMPO as a spin trap employing the
same light source as those described above. Samples typically contained
200 μM riboflavin or 3MeTARF. Time-dependent photo-accumulation of
the DMPO-OOH spin adducts was measured in 90% DMSO at DMPO
concentration 0.1 M. Light-induced accumulation of DMPO-OH and
DMPO-N3 was measured in water in the presence of 0.01 M DMPO. EPR
spin-trapping measurements were performed at the following para-
meters: microwave power 10.6 mW, modulation amplitude 0.05 mT,
scan width 8 mT, and scan time 84 s. The values of hyperfine splitting
constants for the DMPO-OOH spin adduct have been taken from [45] for
DMPO-OH from [45,46] and for DMPO-N3 from [47].

2.3. Cell Culture and LED Irradiation

WM115 human, skin melanoma cell line was purchased from ATCC.
WM115 cells were cultured in in RPMI1640 supplemented with 10%
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Fig. 1. Structures of riboflavin and 3-methyl-tetraacetylriboflavin (3MeTARF).
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FBS (Lonza) and 1% of antibiotics. The cells were cultured in a humi-
dified atmosphere at 37 °C and 5% CO2 and passaged at c.a. 70–80% of
confluence. 1 × 105 cells were seeded on 24 well plate 24 h before the
treatment. Thereafter, the medium was removed and the cells were
incubated for 15 min in the darkness with riboflavin (0–50 μM) or 3-
MetTARF (0–10 μM). Both flavins were dissolved in DMSO. The con-
centration of DMSO 0.5% in PBS, supplemented with 0.01% MgCl2 and
0.01% CaCl2. The plates were illuminated at room temperature via a lid,
using LED lamps emitting 438 nm blue light (PXM sp.k. Zupnik M.,
Poland) for 10–15 min. The integrated irradiance of the lamp measured
using a LI-250 A radiometer equipped with probe PY (LI-COR) was
50 W/m2. Control cells were kept in the dark under similar conditions.

2.4. DHR 123

The detection of intracellular production of ROS was performed
using dihydrorhodamine 123 (DHR123; Sigma Aldrich) directly after
irradiation, as described before [48].

2.5. MTT

For MTT cell viability assay, Thiazolyl Blue Tetrazolium Bromide
(MTT, Sigma) was added for 60 min at a final concentration of 500 ng/
ml. The medium was removed by suction and MTT crystals were dis-
solved in DMSO: EtOH (1:1). The absorbance was measured at 560 nm
in a plate reader (Tecan Genios, Männedorf, Switzerland) [48].

2.6. AnnexinV-FITC/7AAD

Annexin V and 7-amino-actinomycin D (7AAD) staining was per-
formed as described previously [48]. The cells were collected by tryp-
sinization 24 h after the irradiation, washed with Hepes buffer and
incubated with AnnexinV-FITC Apoptosis Detection Kit (Bender Med-
System, Austria) in the dark for 10 min. Thereafter, the cells were
washed with Hepes buffer, resuspended and stained with 5 μl 7-AAD for
additional 5 min. Then, 10-000 cells were collected by FACSCalibur
instrument (BD Biosciences, San Jose, CA, USA) and analyzed using
CellQuest (BD Biosciences) software. The measurement was carried out
using 488 nm excitation and a 510–570 nm band-pass emission filter for
the detection of fluorescein isothyocyanate (FITC) and a 650 nm long-
pass emission filter for 7-AAD detection.

2.7. Statistics

All results are the means of at least three independent experiments
± standard deviation (SD). The data was analyzed using Student's t-test
in Excel (Microsoft). Statistical significance was accepted at the level of
P < .05.

3. Results

Both riboflavin and 3MeTARF in PBS/DMSO (95:5, v/v), mixture
used in cells irradiation, reveal similar absorption spectra and both
flavins absorb in UV/Vis range with maxima at about 372–374 nm and

Fig. 2. Absorption spectra of riboflavin and 3MeTARF (10 μM; PBS:DMSO; 95:5, v/v) (A) and after illumination of 3MeTARF (B) and riboflavin (C) with 438 nm blue
LED (50 W/m2) for 5, 10 and 15 min. Rate of photodegradation of studied flavins (D). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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446–450 nm, respectively (Fig. 2A). Exposure of the compounds to blue
light (λ = 438 nm), as expected on the basis of previous study
[32,49,50], leads to photodegradation of Rfl in contrast to 3MeTARF
(Fig. 2B–D), which remains quite stable.

3.1. Photogeneration of Singlet Oxygen

Both riboflavin and 3MeTARF generate singlet oxygen upon irra-
diation with blue light with similar efficiency. Decays of characteristic
1O2 phosphorescence generated by 3MeTARF and riboflavin in
PBS:DMSO (99:1, v/v) solution equilibrated with air upon excitation
with laser pulse are presented in Fig. 3A and B. The observed phos-
phorescence of 1O2, generated by riboflavin and 3MeTARF, decayed
with time constant expected for singlet oxygen lifetime in water i.e.
3.86 (±0.04) μs and 3.88 (±0.06) μs, respectively [51]. Lifetime of
singlet oxygen generated by riboflavin and 3MeTARF in methanol was
longer and amounted 10.05(±0.12) μs and 10.03 (±0.04) μs

respectively, in agreement with previously reported data (Table 1)
[52]. After saturation of studied flavins solutions with argon, singlet
oxygen luminescence was not observed (Fig. 3A, B). Using riboflavin as
singlet oxygen generation standard, quantum yield of 1O2 (1Δg) gen-
eration by 3MeTARF was determined in methanol and PBS containing
1% (v/v) of DMSO. While quantum yield of 1O2 (1Δg) generation by
3MeTARF determined in methanol yielded 0.46 (±0.05) and was
slightly lower than that of riboflavin (0.48) [40], in PBS:DMSO solution
it reached 0.49 and was the same as that of riboflavin (0.49) [53]
(Table 1, Fig. 3C).

In order to show involvement of 1O2 in the process, the azide ion
was used as a strong physical quencher of singlet molecular oxygen
(1O2). For this purpose rate constant of sodium azide (NaN3) interaction
with singlet oxygen, generated by 3MeTARF in PBS:DMSO (99:1, v/v)
solution was determined. Increasing rate constant of decay of 1O2
phosphorescence observed in the presence of increasing concentration
of sodium azide is presented in Fig. 3D. Appointed rate constant of 1O2
quenching by NaN3 was 5.53 × 108 M−1 s−1, which was very close to
the previously reported data [54].

3.2. Oxygen Photo-Consumption

The spin probe, mHCTPO, undergoes degradation during irradiation
of riboflavin or 3MeTARF in the presence of histidine (Fig. 4A). Our
earlier studies showed that error of oxygen concentration does not ex-
ceed 10% if decrease of mHCTPO concentration is not greater than
50%. That occurred after 2 min and 1.25 min of irradiation of sample
containing riboflavin (Fig. 4B) and 3MeTARF, respectively (Fig. 4C).
For longer irradiation time, calculated oxygen concentrations in the

Fig. 3. Singlet oxygen (1O2, 1Δg) phosphorescence decay detected at 1270 nm after laser excitation of Riboflavin (A) and 3MeTARF (B) in PBS:DMSO (99:1,v/v)
solution with 455 nm. Flavins solutions were equilibrated with air (black) or saturated with argon (grey). Dependence of phosphorescence intensity of singlet oxygen
generated by Riboflavin and 3MeTARF on excitation energy (C). Impact of efficient singlet oxygen quencher – sodium azide on singlet oxygen decay rate constant.
Singlet oxygen generated by 3MeTARF (D).

Table 1
Quantum yields (ΦΔ) and lifetimes (τΔ) of singlet oxygen (1O2, 1Δg) generation
by 3MeTARF in methanol and PBS:DMSO (99:1, v/v) homogenous solutions
upon excitation with 455 nm laser pulse. Riboflavin was used as a standard of
well-known quantum yield of 1O2 generation.

Compound Methanol (CH3OD) PBS:DMSO (99:1, v/v)

ΦΔ τΔ (μs) ΦΔ τΔ (μs)

Riboflavin 0.48 [40] 10.05 ± 0.12 0.49 [53] 3.86 ± 0.04
3MeTARF 0.46 ± 0.05 10.03 ± 0.04 0.49 ± 0.05 3.88 ± 0.06
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samples with histidine were not reliable. In the absence of histidine,
oxygen consumption was observed only in the case of riboflavin
(Fig. 4C,B,D). This result confirms that singlet oxygen or free radicals
formed during studied flavins irradiation react with riboflavin but not
with 3MeTARF. These data clarify riboflavin susceptibility to photo-
degradation (Fig. 2). Very fast oxygen consumption observed in the
presence of histidine was almost totally inhibited by sodium azide
(Fig. 4B,C,D), which indicates that singlet oxygen is the main reactive
oxygen species responsible for observed oxygen consumption.

3.3. Generation of Free Radicals

In order to study the ability of Rfl and 3MeTARF to generate free
radicals, samples containing the studied flavins were irradiated with
light 445 nm. Illumination of flavin solution in 90% DMSO with 0.1 M
DMPO caused rapid DMPO-OOH accumulation (Fig. 5A). The initial
rate of this process was similar in the case of both studied flavins, which
suggests that the yield of superoxide anion photogeneration is by
3MeTARF is comparable to that of riboflavin. Further irradiation caused
decrease of intensity of EPR signal of DMPO-OOH spin adduct. How-
ever, observed signal loss occurs earlier in the case of 3MeTARF than
for riboflavin. Destruction of this spin adduct can be caused either by
excited compounds or by formed reactive oxygen species (ROS). Such
result might suggest, that since 3MeTARF did not undergo photo-
degradation, can more efficiently destroy the adduct. If riboflavin and

3MeTARF were irradiated in water, EPR spectrum typical for DMPO-OH
was registered (Fig. 5B). However, the kinetics was difficult to interpret
(Fig. 5B) since DMPO-OOH rapidly converts to DMPO-OH in water and
superposition of three effects is observed: DMPO-OOH conversion,
DMPO-OH decay, and probably, DMPO-OH formation. In order to check
whether ·OH radical is really formed, we added sodium azide to the
sample. Indeed, irradiation of samples with 0.025 M NaN3 caused for-
mation of spin adduct typical for DMPO-N3, although contaminated
with DMPO-OH. Obtained result confirms light-induced OH radical
formation. In the case of 3MeTARF this process occurs faster than for
Rfl, which indicates that 3MeTARF generates hydroxyl radical more
efficiently than riboflavin (Fig. 5C). Longer irradiation of the sample
with 3MeTARF, unlike riboflavin sample, caused gradual decay of
DMPO-N3, which indicates destruction of such spin adduct. This process
can be explained similarly as in the case of DMPO-OOH disappearance
(vide supra).

3.4. Phototoxicity of 3MeTARF vs. Riboflavin

In order to investigate the phototoxic effect we irradiated WM115
cells in the presence of Rfl or 3MeTARF following 15 min of dark in-
cubation. While no toxic effect on the cells is observed in the presence
of both flavins in darkness (see Fig. 6), upon illumination with blue
light 438 nm in the presence of Rfl or 3MeTARF decreases cell viability,
which was determined by MTT assay in a dose-dependent way.

Fig. 4. The kinetics of light-induced mHCTPO degradation (A) and oxygen consumption (B,C) in the samples containing 200 μM riboflavin (B) or 200 μM 3MeTARF
(C), irradiated with 445 nm light (1.8 mW/cm2). The initial rate of oxygen consumption (D).
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Fig. 6. Viability 24 h after the treatment WM115 cells with riboflavin (10- 50 μM) and 3MeTARF (1-10 μM) in the darkness (black) and irradiated with blue LED light
(white) for 15 min (white; 50 mW/cm2) by MTT assay. The graphs show mean ± SD from three independent experiments. For the statistics t-test was performed:
P < .05, * versus dark control.

Fig. 5. Upper panel – EPR spectra of spin adducts for selected time of irradiation. Arrows indicate the line at which time was measured and signal amplitude was
determined. Lower panel: Light-induced accumulation of DMPO-OOH (A), DMPO-OH (B) or DMPO-N3 (C). Samples contained 200 μM riboflavin or 3MeTARF in 90%
DMSO with 0.1 M DMPO (A), water with 0.01 M DMPO (B) or water with 0.01 M DMPO and 0.025 mM NaN3 (C) were irradiated with light (1.8 mW/cm2).
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Fig. 7. Annexin V-FITC/7AAD double staining of WM115 cells irradiated with blue light (LED; L) in the presence of riboflavin (R; 25 and 50 μM) or 3MeTARF (M; 5
and 10 μM). Graph represents mean of three independent experiments ± SD. For the statistics t-test was performed: P < .05, * versus dark control, ** verus irradiated
samples. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Moreover, 3MeTARF induces similar phototoxic effect on tested cell
line at almost 5 times lower concentration, indicating that is more ef-
fective photosensitizer.

Both flavins tested upon irradiation induce cells apoptosis (Fig. 7).
However, WM115 cell line turned out more resistant to Rfl than to
3MeTARF. Riboflavin at concentration of 50 μM induced about 40% of
apoptosis (AnnV+ cells), while 3MeTARF: 5 μM about 34%, 10 μM -
80%, which is consistent with results obtained by MTT assay.

To determine the role of reactive oxygen specious (ROS) in cell
death induced by photoactivated flavins we performed DHR 123 (di-
hydrorhodamine 123) assay. DHR 123 is an uncharged and non-
fluorescent reactive oxygen species (ROS) indicator that can passively
diffuse across membranes. In the presence of ROS generated within the
cell, DHR is oxidized to fluorescent cationic rhodamine 123, which
localizes in the mitochondria. Increase of rodamine 123 fluorescence
intensity correlates with intracellular accumulation of H2O2 and other
ROS which correlate with oxidative stress. We found that 3MeTARF,
upon irradiation at 5 times lower concentration than riboflavin, more
efficiently increase H2O2 accumulation in WM 115 cells (3.56 ± 0.14
vs. 2.17 ± 0.45) (Fig. 8). An increase in intracellular level of ROS in-
duced by 3MeTARF + LED correlates with more efficient apoptosis.

4. Discussion

Riboflavin and some of its derivatives are known as good singlet
oxygen sensitizers [39] and regarded as potential agents in numerous
processes based on photodynamic actions [4,55,56], including photo-
dynamic therapy. In presented paper riboflavin and its tetraacetyl
analogue, 3MeTARF, have been studied in the aspects of their inter-
actions with oxygen and potential activeness towards cancer cells. For
this purpose we investigated both compounds with special attention
paid to singlet oxygen generation ability, oxygen consumption, gen-
eration of free radicals and phototoxicity towards cancer cells
(WM115).

In the course of PDT an increase level of reactive oxygen species
(ROS) is produced and their amount depends on many factors, i.e. the
light intensity, oxygen concentration, local concentration of photo-
sensitizer, its molar absorption coefficient, quantum yield of 1O2 gen-
eration ect. [37,57].

Riboflavin is well known as very efficient endogenous sensitizer of
singlet oxygen generation with quantum yields of 0.54 and 0.49 upon
excitation at 355 nm [58] and 445 nm [52], respectively. Riboflavin's
analogue studied in this work - 3MeTARF, excited with 445 nm laser
pulse, generates singlet oxygen with similar efficiency reaching 0.46
and 0.49 in methanol and PBS:DMSO (99:1, v/v) solutions, respectively
(Table 1.). Such high quantum yields of 1O2 generation characterizes
also other flavins (lumiflavin, FMN) and products of their decomposi-
tion (alloxazines) [41,59,60].

After excitation sensitizer can react with species produced in the
result of their photoactivation. It has been shown that riboflavin effi-
ciently interacts with singlet oxygen with rate constant
6.0 × 107 M−1 s−1 [40]. In addition, Huang et al. reported even higher
value of riboflavin and singlet oxygen interaction
1.01 × 1010 M−1 s−1, suggesting that electrophilic attack of singlet
oxygen on riboflavin is responsible for its rapid photodegradation [49].
Later on, the same authors published slightly lower reaction rate for
riboflavin and singlet oxygen: 9.66 × 108 M−1 s−1 and revealed that
singlet oxygen was also involved in the photosensitized degradation of
lumiflavin and lumichrome, which interact with 1O2 with similar rates
8.58 × 108 and 8.21 × 108 M−1 s−1, respectively [61]. In the case of
3MeTARF determined rate constant of interaction with singlet oxygen
was low and did not exceed 1 × 105 M−1 s−1, which suggests that
3MeTARF is not a subject of dynamic, electrophilic attack of singlet
oxygen. Indeed, it seems that 3MeTARF is resistant to light-induced
bleaching and did not degrade upon irradiation (Fig. 2).

On the basis of the study we declare that reactive oxygen species,
formed during 3MeTARF irradiation, do not interact with its molecules
and the main specie formed in this process is singlet oxygen. On the
other hand, 3MeTARF generates also hydroxyl radical and even more
efficiently than riboflavin.

Photochemical resistance of 3MeTARF, on one hand might be due to
its different structure vs, riboflavin, as hydroxyl groups in ribose chain
are blocked, which prevents from light-induced intramolecular pro-
cesses leading to molecule decomposition [9,62,63]. Relatively small
value of the rate constant in the reaction with singlet oxygen
(1 × 105 M−1 s−1) may confirm 3MeTARF resistance to photo-
bleaching and stability upon excitation. Additionally, such structure
with acetyl substituents in the ribityl chain increase hydrophobicity of
the molecule, which facilitates permeability through cell membrane
and raise the effectiveness towards cell killing [23].

We found that 3MeTARF increases oxidative stress more efficiently
than riboflavin in WM115 melanoma cells. This is in agreement with
results obtained by spin trapping methods, which showed that although
both flavins similarly generate superoxide anion, 3MeTARF more effi-
ciently produce hydroxyl radical. DHR 123 is suggested to be oxidized
specifically by H2O2 however it was shown that other oxidative spe-
cieus can also oxidase DHR123 [64,65]. Rappole et al. showed that
DHR is sensitive to .OH% influx generated by X-ray in live cells [66].

Results obtained in cell viability test (MTT test) and by flow cyto-
metry (Annexin V- FITC/7AAD) indicates that both riboflavin and
3MeTARF are effective sensitizers in induction of cell death towards cell
line WM115. We observed that phototoxic effect in the case of
3MeTARF is 5 times more efficient when compared to riboflavin.
Moreover, we observe apoptosis, which is much more desired effect
from therapeutic point of view. Avoiding necrosis may limit side-effects
and complications, like inflammations of surrounding tissues [37,66].

5. Conclusions

Tetracetyl riboflavin analogue (3MeTARF), similar to Rfl in its
spectral properties and singlet oxygen generation abilities, reveals
higher stability upon irradiation, which makes it more efficient as po-
tential therapeutic agent, which is not without significance in the as-
pects of potential PDT applications. Moreover, its increased hydro-
phobicity may facilitate permeability through cell membrane, thus

Fig. 8. The accumulation of H2O2 directly after blue light exposure was ana-
lyzed by DHR123 assay. WM115 cells with riboflavin (R; 50 μM) and 3MeTARF
(M; 10 μM) in the darkness (black) and irradiated with blue LED light (white)
for 15 min (white; 50 mW/cm2) by MTT assay. The graphs show mean ± SD
from three independent experiments. For the statistics t-test was performed:
P < .05, * versus dark control. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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increasing its bioavailability. Obtained results confirm good properties
of 3MeTARF, riboflavin derivative, as potential sensitizer in photo-
dynamic reactions. Effects of investigations show huge potential that
lies in riboflavin and its derivatives as the available therapeutic factors.
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