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We present exact expressions for the eigenvalues and eigenvectors of the
d-dimensional Laplace operator in a cut Fock basis. We also discuss the
physical interpretation of the cutoff as well as the validity of the scaling
law of the eigenenergies for d > 1.
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1. Introduction

The ultimate goal of studies involving Supersymmetric Yang–Mills Quan-
tum Mechanics (SYMQM) is the solution of the system defined in D = 9 + 1
space-time dimensions with SU(N) gauge group for any N . The latter ap-
pears in such problems as the quantization of a supermembrane [1,2] or the
description of dynamics of D0 branes, one of the kinds of objects present in
M-theory [3, 4]. It should not be surprising that finding such solution is a
difficult task. Therefore, one tries to first investigate the lower dimensional
versions of SYMQM. Among them, the D = 1 + 1 SYMQM is the simplest
one [5]. It is described by position φm and momentum πm bosonic operators
and, λm and λ̄m fermionic operators. The index m labels the color degrees
of freedom, m = 1, . . . ,D, where D is the dimension of the adjoint repre-
sentation of the gauge group. Although the D = 2 SYMQM Hamiltonian
is free, its solutions are not trivial due to the singlet constraint which rep-
resents the dimensionally reduced Gauss law. In other words, the physical
Hilbert space of D = 2 SYMQM is composed of states invariant under the
gauge transformations.

A convenient method for analyzing such systems was proposed few years
ago by Wosiek [6] (for a recent introductory article see [7]). It was designed
mainly as a fully nonperturbative, numerical method for deriving the spectra
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of SYMQM. One of its advantages is that it treats fermions and bosons on an
equal footing which made the calculations in all fermionic sectors possible.
Moreover, it can handle any gauge group in any dimension. The main idea is
to calculate the matrix elements of the Hamiltonian operator in a Fock basis
composed of states containing less than NB quanta. NB is called the cutoff.
Such finite matrix is then diagonalized numerically in order to obtain the
approximated eigenenergies. A suitable choice of the cutoff, preserving the
gauge symmetry as well as the rotational symmetry, enabled one to obtain
many numerical results [8, 9, 10, 11]. The cut Fock space approach turned
out also to be a suitable tool for analytic investigations.

In this short paper, we analyze the D = 2 SYMQM models with the
SO(d) gauge group. In the language of SYMQM they can be interpreted as
an extremely simplified d-dimensional model with only one color or, equiv-
alently, as a model with d colors transforming in the adjoint representation
of the SO(d) group. Due to the simplicity of the SO(d) symmetry group we
are able to derive analytic expressions for the cut spectrum and eigenstates.
Consequently, we check that the infinite cutoff limit of the cut solutions is
given by the well-know Bessel functions [12, 13], which are solutions of the
free d-dimensional Schrödinger equation carrying zero angular momentum.
We expect that such analytic solutions can be used as a starting point for
the study of systems with several colors transforming with the SU(N) group.
Moreover, once known for any d or N they could be instructive in the further
study of physically interesting ‘large-d’ or ‘large-N ’ limits.

We also discuss the physical interpretation of the cutoff imposed on the
Fock basis. We show that the cutoff corresponds to a specific discretization of
position and momentum spaces. Afterwards, we briefly analyze the scaling
law, i.e. the dependence of the eigenenergies on the labeling index. Such
law was first investigated by Wosiek and Trzetrzelewski [14,15] in one spatial
dimension and was used as a handle to correctly differentiate localized states
from the nonlocalized ones. We discuss the validity of such approach in
higher dimensional spaces.

We summarize our results in the last section.

2. The system

Traditionally, in the D = 2 SYMQM models, φm and πm, as well as,
λm and λ̄m transform in the adjoint representation of the SU(N) gauge
symmetry. In this paper, we concentrate on the SO(d) gauge symmetry, and
therefore, we assume φm and λm to be in the adjoint representation of SO(d).
The SYMQM Hamiltonian is supplemented by the singlet constraint, hence
we search for solutions carrying zero angular momentum. The Hamiltonian
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reads

H =
1
2

d∑
m=1

πmπm . (1)

One introduces standard creation and annihilation operators

a†m =
1√
2

(φm − iπm) , am =
1√
2

(φm + iπm) (2)

fulfilling the commutation relation[
an, a†m

]
= δmn , (3)

and rewrite H as

H = a†mam +
d

2
− 1

2
amam − 1

2
a†ma†m , (4)

where the summation from 1 to d over repeated indices is understood from
now on.

The SO(d) group possesses only one invariant symmetric tensor, namely
the Kronecker delta. Hence, the algebra of invariant under rotations creation
operators reads [

amam, a†na†n
]

= 2d+ 4a†nan ,[
a†mam, a†na†n

]
= 2a†na†n ,[

ap, a†ma†m
]

= 2a†p . (5)

The basis vectors in the singlet sector can be labeled by a single index n,
and take the form

|n〉 =
1
N 0
n

(
a†ma†m

)n
|0〉 . (6)

Notice that n is related to the half of the total number of quanta of each type
contained in |n〉, NB = 2n. For a given cutoff NB only states |n ≤ bNB2 c〉
are present. There are bNB2 c + 1 such states, a new one appearing for NB

even.
We calculate the normalization factor in Eq. (6) by commuting consec-

utively all operators aqaq through (a†pa†p)i using Eqs. (5), so that they
annihilate the Fock vacuum. This gives a recursive relation for N 0

n(
N 0
n

)2 = 2n(2n+ d− 2)
(
N 0
n−1

)2
,

(
N 0

0

)2 = 1 (7)
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which is solved by (
N 0
n

)2 = 4nn!
Γ
(
d
2 + n

)
Γ
(
d
2

) . (8)

Although we are mainly interested in the scalar sector, we can obtain
results for higher representations without additional effort. As an example,
we present some calculations in the vector sector. The basis states in this
sector can be obtained out of the states given by Eq. (6) by the action of an
additional single creation operator

|n, i〉 =
1
N 1
n

a†i
(
a†ma†m

)n
|0〉 , i = 1, . . . , d , (9)

where (
N 1
n

)2 = 4nn!
Γ
(
d
2 + n+ 1

)
Γ
(
d
2 + 1

) . (10)

States given by Eq. (9) are orthogonal in n and i: 〈m, j|n, i〉 = δmnδji
(
N 1
n

)2.
It is now straightforward to evaluate all elements of the Hamiltonian

matrix in the singlet sector

〈n|H|n〉 = 2n+
d

2
, 〈n+ 1|H|n〉 = 〈n|H|n+ 1〉 = −

√
(n+ 1)

(
d

2
+ n

)
,

(11)

and in the vector sector

〈n, j|H|n, i〉 = δji

(
d

2
+ 2n+ 1

)
,

〈n, j|H|n+ 1, i〉 = 〈n+ 1, j|H|n, i〉 = −δji

√
(n+ 1)

(
d

2
+ n+ 1

)
.

(12)

Having this done, we can calculate numerically the spectra. In order
to obtain the physical results, corresponding to the infinite cutoff limit,
we investigate the behavior of the eigenenergies with increasing cutoff for
some finite values of NB. Figure 1 contains such results for the 12 lowest
eigenenergies in the singlet sector. Each curve falls slowly to zero as expected
from the nonlocalized character of the eigenstates of the free Hamiltonian
[14, 15, 16]. The dependence on the cutoff will be also discussed in the last
section of this note.
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Fig. 1. Spectrum of the Hamiltonian operator in d = 3 dimensions in the singlet
sector.

3. Character method

There exists an independent way to calculate the number of basis states
transforming according to a given representation of the SO(d) group, which
exploits the orthogonality of characters of irreducible representations1. We
start with a formula for the number of singlets appearing in a product of
NB adjoint representations [17]

ddNB =
∫
dµSO(d)

(αi) 1 · χdNB (αi) , (13)

where dµSO(d)
(αi) is the invariant Haar measure for the SO(d) group pa-

rameterized by the set of angles
{
αi
}
i=1,...,bd/2c running from 0 to 2π and

χdNB (αi) represents the symmetrized product of NB characters of the adjoint
representation of the SO(d) group and is equal to [18]

χdNB (αi) =
∑

P
k kik=NB

NB∏
k=1

1
ik!

1
kik

(
χd(kαi)

)ik
. (14)

1 in Eq. (13) stands for the trivial character of the invariant representation
of SO(d). It can be replaced by the character of any other representation R,
in which case, ddnB will be equal to the number of times R appears in the
product of NB adjoint representations. For d even, d = 2M with M integer,

1 This method was suggested by R. Janik.
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the Haar measure for SO(d) is given by [19]

dµSO(d)
=

2(M−1)2

πMM !

∏
1≤j<k≤M

(cos (αk)− cos (αj))
2 , (15)

and for d odd, d = 2M + 1,

dµSO(d)
=

2M
2

πMM !

∏
1≤j<k≤M

(cos(αk)− cos (αj))
2

M∏
m=1

sin2
(αm

2

)
. (16)

The characters of the adjoint representation of SO(d) are given by, for
d = 2M [19],

χd(αi) = 2
M∑
m=1

cos(αm) , (17)

and for d = 2M + 1,

χd(αi) = 1 + 2
M∑
m=1

cos(αm) . (18)

Explicit evaluation of the integrals confirms that Eqs. (6) and (9) form
indeed a complete basis of the Hilbert space in the corresponding sectors.

4. Analytic results

In this section, we derive the set of eigenvalues and eigenvectors of the
Hamiltonian operator in the singlet and vector sectors for any finite cut-
off NB.

At cutoff equal to NB, the basis size in the singlet sector is nmax =
bNB2 c + 1. Let us denote by Inmax(λ) the characteristic polynomial of the
Hamiltonian matrix at this cutoff. Then, I1 = 〈0|H − λ|0〉 = d

2 − λ. Due to
the tridiagonal nature of the Hamiltonian matrix we can write a recursive
relation for In(λ)

In(λ) =
(

2n− 2 +
d

2
− λ
)
In−1(λ)−

(
(n− 1)

(
n− 2 +

d

2

))
In−2(λ) .

(19)

By changing the variables as In(λ) → n!In(λ) we get a recursive equation
which is solved by generalized Laguerre polynomials, i.e.

In(λ) = L
d
2
−1

n (λ) . (20)
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These well-known polynomials are defined as the solutions of the differential
equation

xy′′ + (α+ 1− x)y′ + ny = 0 ,

and the orthogonality relation
∞∫
0

Lαm(x)Lαn(x)xαe−xdx = δmn .

Therefore, the eigenvalues of the Hamiltonian operator in the singlet sec-
tor in d-dimensions at cutoff NB are given by the zeros of the Laguerre

polynomial L
d
2
−1

bNB
2
c+1

(λ) . By taking d = 1 we recover the results of [15].

An alternative method to derive this result is to consider a general state
|E〉 from the singlet sector and expand it as

|E〉 =
bNB

2
c∑

n=0

an(E)|n〉 . (21)

The eigenequation of H translates into a recursive relation for the an(E) co-
efficients. After extracting an irrelevant constant factor, an(E)→ 2−nan(E),
the recursion reads

an−1(E)−
(

2n+
d

2
− E

)
an(E) + (n+ 1)

(
n+

d

2

)
an+1(E) = 0 . (22)

Eq. (22) is solved by

an(E) = a0Γ

(
d

2

)
L
d
2
−1

n (E)
Γ
(
n+ d

2

) , n = 1, . . . , bNB

2
c , (23)

together with the quantization condition L
d
2
−1

bNB
2
c+1

(E) = 0, which is equiva-

lent to Eq. (20).
Similarly, in the vector sector the recursive relation for the determinant

of the Hamiltonian matrix can be solved by

In(λ) = L
d
2
n (λ) . (24)

Thus, the spectrum in the vector sector for the cutoff NB is given by the
zeros of the generalized Laguerre polynomials with the index shifted by 1
comparing to the singlet case:

H
∣∣Ein〉 = En

∣∣Ein〉
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with En such that

L
d
2

dNB
2
e+1

(Ei) = 0 , n = 1, . . . , dNB

2
e+ 1 ,

where |Ein〉 are the eigenstates of H with the vector index i. As a straightfor-
ward consequence of the vector nature of the states |Ein〉 each eigenvalue is d
times degenerate. The corresponding eigenvectors are given as an expansion
in the basis ∣∣Ei〉 =

dNB
2
e∑

n=0

an,i(E)|n, i〉 (25)

with

an,i(E) = a0Γ

(
d

2

)
L
d
2
n (E)

Γ
(
n+ d

2 + 1
) , n = 1, . . . , dNB

2
e . (26)

Hence, we obtained simple formulae giving the spectrum of the cut
Hamiltonian operator as well as its eigenstates. The dependence on the
cutoff is explicit and it is straightforward to perform the infinite cutoff limit.

One can easily generalize the above expressions for the eigenvalues and
eigenvectors transforming under any irreducible representation of the SO(d)
group.

5. Reconstruction of radial waves

In this section, we confirm the results obtained above by comparing
their infinite cutoff limit with the well-known continuous results. Before we
present the detailed calculations, we make two observations.

The rescaled Hamiltonian of the quantum harmonic oscillator is given by

Hosc = p2 + x2 . (27)
It is evident that Hosc is invariant under the transformation x↔ p. There-
fore, the functional form of the wave functions in the momentum and position
representations is the same up to a constant multiplicative factor. In fact,
both are related by the d-dimensional Fourier transform.

Next, the amplitude an(E) can be interpreted as the nth wave function
of the d-dimensional harmonic oscillator in the momentum representation.
To see this, let as denote the plane wave with a wave-vector κ, κ =

√
E,

which is the eigenstate of the free Hamiltonian H, by |κ〉, and the nth state
of the d-dimensional harmonic oscillator carrying zero angular momentum
by |n〉. Then, an(E) is simply the scalar product of the free wave |κ〉 and
the harmonic oscillator eigenfunction |n〉

an(E) = an
(
κ2
)

= 〈κ|n〉 . (28)
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Thus,

ψn(κ) ≡ 〈κ|n〉 = f
(
κ2
)
L
d
2
−1

n

(
κ2
)
, (29)

φn(r) ≡ 〈r|n〉 = g
(
r2
)
L
d
2
−1

n

(
r2
)
, (30)

where f(κ2) and g(r2) are functions which do not depend on n and could
not be determined from the recursion relations Eq. (22). We can check the
above conclusions by explicitly solving the radial d-dimensional harmonic
oscillator eigenequation in the position representation

Φ′′(r) +
d− 1
r

Φ′(r) + 2EΦ(r)− r2Φ(r) = 0 , (31)

where the prime denotes the differentiation with respect to r. Solving the
quantization condition we get E = 1

2(d+ 4n) and hence the solutions are

φn(r) = c12
d
4 e−

r2

2 U

(
−n, d

2
, r2
)

+ c22
d
4 e−

r2

2 L
d
2
−1

n

(
r2
)
, (32)

where U(a, b, z) is the confluent hypergeometric function. The first term of
the solution is singular at r = 0, so we have to set c1 = 0. Thus,

ψn(κ) = c2(−1)ne−
κ2

2 L
d
2
−1

n

(
κ2
)
, (33)

φn(r) = c2e
− r

2

2 L
d
2
−1

n

(
r2
)
, (34)

where the constant c2 can be fixed by the normalization condition

c2 =

√√√√ n!Γ
(
d
2

)
π
d
2Γ
(
n+ d

2

) . (35)

Therefore, indeed, an(E) is the nth eigenstate of the d-dimensional harmonic
oscillator carrying zero angular momentum.

At this point we can calculate the wave functions in the position repre-
sentation of the infinite cutoff limit of solutions Eq. (23). We write

〈r|κ〉 =
∞∑
n=0

〈r|n〉〈n|κ〉 =
∞∑
n=0

φn(r)ψn(κ)

= N e−
κ2+r2

2

∞∑
n=0

(−1)nn!
Γ
(
n+ d

2

)L d
2
−1

n

(
r2
)
L
d
2
−1

n

(
κ2
)

(36)
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with all unimportant constant factors gathered in N and the (−1)n factor
coming from the definition of Fourier transform. Using the known relation
for associated Laguerre polynomials [13] we eventually get

〈r|κ〉 =
1
2
N 1

(−κr)
d
2
−1
J d

2
−1(−κr) . (37)

This result indeed coincides with the solutions of the radial part of the
d-dimensional Laplace equation

−∆φ(r)− Eφ(r) = φ′′(r) +
d− 1
r

φ′(r) + Eφ(r) = 0 (38)

given by the well-known Bessel functions

φ(r) = c1r
1− d

2J d
2
−1

(
−
√
Er
)

+ c2r
1− d

2Y d
2
−1

(
−
√
Er
)
. (39)

Requiring a regular behavior of the solution at r = 0 fixes c2 = 0, and after
setting c1 = 1

2Nκ
1− d

2 and E = κ2, we recover the solutions of Eq. (37).
Therefore, our solutions obtained for a finite NB become, in the infinite
cutoff limit, the known Bessel functions.

6. Physical interpretation of the cutoff

Physically, the introduction of a cutoff limiting the maximal number of
quanta contained in the basis states is equivalent to a specific discretization
of the position as well as momentum variables. This can be demonstrated
by considering the eigenvalues of the cut matrix representations of those
operators. They correspond to possible outcomes of a measurement process.
Obviously, in the cut basis the matrices of the x̂ and p̂ operators are finite
and have as many eigenvalues as there are states in the cut basis. Hence,
position as well as momentum spaces are discrete.

In order to be more precise, let us consider gauge invariant position and
momentum operators of the form X2 = xmxm and P 2 = pmpm. We have
shown in the preceding sections that their spectra consist of zeros of Laguerre
polynomials. We denote their eigenvalues by X2

i and P 2
i , respectively

X2
i : L

d
2
−1

n

(
X2
i

)
= 0 , P 2

i : L
d
2
−1

n

(
P 2
i

)
= 0 , i = 1, . . . , n .

A well-known upper bound for the largest zero of Lαn(x) is, provided |α| ≥ 1
4 ,

α > −1,

xn <
(√

4n+ 2α+ 2− γ(4n+ 2α+ 2)−
1
6

)2
,
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γ = 6−
1
3 i1 and i1 is the smallest zero of the Airy function [20]. Hence, for a

cutoff NB the eigenvalues Xi and Pi lie in the interval I

I =

(
−
√

4
⌈NB

2
⌉

+ 3,

√
4
⌈NB

2
⌉

+ 3

)
.

The interval I is of the length of 2
√

2NB and contains roughly 1
2NB such

eigenvalues. For the increasing cutoff, I becomes bigger and bigger whereas
the distribution of eigenvalues inside I becomes denser and denser. One
concludes that Xi and Pi tend to cover the real axis in the limit of infinite
cutoff. We call this limit also a continuum limit.

7. Continuum limit

Up to now, our results suggest that the continuum limit of the nth
eigenenergy vanishes

lim
NB→∞

En(NB) = 0 . (40)

However, this is in contradiction with the general expectation that the spec-
trum of the kinetic energy operator is continuous, i.e.

lim
NB→∞

En(NB) = 1
2p

2 , p ∈ R . (41)

In order to avoid the situation of Eq. (40), one must assume that the limit
in Eq. (41) is taken with

n = n(NB) (42)

which we call scaling law, referring to a similar procedure in lattice field
theory. This phenomenon was investigated in the case of one-dimensional
momentum operators by Trzetrzelewski [15]. He was able to derive the
scaling properties of the eigenvalues of the momentum operator as well as
of the kinetic energy operator and obtained

En(NB) =
π2

2

(
n− 1

2

)2
2NB + 5

. (43)

It is now straightforward to check the validity of the scaling law in d > 1
dimensions. The eigenenergies of the kinetic energy operator being the zeros
of appropriate Laguerre polynomials can be approximated at large NB by
the formula [12,13]

En(NB) =
(
L
d
2
−1

b 1
2
NBc+1

(E)
)
n

≈
j2d

2
−1,n

4b12NBc+ d
+ . . . . (44)
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Setting d = 1, for which j− 1
2
,n = π(n− 1

2), we obtain exactly the expres-
sion Eq. (43).

Hence, we see that the simple scaling En ∼ n2 is correct as long as the
following approximation is true

j d
2
−1,n ≈ γ1(d)n+ γ2(d) . (45)

Obviously, (45) will not hold for high d. Indeed, Fig. 2 shows the dependence
of the eigenenergies En(NB) on the labeling number n for a given cutoff
NB = 200. Distinct curves correspond to different d, namely d = 1 for the
lower one and d = 150 for the upper one. Definitely, in the latter case the
dependence is no longer linear. Some particular values of the coefficients
γ1 and γ2 are given in Table I.
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Fig. 2. Scaling laws for d = 1 and d = 150.

TABLE I

Fitted values of parameters γ1(d) and γ2(d) for d = 1, 3, 9.

d γ1(d) Std. error γ2(d) Std. error

1 3.14159 < 10−10 −1.5708 < 10−10

3 3.14159 < 10−10 0.0 < 10−10

9 3.142 4.4× 10−5 4.6192 0.0077
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8. Conclusions

In this note we used the cut Fock space approach to investigate the sys-
tem which can be interpreted as a free quantum particle in d-dimensions. Al-
though solutions to such problem are well known in the continuum (NB=∞),
they were unknown for finite NB.

Our approach was guided by the numerical algorithm proposed for solv-
ing supersymmetric Yang–Mills quantum mechanics in the Hamiltonian for-
mulation. The study of this particular system was motivated by a similar
problem with the SO(d) gauge group replaced by the SU(N) group [21,22].

We started by describing the construction of basis states with the use of
gauge invariant creation operators. Then, we explicitly derived the Hamil-
tonian matrix. Due to its simple form it was possible to obtain exact expres-
sions for the eigenvalues and eigenvectors. The formulae are parameterized
by the cutoff and hence, are valid for any finite cutoff. Namely, the spectrum
at finite cutoff is given by the zeros of an appropriate Laguerre polynomial,
whereas in the continuum it corresponds to the positive real axis.

In order to confirm the correctness of our solutions, we calculated their
wave functions in the position representation in the continuum limit. Indeed,
it was possible to show that such wave functions are equivalent to the well
known solutions given in terms of Bessel functions.

Next, we discussed the physical interpretation of the cutoff. We argued
that a finite cutoff corresponds to a discretization of both position and mo-
mentum space. In the infinite cutoff limit continuum results are recovered.

Finally, we observed that the scaling law proved for the one-dimensional
kinetic energy operator holds only approximately in spaces with higher num-
ber of spatial dimensions.

The Author would like to acknowledge many useful discussions with
J. Wosiek on the subject of this paper.
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