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Abstract

The observations of SNIa suggest that we live in the acceleration epoch when the densities of the cosmological constant term
are almost equal. This leads to the cosmic coincidence conundrum. As the explanation for this problem we propose the FRW mode
matter and dark energy which interact each other exchanging energy. We show that the cubic correction to the Hubble law, measured
supernovae type Ia, probes this interaction. We demonstrate that influences between nonrelativistic matter and vacuum sectors are c
third and higher derivatives of the scale factor. As an example we consider flat decayingΛ(t) FRW cosmologies. We point out the possibility
measure of the energy transfer by the cubic and higher corrections to Hubble’s law. The statistical analysis of SNIa data is used as a
of energy transfer. We find that there were the transfer from the dark energy sector to the dark matter one without any assumption ab
governing this process. We confront this hypothesis about the transfer with SNIa observations and find that the transfer the phantom
sector is admissible forΩm,0 = 0.27. We also demonstrate that it is possible to differentiate between the energy transfer model and the
coefficient equation of state model.
 2005 Elsevier B.V.
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1. Introduction

The modern cosmology, especially observational cosm
ogy, reminds empirical science in a crisis phase[1]. The recent
observations of supernovae type Ia (SNIa) indicates that
Universe is accelerating at the present epoch[2,3]. We accept
that the present evolution is well described by the general
tivity theory with the Robertson–Walker type of space symm
try and the source of gravity is perfect fluid then the accelera
of Universe expansion can be explained only in the follo
ing way. The Universe is filled additionally to nonrelativis
matter with dark energy of unknown origin, which violates t
strong energy condition. When the perfect fluid with the
ergy ρ and pressurep—the source of gravity—satisfies th
strong energy condition then the explanation of SNIa ob
vations requires the modification of the Einstein equations
we postulate the Robertson–Walker symmetry then there
some propositions of modification of the Friedmann first
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tegral. Freese and Lewis considered flat cosmological mo
with the additional termBρn, whereB andn are constants[4].
The parameters of this model were confronted with the ob
vation of distant type Ia supernova[5,6].

Both approaches can be tested statistically by searc
model parameters which best fits to the SNIa data. But to di
guish among the models it is necessary to take additional o
vational constraints. When we assume the matter density v
which is indicated by cosmic microwave background (CM
and galactic counting observations then the most promi
model is the dark energy model with the cosmological c
stant. The cosmological constant has very long history an
still the source of various problems and troubles[7,8]. The main
problem with today face of the cosmological constant is tha
value is negligible in comparison to the Planck mass. In o
words theΛ cold dark matter (ΛCDM) model looks like the
effective theory which gives us the description of the phen
enon of acceleration without giving any understanding.

Another problem is why the energy densities of dark ene
and of dust-like matter are of the same order of magnitud
the present epoch[9,10]. This problem is known as a “cos
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mic coincidence conundrum”. The beginning of the vacu
energy and the dust-like matter is related to different epo
separated by very long interval of time. One of the possib
of the explanation of this coincidence is the intrinsic feedb
between the energy density of dark matter and dark en
modelled by quintessence scalar fields[11]. In the context of
scalar quintessence fields it was proposed another intere
model with interaction[12]. It would be worthy to mention a
model with coupling between dark energy and dark cold ma
which reproduce power law solutions for energy density[13].
This relation was constrained by the CMB observations[14]
and SNIa observations using statefinder diagnostic param
(see[15] and references therein).

We differ in the presented approach that we do not ass
any physical mechanism of the energy transfer, which is tre
on the phenomenological level. We argue that luminosity
tance versus redshift relation is the very first cosmological
that probes the interactions between dark matter and dar
ergy. This interaction is proposed and is checked whethe
“cosmic coincidence conundrum” is solved. In particular
are interested in the direction of energy transfer. For this
we assume the Friedmann equation

(1)ȧ2 = ρ

3
a2 − k,

where a is the scale factor,k is the curvature index, and
dot means the differentiation with respect to the cosmol
cal timet . The second equation describing the evolution of
model is based on the adiabatic conditionT

µ

ν;µ = 0 which for
the Friedmann–Robertson–Walker (FRW) models with so
perfect fluid assumes the form

(2)
d

dt

(
ρa3) + p

d

dt

(
a3) = 0.

Because Eq.(2) has the local character the standard interpr
tion is thatρ andp describe the effective energy density a
pressure of multifluid which do not interact each other. T
Eq.(2) describes separately the evolution of each compone

Eq.(2) can be rewritten to the form

(3)ρ̇ = −3H(ρ + p),

where the Hubble functionH = ȧ/a. Let us note that the cos
mological constant (for whichp = −ρ) does not contribute to
the conservation condition(3) as long as it is treated as the no
interacting with the rest matter.

We postulate that apart from dust matter there is dark
ergy, but both fluids interact now and energy can be transpo
from dark energy sector to the nonrelativistic matter sec
Therefore, Eq.(2) cannot be separable for every componen
multifluid. The special case of considered class of model are
caying vacuum cosmologies orΛ(t) models[16,17]. The inspi-
ration for constructing the noninteracting cosmologies is ta
from Wojciulewitsch[18] (in context of dark energy see[19]).

The main aim of the Letter is to show that the observa
of distant SNIa offer the possibility of testing the energy tra
port from the vacuum sector to the nonrelativistic matter se
which includes dark matter. We show that the measuremen
s
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third order term in the expansion of the luminosity distance
lation with respect redshiftz (jerk) allows to detect the energ
transport. Higher order terms in the expansions (snap, cra
etc.) control the velocity, acceleration of energy transport. N
that statefinder parameters also control third derivatives but
are inadequate if we want to detect the energy transfer dire
from observations.

We assume the different interpretation of Eq.(2) rather than
its modification.

2. Two-sector models with transfer of energy

We construct the general class of the decaying dark en
models with the interaction starting from the Friedmann first
tegral which is independent of the form of pressure of fluid.
assume for simplicity some two-component fluid with effect
pressure and energy

(4)peff = pX + 0, ρeff = ρm + ρX,

wherepX = wXρX (wX = const) describes dark energy andρm
is the energy of dust matter. If we putwX = −1 the special cas
of the cosmological constant is recovered.

The expression for the conservation condition can be rew
ten to the form

(5)
1

a3

d

dt

(
ρma3) + 1

a3(1+wX)

d

dt

(
ρXa3(1+wX)

) = 0.

The first term in Eq.(5) describes the net rate of absorpti
of energy per unit time in unit of comoving volume transfer
out of the decaying vacuum fluid to the sector of nonrelativi
fluid. If we considerw = −4/3 the phantom fields are tran
ported. Relation(5) is usually interpreted without interactio
between the sectors. Following Wojciulewitsch we postu
that the local energy conservation law(5) can be written as

1

a3

d

dt

(
ρma3) = γ (t) and

(6)
1

a3(1+wX)

d

dt

(
ρXa3(1+wX)

) = −γ (t).

The functionγ (t) is only a phenomenological description
interaction between two sectors. Of course, the exact mod
this interaction should be taken from the particle physics
γ (t) > 0 the energy is transfered out of the vacuum, while
γ (t) < 0 the energy is transfered in the opposite direction.

Integration of Eq.(6) gives

ρma3 = ρm,0a
3
0 +

t∫
t0

γ (t)a3 dt and

(7)ρXa3(1+wX) = ρX,0a
3(1+wX)
0 −

t∫
t0

γ (t)a3(1+wX) dt,

where the index “0” means that the quantities are evaluate
day.

It would be useful for our further analysis to represent
Friedmann first integral(1) in the form for a particle moving in
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the one-dimensional potential

(8)
ȧ2

2
+ V (a) = k

2
, V (a) = −ρeffa

2

6
= −ρma2

6
− ρXa2

6
.

Because of relation(7) the potential function is explicitly time
dependent and now takes the following form

(9)V (a) = 1

2

[
A(t)

a
+ B(t)

a1+3wX

]
,

where

A(t) = ρma3

3
, B(t) = ρXa3(1+wX)

3
.

In the concordanceΛCDM models both matter and the co
mological constant are treated separately without the inte
tion, so both functionsA(t) andB(t) (densitiesρm,0 andρX,0)
are constant. The presence of the interaction manifests in
model by appearing the time dependence of the potential f
tion (9).

Let us note that we postulate the time dependence ofγ (t)

through the scale factor, i.e.,γ (t) = γ (a(t)), and the potentia
function becomes only a function ofa but the exact form o
γ (a) is required. It is convenient to represent the dynamic
the model in terms of the Hubble function

(10)H 2 = A(t)

a3
+ B(t)

a3(1+wX)
− k

a2
= H 2(Ωm + ΩX + Ωk).

If we postulate thatA(t) = A(a(t)), B(t) = B(a(t)) and put
1 + z = a−1 then relation(10) can be used to fit the mod
parametersΩi,0 to the SNIa data, wherei denotes all fluids
considered.

Differentiation of both sides of Eq.(8) for the potential in
the form(9) gives the expression for acceleration

(11)ä = 1

2

[
−A(a(t))

a2
− (1+ 3wX)B(a(t))

a2+3wX

]
,

where we substitute derivativeṡA = 1
3γ (t)a3 and Ḃ =

−1
3a3(1+wX)γ (t) = −a3wXȦ from (7). Let us rewrite Eq.(11)

to the new form

(12)qH 2 = 1

2

[
A(t)

a3
+ (1+ 3wX)B(a(t))

a3(1+wX)

]
,

whereq = − ä

aH2 is the deceleration parameter.
To control higher derivatives of the scale factor we introd

the dimensionless parameter

(13)Qn = (−1)n+1 1

aHn

dna

dtn

and then

(14)Q2 = q, Q3 = j, Q4 = s

are the deceleration, jerk, and snap, respectively[20]. In turn, to
control the interaction we introduce the dimensionless tran
parameter

(15)ν(t) ≡ γ (t)

3H 3

by analogy to the matter density parameterΩm = ρm/3H 2.
c-

e
c-

f

r

To verify the model we estimate of the parameterν at
the present epoch from the observation of SNIa data. F
Eqs.(10) and (12)we have

(16)−Ωk = k

a2H 2
= 3wX

1+ 3wX

Ωm + 2q

1+ 3wX

− 1

and

(17)q = 1

2
Ωm + 1+ 3wX

2
ΩX.

Of course we have also the constraint conditionΩk + Ωm +
ΩX = 1.

After the differentiation of both sides of Eq.(11) we obtain
the basic equation relating the jerk to the transfer density p
meter

(18)j − 3

2
wXν = Ωm + 1

2
(1+ 3wX)(2+ 3wX)ΩX

and

(19)j − 3

2
wXν − 1= 9

2
wX(wX + 1)ΩX − Ωk.

Both for strings (wX = −1/3) and topological defect
(wX = −2/3) relation(18) does not depend on the density p
rameter of dark energyΩX . This relation is obvious for al
models. In the special case of the flat modelΩX = 1− Ωm and
then we obtain

(20)j − 3

2
wXν = 9

2
wX(wX + 1)ΩX + 1.

Summing(18) and (17)for anyΩk we obtain

(21)j − 3

2
wXν + q = 3

2
Ωm + 3

2
(1+ 3wX)(wX + 1)ΩX.

In the special case of the flat model formula(21) reduces to

j − 3

2
wXν + q

(22)= −3

2
Ωm(4+ 3wX)wX + 3

2
(1+ 3wX)(1+ wX),

wherewX can be always expressed in terms ofΩm andq. Note
that the relationγ (q) does not depend on priors onΩm for
phantoms.

Finally we obtain that the measurements of the jerkj0 at the
present epoch probes directly the effects of energy transfer
consequence of relation(21). While the cubic term in the rela
tion dL(z) is the first term in the Taylor expansion that depe
explicitly on theγ (t), the higher terms in this expansion are
lated to the derivatives ofγ (t). Let us define the parameterνn

for the characterization of variability ofγ (t) as

(23)νn = 1

3Hn+3

dnγ

dtn
.

It is obvious thatν0 = ν, ν1 = γ̇ /3H 4, . . . .
As an illustration that one can control the first derivative

γ (t) by the measurement of the snapQ4 = s, we prove the ex-
istence of some relation obtained by the differentiation of b
sides of(22). To this aim we use the following formulas

(24)
dH = −H 2(1+ q),

dt
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(25)
dΩm

dt
= H

[
ν + Ωm(2q − 1)

]
,

(26)
dΩX

dt
= −H

[
ν + ΩX(1+ 3wX − 2q)

]
.

Finally we obtain the relation

−s + j + 3jq + q + 2q2 − 3

2
wXν1

= 3

2
ν
(
3w2

X + 4wX

) + 3

2
Ωm(2q − 1)

(27)− 3

2
(1+ 3wX)(1+ wX)(1+ 3wX − 2q)ΩX.

Let us briefly comment on the important case ofwX = −1
corresponding the decaying cosmological constantΛ(t) cos-
mologies. Of course, they constitute some special case o
considered models

(28)j + 3

2
ν = 1− Ωk,

(29)j + 3

2
ν + q = 3

2
Ωm.

The parameterγ (t) ≡ −dΛ/dt describes the first derivativ
of Λ and therefore the parameterν controls its variability. In
turn the parameterν1 characterizes the convexity of the functi
Λ(t)

(30)

−s − j + 3jq + q + 2q2 + 3

2
ν1 + 3ν + 9

2
qν = 3

2
Ωm(2q −1).

3. Transfer parameter from distant SNIa

Let us consider the luminosity distanced versus redshif
lation dL(z) expanded in the Taylor series with respect to r
shift z. It can be done without knowledge about dynami
equation. For simplicity of presentation of the idea of meas
mentν, ν1, . . . we consider the flat universe what is justified
WMAP measurements. Then we obtain[21]

dL(z) = z

H0

[
1+ 1

2
(1− q0)z − 1

6

(
1− q0 − 3q2

0 + j0
)
z2

]

+ z4

24H0

[
2+ 2q0 − 15q2

0 − 15q3
0 + 5j0

(31)+ 10q0j0 + s0
] + · · · .

We propose to detect the time variation of energy tran
using the parametersν, ν1, . . . . Let us start with estimation o
ν as a first approximation. We find the current constraint
the plane(q0, j0). For this aim we mark the shaded region
the 95% confidence level constraint from the recent SNIa m
surements[22]. Becauseν = 2

3(1 − j) (or in the general cas
ν = 2

3(1 − j − Ωk,0)) the detection of the interaction is equi
alent to the determination whether the jerk is different from
(or 1 − Ωk,0). If j0 < 1 (or j0 < 1 − Ωk,0) then the energy
is transfered from the dark energy sector to the nonrelativ
matter sector. Ifj0 > 1 (or j0 > 1 − Ωk,0) the transport take
place in the opposite direction. Note that the negative curva
(Ωk,0 > 0) makes the switch of transfer direction to happen
lower value ofj0. Therefore, to find the direction of transfer w
e

-
-
l
-

r

-

c

e

Fig. 1. The current constraint on the plane(q0, j0). The solid line is the relation
j0(q0) fulfilled in the model. Additionally, for this relation the 1σ confidence
level interval forΩm,0 is drawn.

should know not only the value of jerk but also the curvature
space.

In the general case for anywX we have

(32)j0 = 3

2
wXν + 3

2
Ωm,0,

where we use formula(17).
We consider, for simplicity, the testing of the interacti

for the flat model and the casewX = −1 which correspond
the decaying cosmological constant. This allows to subst
ν → wXν. OnFig. 1, from relation(21)with wX = −1, the line
j0 = q0 + 3

2(Ωm,0 − ν) is drawn when we assume that baryo
matterΩm,0 − ν is equal 0.05. This relation allows us to est
mate the interval onΩm,0 andj0 on the 1σ confidence level
We mark the linej0(q0) and the vertical band to denote the
terval with the 1σ confidence level forq0 ∈ (−0.5725,−0.445)
which givesΩm,0 ∈ (0.285,0.37). In this interval ofΩm,0 the
jerk j0 is about 0.6.

It is very interesting that present SNIa observations allow
us to measure the interaction without any special assump
about physics of the transfer process. We thus determine
transfer energy parameterν and concluded that if we assum
that the Universe is flat then the energy transfer takes place
the dark energy to dark matter.

4. The energy transfer parameter from SNIa data

In the previous section it was considered thatΩb,0 =
Ωm,0 − ν. Now we turn to estimation of the energy trans
parameterν using the SNIa data. It would be useful to consi
two situation. First, the energy transfer is between deca
vacuum and matter sectors, and second, it is between the
tom (pX = 4/3ρX) and matter sectors. We would like to answ
on two questions.

• What is the interval ofΩm,0 which rules out the energ
transfer (ν = 0) on the confidence level 95%?

• Is it possible to tell a scenario with energy transfer and
other with variablewX?
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Fig. 2. The dependency ofΩm,0 onν for the transfer between decaying vacuu
and matter sectors.

Fig. 3. The dependency ofΩm,0 on ν for the transfer between phantom a
matter sectors.

To answer to the first question we test the hypothesis thatν = 0.
The transfer from decaying vacuum to matter sectors ca
ruled out on the confidence level 95% forΩm,0 ∈ (0.23,0.32)
(Fig. 2), while the transfer from phantom to matter sectors
ruled out forΩm,0 ∈ (0.30,0.37) on the same confidence lev
(Fig. 3). Therefore the transfer between decaying vacuum
matter sector seems to be excluded because the extraga
observations and CMB observations favor the values ofΩm,0
in the obtained interval. On the other hand these other obs
tions indicate that the transfer between phantom and matter
tors is possible. Hence if we have other arguments about p
tom existence in the universe and if we accept thatΩm,0 � 0.27
as indicated by WMAP measurements then the energy tra
is necessary.

Adopting the same analysis from the previous section
the case of no energy and variablew(z) = w0 + w1z we obtain
analogous formulas in whichνw0 is replaced byw1ΩX,0. To
answer the second question we analyze the Hubble dia
e

d
tic

a-
c-
n-

er

o

m

Fig. 4. The residuals in respect to the Einstein–de Sitter model (the base lin
the ΛCDM model (the upper line), the model with variablew(z) (the middle
line), and the model with transfer with best fittedj0 = 1.26 andq0 = −0.64
(the lower line).

(Fig. 4). It is shown that for very distant supernovae (z � 2) the
model with variablew(z) predicts the brighter supernovae.
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