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Abstract The use of food industry by-products in insect feeds has gained increasing attention recently. How-

ever, the understanding of how well the economically valuable edible insect Ruspolia differens (Ser-

ville) (Orthoptera: Tettigoniidae) can grow and develop with plant-based by-product feeds is

currently lacking. It is important to determine the nutritional requirements, especially protein

demand, of this species before developing artificial feeds for mass-rearing.We reared R. differenswith

four control diets and 12 plant-based by-product diets in which the major protein source came from

food industry by-products, including potato-protein, barley mash, barley feed, turnip rape, a mix of

broad bean and pea, and a mix of potato, carrot, and apple. We asked whether the performance (de-

velopment time, survival, and weight), feed conversion, and fatty acid composition and content dif-

fered among diet treatments. Furthermore, the 12 experimental by-product diets were designed to

reach six protein levels. We found that R. differens can be reared with various by-product diets, but

development time, survival, and weight differed among diets. Barley feed, barley mash, and potato

protein diets seem to be good options for rearing, and potato glycoalkaloids do not affect the perfor-

mance of R. differens. Individuals fed on the various by-product diets also differed in their fatty acid

composition and content. Increasing protein levels in diet up to 17% enhanced growth, development

time, and survival, but no further enhancements were seen when fed diets with protein levels higher

than this. The high protein levels decreased feed conversion rate. Our results can be valuable for

designing feeds for insect mass-rearing technology. The use of food industry by-products in the diets

for R. differens could increase the re-use of local resources and enhance circular economy.

Introduction

Ruspolia differens Serville (Orthoptera: Tettigoniidae) –
also known as ‘nsenene’ in Uganda, or ‘African bush-

cricket’ – is one of themost important edible insect species

for human consumption in sub-Saharan Africa (van Huis

et al., 2013). It has high cultural and economic value in

East Africa, for example in Uganda and Tanzania (Mmari

et al., 2017; Okia et al., 2017) where it is harvested from the

wild during the two annual swarming seasons (van Huis

et al., 2013). Ruspolia differens is highly nutritious as it

contains essential amino acids, fatty acids, vitamins, and

minerals (Kinyuru et al., 2010; Siulapwa et al., 2014). In

addition, the fatty acid composition of R. differens can be

manipulated with its diet (Lehtovaara et al., 2017; Rutaro

et al., 2018a,b), i.e., with specific feeds, it can become even

more suitable for human consumption. Recently, there

have been attempts to develop mass-rearing methods for

this species (Lehtovaara et al., 2017, 2018; Malinga et al.,

2018a,b; Rutaro et al., 2018a,b), which could prevent over-

harvesting of the wild populations in the long-term. Rus-

polia differens has potential for mass-rearing in the Lake-

Victoria basin, where there are long traditions for consum-

ing this species, but also elsewhere, as the species is nutri-

tionally valuable due to its healthy fatty acids.

The design of appropriate feeds is one of the key issues

in developing mass-rearingmethods for this species. In the
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wild, R. differens is a selective grass-feeder, preferring inflo-

rescences over leaves (Opoke et al., 2019). In the labora-

tory, it accepts, for example, wheat, finger millet, rice,

chicken feed, and sorghum, as well as many East-African

grasses (Lehtovaara et al., 2017; Valtonen et al., 2018; Mal-

inga et al., 2018a,b). An interesting future possibility is to

design feeds for edible insects which utilize food industry

by-products (Collavo et al., 2005; Oonincx et al., 2015;

Miech et al., 2016). This would create possibilities formore

efficient use of local resources, avoid or lessen the use of

ingredients which could be consumed directly by humans,

and enhance circular economy. However, the performance

of R. differens on diets, including food industry by-prod-

ucts, is currently unknown. Also, the protein requirement

in its feed is not well-understood, but is needed for the

mass-rearing of this species.

Even though by-product feeds for insects might

improve the sustainability of mass-rearing (Smetana et al.,

2016), the diet also needs to fulfill the nutritional require-

ments of the insects. The nutritional value of the diet

determines the insects’ survival and development time

(Cohen, 2004; Chapman, 2013), which are the typical per-

formance variables used to determine the diet quality

(Cohen, 2004). The by-product diets should also allow

maximal weight gain during rearing and high feed effi-

ciency to increase the sustainability of feed. In addition,

the nutritional quality, such as fatty acid composition, of

the insects could be modified by the by-product feeds.

Also, the by-products can contain toxins that are harmful

to humans (e.g., plant glycoalkaloids), and therefore it

must be ensured that the insects fed on by-products are

safe for human consumption.

The purpose of this study was to evaluate how R. dif-

ferens grow and develop with 12 by-product diets com-

pared to four control diets, how the protein level of the

feed explains growth performance, and how the diet

treatment modifies the fatty acid content and composi-

tion. Our specific study questions were: (1) do the devel-

opment time, survival, weight, and feed conversion rate

(FCR) differ among the diet treatments? (2) Does the

protein level of the diet explain development time, sur-

vival, and weight? And (3) does the fatty acid composi-

tion and the content of total fatty acids (TFA), saturated

fatty acids (SFA), monounsaturated fatty acids (MUFA),

and polyunsaturated fatty acids (PUFA) differ among

the diet treatments?

Materials and methods

Study insects

The R. differens individuals used in this experiment were

derived from the laboratory population at the University

of Eastern Finland that originated from grasslands sur-

rounding the Makerere University Agricultural Research

Institute Kabanyolo (MUARIK), Uganda. Prior to the

experiment, i.e., during the first three instars, the nymphs

were fed a standardized mixture of oatmeal, reindeer pel-

lets (Poro-Elo, Suomen rehu, Hyvink€a€a, Finland),

chicken feed (Milka kanat€aysrehu, Biofarm, Karkkila, Fin-

land), and mealworm meals (Suomalainen, 1999). Addi-

tionally, a piece of carrot, fresh shoots of oats, and water

absorbed in cotton wool and placed in a plastic cylindrical

jar were provided. Nymphs were kept in groups of 6–10
individuals in 0.75-l plastic containers (17 9 12 9

14 cm). A piece of tissue paper was placed hanging in the

roof to provide hiding places and places for molting. The

individuals were kept at 28–30 °C, 50–70% r.h., and L12:

D12 photoperiod.

Experimental diets

The experiments included 16 diet treatments, of which 12

included by-products (Table 1, Table S1). The four con-

trol diets included: (1) chicken feed, (2) reindeer feed, (3)

mealworm diet (Suomalainen, 1999), and (4) mealworm

diet (Suomalainen, 1999), with Vanderzant vitamin and

Wesson mineral mixtures (Cohen, 2004). The by-product

diets were based on modified Suomalainen (1999) and

Patton’s (1967) diet no. 16, in which the major protein

source, soybeans, was partly or totally replaced with by-

product protein sources. Based on their ample availability

from food industries at the location where the experiments

were conducted (Finland), the following by-products were

selected as ingredients in the by-product diet treatments:

potato-protein, barley mash, barley feed, turnip rape, a

mix of broad bean and pea, and a mix of potato, carrot,

and apple (Table 1). The diets were designed with

WinOpti, a feed optimization software program (Agro-

Soft, Tørring, Denmark) to reach one of six protein levels

(7.2, 10.0, 15.0, 17.4, 22.5, and 30.5%). As the by-products

differ in nutritional content, and our aim was to design

feeds of certain protein levels, the amount of by-products

in each diet differed (Table S2).

Experimental design

The experiment was arranged as a randomized block

design to determine whether the 16 diet treatments

explained the growth performance, feed conversion, or

fatty acid composition and content ofR. differens. The ran-

domized block design allowed us to reveal the differences

among diets while the environmental variation was con-

trolled. The replicates were 3-l plastic rearing containers

(11.5 9 18.5 9 18.5 cm) each having a 5-cm-diameter

ventilation hole in the lid covered with mesh. Four fourth

instars (� 1 day from molting) (Brits & Thornton, 1981)
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were placed randomly in each container (Figure S1). The

experiment involved a total of 160 containers.

Each container was randomly subjected to one of the 16

diet treatments (Table 1), each with 10 replicates. The only

exception was the Suomalainen diet with 20 replicates.

The diets were applied over the course of two experimental

times (Figure S1), with the Suomalainen diet applied on

both experimental times. In each experimental timing, the

containers were randomized in blocks so that each block

included one replicate of each experimental diet. There

were in total 10 blocks (on each experimental time), which

represented thermally regulated growth chambers, and

they were in two thermally regulated rooms.

In each container, the experimental diet was offered on

a Petri dish. At the start of the experiment, 2 g of feed was

offered. In addition, water was absorbed in cotton wool

and placed in two cylindrical jars, and a fresh piece of car-

rot were offered. Two pieces of tissue paper were placed

hanging in the roof to provide hiding places and places for

molting. All containers were checked 39 a week and 1 g of

feed was added, when needed, to allow insects to feed ad li-

bitum. At the same time, a fresh piece of carrot and water

were added. The individuals were kept at 30 � 1.5 °C and

L12:D12 throughout the experiment.

Measured variables

The starting weight of each insect was measured individu-

ally at the beginning of the experiment. Before weighing,

individuals were stunned with CO2. The development

time (days) and feed left-over (g) in each container were

recorded when half of the individuals reached the adult

stage in each rearing container. The experiment was

Table 1 Nutritional content and details of experimental diets. For potato protein diets, codes 2.5, 5.0, 10.0, and 20.0 describe the percent-

age of potato protein in the diet. The percentage values after each by-product diet name describe the protein level

Diet name

Protein

(%)

Carbohydrate

(%) Fat (%)

Base of

by-product

diets

% by-

product

in diet By-product Source

Control diets

Chicken feed 15.2 56.6 4.4 Milka Kanat€aysrehu,

BiofarmOy

Suomalainen (1999) 17.4 60.4 4.6 Suomalainen (1999)

Suomalainen +
vitamins

17.4 58.3 4.3

Reindeer feed 11.7 Not known Not known Poro-Elo, Hankkija Oy

By-product diets

Potato-2.5, 17% 17.4 56.5 4.7 Suomalainen

(1999)

2.5 Potato protein1 Finnamyl Oy

Potato-5.0, 17% 17.4 60.1 4.0 Suomalainen

(1999)

5 Potato protein1

Potato-10.0, 30% 30.5 51.2 4.0 Patton (1967) 10 Potato protein1

Potato-20.0, 30% 30.5 52.2 4.1 Patton (1967) 20 Potato protein1

Barley mash 22.5% 22.5 58.0 6.5 Patton (1967) 41 Barleymash2 Panimo

Honkavuori OyBarley mash 15% 15.0 66.0 5.4 Patton (1967) 20 Barleymash2

Barley feed 22.5% 22.5 58.2 7.4 Patton (1967) 44 Barley feed3 A-rehu

Barley feed 15% 15.0 66.0 6.5 Patton (1967) 31 Barley feed3

Broad bean pea 15% 15.0 66.0 4.2 Patton (1967) 13 Broad bean and

pea4
Boreal Plant

Breeding,

Apetit Oyj

Turnip rape 15% 15.0 66.0 5.0 Patton (1967) 7 Turnip rape5 Kankaisten
€Oljykasvit Oy

Vegetable 7.2% 7.23 7.52 89 Potato protein1,

carrot6, apple7
Finnamyl Oy,

anonymous apple

juice producer

Vegetable 10% 9.75 7.54 89 Potato protein1,

carrot6, apple7

1–7By-product of 1potato flour production, 2beer production, 3ethanol production, 4common protein sources in Finland (excess of

production), 5rape seed oil production, 6vegetable industry, 7apple juice production.
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terminated 1 week after half of the insects reached adult

stage in each container. At the same time, the final weight,

number of individuals alive (survival), and left-over feed

weight was recorded. The insects were not marked individ-

ually, so we were unable to match the start weight to later

measurements on an individual basis. For containers with

no emerged adults by 81 days after the start of the experi-

ment, the experiment was terminated on that day. These

containers were excluded from the analyses of develop-

ment time. Feed conversion rate was calculated based on a

formula used by Wilkinson (2011), using the fresh matter

from the beginning until the termination of the experi-

ment as follows: feed given/weight gain. The lower the

FCR index value is, the higher the feed efficiency. After the

experiment was terminated, the insects were frozen and

kept at�25 °C until further use.

Fatty acid analysis

We analysed the fatty acids of both diets and R. differens

individuals reared on each diet. Five females from each

diet were randomly selected for the fatty acid analyses. As

an exception, for four treatments (potato-10.0, 30%,

potato-20.0, 30%, vegetable 7.2%, and broad bean 15%),

only four females were selected because not enough

females survived until adulthood (n = 76). Before fatty

acid analyses, samples were first freeze-dried using an

Alpha 1-4 LD Plus freeze dryer (Martin Christ

Gefriertrocknungsanlagen, Osterode am Harz, Germany)

(main drying 24 h + final drying 6 h) and the wings were

removed. Also, one composite sample of each diet treat-

ment was freeze-dried (main drying 24 h+ final drying

6 h) for fatty acid analyses.

The fatty acid analyses were performed with the direct

transmethylation method (Sukhija & Palmquist, 1988)

with minor modifications as described by Lehtovaara et al.

(2017) at the Bio-Competence Centre of Healthy Dairy

Products (Bio–CC, Tartu, Estonia). Gas chromatography

with flame ionization detection (GC-FID) was used to

quantify the fatty acid methyl esters (FAME), and com-

mon fatty acids were identified by comparing sample peak

retention times with FAME standards. Fatty acids were

quantified based on peak areas in relation to the internal

standard.

Glycoalkaloid analysis

Four female individuals from each diet which included

potato protein were randomly selected for glycoalkaloid

analyses (n = 16). Insects were first freeze-dried (main

drying 22 h+final drying 1 h). The wings were removed

before the analysis. The glycoalkaloid analyses were carried

out at the Centre of Food and Fermentation Technologies

(Tallinn, Estonia). The ultra performance liquid

chromatography/mass spectrometry (UPLC-MS) internal

standard method was used to determine the a-solanine
and a-chaconine concentrations. The results of the gly-

coalkaloid analysis are shown in Table S3.

Statistical analysis

We fitted general linear mixed models to test whether the

development time, weight at the end of the experiment,

and FCR differ among the diet treatments (Table S3). For

survival, we fitted generalized linear model (binary logistic

model), where the dependent variable was the number of

individuals that survived to the end of the experiment

(events) out of individuals at the start (trials). In all mod-

els, the terms describing the structure of the experimental

design (Figure S1, Table S4) were used as random factors.

The male ratio (number of males/number of females at the

end of the experiment) was included as a covariate for

models of development time, survival, and FCR, where the

response variable was measured from each container. For

themodel of weight (measured from each individual at the

end of the experiment), the sex of the individual was

included as a fixed factor. Spearman’s correlation test was

used to measure the degree of association between protein

level and each performance variable: development time,

survival, and weight. All statistical analyses for perfor-

mance variables and FCRwere done with IBM SPSS Statis-

tics v.25 (IBM, Armonk, NY, USA).

We visualized the fatty acid compositions (% fatty

acids) among diets and R. differens fed on these diets with

nonmetric multidimensional scaling (NMDS). For this,

we used Bray Curtis similarity matrix, where samples were

individuals or composite samples of the diet. Fatty acids

with levels of 0.05% and above in a sample were included

in the analysis.

We used the permutational multivariate analysis of vari-

ance (PERMANOVA+routine of Primer-E) (Anderson

et al., 2008) to test the differences in fatty acid composition

among the diet treatments of R. differens (type III sums of

squares and 999 permutations). We also conducted the

PERMDISP routine to find out whether there were differ-

ences in degree of variability among diet treatments.

The RELATE routine was used to test the matching of

the multivariate patterns in the two data sets (insects and

their feed), by calculating Spearman’s rank correlation

between the similarity matrices (Clarke & Gorley, 2006).

For this, we used similarity among centroids of R. differens

individuals and the similarity of feed. The multivariate

analyses were conducted with untransformed values,

which emphasized the most common fatty acids. To

emphasize the rare fatty acids, we repeated themultivariate

analyses using a fourth-root transformation for the fatty

acid composition. The multivariate analyses were
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conducted in PRIMER v.6 (Clarke & Gorley, 2006) and

PERMANOVA+ for PRIMER (Anderson, 2008). Finally,

to test whether there were differences in fatty acid content

(mg FA g�1) of R. differens among diet treatments (i.e.,

TFA, SFA,MUFA, and PUFA content), one way-ANOVA-

models were fitted in IBM SPSS Statistics v.25.

Results

Development time, survival, and weight

Development time, survival, and fresh weight differed

among diet treatments (Table 2). Low protein content

(7–10%) prolonged the development time, whereas a

protein content of 15–22% generally led to shorter

development times. The fastest development was

obtained with barley feed (22% protein content); on

average, R. differens developed from fourth instar into

adulthood in 25 � 3 days (mean � SEM; Figure 1A).

For two low-protein vegetable diets, vegetable 7.2% and

vegetable 10%, the development time was approximately

twice as long: 49 � 5 and 56 � 3 days, respectively.

Additionally, none of the individuals in seven vegetable-

7.2% and three vegetable-10% rearing units reached the

adult stage (units excluded from this model). The devel-

opment time correlated negatively with protein level.

When protein levels increased, the development time

was shorter (Spearman’s rho = �0.74, P = 0.001) but

protein level higher than 17.4% did not shorten the

development time further (Figure 1D).

Overall, the survival of R. differens increased along with

the protein content in the feed (rho = 0.43, P = 0.001),

but protein levels higher than 17.4% did not show any

additional increase in survival (Figure 1E). Survival rates

differed among the diet treatments (Table 2) and out of

the by-product diets, R. differens survived the best on bar-

ley feed and potato protein diets (Figure 1B). Among all

the diet treatments, the highest survival (84.1 � 5.8%)

was observed for the Suomalainen diet with vitamin and

mineral supplement. The lowest survival (35.6 � 8.9%)

was observed in the broad bean and pea diet.

The final fresh weights differed among the diets

(Table 2). The two Suomalainen control diets and the

potato-protein by-product diets resulted in the highest

final weights (Figure 1C). The highest weight

(mean � SEM = 0.507 � 0.042 g) was observed in the

Suomalainen diet with vitamin and mineral supplement.

The lightest individuals were observed in the vegetable

7.2% diet (0.264 � 0.06 g) and the broad bean and pea

diet (0.290 � 0.051 g). The weight correlated with the

protein level of the diet (rho = 0.38, P = 0.001). Weight

increased when the protein level of the diet increased up to

17%, but protein levels higher than that did not increase

the weight (Figure 1F).

In summary, the best overall performance was obtained

with the control diet Suomalainen + vitamins and the by-

product diets containing protein level of 17.4–22.5%.

These diets led to heavier individuals, faster development,

and higher survival rates than low-protein diets. However,

out of the by-product diets, the broad bean and pea diet

led to low survival and low individual weight compared to

other by-product diets with comparable protein level.

Low-protein vegetable diets led to the lowest final weight,

lowest survival, and slowed development.

Feed conversion rate

The FCR differed among the diet treatments (Table 2),

and it correlated negatively with the protein content of the

diet (Spearman’s rho = �0.33, P<0.001; Figure 2). The

feed efficiency improved when the protein level of the diet

increased. The lowest FCR (i.e., the highest efficiency)

was found in the potato-20, 30% diet (mean � SEM =
0.63 � 0.61) and the highest FCR (lowest efficiency) in

the vegetable-10% diet (4.28 � 0.76). The FCR of the

potato-20% diet was only approximately half of the other

potato protein diets.

Fatty acid composition

The most common fatty acids found in R. differens were

palmitic acid (C16:0), stearic acid (C18:0), palmitoleic acid

(C16:1:c9), oleic acid (C18:1:c9), linoleic acid (C18:2n6),

and a-linoleic acid (C18:3n3) (Figure 3). The predomi-

nant fatty acid was oleic acid (C18:1c9), ranging from 32

to 51%.

Table 2 Details of the general linear models for development

time, weight, and feed conversion rate (FCR) and generalized lin-

ear model explaining the survival of Ruspolia differens. For model

of development time, survival, and FCR measured from each

rearing unit, ‘male ratio’ was added as a covariate. For model of

weight, ‘sex’ was added as a fixed factor

F d.f. P Coefficient

Development time

Diet treatment 7.23 15,126.4 <0.001 �4.928

Male ratio 3.995 1,139.95 0.048

Survival

Diet treatment 2.462 15,145 0.003 �0.896

Male ratio 10.207 1,145 0.002

Weight

Diet treatment 2.756 15,28.17 0.01 �0.178

Sex 22.161 1,398.01 <0.001
FCR

Diet treatment 2.625 15,106.99 0.002 0.678

Male ratio 0.029 1,118.11 0.87
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Figure 1 Left: estimatedmarginal means (+ SEM) ofRuspolia differens (A) development time (days) from fourth instar until adult stage,

(B) survival (%), and (C) weight (g)measured 1 week after half of the insects reached adult stage in one rearing unit on the 16 diet

treatments. Right: estimatedmarginal means of (D) development time, (E) survival, and (F) weight against protein level of the diet. The

lines are estimated Loess curves obtained by ‘gam’ function (span = 1) in gam package of R v.3.3.2 (R Core Team, 2014).
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The fatty acid composition of R. differens differed

among diet treatments (un-transformed dataset; pseudo-

F15,60 = 8.164, P<0.001) as illustrated in NMDS ordina-

tion (Figure 4). There was also a difference in the degree

of variability among diet treatments in fatty acid composi-

tion (PERMDISP: F15,60 = 3.995, P = 0.009). The fatty

acid composition similaritymatrix of the diets did not cor-

relate with the fatty acid composition similarity matrix of

R. differens individuals (RELATE analysis; P>0.05)
(Figures 4 and 5).

The NMDS was repeated with the fourth-root-transfor-

mation of fatty acid compositions in order to emphasize

the rare fatty acids (Figure S2), and there was a difference

among the diet treatments (PERMANOVA: P = 0.001).

Furthermore, there was no difference in the degree of vari-

ability among diet treatments (PERMDISP: P>0.05). The
fatty acid composition similarity matrices of diet and

individuals did not correlate (RELATE: P>0.05).

Fatty acid content

The TFA content (mg FA g�1) of insects differed among

diet treatments (F15,60 = 7.472, P<0.001). The highest

TFA content was in the vegetable diets (Figure 6). On the

contrary, the lowest TFA content was in the broad bean

Figure 2 Estimatedmarginal means (+ SEM) ofRuspolia differens (A) feed conversion rate (FCR; i.e., amount feed given/weight gain) on

the 16 diet treatments, and (B) estimatedmarginal means of feed conversion rate shown against protein level of the diet. The line is an

estimated Loess curve obtained by ‘gam’ function (span = 1) in gam package of R v.3.3.2 (R Core Team, 2014).
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and pea diet (Table 3). Also, the contents of SFA

(F15,60 = 3.891), MUFA (F15,60 = 12.947), and PUFA

(F15,60 = 7.469, all P<0.001) differed among the diets.

High PUFA contents were found in barley mash, barley

feed, and broad bean diets (Table 3).

Discussion

This study showed that it is possible to rear R. differens on

various by-product diets and to modify its fatty acid com-

position with the diet. Ruspolia differens accepted many

diets of different nutritional content with varying by-prod-

ucts as themajor protein source.

The development time and final weight of R. differens in

this study were comparable to those found in previous

rearing studies where they were fed with natural grasses

(Rutaro et al., 2018c) or artificial carbohydrate-rich and

protein-rich diets (Lehtovaara et al., 2017). Here, the

development of R. differens from the fourth instar to adult

stage took on average 29–59 days. In previous laboratory

studies, the development from the fifth instar to adulthood

took 17–23 days on diets with a high content of fatty acids,

42 days on carbohydrate-rich diets, and 18 days on pro-

tein-rich diets (Lehtovaara et al., 2017). Overall, the final

weights in our study were similar to those of emerged

adults reared on natural grasses (0.41–0.45 g) (Rutaro

et al., 2018c) and artificial carbohydrate-rich and protein-

rich diets (0.55 and 0.56 g) (Lehtovaara et al., 2017).

Higher weights were reported with diets that had a high

fatty acid content (0.64–0.95 g) (Lehtovaara et al., 2017).

Ruspolia differens rearing experiments with various by-

product diets demonstrated their extensive ability to effi-

ciently utilize by-products in their diets but, as expected,

they also showed performance differences on different

diets (Table S5). The most favorable diet for the growth

and development of R. differens was based on the Suoma-

lainen (1999) recipe. This diet is rich in carbohydrates

(60.4%), with relatively low contents of protein (17.4%)

and fat (4.6%). In this study, it resulted in one of the short-

est development times, highest survival rates, and the high-

est final weights. Many by-product diets, including potato

protein, barley feed, and barley mash, led to high survival

and normal growth and development compared to control

diets. These diets were also rich in carbohydrates (51.2–
66.0%), with varying contents of protein (17.4–30.5%)

and fat (4.0–7.4%). Generally, herbivorous insects require

rather high carbohydrate levels in the diet. For example,

grasshoppers of genus Schistocerca require 20% of sugar in

their diet for normal growth, but insects feeding on seeds
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−2 −1 0 1 2 3 4

−2

−1

0

1

2
N

M
D

S
 A

xi
s 

2

−2 −1 0 1 2 3 4

−2

−1

0

1

2

NMDS Axis 1

N
M

D
S

 A
xi

s 
2

A 2D Stress = 0.07

2D Stress = 0.03B

Figure 4 Nonmetric multidimensional scaling (NMDS)

ordination showing fatty acid composition ofRuspolia differens

individuals that fed 16 experimental diets. The closer the

individuals are in the ordination, themore similar is their fatty

acid composition. (A) All individuals separately, and (B) the

centroids of each diet treatment for clarity.
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and grains require up to 70% carbohydrates (Panizzi &

Parra, 2012). There are also many other factors that deter-

mine normal growth and development in insects, such as

amino acid composition of diet, vitamins and minerals,

sterols, and feeding stimulants and deterrents (Cohen,

2004; Klowden, 2007; Panizzi & Parra, 2012). However,

findings of this study show that many by-product diets are

sufficient for the performance of R. differens with the

exception of low-protein vegetable diets, broad bean, and

pea diets, and reindeer feed that seem to lack one or multi-

ple of these components and are deficient to build a sub-

stantial fat body.

As expected, protein levels were a very important factor

for all measured performance variables, but the effect of

proteins saturated rather low, at approximately 17.4%

protein. The higher protein levels increased weight gain,

survival rate, and shortened development time of R. differ-

ens. Conversely, the low protein diets slowed the develop-

ment, caused lower survival rates, and the insects tended

to be smaller after they reached adult stage. An increase in

protein in the diet favored the weight gain of the grasshop-

per Ageneotettix deorum Scudder (Joern & Behmer, 1997).

In addition, the higher protein level in the diet increased

the protein storage levels of Heliothis virescens Fabricius

(Telang et al., 2002). In this study, the performance of R.

differens increased with diets up to 17.4% protein, but

higher protein levels did not drastically increase the overall

performance. Amino acids are the building blocks of pro-

tein, and high enough protein content enables normal

growth and development. However, in contrast with fats

and carbohydrates that are easily stored, excessively con-

sumed amino acids are generally utilized as metabolic fuel

or excreted (Klowden, 2007). When rearing R. differens, it

is important that the diet fulfils the protein and other

nutritional requirements to ensure good growth and

development but also minimizes the cannibalism that

has been observed for this species (Lehtovaara et al.,
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Figure 6 Mean (+ SEM) total fatty acid content (FA; mg g�1 dry

weight) and dry weight (mg) ofRuspolia differens individuals that

fed 16 experimental diets.

Table 3 Mean fatty acid content (mg g�1 dry weight) and dry weight (mg) of Ruspolia differens individuals reared on 16 diet treatments.

TFA = total fatty acids, SFA = saturated fatty acids, MUFA = monounsaturated fatty acids, PUFA = polyunsaturated fatty acids. n6/n3

describes the omega-6 and omega-3 fatty acid ratio. Five females from each diet were randomly selected for the fatty acid analyses (n),

except for four treatments in which only four females were selected because not enough females survived until adulthood

Treatment Weight TFA SFA MUFA PUFA n6/n3 n

Chicken feed 182.2 321.23 37.0592 47.1032 15.8377 8.07177 5

Suomalainen (1999) 249.2 352.16 39.0251 44.6497 16.3252 17.5152 5

Suomalainen+vit 208.6 287.40 38.1494 44.6857 17.1649 18.5679 5

Reindeer feed 120.88 312.44 41.4273 45.515 13.0577 18.3007 5

Potato-2.5, 17% 240.6 355.36 38.3159 45.4841 16.2 17.4021 5

Potato-5, 17% 208.5 368.06 38.1217 46.0709 15.8074 17.6564 5

Potato-10, 30% 182.175 200.78 36.9693 45.5199 17.5107 26.709 4

Potato-20, 30% 206.975 247.23 40.477 45.2606 14.2624 27.4184 4

Vegetable 7.2% 104.775 452.22 32.5233 52.5293 14.9475 21.6191 4

Vegetable 10% 88.98 382.23 34.9253 47.5546 17.5201 26.7433 5

Barley mash 22.5% 185.9 205.94 36.3026 33.7518 29.9456 21.8974 5

Barley mash 15% 211.98 330.54 37.537 42.2333 20.2297 22.6954 5

Barley feed 22.5% 153.2 199.01 38.3477 34.1652 27.487 21.232 5

Barley feed 15% 125.9 249.75 37.7006 38.2752 24.0241 23.5694 4

Broad bean pea 15% 82.2 111.11 35.0374 34.232 30.7306 39.5604 5

Turnip rape 15% 161.74 271.20 37.5306 42.5496 19.9198 18.1294 5
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2019) and other Tettigoniidae (Hartley, 1967). During

molting, insect individuals are vulnerable to cannibalism

before the exoskeleton hardens (Fox, 1975). This could

explain the low survival rates in low-protein vegetable

diets. Even though cannibalism was not directly

observed, the low-protein vegetable diets could be nutri-

tionally deficient. Starvation and availability of vulnera-

ble individuals have been shown to increase cannibalism

in insects (Fox, 1975).

Of the by-product protein sources, potato, is one of the

diets causing successful growth and development. The

potato glycoalkaloids, present in small amounts, do not

seem to impact growth and development (Table S3). Also,

other diets in our experiment could have contained sec-

ondary plant metabolites which could be deterrent or

harmful for R. differens. For example, the broad bean and

pea diets caused low survival, weight gain, and long devel-

opment times. The diet might be unappealing for the

insects, or it did not stimulate the feeding. Broad beans

naturally contain lectin, which could limit growth of R.

differens or lectin could operate as a feeding-deterrent and

inhibit feeding (Michiels et al., 2010). In relatively large

field studies, R. differens has been found to almost entirely

use grasses and sedges as their host plants (Opoke et al.,

2019). Therefore, the acceptance of Fabaceae (beans and

peas) and Brassicaceae (turnip rape) in this study was an

unexpected finding.

The nutritional content of the diet impacted the FCR of

R. differens. The protein level was negatively associated

with FCR and clearly showed that the insects compensated

for a low protein level diet by adjusting the amount of food

eaten. The FCR values in this study ranged between 0.63

and 4.28 and many high-protein by-product diets caused

rather efficient feed conversion whereas, for the low-pro-

tein diet (vegetable-10%), the feed conversion was less effi-

cient (4.28). Compared to other orthopteran species, the

FCR values for Acheta domesticus L. has been reported to

be 1.3–6.1 on food waste and by-products (Oonincx et al.,

2015; Lundy & Parrella, 2015).

The fatty acid composition and content of R. differens

individuals can be modified by the given by-product diets.

Different by-product diets caused different fatty acid com-

positions and differences in the TFA, SFA, MUFA, and

PUFA content. The predominant fatty acid was oleic acid

(32–51%), the content of which is comparable to that of

wild-harvested individuals (26–44%) (Kinyuru et al.,

2010; Opio, 2015; Fombong et al., 2017). Palmitic acid

(C16:0), oleic acid (C18:1c9), and linoleic acid (C18:2n6)

contributed the most to the differences in the fatty acid

composition. A higher proportion of linoleic acid was

found in individuals feeding on the barley feed and barley

mash diets, which naturally contains linoleic acid

(Table S6). The dietary intake of linoleic acid could

explain the higher proportions of linoleic acid and

increased PUFA content in these treatments. Some insect

species, for example A. domesticus, can synthesize linoleic

acid because it has the necessary D12-desaturase enzyme

for synthesis (Barlow, 1964; Beenakkers et al., 1985; Cripps

et al., 1986; Stanley-Samuelson et al., 1988). Most insects

can synthesize palmitic, stearic, and oleic acids (Barlow,

1964; Stanley-Samuelson et al., 1988; Klowden, 2007) and

depending on life stage, environmental conditions, and

physiological need, insects can modify their fatty acid

composition by synthesizing common saturated and

MUFA from nonlipid precursors, amino acids, carbohy-

drates, or existing fatty acids (Gilbert, 1967; Beenakkers

et al., 1985; Stanley-Samuelson et al., 1988; Klowden,

2007; S€onmez et al., 2016). It seems that R. differens incor-

porates PUFAs (linoleic and alfa-linoleic acids) without

modification into its tissues, which is in line with results

by Lehtovaara et al. (2017). However, it is also able to

modify and synthesize saturated and MUFAs to suit the

physiological needs if the given diet does not meet the

nutritional demand.

The TFA content of R. differens can be modified with

diets with nutritionally different contents. The highest

TFA content was produced by low-protein vegetable diets,

which had high carbohydrate levels. These insects had high

FCR, developed rather slowly, and their adults were small.

When insects are forced to eat high quantities of food in

order to satisfy their need for protein, there is an increase

in the amounts of fatty acids and carbohydrates in the

digested food. However, many insects have limited capac-

ity to store polysaccharides. Thus, the excessively ingested

carbohydrates are converted to fatty acids in the fat body

and stored in the form of triacylglycerols (TGA) (Beenak-

kers et al., 1985; Klowden, 2007; Arresse & Soulages,

2010).

Our results are valuable for designing feed for R. differ-

ens because they promote the re-use of resources and also

enhance the targets of circular economy. For future appli-

cations, we recommend a by-product diet containing 17–
22% of protein to ensure fast growth, high survival rate,

and rather heavy individuals. Potato protein, barley mash,

and barley feed are good by-product candidates for R. dif-

ferens, allowing high body weight, fast development, high

survival, and low FCR compared to control diets. In addi-

tion, the barley feed and barley mash by-product diets

increased the healthy PUFA proportions which are essen-

tial for humans. In future, the feasibility of various East-

African food-industry by-products should be studied as

part of the efforts to develop mass-rearing for R. differens

in the region where it is now widely consumed by humans

and has high economic importance. Furthermore,
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mixtures of by-products should be studied at different

protein levels, as our previous studies have shown that R.

differens significantly benefits from diet mixing (Malinga

et al., 2018b). Finally, it is important to find out how these

diets modify other nutritional components for humans

(e.g., amino acids, vitamins, or minerals) and the sustain-

ability of the by-product diets in multigenerational rear-

ings.
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Table S2.Nutrient content of by-products

Table S3. Mean (n = 4) glycoalkaloid content

(mg kg�1) of Ruspolia differens individuals fed on potato

protein diet treatments

Table S4.Details of the statistical models

Table S5. Estimated marginal mean (� SEM) develop-

ment time from fourth instar to adult stage, survival,

weight, and feed conversion rate (FCR) of Ruspolia differ-

ens on 16 diet treatments

Table S6. Percentage of total fatty acids of diet treat-

ments

Figure S1. Experimental design. We conducted experi-

ments in two time periods (experimental time). In each

period, the experiment was conducted in two thermally

regulated rearing rooms, each comprising five blocks. A

block was a growth chamber, in which the temperature

was microregulated with heat cables. Each block included

one replicate of each diet treatment in separate containers,

each container with a single treatment. The control diet

Suomalainen + vitamins was applied in both experimen-

tal periods. Each container had four Ruspolia differens

individuals.

Figure S2. Non-metric multidimensional scaling

(NMDS) ordination showing fourth root transformed

fatty acid composition of (A) centroids of Ruspolia differ-

ens individuals and (B) diet treatments.
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