

Jukuri, open repository of the Natural Resources Institute Finland (Luke)

This is an electronic reprint of the original article. This reprint *may differ* from the original in pagination and typographic detail.

Author(s):	Matti Koivula, Harri Silvennoinen, Hanna Koivula, Jukka Tikkanen & Liisa Tyrväinen
Title:	Continuous-cover management and attractiveness of managed Scots pine forests
Year:	2020
Version:	Final draft
Copyright:	The author(s) 2020
Rights:	
Rights url:	

Please cite the original version:

Matti Koivula, Harri Silvennoinen, Hanna Koivula, Jukka Tikkanen & Liisa Tyrväinen (2020). Continuous-cover management and attractiveness of managed Scots pine forests. Canadian Journal of Forest Research. https://doi.org/10.1139/cjfr-2019-0431

All material supplied via *Jukuri* is protected by copyright and other intellectual property rights. Duplication or sale, in electronic or print form, of any part of the repository collections is prohibited. Making electronic or print copies of the material is permitted only for your own personal use or for educational purposes. For other purposes, this article may be used in accordance with the publisher's terms. There may be differences between this version and the publisher's version. You are advised to cite the publisher's version.

1	Canadian Journal of Forest Research, Published on the web 16 April 2020
2	https://doi.org/10.1139/cjfr-2019-0431
3	
4	Continuous-cover management and attractiveness of
5	managed Scots pine forests
6	
7	Matti Koivula, Harri Silvennoinen, Hanna Koivula, Jukka Tikkanen & Liisa Tyrväinen
8	
9	Matti Koivula, Harri Silvennoinen and Jukka Tikkanen, School of Forest Sciences, University of Eastern
10	Finland, P.O. Box 111, FI-80101 Joensuu, Finland
11	Hanna Koivula, Finnish Environment Institute, Joensuu Office, P.O. Box 111, FI-80101 Joensuu, Finland
12	Liisa Tyrväinen, Natural Resources Institute Finland (Luke), P.O. Box 2, FI-00791 Helsinki, Finland
13	
14	First authors (Matti Koivula and Harri Silvennoinen) are in alphabetical order
15	
16	Matti Koivula, current address Natural Resources Institute Finland (Luke), P.O. Box 2, FI-00791 Helsinki,
17	Finland

- 18 Corresponding author Matti Koivula, Natural Resources Institute Finland (Luke), P.O. Box 2, FI-00791
- 19 Helsinki, Finland, tel. +358-29-5322251, fax not applicable, e-mail matti.koivula@luke.fi

21

- 23 Abstract
- 24

25 Forest management, characterized in many Northern countries by the predominance of clear cutting 26 and growing even-aged and -sized trees, has simplified the structure of boreal forests. Consequences 27 include alterations in cultural ecosystem services, such as forest attractiveness, i.e., combined aesthetic 28 and recreational values. Continuous-cover forestry might mitigate these effects through the use of 29 selection and gap cutting, but these methods have been little studied, particularly from the 30 attractiveness viewpoint. We used photo surveys to assess Finnish citizens' perceptions of attractiveness 31 of in-stand sceneries of Scots pine (Pinus sylvestris) forests logged using different methods. (1) The 32 attractiveness scores, given by respondents, declined steadily from unharvested forest through 33 continuous-cover methods to seed-tree and clear cutting. (2) Respondents with a negative attitude to 34 forest management gave lower scores than respondents with a positive attitude, but the declining 35 slopes of attractiveness against logging intensity were similar. (3) In unharvested and less intensively 36 managed stands, summer photos received higher scores than corresponding winter photos. (4) 37 Background variables (gender, education, living environment, memberships in recreational or nature 38 NGOs, forestry profession and forest ownership) had negligible effects on the scores. We recommend 39 the use of continuous-cover logging methods in settlement and recreational areas.

41 **Key words:** continuous-cover forestry, gap cutting, selection cutting, aesthetic value, recreational value

42

44 Introduction

45

46 Most North European forests are managed for wood production but increasingly often also for 47 biodiversity and public use. An intensive era of clear-cutting dominance began in the 1950s (Storaunet 48 et al. 2005, Siiskonen 2007). In this regime, mature trees are usually completely removed, followed by 49 regeneration through site preparation, sowing or planting, tending of the emerging cohort of even-aged 50 trees, and often relatively short logging rotation. An underlying rationale of this regime is economy 51 based, especially volume growth and ease of harvesting. Ecological consequences include structural 52 simplification and losses of many features important for biodiversity, such as dead and very old trees 53 (Siitonen 2001, Nilsson et al. 2002, Bergeron 2004). These alterations are the main reasons for hundreds 54 of forest species being subject to the risk of extinction in Fennoscandia alone (Berg et al. 1994, Kålås et 55 al. 2010, ArtDatabanken 2015, Hyvärinen et al. 2019). Negative ecological effects have thus far 56 dominated criticisms on forest management, but also losses of many social values, such as nature 57 tourism, recreational and aesthetic benefits, are increasingly often addressed (Bliss 2000, Gundersen & Frivold 2008, Puettmann et al. 2009). 58

59 Ecological, economic and social sustainability can perhaps be achieved through continuous-cover forest 60 management (e.g., Franklin et al. 1997, Kuuluvainen & Grenfell 2012, Fedrowitz et al. 2014). This regime 61 applies logging methods other than clear cutting and thus varies the amount and spatial distribution of 62 retained trees, and the size of harvested openings. The logging methods include selection cutting, gap 63 cutting and modifications of clear cutting, all characterized by maintaining a significant proportion of 64 trees throughout the logging cycle (e.g., Puettmann et al. 2009, Koivula et al. 2014). Experimental 65 evidence suggests that even modest retention of living trees in harvested blocks is beneficial for 66 biodiversity (Koivula & Vanha-Majamaa 2020). Also, based on landscape preference research, retention

67 methods may be preferred over clear cutting by citizens who use forests for aesthetic pleasure,

68 recreation, hunting or collecting (Ribe 1989 and references therein).

69 Managed forests are commonly expected to support economy and biodiversity, but also social values, 70 such as aesthetic perception, recreation and nature-based tourism (e.g., Tyrväinen et al. 2003, 2014, 71 2017). In Finland, the so-called everyman's rights permit, e.g., hiking, skiing, and picking berries and 72 mushrooms for anyone in nearly any private and public land (Anon. 2019). Finns commonly assess 73 forests based on aesthetics and many other qualities, including easiness of moving (Tyrväinen et al. 74 2017), and spend a lot of time there. About 96% of Finns visit nature regularly, on average 2-3 times per 75 week (Sievänen & Neuvonen 2011). The choice of logging method, therefore, appears important 76 particularly in areas adjacent to settlement or allocated for recreational use. Clear cutting decreases the 77 aesthetic and recreational values of forests (e.g., Karjalainen 2006, Tyrväinen et al. 2017, Arnberger et 78 al. 2018), whereas logging methods with high amount of retained trees – such as selection cutting – are 79 considered socially more acceptable (Ribe 2005, Putz et al. 2008). Citizens prefer forests with diverse 80 tree ages, species and sizes (Silvennoinen et al. 2001, 2002, Tyrväinen et al. 2017) with not too densely 81 spaced trees (Ribe 1989, Silvennoinen 2017). These results may be interpreted so as to contradict the 82 so-called savannah theory that postulates that citizens – independent of their nationality, education, or 83 cultural and social background – prefer savannah-like, semi-open environments that provide both 84 prospects and shelter, possibly due to human evolutionary origin (Appleton 1975, Falk & Balling 2010). 85 However, preference to particular environments may also depend on personal and cultural expectations 86 about resources in them (e.g., Kaplan & Kaplan 1989). In Northern Europe, for instance, boreal forests 87 have been a crucial human source of food, fur, firewood, handcraft material and shelter for thousands 88 of years (Haggrén et al. 2015). Thus, no single environment is likely to represent an optimum for all 89 needs, conditions and times. As Falk and Balling (2010) put it, "human landscape preferences is [sic] best 90 understood as a continuous progression of aesthetic ideals, tempered by social convention, passed on91 from one generation to the next through human culture".

92 Here, we present results of a citizen questionnaire based on photos showing in-stand sceneries of mature pine forests (hereafter "views" for brevity) managed with several logging methods that varied in 93 94 the amount and spatial distribution of retained trees. Respondents rated each view based on how 95 attractive they felt it was. With "attractiveness" we refer to the anticipated fulfilment of positive 96 expectations a person associates with the views. This term thus contains aesthetic and recreational 97 values, which are strongly correlated (Hull et al. 1984, Karjalainen 2006). The basis is on a psycho-98 physical method where the interest is on preferences of respondents (e.g., Zube et al. 1982). The aim is 99 to explain preferences by factors (variables) visible in the photos (e.g., Edwards et al. 2012). We thus 100 attempt to quantify attractiveness while acknowledging that it likely consists of a mixture of 101 psychological and cultural factors (Tress et al. 2001). The studied pine forests are suitable for our 102 assessment as, prior to logging, they were structurally simple, with little undergrowth vegetation or 103 variation in microhabitats and topography. Our study provides new insights into the continuous-cover 104 forest management, and a novel aspect for assessing the respondents' attitudes to forest management 105 in impacting the attractiveness perception.

106 We address the following questions.

Does the attractiveness depend on logging method or logging intensity? Earlier research suggests that
 the attractiveness of pine forest might decline (Hull & Buhyoff 1986) or increase after thinning
 (Silvennoinen et al. 2002), however the savannah theory predicts an intermediate peak of attractiveness
 along the logging-intensity gradient. On the other hand, if environmental preference rather depends on
 personal and cultural expectations related to, for example, resources (e.g., Kaplan & Kaplan 1989), then
 other types of response may be expected.

113	2. Does the respondent's attitude to forest management affect the attractiveness rating? Compared to
114	neutral or positive attitude, negative attitude predicts lower attractiveness scores of views showing
115	logged forest (Kearney & Bradley 2011). We also intuitively predict that respondents with a positive
116	attitude indicate smaller differences between logging treatments than those with a negative attitude.
117	3. Does the season in a photo (summer or winter) affect the attractiveness rating? Recently Tyrväinen et
118	al. (2017) reported that intensively harvested forests look more attractive in winter than in summer
119	photos.
120	4. What is the contribution of the respondents' background in determining the attractiveness rating?
121	Here, we explore the impacts of each respondent's age, gender, education, settlement type,
122	memberships in outdoor and nature NGOs, and possible forestry profession and forest ownership.
123	
124	Materials and methods
125	
126	Logging treatments and photo materials
127	
128	We collected data on Finnish citizens' perceptions of forest attractiveness using photos that represented
128 129	We collected data on Finnish citizens' perceptions of forest attractiveness using photos that represented a variety of logging methods. These were taken in 2017 in rural, mostly state-owned areas, in mature
128 129 130	We collected data on Finnish citizens' perceptions of forest attractiveness using photos that represented a variety of logging methods. These were taken in 2017 in rural, mostly state-owned areas, in mature managed Scots pine (<i>Pinus sylvestris</i>) dominated Vaccinium-type forests (Ahti et al. 1968) in the
128 129 130 131	We collected data on Finnish citizens' perceptions of forest attractiveness using photos that represented a variety of logging methods. These were taken in 2017 in rural, mostly state-owned areas, in mature managed Scots pine (<i>Pinus sylvestris</i>) dominated Vaccinium-type forests (Ahti et al. 1968) in the municipalities of Lieksa, Kontiolahti and Joensuu, Eastern Finland (Supplementary online materials).
128 129 130 131 132	We collected data on Finnish citizens' perceptions of forest attractiveness using photos that represented a variety of logging methods. These were taken in 2017 in rural, mostly state-owned areas, in mature managed Scots pine (<i>Pinus sylvestris</i>) dominated Vaccinium-type forests (Ahti et al. 1968) in the municipalities of Lieksa, Kontiolahti and Joensuu, Eastern Finland (Supplementary online materials). Prior to logging, the dominant canopy trees in these forests were about 70-100 years old pine, with
128 129 130 131 132 133	We collected data on Finnish citizens' perceptions of forest attractiveness using photos that represented a variety of logging methods. These were taken in 2017 in rural, mostly state-owned areas, in mature managed Scots pine (<i>Pinus sylvestris</i>) dominated Vaccinium-type forests (Ahti et al. 1968) in the municipalities of Lieksa, Kontiolahti and Joensuu, Eastern Finland (Supplementary online materials). Prior to logging, the dominant canopy trees in these forests were about 70-100 years old pine, with occasional birch (<i>Betula</i>) or Norway spruce (<i>Picea abies</i>) trees as a mixture. The field and bottom layers

135 nigrum dwarf shrubs, Cladonia lichens and Pleurozium, Dicranum and Hylocomium mosses. Logging 136 operations had been done 2009-11 using a variety of methods of increasing tree-removal intensity. We 137 compared mature reference forest (Reference) with (1) selectively cut forest with about 60-70% 138 retention of initial tree volume (Selection); (2) gap cutting with multiple openings of r = 15-20 m and 139 20% of initial tree volume retained in the openings (Gap 20); (3) gap cutting with multiple openings of r 140 = 15-20 m and 5% retained in the openings (Gap 5); (4) partially clear-cut (patch-cut) forest with multiple 141 openings of r = 25-30 m and 20% retained in the openings (Patch 20); (5) partially clear-cut forest with 142 multiple openings of r = 25-30 m, and 5% retained in the openings (Patch 5); (6) clear-cut forest with 143 20% retention (Clear 20%); (7) seed-tree cut forest with 10-15% of trees retained evenly (Seed); (8) 144 clear-cut forest with 5% retention (Clear 5%); and (9) ordinary clear-cut forest with up to 3% retention as 145 required by the Programme for the Endorsement of Forest Certification (Clear 3%). We refer to the 146 Reference forests and the nine logging methods as "treatment" below. See Fig. 1 for examples and 147 Supplementary materials for all treatments. Logging residue decreases the attractiveness of forest 148 sceneries (Ribe 1989, Silvennoinen et al. 2002, Gundersen & Frivold 2008), which was not an issue in our 149 study as residue and slash had been removed shortly after logging because treatments 1-6 and 8 were in 150 recreational forests (where clear cutting is avoided), or residue had decayed well and vegetation already 151 covered the bottom and field layers, before taking the photos. Moreover, no heavy site preparation had 152 been applied.

We used panoramic photos that had a 5 x 14 aspect ratio, each created by combining five vertical images. The initial images had been taken in late winter (winter views) and mid-summer (summer views) using a full-frame digital SLR camera with a 50 mm lens. Images taken with such lens are consistent with relative distances between objects as seen by naked eye, and combinations of such images capture variation in horizontal and vertical directions better than single photos. All images had been taken in sunny weather between 10 AM and 2 PM to standardize lighting conditions. Each treatment was 159 represented by at least two image pairs (winter and summer), except Gap 20% for which only one site 160 and thus one summer-winter pair was available (Supplementary online materials). We had initially 194 161 photos from which we selected 48 (24 views in both summer and winter conditions) as being as 162 representative for the treatments as possible, based on our experience of about 40 years and expert 163 assistance (see Acknowledgements). 164 165 Questionnaire form 166 167 We made a questionnaire by using the 48 panoramic photos showing the treatments in summer and 168 winter conditions (Supplementary online materials). We requested each respondent to "indicate your 169 personal opinion about each view in the photos below, according to how well they correspond to your 170 wishes and expectations regarding forests (recreational use, nature related hobbies, scenic values, etc.)", 171 using a ten-step scale, from 0 = does not correspond to wishes and expectations at all to 10 = 172 corresponds perfectly. The photos were randomly ordered to account for the effects of respondents 173 getting tired toward the end of the questionnaire or detecting study-related patterns in the photos. The 174 respondents were not informed about the study purpose or the logging treatments in the photos. 175 However, they were told that all photos showed managed pine forests. We refer to the given integer 176 scores (0-10) as attractiveness. This scale is a modification of the Likert scale (e.g., Joshi et al. 2015), 177 which produces sufficiently detailed information for analysis (e.g., Tyrväinen et al. 2017). – The 178 respondents were not requested to justify the evaluations, and their identities remained unknown to us. 179 In addition to the 48 photos, the questionnaire also contained sections for background information 180 (Table 1). The most important piece of information from our study perspective was the attitude to forest 181 management, in which each respondent was asked "Your attitude toward forest management

182 (regeneration cutting, thinning operations) at commercial forest land (where logging is commonly 183 applied)", from -2 (clearly negative) and 0 (neutral) to +2 (clearly positive). We pooled the initial 184 negative categories (-2 and -1) to "negative" and positive categories (+1 and +2) to "positive" because of 185 small numbers of the extremes (-2 and +2). Additional, requested information (Table 1) contained the respondent's gender (none indicated "other, or do not want to say" so this was a binary male/female), 186 187 age class, education, type of settlement, county of residence, and whether the respondent considers 188 themselves a forestry professional, owns forest or someone in their household is a forest owner, and 189 whether the respondent is a member of an outdoor or recreation NGO, or nature or conservation NGO.

190

191 Random and Online surveys

192

193 We targeted the study to 15-75 years-old Finnish citizens. We collected data using two surveys. The first 194 is referred to as Random survey below. Here, we obtained a random sample of 1,500 Finns from the 195 population information database of the Finnish Population Registry Center. We mailed a paper copy of 196 the questionnaire to the 1,500 potential respondents in early 2018, with options to return a paper copy 197 or to fill the same questionnaire in the internet. We received initially 396 responses, of which 93% were 198 paper copies (response rate 26%). The second is referred to as Online survey below. This was identical to 199 the Random survey and was done using the SurveyMonkey software (www.surveymonkey.com). We 200 distributed the Online survey in the spring of 2018 via Facebook, Twitter and mailing lists of selected 201 national institutions. For this purpose, we contacted Suomen Latu - The Outdoor Association of Finland, 202 Central Federation of Agricultural and Forestry Producers (MTK), The Finnish Association for Nature 203 Conservation (Suomen Luonnonsuojeluliitto), BirdLife Finland, The Martha Organization (Martat), 204 Metsähallitus, and two research organizations (Natural Resources Institute Finland and Finnish

205	Environment Institute). Initially, 1,579 persons responded to the Online survey. This approach is likely to
206	produce a biased sample of the Finnish population; however, we were interested in the similarity of
207	attractiveness opinions between different kinds of respondents and not the overall population.
208	In terms of representativeness, the Random survey matched the Finnish demographic data rather well
209	(Table 1), except in that 51-65 years-old respondents were overrepresented (chi-square statistic 5.37, df
210	= 1, p < 0.05). Moreover, as anticipated, the Online survey departed more from the demographic data:
211	the two younger age classes were over- and the two older age classes were underrepresented, and
212	people with an academic degree were overrepresented (chi-square statistics 4.25-59.12, df = 1, p <
213	0.05). Both approaches matched the demographic data in gender, settlement type and area of residence
214	(chi-square statistics <3.80, df = 1, $p > 0.05$).
215	
215 216	Data analysis
215 216 217	Data analysis
215 216 217 218	Data analysis We included a total of 1,491 respondents who had given full background information (Table 1; 350 from
215 216 217 218 219	Data analysis We included a total of 1,491 respondents who had given full background information (Table 1; 350 from Random and 1,141 from Online survey). The (1,491 respondents x 48 photos) scores were the response
215 216 217 218 219 220	Data analysis We included a total of 1,491 respondents who had given full background information (Table 1; 350 from Random and 1,141 from Online survey). The (1,491 respondents x 48 photos) scores were the response variable in analysis.
215 216 217 218 219 220 221	Data analysis We included a total of 1,491 respondents who had given full background information (Table 1; 350 from Random and 1,141 from Online survey). The (1,491 respondents x 48 photos) scores were the response variable in analysis. We were particularly interested in three explanatory variables (see the study questions in Introduction):
215 216 217 218 219 220 221 222	Data analysis We included a total of 1,491 respondents who had given full background information (Table 1; 350 from Random and 1,141 from Online survey). The (1,491 respondents x 48 photos) scores were the response variable in analysis. We were particularly interested in three explanatory variables (see the study questions in Introduction): (1) logging method or logging intensity (the treatments sorted according to increasing intensity of tree

a given photo had been taken (summer or winter). We refer to these as Treatment, Attitude and Season

225 unless specified otherwise. We use Treatment as a categorical or a continuous variable, depending on

analysis (see below).

227 We subjected the scores to a Generalized Linear Mixed-effects Model (GLMM; Zuur et al. 2009) by 228 applying the quasi-binomial family with logit link function. As the scores ranged from 0 to 10, we 229 converted them to proportions (0.0-1.0) prior to analysis. We used two models: (1) Treatment as a 230 categorical variable, and (2) Treatment as a continuous integer variable (the treatments ranked 231 according to logging intensity) combined with interaction terms Attitude x Treatment and Season x 232 Treatment. We did not include interaction terms into Model 1 to avoid complex interpretations; for 233 example, Attitude x Treatment alone would have produced 18 test statistics. To further examine 234 interactions in Model 2, we calculated regression coefficients separately for the three attitude 235 categories and for the two seasons by plotting raw data and fitting a regression slope against Treatment. 236 In both models, we included respondent ID (the 1,491 respondents) as a random variable to account 237 for the inter-dependence of scores given by each respondent.

We were also interested in the respondents' background in potentially impacting the scores. Therefore, we included nine additional variables into Models 1 and 2 (Table 1): each respondent's (1) gender, (2) age class (random), (3) education, (4) settlement type (rural area or small town, or large town), and (5) area of residence (18 counties, random; in Table 1 these are combined into four region classes due to limitations in available demographic data); and whether the respondent (6) considers themselves a forestry professional, (7) is a forest owner or their household includes a forest owner, (8) is a member of an outdoor or recreational NGO, and (9) is a member of a nature or conservation NGO.

We ran the analyses using R 3.6.1 software (R Core Team 2019) with Ime4 1.1-21 (Bates et al. 2015),
ImerTest 3.1-0 (Kuznetsova et al. 2017), MASS (Ripley et al. 2019), car 3.0-3 (Fox & Weisberg 2011) and
ggplot2 3.2.0 (Wickham 2009) packages.

248

249 Results

251 Effects of logging methods or logging intensity on attractiveness scores

252

253 Statistics for the main effects in Models 1-2 were broadly similar, and an earlier run based on Gaussian 254 family produced nearly identical results (not shown), which reflect the robustness of our results. Both 255 models indicated a highly significant and negative effect of logging on the attractiveness scores (Table 256 2a-b). Generally, the more intensive the method, the lower the attractiveness of a forest view (Fig. 2). 257 258 Effects of forest-management attitude on attractiveness scores 259 260 Models 1 and 2 both detected a significant effect of Attitude on the attractiveness scores (Table 2a-b, 261 Fig. 2). Generally, irrespective of logging treatment, respondents with a positive attitude ranked the 262 views higher, and respondents with a negative attitude ranked the views lower, than neutral 263 respondents (Fig. 2). On average, the scores of respondents with negative Attitude were 0.8-0.9 units 264 lower, and those of respondents with positive Attitude were 0.6-0.7 units higher, than the scores of 265 respondents with neutral Attitude (Table 2). Model 2 detected a significant interaction between 266 Treatment and Attitude, indicating different slopes between Attitude categories against logging intensity 267 (Table 2b). A comparison of regression slopes revealed that the declining slope by neutral respondents 268 was slightly steeper than those of positive or negative respondents, which were similar (Fig. 3). 269

270 Effects of season on attractiveness scores

272	As predicted, Models 1 and 2 both suggested that summer views received on average 0.2 units higher
273	scores than winter views (Table 2). However, according to Model 2, Season interacted with Treatment
274	(Table 2b). Regression slopes revealed that the views differed more in summer than in winter photos, as
275	reflected by a steeper slope in the former (Fig. 3). Concretely, the more intensively managed forests,
276	such as clear-cuts, appeared more attractive in winter than in summer photos, whereas the
277	attractiveness was the other way around in the reference and less intensively managed forests.
278	
279	Exploration of the effects of the respondents' background
280	
281	Assessments of the respondents' background in Models 1 and 2 revealed that all of the background
282	variables, except gender, had significant effects on the scores (Table 2a-b). On average, scores were
283	about 2.1 units lower in the Online than in the Random survey. Scores given by nature/conservation
284	NGO members were about 2.0 units lower, and those given by outdoor/recreation NGO members were
285	0.2 units higher, than those given by non-members. Also settlement type, education, forest profession
286	and forest ownership each had significant effects. On average, respondents from rural areas and small
287	towns gave 0.4 units higher scores than respondents from large cities, academic respondents gave 1.1
288	units lower scores than non-academics, and forest professionals and forest owners gave respectively 0.6
289	and 0.7 units higher scores than the other respondents.
290	We also ran an exploratory model that included interactions between Treatment and all exploratory
291	variables to check for possibly inconsistent treatment responses between variable categories (Model 3;
292	Table 2c). Generally, these effects were often significant but small, as the category-specific Treatment

293	slopes varied between -0.33 and -0.39 (except for forest professionals; see below). The Treatment slope
294	was slightly steeper for respondents of Random than Online survey, females than males, nature NGO
295	members than non-members, academics than non-academics, and rural-area and small-town
296	respondents than city respondents. The slopes were similar between forest owners and non-owners and
297	between outdoor NGO members and non-members. A particularly large difference was between forest
298	professionals and non-professionals (-0.29 and -0.37, respectively). Moreover, the overall Treatment
299	slope was slightly steeper in Model 3 than in Model 2 (Table 2b-c), and the main effect of education was
300	non-significant in Model 3, underlining the importance of the interaction between Treatment and
301	education.
302	
202	Discussion
303	
304	
305	We assessed the attractiveness of forest views within mature, managed pine forest stands based on
306	photo questionnaires distributed among Finns. Our main findings were as follows: (1) forest-view
307	attractiveness declined steadily with intensification of logging; (2) the steepness of this decline was little
308	affected by the respondents' attitude to forest management, but the attitude determined the range of
309	attractiveness scores; (3) summer photos were generally ranked higher than winter photos, except in
310	the most intensive logging treatments; and (4) explorations of background variables – respondent age,
311	settlement type, memberships in nature or outdoor NGOs, education, forest profession or ownership –
312	suggested small yet often significant effects on attractiveness perceptions.
313	

314 Logging decreased the attractiveness of pine forests

316 Our models suggest that increasing clearing size and decreasing amount of retained trees – as 317 surrogates of increasing logging intensity – decrease the attractiveness of pine forests, supporting 318 earlier research (Ribe 1989, Tyrväinen et al. 2017). Reference mature managed forest was considered 319 the most attractive, whereas selection-cut, gap-cut and patch-cut forests were less attractive, though 320 still considerably more attractive than seed-tree or clear-cut forests. This general result suggests that 321 continuous-cover forest management, or methods of uneven-aged management, better maintain the 322 attractiveness than seed-tree or clear cutting. This finding supports Hull and Buhyoff (1986) and O'Brien 323 (2006) and contradicts the savannah theory that would have predicted an intermediate logging-intensity 324 peak. However, other types of forest, such as the darker Norway spruce, might produce such peak 325 within the studied logging gradient. Another noteworthy aspect is that gap or patch cuts would perhaps 326 have appeared more attractive had the whole stands, and not just views showing clearings, been 327 considered. Thus, most of these stands had been left unharvested, but unlogged fractions were only 328 partly visible in the images. Also the relative merits of aggregated versus dispersed retention cannot be 329 assessed with present data. These aspects, along with other elements characteristic of pristine forests, 330 warrant research in the future.

331 Differences in attractiveness scores may not allow a straightforward interpretation about the relative 332 differences between logging treatments, or whether there was a threshold level below which the 333 respondent felt that they did not want to visit the forest in the photo. However, a drop from about 5.7 334 (reference and selectively cut forests) to 2.4 (clear-cut forests) strongly suggests that the attractiveness 335 of these forests differs considerably. Thus, wherever attractiveness should be accounted for – private 336 forest owners who value aesthetics or recreation, or peri-urban forests as well as areas allocated for 337 recreation or nature tourism – forests should be managed with methods that retain a substantial 338 amount of trees, such as selection or gap cutting.

340 Respondent attitude impacted the attractiveness scores, but not the rank order of treatments

341

342 We found that respondents with neutral forest-management attitude identified a wider range of 343 attractiveness scores across management intensities than the other respondents, as suggested by the 344 slightly steeper regression slope between scores and logging intensity. Within any given treatment the 345 respondents with a negative attitude (466 respondents) gave lower scores than those with a neutral or 346 positive attitude (571 and 454 respondents, respectively), supporting Kearney and Bradley (2011). 347 Contrary to our expectations, the slopes were similar between respondents with negative and positive 348 attitudes. This similarity may have occurred because the respondents knew that all photos showed 349 managed forest. This fact, along with the respondents' own observations concerning the photos, may 350 have prevented many negative respondents from giving top scores to any of the photos. Indeed, as 351 indicated in occasional written comments, many would have preferred near-natural, structurally more 352 diverse forests. 353 The attitude patterns may be linked with personal values, such as appreciation of biodiversity, or 354 education (McFarlane et al. 2006, Tyrväinen et al. 2014, Thorn et al. 2019). Among respondents with a 355 membership in nature or conservation NGO, 49% (333 out of 681) had a negative and 20% (134) had a 356 positive attitude to forest management. Respective percentages among non-members were 15 (122 out 357 of 810) and 52 (422). Hence, these respondent groups appeared predictable on average but 358 heterogeneous overall. Likewise, 40% of respondents with an academic degree indicated a negative 359 attitude to forest management; 76% of these respondents were members of nature or conservation 360 NGO. Earlier studies have shown that nature- or conservation-oriented and higher educated people 361 experience forest management more often negatively and appreciate more natural state of forests than

362	the average respondent (e.g., Dearden 1984, Kardell 1990, McFarlane et al. 2006, Buijs et al. 2009).
363	Knowledge about natural processes and an understanding of their spatio-temporal dimensions affect
364	the nature experience (e.g., Carlson 1995, Rolston 1998).

366 Season impacted the attractiveness scores

367

368 We detected a wider range of attractiveness scores for the summer than for the winter views, as 369 indicated by the steeper regression slope (Fig. 3), and summer views were also generally considered 370 more attractive, except in the most intensive treatments. Season had a particularly strong effect on the 371 attractiveness of the less-intensively managed forests (selection and gap cutting) that thus 372 corresponded better the wishes and expectations of respondents. Similarly, in a survey of tourists 373 arriving in Finland, snow cover had a positive effect on the attractiveness of open and semi-open 374 forests, as snow cover mitigates the effects of forestry operations (Tyrväinen et al. 2017). Another 375 explanation is that in winter season, distinguishing clear cuts from other open environments, such as 376 farmland, peatland or even ponds and lakes, is more difficult. Snow also efficiently covers logging 377 residue, although this was not an issue in our study (see Material and methods). 378 Experience on conditions shown in photos is not solely a result from physiological characteristics of the 379 location, but also by culture and experience (Berleant 1992). Most Finns have experience-based 380 knowledge about the seasonal variation in the looks of managed forests of different successional 381 phases. Such knowledge may be lacking from non-Finns, such as tourists arriving from remote countries. 382 However, a recent study suggests that assessments of Finnish summer and winter forest sceneries done 383 by Finns and international tourists are rather similar (Tyrväinen et al. 2017).

385 Respondent background had generally negligible effects on attractiveness scores

386

387 As we have shown here, evaluations of forest sceneries are not solely based on external features of the 388 environment, but also on the values, knowledge and experiences of the observer (e.g., Carlson 1993, 389 Hepburn 1996). Although our study design was intended for only evaluating management methods and 390 forest-management attitude, the additional variables (Table 1) also often had detectable effects on 391 attractiveness scores. These probably resulted from the relatively large sample size (number of 392 respondents x number of photos) which helped to reveal effects that contributed very little to the 393 explained variation in our data. Still, these effects may not have been accidental, as another model with 394 a random variable (random numbers 0-100) had no effect (analysis not shown). In line with our results, 395 respondent age, biological knowledge, education, dependence on forests and stakeholder group had 396 minor effects on citizen attitudes to salvage logging of bark-beetle infested forests (Thorn et al. 2019). 397 Due to biases in our data concerning age classes, education and NGO memberships, further research 398 would be needed to assess the importance of these factors. For example, increasing levels of education 399 and biological knowledge, and pro-environmental world views, may predict positive attitudes to natural 400 patterns and processes (McFarlane et al. 2006). Importantly, however, the background variables did not 401 affect the modeling outcome regarding our main variables (logging method, attitude and season). 402 The respondents' gender had no detectable effect on attractiveness scoring. The response similarities 403 between genders may seem contradictory to social media or political speech that sometimes assumes 404 females to be more emotionally driven than males. According to our results, apparently at least impacts 405 of forest management, and regeneration cutting in particular, are experienced in similar ways. Of

406 course, our female or male respondents may not represent all respective people in Finland, let alone

407 other geographic regions, but this possibility concerns all social studies. Moreover, membership in 408 nature and conservation NGOs, or academic education, predicted lower and membership in outdoor or 409 recreation NGOs predicted higher attractiveness scores, which may have resulted from the respondents' 410 general ability to quickly see that all photos had been taken in managed forests. Thus, an inclusion of 411 very old or pristine forests might have produced different results. However, this inclusion would have 412 been technically challenging, as structural features vary considerably more in pristine than in ordinary 413 managed forests, including tree sizes and densities, weakened and dead trees, and so on (e.g., Esseen et 414 al. 1997).

415

416 Caveats, and conclusions

417

418 Our results are limited to managed pine forests, and our assessments concerned only the size and level 419 of retention in clearings, and not, for example, citizen opinions about pristine forests or uneven-aged 420 management. The reason for the latter is that logging operations had been done once in even-aged 421 mature forest, whereas uneven-aged management would require applying partial harvesting repeatedly 422 for decades. From a research perspective our forests nevertheless had the advantage of being 423 structurally simple; they mostly only varied in clearing size and retention level and not in, for instance, 424 topography, water beds, tree species, size or density, microhabitat types, or quality and amount of dead 425 trees. Distinguishing such factors would be important but require different research set-ups. 426 A possible source of error in our questionnaire was to request the respondents to simultaneously assess 427 two different things: wishes and expectations. We believe, however, that most respondents managed to 428 consider these together while filling the questionnaire. Another important note is that we used photos

showing within-stand views, whereas landscape views (Arnberger et al. 2018), in situ assessments, or
other forest types might produce different results.

431	Our results suggest that low-intensity forest management should be applied particularly in areas
432	intended for recreation or tourism, or in forests within settlement areas, if the goal is to maintain
433	qualities associated with attractiveness. Such approach may also have biodiversity benefits: if more than
434	half of the trees from the initial volume are retained, late-successional species assemblages may be
435	maintained (e.g., Atlegrim & Sjöberg 1996, Koivula 2002, Matveinen-Huju & Koivula 2008, Work et al.
436	2010, Vanha-Majamaa et al. 2017, Hjältén et al. 2017, Joelsson et al. 2017, 2018). Another important
437	message is that it seems possible to combine economically viable forest management and
438	attractiveness, assuming that the opinions of recreational users, forest owners and local inhabitants are
439	acknowledged (see also McFarlane et al. 2012, 2015). Concretely, this would mean larger-scale use of
440	methods of continuous-cover forest management, such as selection or gap cutting.

441

442 Acknowledgements

443

This research was funded by the Kone Foundation (grant 088535). Metsähallitus (Finnish forest and park services) had done most of the photographed logging treatments. We thank all voluntary people who took part in the Random or Online survey. Dr. Osmo Heikkala (University of Eastern Finland) assisted in the selection of survey photos. Two anonymous reviewers provided constructive comments to earlier drafts of this manuscript.

449

450 **References**

Λ	5	1
-	J	-

- 452 Ahti, T., Hämet-Ahti, L. and Jalas, J. 1968. Vegetation zones and their sections in northwestern Europe.
- 453 Annales Botanici Fennici **5**(3): 169-211.
- 454 Anonymous 2019. Everyman's right in Finland. Ministry of Environment. https://www.ym.fi/en-
- 455 US/Latest_News/Publications/Everymans_right_in_Finland(4484)
- 456 Arnberger, A., Ebenberger, M., Schneider, I.E., Cottrell, S., Schlueter, A.C., von Ruschkowski, E., Venette,
- 457 R.C., Snyder, S.A. and Gobster, P.H. 2018. Visitor preferences for visual changes in bark beetle-impacted
- 458 forest recreation settings in the United States and Germany. Environmental Management **61**: 209-223.
- 459 ArtDatabanken 2015. Rödlistade arter i Sverige 2015. ArtDatabanken SLU, Uppsala. 211 p. (In Swedish
 460 with English summary)
- 461 Appleton, J. 1975. The experience of landscape. John Wiley, New York. 293 p.
- 462 Atlegrim, O. and Sjöberg, K. 1996. Effects of clear-cutting and single-tree selection harvests on
- 463 herbivorous insect larvae feeding on bilberry (Vaccinium myrtillus) in uneven-aged boreal Picea abies
- 464 forests. Forest Ecology and Management **87**(1-3): 139-148.
- Bates, D., Mächler, M., Bolker, B.M. and Walker, S.C. 2015. Fitting Linear Mixed-Effects Models Using
 Ime4. Journal of Statistical Software 67(1): 1-48.
- 467 Berg, A., Ehnström, B., Gustafsson, L., Hallingback, T., Jonsell, M. and Weslien, J. 1994. Threatened plant,
- animal, and fungus species in Swedish forests distribution and habitat associations. Conservation
- 469 Biology **8**(3): 718-731.
- 470 Bergeron, Y. 2004. Is regulated even-aged management the right strategy for the Canadian boreal
- 471 forest? Forestry Chronicle **80**(4): 458-462.

- 472 Berleant, A. 1992. The aesthetics of environment. Temple University Press, Philadelphia. 218 p.
- 473 Bliss, J.C. 2000. Public perceptions of clearcutting. Journal of Forestry **98**(12): 4-9.
- 474 Buijs, A., Elands, B. and Langers, F. 2009. No wilderness for immigrants: cultural differences in images of
- 475 nature and landscape preferences. Landscape and Urban Planning **91**(3): 113-123.
- 476 Carlson, A. 1993. Appreciating art and appreciating nature. *In* Landscape, Natural, Beauty and the Arts.
- 477 Edited by S. Kemal and I. Gaskell. Cambridge University Press, Cambridge. pp. 199-227.
- 478 Carlson, A. 1995. Nature, aesthetics appreciation and knowledge. Journal of Aesthetics and Art Criticism
 479 53(4): 393-400.
- 480 Dearden, P. 1984. Factors influencing landscape preferences: an empirical investigation. Landscape and
 481 Urban Planning **11**(4): 293-306.
- 482 Edwards, D., Jay, M., Jensen, F., Lucas, B., Marzano, M., Montagne, C., Peace, A. and Weiss, G. 2012.
- 483 Public preferences for structural attributes of forests: towards a Pan-European perspective. Forest Policy
 484 and Economics 19: 12-19.
- 485 Esseen, P.-A., Ehnström, B., Ericson, L. and Sjöberg, K. 1997. Boreal forests. Ecological Bulletins 46: 16486 47.
- Falk, J.H. and Balling, J.D. 2010. Evolutionary influence on human landscape preference. Environment
 and Behavior 42(4): 479-493.
- 489 Fedrowitz, K., Koricheva, J., Baker, S.C., Lindenmayer, D.B., Palik, B., Rosenvald, R., Beese, W., Franklin,
- 490 J.F., Kouki, J., Macdonald, E., Messier, C., Sverdrup-Thygeson, A. and Gustafsson, L. 2014. Can retention
- 491 forestry help conserve biodiversity? A meta-analysis. Journal of Applied Ecology **51**: 1669-1679.

492 Fox, J. and Weisberg, S. 2011. An R Companion to Applied Regression, Second Edition. Thousand Oaks,

493 California. URL http://socserv.socsci.mcmaster.ca/jfox/Books/Companion

494 Franklin, J.F. Berg, D.R., Thornburgh, D.A. and Tappeiner, J.C. 1997. Alternative silvicultural approaches

495 to timber harvesting: variable retention harvest systems. *In* Creating a Forestry for the 21st Century: The

496 Science of Ecosystem Management. *Edited by* K.A. Kohn and J.F. Franklin. Island Press, Washington, D.C.

497 pp. 111-139.

498 Gundersen, V. and Frivold, L. 2008. Public preferences for forest structures: A review of quantitative

499 surveys from Finland, Norway and Sweden. Urban Forestry and Urban Greening **7**(4): 241-258.

Haggrén, G., Halinen, P., Lavento, M., Raninen, S. and Wessman, A. 2015. Muinaisuutemme jäljet:

501 Suomen esi- ja varhaishistoria kivikaudelta keskiajalle. Gaudeamus, Helsinki. 619 p. (In Finnish)

502 Halaj, J., Halpern, C.B. and Yi, H. 2008. Responses of litter-dwelling spiders and carabid beetles to varying

levels and patterns of green-tree retention. Forest Ecology and Management 255(3-4): 887-900.

Hepburn, R. 1996. Landscape and the metaphysical imagination. Environmental Values 5(3): 191-204.

505 Hjältén, J., Joelsson, K., Gibb, H., Work, T., Löfroth, T. and Roberge, J.-M. 2017. Biodiversity benefits for

saproxylic beetles with uneven-aged silviculture. Forest Ecology and Management **402**: 37-50.

507 Hull, R.B., Buhyoff, G.J. and Daniel, T.C. 1984. Measurement of scenic beauty: the law of comparative

judgment and scenic beauty estimation procedures. Forest Science **30**(4): 1084-1096.

509 Hull, R.B. and Buhyoff, G.J. 1986. The scenic beauty temporal distribution method: an attempt to make

510 scenic beauty assessments compatible with forest planning efforts. Forest Science **32**(2): 271-286.

511 Hyvärinen, E., Juslén, A., Kemppainen, E., Uddström, A. and Liukko, U.-M. (Editors) 2019. The 2019 Red

List of Finnish species. Ministry of Environment and Finnish Environment Institute, Helsinki. 708 p.

- Joelsson, K., Hjältén, J., Work, T., Gibb, H., Roberge, J.-M. and Löfroth, T. 2017. Uneven-aged silviculture
 can reduce negative effects of forest management on beetles. Forest Ecology and Management **391**:
 436-445.
- 516 Joelsson, K., Hjältén, J. and Work, T. 2018. Uneven-aged silviculture can enhance within stand
- 517 heterogeneity and beetle diversity. Journal of Environmental Management **205**: 1-8.
- Joshi, A., Kale, S., Chandel, S. and Pal, D.K. 2015. Likert scale: explored and explained. British Journal of
- 519 Applied Science & Technology **7**(4): 396-403.
- 520 Kålås, J.A., Viken, Å., Henriksen, S. and Skjelseth, S. (Editors) 2010. Norsk rødliste for arter 2010.
- 521 Artsdatabanken, Norge. 480 p. (In Norwegian with English summary)
- 522 Kaplan, R. and Kaplan, S. 1989. The experience of nature: a psychological perspective. Cambridge
- 523 University Press, New York. 352 p.
- 524 Kardell, L. 1990. Talltorpsmon i Åtvidaberg. Förändringar i upplevelsen av skogen mellan 1978 och 1989.
- 525 Sveriges Lantbruksuniversitet, Rapport 46. 103 p. (In Swedish)
- 526 Karjalainen, E. 2006. The visual preferences for forest regeneration and field afforestation four case
- 527 studies in Finland. Dissertationes Forestales 31. 111 p.
- 528 Kearney, A. and Bradley, G. 2011. The Effects of viewer attributes on preference for forest scenes:
- 529 Contributions of attitudes, knowledge, demographic factors, and stakeholder group membership.
- 530 Environment and Behavior **43**(2): 147-181.
- 531 Koivula, M. 2002. Alternative harvesting methods and boreal carabid beetles (Coleoptera, Carabidae).
- 532 Forest Ecology and Management **167**(1-3): 103-121.

- 533 Koivula, M. and Vanha-Majamaa, I. 2020. Experimental evidence on biodiversity impacts of variable
- retention forestry, prescribed burning, and deadwood manipulation in Fennoscandia. Ecological
- 535 Processes **9**: 11. https://doi.org/10.1186/s13717-019-0209-1
- 536 Koivula, M., Kuuluvainen, T., Hallman, E., Kouki, J., Siitonen, J. and Valkonen, S. 2014. Forest
- 537 management inspired by natural disturbance dynamics (DISTDYN) a long-term research and
- 538 development project in Finland. Scandinavian Journal of Forest Research **29**(6): 579-592.
- 539 Kuuluvainen, T. and Grenfell, R. 2012. Natural disturbance emulation in boreal forest ecosystem
- 540 management? Theories, strategies, and a comparison with conventional even-aged management.
- 541 Canadian Journal of Forest Research **42**(7): 1185-1203.
- 542 Kuznetsova, A., Brockhoff, P.B. and Christensen, R.H.B. 2017. ImerTest Package: Tests in Linear Mixed
- 543 Effects Models. Journal of Statistical Software **82**(13): 1-26.
- 544 Matveinen-Huju, K. and Koivula, M. 2008. Effects of alternative harvesting methods on boreal forest
- 545 spider assemblages. Canadian Journal of Forest Research **38**(4): 782-794.
- 546 McFarlane, B.L., Stumpf-Allen, R.C.G. and Watson, D.O. 2006. Public perceptions of natural disturbance
- 547 in Canada's national parks: the case of the mountain pine beetle (Dendroctonus ponderosae Hopkins).
- 548 Biological Conservation **130**(3): 340-348.
- 549 McFarlane, B.L., Parkins, J.R. and Watson, D.O.T. 2012. Risk, knowledge, and trust in managing forest
- 550 insect disturbance. Canadian Journal of Forest Research **42**(4): 710–719.
- 551 McFarlane, B., Watson, D. and Parkins, J. 2015. Views of the public and land managers on mountain pine
- 552 beetle activity and management in Western Alberta. Information Report NOR-X-423, Northern Forestry
- 553 Centre, Canadian Forest Service. 60 p.

- 554 Nilsson, S.G., Niklasson, M., Hedin, J., Aronsson, G., Gutowski, J.M., Linder, P., Ljungberg, H., Mikusinski,
- 555 G. and Ranius, T. 2002. Densities of large living and dead trees in old-growth temperate and boreal
- forests. Forest Ecology and Management **161**(1-3): 189-204.
- 557 O'Brien, E.A. 2006. A question of value: what do trees and forests mean to people in Vermont?
- 558 Landscape Research **31**(3): 257-275.
- Puettmann, K.J., Coates, K.D. and Messier, C. 2009. A Critique of Silviculture: Managing for Complexity.
 Island Press, Washington D.C. 189 p.
- 561 Putz, F.E., Sist, P., Fredericksen, T. and Dykstra, D. 2008. Reduced-impact logging: challenges and
- 562 opportunities. Forest Ecology and Management **256**(7): 1427-1433.
- R Core Team 2019. R: a language and environment for statistical computing. Vienna, Austria. URL:
 www.r-project.org
- 565 Ribe, R.G. 1989. The aesthetics of forestry: what has empirical preference research taught us?
- 566 Environmental Management **13**: 55-74.
- 567 Ribe, R.G. 2005. Aesthetic perceptions of green-tree retention harvests in vista views: The interaction of
- 568 cut level, retention pattern and harvest shape. Landscape and Urban Planning **73**(4): 277-293.
- 569 Ripley, B., Venables, B., Bates, D.M., Hornik, K., Gebhardt, A. and Firth, D. 2019. Support functions and
- 570 datasets for Venables and Ripley's MASS. URL http://www.stats.ox.ac.uk/pub/MASS4/
- 571 Rolston, H. 1998. Aesthetic experience in forests. Journal of Aesthetics and Art Criticism 56(2): 157-166.
- 572 Sievänen, T. and Neuvonen, M. (Editors) 2011. Luonnon virkistyskäyttö 2010. Metlan työraportteja 212.
- 573 190 p. (In Finnish)

- 574 Siiskonen, H. 2007. The conflict between traditional and scientific forest management in the 20th
- 575 century Finland. Forest Ecology and Management **249**(1-2): 125-133.
- 576 Siitonen, J. 2001. Forest management, coarse woody debris and saproxylic organisms: Fennoscandian
- 577 boreal forests as an example. Ecological Bulletins **49**: 1-41.
- 578 Silvennoinen, H. 2017. Metsämaiseman kauneus ja metsänhoidon vaikutus koettuun metsämaisemaan.
- 579 Dissertationes Forestales 242. 86 p. (In Finnish)
- 580 Silvennoinen, H., Alho, J., Kolehmainen, O. and Pukkala, T. 2001. Prediction models of landscape
- 581 preferences at forest stand level. Landscape and Urban Planning **56**(1-2): 11-20.
- 582 Silvennoinen, H., Pukkala, T. and Tahvanainen, L. 2002. Effect of cuttings on the scenic beauty of a tree
- 583 stand. Scandinavian Journal of Forest Research **17**(3): 263-273.
- 584 Storaunet, K.O., Rolstad, J., Gjerde, I. and Gundersen, V.S. 2005. Historical logging, productivity, and
- 585 structural characteristics of boreal coniferous forests in Norway. Silva Fennica **39**(3): 429-442.
- 586 Thorn, S., Leverkus, A.B., Thorn, C.J. and Beudert, B. 2019. Education and knowledge determine
- 587 preference for bark beetle control measures in El Salvador. Journal of Environmental Management **232**:
- 588 138-144.
- 589 Tress, B., Tress, G., Decamps, H. and d'Hauteserre, A.M. 2001. Bridging human and natural sciences in
- 590 landscape research. Landscape and Urban Planning **57**(3-4): 137-141.
- 591 Tyrväinen, L., Silvennoinen, H. and Kolehmainen, O. 2003. Ecological and aesthetic values in urban forest
- 592 management. Urban Forestry and Urban Greening **1**(3): 135-149.
- 593 Tyrväinen, L., Kurttila, M., Sievänen, T. and Tuulentie, S. (Editors) 2014. Hyvinvointia metsästä. Suomen
- 594 Kirjallisuuden Seura, Helsinki. 271 p. (In Finnish)

595	Tyrväinen, L., Silvennoinen, H. and Hallikainen, V. 2017. Effect of season and forest management on the
596	visual quality of the nature-based tourism environment: a case from Finnish Lapland. Scandinavian
597	Journal of Forest Research 32 (4): 349-359.

- 598 Vanha-Majamaa, I., Shorohova, E., Kushnevskaya, H. and Jalonen, J. 2017. Resilience of understory
- 599 vegetation after variable retention felling in boreal Norway spruce forests a ten-year perspective.
- 600 Forest Ecology and Management **393**: 12-28.

601 Wickham, H. 2009. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York. URL

602 http://ggplot2.org

603 Work, T.T., Jacobs, J.M., Spence, J.R. and Volney, W.J. 2010. High levels of green-tree retention are

required to preserve ground beetle biodiversity in boreal mixedwood forests. Ecological Applications **20**(3): 741-751.

Zube, E.H., Sell, J.L. and Taylor, J.G. 1982. Landscape perception: research, application and theory.

607 Landscape Planning **9**(1): 1-33.

- 2008 Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A. and Smith, G.M. 2009. Mixed effects models and
- 609 extensions in ecology in R. Springer Science + Business Media, New York. 574 pp.

610

- Table 1. Background information on respondents in random (Random; 350 respondents) and online
- 613 (Online; 1149) surveys, collected in the present study, as compared with demographic data (Demo)

Variable	Category	Random	Online	Demo
Attitude to forestry	Neutral	37.6	30.8	
	Negative	8.0	37.9	
	Positive	54.4	31.3	
Gender	Male	46.4	48.7	48.9
	Female	53.6	51.3	51.1
Age class, years	15–30	12.1	11.1	21.1
	31–50	24.1	40.7	29.5
	51–65	35.1	34.1	23.8
	65+	28.7	14.1	25.5
Education	Elementary school to college	90.1	45.8	90.1
	Academic (university)	19.9	54.2	19.9
Settlement type	Rural or small town (up to 15,000 inhabitants)	29.2	30.3	29.2
	Large town (>15,000 inhabitants)	70.8	70.0	70.8
Area of residence	Metropolitan Finland	25.7	31.0	28.8
	Rest of S Finland	24.1	18.9	21.6
	W Finland	25.2	23.3	25.6
	E or N Finland	25.0	26.9	24.0
Other details	Forestry professional	3.3	12.7	
	Forest owner in household	39.5	43.1	
	Member in outdoor/recreation NGO	8.7	32.4	
	Member in nature/conservation NGO	7.2	57.6	

obtained from the Finnish Population Register Center; values are percent.

615

Table 2. GLMM outputs for attractiveness scores given by respondents to 48 forest-view photos; each

- 618 model contained random and fixed variables.
- 619

a. Model 1 *					
Random effects					
Variable		SD			
Respondent ID		0.81			
County		0.56			
Age class		0.86			
Residuals		0.33			
Fixed effects					
Variable	Category	Estimate	SE	t	р
Intercept		0.92	0.10	9.11	0.000
Attitude	Negative	-0.88	0.09	-9.74	0.000
	Positive	0.69	0.09	8.05	0.000
Treatment	Select	-0.19	0.01	-16.34	0.000
	Gap 20	-0.57	0.02	-34.40	0.000
	Gap 5	-0.62	0.01	-46.63	0.000
	Partial 20	-0.66	0.01	-50.21	0.000
	Partial 5	-0.83	0.01	-62.21	0.000
	Clear 20	-1.17	0.01	-86.40	0.000
	Seed	-1.31	0.01	-96.19	0.000
	Clear 5	-1.65	0.01	-131.89	0.000
	Clear 3	-1.95	0.01	-163.24	0.000
Data set	Online	-0.62	0.10	-6.52	0.000
Gender	Female	0.00	0.07	0.03	0.979
Education	Academic	-0.16	0.07	-2.20	0.028
Settlement	Rural or small town	0.16	0.08	2.05	0.041
Outdoor NGO	Member	0.32	0.08	4.06	0.000
Nature NGO	Member	-0.44	0.08	-5.37	0.000
Forest professional	Yes	0.36	0.12	3.11	0.002
Forest owner	Yes	0.17	0.07	2.35	0.019
Season	Winter	-0.09	0.01	-14.74	0.000
b. Model 2 ⁺					
Random effects					
Variable		SD			
Respondent ID		0.93			
County		0.69			
Age class		0.63			
Residuals		0.33			
Fixed effects					
Variable	Category	Estimate	SE	t	р

Intercept		1.11	0.10	10.99	0.000
Attitude	Negative	-0.77	0.09	-8.39	0.000
	Positive	0.58	0.09	6.63	0.000
Treatment	Continuous	-0.24	0.00	-122.89	0.000
Data set	Online	-0.63	0.10	-6.52	0.000
Gender	Female	0.01	0.07	0.08	0.936
Education	Academic	-0.16	0.07	-2.18	0.030
Settlement	Rural or small town	0.16	0.08	2.03	0.043
Outdoor NGO	Yes	0.32	0.08	4.06	0.000
Nature NGO	Yes	-0.44	0.08	-5.33	0.000
Forest professional	Yes	0.35	0.12	3.04	0.002
Forest owner	Yes	0.17	0.07	2.29	0.022
Season	Winter	-0.39	0.01	-35.89	0.000
Treatment x Attitude	Negative	-0.03	0.00	-12.33	0.000
	Positive	0.02	0.00	10.21	0.000
Treatment x Season	Winter	0.06	0.00	33.43	0.000
c. Model 3 ‡					
Random effects					
Variable		SD			
Respondent ID		0.92			
County		0.59			
Age class		0.73			
Residuals		0.33			
Fixed effects					
Variable	Category	Estimate	SE	t	p
Intercept		1.21	0.10	12.01	0.000
Attitude	Negative	-0.74	0.09	-8.10	0.000
	Positive	0.57	0.09	6.54	0.000
Treatment	Continuous	-0.26	0.00	-87.84	0.000
Data set	Online	-0.87	0.10	-9.03	0.000
Gender	Female	0.10	0.07	1.43	0.153
Education	Academic	-0.13	0.07	-1.79	0.073
Settlement	Rural or small town	0.13	0.08	1.70	0.089
Outdoor NGO	Yes	0.32	0.08	3.95	0.000
Nature NGO	Yes	-0.38	0.08	-4.67	0.000
Forest professional	Yes	0.31	0.12	2.65	0.008
Forest owner	Yes	0.18	0.07	2.41	0.016
Season	Winter	-0.39	0.01	-36.01	0.000
Treatment x Attitude	Negative	-0.04	0.00	-13.83	0.000
	Positive	0.02	0.00	10.37	0.000
Treatment x Season	Winter	0.06	0.00	33.54	0.000
Treatment x Data set	Online	0.05	0.00	18.76	0.000
T I I O I	Famila	0.02	0.00	10 60	0.000

Treatment x Education	Academic	-0.01	0.00	-2.86	0.004
Treatment x Settlement	Rural or small town	0.00	0.00	2.18	0.030
Treatment x Outdoor NGO	Yes	0.00	0.00	0.47	0.637
Treatment x Nature NGO	Yes	-0.01	0.00	-4.57	0.000
Treatment x Forest prof.	Yes	0.01	0.00	2.49	0.013
Treatment x Forest owner	Yes	0.00	0.00	-1.21	0.225

621 * Logging treatment was a categorical variable, and only main effects of explanatory variables were622 considered.

623 + Logging treatment was a continuous integer variable ("logging intensity"), and interaction terms

- between logging treatment and attitude toward forestry (positive, neutral or negative) and season(summer or winter) were included.
- 4. Logging treatment was a continuous integer variable, and all possible interaction terms between
- treatment and other fixed variables (compare Table 1) were included.

629 Figure legends

Fig 1. Example forest views used in our photo questionnaire. Summer views are on the left, winter views
are on the right. Treatments are, from top, selection cutting, gap cutting with 20% retention, patch
cutting with 20% retention, and clear cutting with 5% retention. For all photos, see Supplementary
materials.

636	Fig. 2. Attractiveness scores given by respondents to photos showing different logging treatments,
637	arranged according to increasing logging intensity. Respondents with positive, neutral or negative
638	attitude to forest management in managed forests shown with different column styles. REF =
639	unharvested reference forest; SELE = selectively cut forest; GAP = gap harvested forest (retention of 20%
640	or 5%); PAT = patch cut forest (retention of 20% or 5%); CLR20 = clear cut with 20% retention; SEED =
641	seed-tree cut forest; CLR5 = clear cut with 5% retention; and CLR3 = clear cut with up to 3% retention.
642	
643	Fig. 3. Linear regressions for attractiveness scores given by respondents to photos showing different
644	logging treatments; rank order of logging intensity. Top: respondents with positive, neutral or negative
645	attitude to forest management in managed forests are shown with different lines. Down: slopes for
646	winter and summer photos shown separately. R = regression slope.

650 Fig. 1

