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ABSTRACT

The fragments that derive from transfer RNAs (tR-
NAs) are an emerging category of regulatory RNAs.
Known as tRFs, these fragments were reported for
the first time only a decade ago, making them a rel-
atively recent addition to the ever-expanding pan-
theon of non-coding RNAs. tRFs are short, 16–35
nucleotides (nts) in length, and produced through
cleavage of mature and precursor tRNAs at various
positions. Both cleavage positions and relative tRF
abundance depend strongly on context, including the
tissue type, tissue state, and disease, as well as the
sex, population of origin, and race/ethnicity of an in-
dividual. These dependencies increase the urgency
to understand the regulatory roles of tRFs. Such ef-
forts are gaining momentum, and comprise experi-
mental and computational approaches. System-level
studies across many tissues and thousands of sam-
ples have produced strong evidence that tRFs have
important and multi-faceted roles. Here, we review
the relevant literature on tRF biology in higher or-
ganisms, single cell eukaryotes, and prokaryotes.

INTRODUCTION

By all accounts, next generation sequencing (NGS) has led
to important discoveries while also enabling many prac-
tical applications in biology and medicine. Over the last
decade, the discovery of new molecules with the help of
NGS far outpaced the elucidation of the function of in-
dividual molecules. Due to current technical limitations,
the functions of many individual molecules in these newly
discovered categories elude us. Nonetheless, the decreas-
ing cost and ready availability of NGS systems is allow-
ing practitioners to draw conclusions about the roles of
some of these new molecular classes as a whole, through
well-designed experiments and analyses. Decidedly, one of

the important conclusions reached by carrying out NGS en
masse across many like samples is that these novel molecules
do not result from degradation and that their production is
regimented.

In this review, we focus on the short RNAs that are pro-
duced from tRNAs and are known as tRNA-derived frag-
ments (tRFs) (1,2). The enumeration and characterization
of tRFs accelerated greatly in the last few years, due in large
part to the emergence of NGS systems-level approaches to
molecular genetics (3). tRFs range in length from 16 to
35 nucleotides (nts) and are produced through cleavage of
mature and premature tRNAs at various positions. These
cleavages can occur essentially anywhere along the length
of the tRNA, and are context-dependent, as demonstrated
by a recent large-scale study of the samples in The Cancer
Genome Atlas (TCGA) (4). Notably, as we will discuss be-
low, the majority of tRFs overlap one another and are not
adjacent, which suggests complex biogenesis processes (5).

THE EARLY DAYS OF TRFS

The earliest reports of tRNA fragments

The first tRFs were actually characterized during the race
to determine the structure of tRNA (6) and the reader is re-
ferred to excellent historical perspective by Paul Schimmel
(7). One such tRF, 19 nucleotides (nt) in length, from the
tRNAfMet of E. coli was shown to interact with the 30S ri-
bosomal subunits (8). This fragment was initially identified
when the entire structure of this initiator tRNA was solved
(9). Around the same time, a 16 nt fragment of the yeast
tRNAPhe was shown to competitively inhibit phenylalanyl-
tRNA synthetase activity at the 3′ CCA tail (necessary for
amino acid charging) (10).

Initial evidence that these fragments may be biologically
relevant came five years later. Work by Petrova et al. demon-
strated that eight different snake exonuclease preparations
led to the production of tRFs in a tRNA-tertiary-structure-
specific manner (11). The team noted that some of the tRFs
they observed on northern blots were likely further pro-
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cessed by additional endonucleases in the venom prepara-
tions. The fact that these species underwent multiple rounds
of cleavage suggested that processing of tRNAs into specific
smaller RNA fragments was a regimented process.

TO STRESS OR NOT TO STRESS ABOUT IT?

tRNA fragments and cellular stress

Several independent groups linked stress responses to
tRNA cleavage as early as 2005. Lee and Collins reported
that amino acid starvation in T. thermophila led to the ac-
cumulation of fragments that resulted from cleavage of the
tRNA at the anticodon loop (12). These tRNA ‘halves’ were
approximately 35 nt in length and arose from only some
of the present tRNAs. Additionally, the 3′ ‘halves’ lacked
the -CCA tail modification that is necessary for amino acid
charging (12). Similar findings were reported in A. fumiga-
tus (13).

Related work showed that in S. coelicolor the cleavage of
tRNAs did not depend on amino acid starvation but on
nutrient availability in the growth media (14). The cleav-
age occurred during the bacteria’s protective transforma-
tion to spore and hyphal structures under nutrient depriva-
tion. Moreover, it was more prevalent among tRNAs from
highly-used codons (14). Similar accumulation of 3′-halves
was observed during encystation of G. lamblia, as well as
under serum starvation (15).

A comprehensive screen that relied on northern blots
provided strong evidence of consistent splitting of tRNAs
through the anticodon loop into 5′- and 3′-halves (16).
Further examination showed that oxidative stress, heat
stress, UV stress, glucose starvation, nitrogen starvation
and amino acid starvation all resulted in tRNA cleavage but
produced distinct patterns of tRNA-halves in S. cerevisiae.
The findings indicated that cleavage into tRNA halves is
governed by complicated rules. They also suggested the pos-
sibility that the produced tRNA-half signal could help de-
code cell states. Work with human cell lines and mouse tis-
sues revealed similar signals (1).

As it turned out, the responsible agent is a polypep-
tide that was originally discovered in 1985 during a search
for angiogenic factors (17). The enzyme, dubbed Angio-
genin, was later shown to be a homolog of pancreatic ri-
bonuclease A that could target tRNAs (18,19) and cleave
them at the anticodon loop (1). Angiogenin has since been
linked to tRNA cleavage in a variety of settings (20–25).
Angiogenin-related tRF production was also linked to im-
mune responses following arsenite exposure, further impli-
cating environmental factors in the regulation of tRFs (26).

Before continuing, it is worth mentioning a recent se-
ries of experiments by Dutta and colleagues that put
into question the centrality of Angiogenin as the en-
donuclease that produces all tRNA halves. Specifically,
they showed that while over-expression of Angiogenin in-
creases the abundance of tRNA halves, this increase ap-
pears to be selective. Indeed, only 5′-halves and 3′-halves
from tRNAGlu, tRNAGly, tRNAAsp, tRNAVal, tRNALys,
tRNASer, tRNAiMet and tRNASeC responded significantly
in those experiments (27). More intriguing was the finding
that upon CRISPR-induced knockout of Angiogenin, the
tRNA halves from tRNAAsp and tRNAHis were the only

stress-induced halves that exhibited dependence on Angio-
genin. The experiments suggest that although Angiogenin
is responsible for producing some tRNA halves, other cur-
rently unknown endonucleases must also be involved in the
biogenesis of tRNA halves.

tRNA fragmentation in the absence of stress

Parallel work also provided evidence that stress is not the
sole mediator of tRNA cleavage. In fact, hormone signal-
ing was shown to induce angiogenin-mediated tRNA cleav-
age in human prostate and breast tumor cell lines (28).
In S. cerevisiae, Rny1p, a member of the RNase T2 fam-
ily, was shown to promote cleavage in the anticodon loop
(29). More recently, in A. thaliana, RNase T2 was linked
to the production of tRNA halves, as well as of short tRFs
through cleavage in the D and T loops (30). Additionally,
Kay and colleagues showed that the RNase Z/ELAC2 pro-
duces 3′ trailer tRFs in human cell lines (31). With regard
to localization, the presence of ELAC2 in the cytoplasm
and the production of 3′ trailer tRFs in the cytoplasm is
supported by the work of Dutta and colleagues (2) and Oh
and colleagues (32). However, it is not clear how pre-tRNA
molecules are exported to the cytoplasm. Notably, Ross-
manith showed that ELAC2 localizes to the nuclei and mi-
tochondria of T-Rex-293 cells (33), suggesting the possibil-
ity that ELAC2-derived 3′ trailer tRFs may not originate
in the cytoplasm but rather be exported to it. We discuss
the role of RNase Z/ELAC2 again below. The similarity
of findings across the three life domains suggests that func-
tional tRNA cleavage is conserved. Finally, it is worth not-
ing that production of tRFs has also been linked to disease-
causing mutations. For example, CLP1 founder mutations
(34) were shown to dysregulate splicing of premature tR-
NAs (35). This in turn leads to the accumulation of tRFs
from the 5′ end of precursor tRNAs (36).

DEFINING TRFS

Nomenclatures and categories of tRFs

In the tRF literature, one frequently finds the same tRF
type under different names in different publications. tRNA
halves are one characteristic example. Originally, tRNA
halves were believed to be produced under cellular stress
and were called ‘tRNA-derived stress-induced RNA’ or
tiRNA (23,24). Subsequent analyses of NGS data showed
that tRNA halves (28) as well as shorter tRFs (37) are also
produced constitutively. In the case of tRNA halves, there
is a further complication because the ‘tiRNA’ label was also
introduced at around the same time by Mattick and col-
leagues to refer to ‘transcription initiation RNAs.’ The lat-
ter are short RNAs that arise from the same strand as the
gene’s transcription start site (38,39) and are preferentially
associated with G+C-rich promoters. Transcription initia-
tion RNAs are not related to tRNAs. Other names that have
been used in the literature to refer to tRNA-derived frag-
ments include tsRNAs for ‘tRNA-derived small RNAs’ (40)
and tDRs for ‘tRNA-derived RNAs’ (41). The two pub-
lic repositories of mammalian fragments, tRFdb (42) and
MINTbase (43,44), adopted and have been using the ab-
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Figure 1. The structural types of the various tRFs. tRFs can be produced
from either the precursor tRNA or from the mature tRNA. For more de-
tail, refer to the description in the text.

breviation ‘tRF’ to refer to these fragments, in deference to
the first time the term tRF was coined (2).

A popular classification of tRFs is based on their posi-
tion in relation to the parental tRNA sequence. Using this
scheme, seven distinct categories can be identified (Figure
1). Five of these categories overlap the span of the mature
tRNA and include: (i) 5′-tRNA halves or 5′-tRHs; (ii) 5′-
tRFs or tRF-5; (iii) 3′-tRNA halves or 3′-tRHs; (iv) 3′-tRFs
or tRF-3 and (v) i-tRFs, or internal tRFs. i-tRFs are wholly
contained within the span of the mature tRNA, were ini-
tially discovered by analyzing NGS data (37), and are the
most populous sub-category of tRFs (4,43). The remain-
ing two categories include tRFs that overlap the precur-
sor tRNA: (vi) 5′U-tRFs, which includes tRFs that com-
prise part of the 5′ leader sequence (45); and, (vii) tRF-1,
which includes tRFs that comprise part of the 3′ trailer se-
quence (2). For uniformity of reference across the seven cat-
egories, we propose the following seven labels: 5′U-tRFs, 5′-
tRFs, 5′-tRHs, i-tRFs, 3′-tRHs, 3′-tRFs and tRF-1.

Recent work reported a new category of tRFs, the
sex-hormone-dependent tRNA-derived small RNAs, or
SHOT-RNAs (28). Structurally, they are similar to 5′-tRHs.
However, SHOT-RNAs are an entirely new category of
molecules because of an important characteristic: the 3′ ter-
minus of the 5′ SHOT-RNAs contains a cyclic-phosphate
(cP) instead of a hydroxyl (OH) group. The 3′ terminus of

3′ SHOT-RNAs contains an amino acid. The presence of a
3′ cP makes SHOT-RNAs ‘invisible’ to standard NGS ap-
proaches. Interestingly, the production of SHOT-RNAs is
sex-hormone dependent.

On a related note, it is important to point out that, in
addition to remaining relatively expensive, NGS methods
have some limitations when it comes to studying tRFs, even
when the sought molecules do not have any 5′ or 3′ mod-
ifications. Internal tRNA base modifications could hinder
the reverse transcription step during sequencing and result
in the undercounting of bona fide tRFs, and new methods
are being proposed for tackling this complication (46,47).
These modifications were also thought to result in artificial
5′ endpoints for some tRFs or misread nucleotide(s) at the
corresponding modified location(s). However, a recent large
scale analysis of 11 198 TCGA datasets (4) did not find evi-
dence that the presence of these modifications results in arti-
ficial 5′ termini or that the modifications distort the identity
of the tRFs that can be mined from NGS datasets.

Labeling individual tRFs

In addition to the need for a universal moniker for these
fragments, there is also a need for a methodology by which
one can refer to a specific tRF. In fact, there is currently no
standardized nomenclature for tRFs. This is unlike the class
of microRNAs (miRNAs), where a recent multi-team effort
recognized a similar need for standardization and proposed
a universal scheme for labeling miRNA isoforms (48,49),
which we discuss below.

In the case of tRFs, the problem is compounded by the ex-
istence of multiple isodecoders for each isoacceptor. These
isodecoders can share sequence segments, or even their en-
tire sequence, while appearing at different chromosomal lo-
cations. There are at least three generic approaches by which
one can refer to a specific tRF: (1) arbitrary numbering;
(2) tRNA-label driven; and, (3) nucleotide-sequence driven.
The first of the three is similar to what is being used by miR-
Base (50) to label microRNAs. The approach requires a ded-
icated team that issues and maintains labels, and will not be
discussed here.

The second, tRNA-label driven approach builds on the
label of the tRF’s parental tRNA isodecoder (e.g. tRNA-
Arg-CCT-1) by adding the starting and ending positions of
the tRF to the isodecoder’s label. This is the approach taken
by ‘tDRnamer’ (http://trna.ucsc.edu/tDRnamer/docs/). In
those cases where the same nucleotide sequence appears
in multiple isodecoders of the same isoacceptor, one needs
to keep track of that possibility by further augmenting the
tRF’s label. While simple to execute, this approach gives rise
to a conundrum. First, it assumes that the tRNA space is
static with regard to the number of isodecoders, whose la-
bels form part of the tRF label, for a given isoacceptor. The
number of isodecoders can increase or decrease as new ge-
nomic assemblies become available and genomic regions get
added or deleted. Second, the naming scheme results in the
same tRF having multiple labels. For example, the 22 nt tRF
with sequence GGGGGTGTAGCTCAGTGGTAGA, is
present in five isodecoders of tRNAAlaAGC, one isodecoder
of tRNAAlaCGC, five isodecoders of tRNAAlaTGC, one isode-
coder of tRNACysGCA and one isodecoder of tRNAValAAC.
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Also, in different organisms, the same tRNA-isodecoder-
label-and-tRF-interval combination could refer to different
nucleotide sequences, thus necessitating the use of the or-
ganism’s name to ensure disambiguation of the nucleotide
sequence.

The third, sequence-driven approach takes into account
the actual nucleotide sequence of the fragment. We previ-
ously proposed this scheme as a possible solution to the
tRNA-label conundrum mentioned above. The scheme uses
a universal ‘license plate’ to label each tRF. The label (‘li-
cense plate’) is derived from the tRF sequence itself and is
based on the digits 0 through 9 and the 22 upper case let-
ters of the English alphabet that remain after excluding A,
C, G and T (43,44). For example, the 18 nt i-tRF CGC-
CTGTCACGCGGGAGA is present in 13 distinct isode-
coders of tRNAAspGTC that are located in eight different
chromosomes. To refer to this tRF, one simply uses its li-
cense plate, tRF-18-L7S5QKX. The license plate comprises
three parts: the prefix ‘tRF,’ the infix ‘18’ that denotes the
length of the short RNA, and the suffix ‘L7S5QKX’ that
encodes the nucleotide sequence. The mapping between a
tRF and its license plate is one-to-one. Consequently, one
can recover the correct tRF sequence from a given license
plate. In addition to publishing the rules for generating li-
cense plates and converting them back to nucleotide se-
quences, we also made codes and an interactive interface
freely available for this purpose (https://cm.jefferson.edu/
LicensePlates/). While the scheme is not perfect, it offers
several benefits: because it is sequence-based, there is a 1:1
correspondence between a tRF and its license plate; it is
model organism-agnostic; and, license plates can be gener-
ated by anyone without requiring the intervention of a bro-
kering entity. In other words, this labeling system does not
depend on the availability of funding to sustain a team that
issues and maintains these labels. It is important to also note
that a key property of the license plate is that it is ‘sticky:’
it exists independently of changes to the genome assembly,
genome assemblies for different strains of the same species,
or different species of the same genus. Naturally, a single
license plate can be used to refer to a tRF that is evolution-
arily conserved. License plates are being used by MINTbase
(43,44).

Lastly, it is worth pointing out that the license-plate label-
ing scheme can be extended to other types of short RNAs.
For example, it was adopted by the recently-proposed stan-
dard for labeling, reporting, and comparing miRNA iso-
forms, which are known as isomiRs (48). As with the tRFs,
the rules remain the same with the exception of the prefix,
which now is ‘iso-’ (instead of ‘tRF-’). More recently, we ex-
tended it to ribosomal RNA-derived fragments, which are
also known as rRFs (51). The rules for generating license
plates for rRFs remain the same with the exception of the
prefix which is now ‘rRF-’.

Genomic idiosyncrasies that affect the identification of tRFs

Early studies of tRFs relied on a simple approach whereby
sequenced reads were mapped on the known isodecoder se-
quences using standard mapping software. This was essen-
tially the process that had been used to analyze miRNAs
for many years. While reasonable, this approach does not

take into account the fact that the same nucleotide sequence
may appear in different isodecoders of the same isoacceptor,
or even different isoacceptors (see previous section). And it
does not account for three more observations that compli-
cate the task further.

First, a study of the RepeatMasker (A.F.A. Smit, R. Hub-
ley & P. Green RepeatMasker at http://repeatmasker.org)
output for the human genome reveals that the latter con-
tains hundreds of instances of incomplete tRNAs (52). The
reader is referred to a characteristic example relating to the
5′ tRNA halves of tRNAIleTAT (52).

The second complication relates to the discovery of sev-
eral hundred regions in the human genome that closely
resemble known nuclear and mitochondrial tRNAs: we
dubbed these regions ‘tRNA lookalikes’ (53). The looka-
likes co-localize with the known bona fide tRNAs (P-
val < 4.0E−03) and several show evidence of cell-type
specific transcription. Most interesting is the fact that
∼70% of these lookalikes closely resemble mitochondrial
tRNAs. When we investigated the mitochondrial con-
nection further, we found that many animal genomes,
from human to marsupials, harbor between several dozen
to hundreds of copies of their mitochondrial tRNAs in
their nuclear genomes. This is also true for at least one
plant, A. thaliana (Rigoutsos, unpublished). The persis-
tence of the phenomenon and the cell-type specific ex-
pression of the human tRNA-lookalikes suggests that
they have functional roles, especially given that mito-
chondrial tRNA are known to produce numerous tRFs
(4,37,43,44,54–57). While the purpose of the lookalikes is
not currently understood (58) their genomic copies need
to be taken into account when seeking to identify tRFs in
NGS data.

The third complication has to do with the fact that many
short nucleotide sequences can exist at multiple genomic
locations (59), both protein-coding and non-coding (60).
Consequently, each candidate tRF sequence needs to be ex-
amined against the rest of the genome to determine whether
it is also present at a non-tRNA locus. For example, the
23 nucleotide tRF TGGTGGTTCAGTGGTAGAATTCT
is present in 13 isodecoders: eight isodecoders coding
for tRNAGlyGCC, 3 isodecoders coding for tRNAGlyCCC,
and one isodecoder coding for each of tRNAGluTTC and
tRNAValCAC. However, this sequence is not unique to tRNA
space, and thus not necessarily a tRF: it matches exactly
five partial tRNAs as well as one unannotated region that
is present only in primates.

Therefore, it is important to take the entire genome into
account when determining the genomic source of a can-
didate tRF. We stress that longer tRFs such as the tRNA
halves are not immune from this consideration. Of the 375
tRNA halves that show evidence of transcription in human
tissues (43), 66 (17.6%) have genomic instances outside of
the known tRNAs. And of the 6375 tRFs that show evi-
dence of transcription and have lengths between 25 and 30
nt inclusive, 1514 (23.7%) are not unique to tRNA space
either (43).

These interconnections complicate the labeling of tRFs,
the unambiguous identification of a candidate tRF’s
parental tRNA, and the identification of tRFs in NGS data
(37,52). In the ‘Tools and Databases’ section below, we dis-
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cuss how different mapping solutions approach these prob-
lems.

ON THE BIOGENESIS AND FUNCTION OF TRNA
FRAGMENTS

Figure 2 provides a visual summary of findings to date from
what is an active area of research. We discuss individual
findings in more detail in the sub-sections that follow.

Enzymes responsible for cleaving tRNAs into fragments

Notwithstanding the tRNA halves, the other tRF types are
typically shorter with sizes reminiscent of miRNAs. This
length similarity raised the possibility that tRF production
is Dicer-dependent. This has now been investigated in sev-
eral organisms.

Early evidence suggested that the tRF production in
S. pombe is Dicer-independent (61). Subsequent work with
P. infestans showed that knockdown of Argonaute affected
tRF levels but knockdown of Dicer did not (62). On the
other hand, work in mammalian cells demonstrated that at
least some tRFs are produced in a Dicer-dependent manner
(63–65). A subsequent systematic meta-analysis of available
data showed that Dicer is required for the production of
some tRFs in human cell lines, but not in M. musculus, D.
melanogaster, or S. pombe (66).

At present, tRF production is known to depend on sev-
eral enzymes including Angiogenin, RNase T2, Dicer and
RNase Z/ELAC2. The recent finding that only some tRNA
halves depend on Angiogenin (27) suggests the existence of
yet-to-be-defined cleavage mechanisms. Additionally, as we
discussed above, multiple types of stress and hormone sig-
naling may also be involved.

Other proteins have also been investigated, providing fur-
ther insights into the regulation of tRNA cleavage. Specifi-
cally, activity of the cytosine-5 methyltransferase DNMT2
was found to prevent the cleavage of stress-induced tRNA
halves in D. melanogaster (67). On the other hand, loss
of cytosine-5 methylation in mice and humans leads to
increased production of Angiogenin-dependent 5′ tRFs
through a mechanism that involves lack of methylation at
key sites of the mature tRNA structure (68). Related to this
observation, it was shown recently that ALKBH3 activity
results in removal of m1A and m3C tRNA modifications,
resulting in sensitivity to angiogenin cleavage (69). DNMT2
was also shown to be essential for the production of methy-
lated tRFs in mouse sperm (70).

Beyond these enzymes, alternate partners responsible for
cleavage and processing of tRFs remain unknown. Recently,
Polacek and colleagues described the function of a 3′ tRNA
half from tRNAThr in T. brucei that post-transcriptionally
regulates translation via ribosome interactions (71). These
authors note that T. brucei lacks Angiogenin and Rny1p ho-
mologues, and that the observed tRNA halves do not de-
pend on Dicer, further emphasizing that currently unknown
proteins are linked to tRF biogenesis.

tRNA fragments as functional short RNAs

Scattered reports on disease-associated tRFs or degrada-
tion products appeared throughout the second half of the

20th century (72–75). For a description of how the thinking
in this field evolved, the various roles of Angiogenin, and
reports on tRFs in different settings, we refer the reader to
the excellent review by Paul Schimmel (76).

Initially, tRFs were not mechanistically evaluated as indi-
vidual causative agents of cellular behavior or disease. This
changed when the study of miRNAs and small interfer-
ing RNAs (siRNAs) allowed the role of short non-coding
RNAs in the cell to be fully appreciated. Individual reports
on tRFs appear in the public record through the late 1990s,
but these reports discuss fragments mostly as experimental
tools.

In 2001, Bartel et al. reported results of an extensive ef-
fort to discover and name new miRNAs and siRNAs in C.
elegans (77), whose genome had been published three years
earlier. The availability of an assembled genome allowed the
researchers to screen all non-coding RNAs in an unbiased
approach, and to identify and quantify RNAs from any re-
gion of the annotated genome. While they noted that some
Dicer-processed RNAs mapped to tRNA genes, they did
not further characterize them at the time.

Dutta and colleagues were first to characterize all short
non-coding RNAs in a set of human prostate cancer cell
lines using ‘454 deep sequencing’ (2). While a large num-
ber of reads mapped to miRNAs, a considerable percent-
age mapped to annotated tRNAs, in accordance with the
observation made years earlier in C. elegans by Bartel et
al. Dutta’s team validated the expression of these tRNA-
mapped reads using northern blots and splinted ligation as-
says, and concluded that these were products of targeted
cleavage, similar to tRNA halves. One abundant tRF in par-
ticular, dubbed ‘tRF-1001,’ was shown to be required for
HCT116 proliferation and cell cycle progression. tRF-1001
belongs to the tRF-1 category (see above) and was found to
be produced during tRNA maturation by RNase Z/ELAC2
cleavage of 3′ tRNA trailers.

EVIDENCE FOR THE MULTI-FACETED ROLES OF
TRNA FRAGMENTS

Function of tRFs: tRFs and the Argonaute/Piwi proteins

The members of the Argonaute family of proteins are char-
acterized by the presence of the PAZ and PIWI domains,
and are highly conserved (78). The family comprises the
Argonaute sub-family and the Piwi subfamily. The Arg-
onaute sub-family members are ubiquitous and were origi-
nally reported to interact with miRNAs (79). The Piwi sub-
family members have been reported only in the germline
and interact with piRNAs (80). Organisms typically encode
multiple Argonaute (AGO) and PIWI proteins.

The size similarity between most tRFs and
miRNAs/siRNAs led researchers to hypothesize that
tRFs behave like miRNAs and influence protein abun-
dance in an Argonaute-dependent manner. Several early
studies showed the association of a number of tRFs with all
four Argonaute proteins, indicating that some tRFs enter
the RNA interference (RNAi) pathway (31,81). In fact, a
3′-tRF from tRNAGlyGCC was shown to promote the degra-
dation of RPA1 to arrest B cell lymphoma proliferation, in
a sequence- and Argonaute-dependent manner (65). In A.
thaliana, tRFs were found enriched in various Argonaute
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Figure 2. Visual summary of tRF mechanisms in the literature during the last 10 years. These illustrations represent tRF mechanisms and behaviors that
involve either direct or indirect effects on protein or mRNA and have been confirmed with experimentation. Citations are provided, including first author
last name and year of publication. Note the use of single letter codes to denote the organism in which the work was done: A – A. thaliana; B – B. mori; D
– D. melanogaster; E – A. aegypti; H – H. sapiens; M – M. musculus; P – T. thermophilus; R – R. norvegicus; T – T. brucei or T. cruzi; V – H. volcanii; and,
Y – S. cerevisiae. Red shading indicates processes that are downregulated by tRFs whereas green shading indicates activities that are upregulated by tRFs.

immunoprecipitation (IP) experiments (82). Follow-up
work further characterized the interactions between tRFs
and AGO in A. thaliana, and described tRF populations
that were specific to sub-cellular compartments (83). In
A. thaliana, it was shown that some tRFs load directly onto
AGO1 after processing by the Dicer homologue DCL1
(84). Importantly, this interaction was shown to promote
degradation of RNAs produced from active transposable
elements (TE) targeted by these tRFs. AGO1 and AGO2
tRF loading has also been observed in D. melanogaster
(85) and in Bombyx mori (86), at comparable levels to
that observed in a large meta-analysis across species (66).
For mammalian cells, Dutta and colleagues showed that
tRFs are loaded on Argonaute (66) whereas Rigoutsos and
colleagues showed that the Argonaute-loading of tRFs is
cell-type dependent (37).

Mammalian tRFs have been studied in greater depth
than non-mammalian tRFs, and the evidence for miRNA-
like activity extends to a mechanistic level in this con-
text. For example, two previously annotated miRNAs were
reclassified as tRFs and shown to interact with AGO2
promoting proliferation arrest in a Chronic Lymphocytic
Leukemia (CLL) model (87). Endogenous tRFs were shown
to load on AGO1 and AGO2 in mouse embryonic stem cells
and HEK293 cells, and to promote cleavage of sequence-
matched artificial RNA targets (88). Recent reporting pro-
vided more evidence in support of tRF loading on Arg-
onaute proteins whereby they direct the degradation of se-

quence matched targets (89). Importantly, this last study re-
affirms Dicer independence for the studied tRFs and impli-
cates yet more proteins in the RNA-induced silencing com-
plex as tRF binding partners.

As with AGO, tRFs have been observed to interact with
PIWI proteins as well, in a variety of contexts. Croce and
colleagues demonstrated that two tRFs interact with PI-
WIL2 in HEK293T cells (40), in a mechanism that they
hypothesize may promote targeted methylation of DNA
via tRF sequence recognition. Other reports implicated
PIWI proteins in tRF-binding interactions in human so-
matic cells (90), B. mori (91) and T. thermophila (92,93).
The B. mori studies showed that the 5′-tRNA halves from
tRNAAspGTC and tRNAHisGTG serve as the precursors for
the shorter 5′-tRFs that in turn interact with PIWI. In fact,
the production of 5′-tRFs from tRNAHisGTG was shown
to depend on TH1GL (94,95). The T. thermophila studies
demonstrated that only 18–22 nt 3′-tRFs in this species con-
stitutively interact with a catalytically-inactive PIWI pro-
tein Twi12. The findings also suggested that the specificity
of tRF interactions with Twi12 may be indicative of a co-
ordinated tRNA degradation pathway. Alternative results
demonstrate that differences in human tRNA isodecoder
gene expression correlate with differences in the abundance
of immature tRNAs and tRFs, but not the abundance of
the mature tRNAs themselves within a range of human
tissues (96). It is currently an open question whether tRF
interactions with PIWI-related proteins guide target in-
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teractions or are a result of degradation pathways across
species.

Function: tRFs and other RNA-binding proteins

Beyond the Argonaute family, tRFs are known to inter-
act with several other RNA binding proteins (RBP). YBX1
is an RBP that stabilizes mRNAs in the cytoplasm prior
to translation. In breast cancer cells, several i-tRFs were
shown to compete with the 3′-untranslated regions (3′-
UTRs) of oncogenes for binding to YBX1. By displacing
YBX1 from these oncogenes, tRFs could arrest tumor pro-
gression in human breast cancer cell lines (97). More recent
work expanded on this concept of competitive displace-
ment. Falconi et al. reported that in breast cancer cells an
i-tRF from tRNAGlu can counter nucleolin’s repression of
p53, leading to the p53 translation and tumor suppression
(98).

tRFs are also known to interact with reverse transcrip-
tase (RT). Specifically, in mouse embryonic stem cells and in
transformed cells, abundant 18 nt 3′-tRFs containing -CCA
tail tRNA modifications were shown to target the primer
binding site (PBS) of LTR retrotransposons in a sequence-
dependent manner. The PBS is essential for reverse tran-
scription of endogenous retroviruses (ERVs). By compet-
ing for binding the PBS with the RT, the tRFs effectively
blocked reverse transcription (99). The authors also ob-
served that 22 nt tRFs are able to silence coding-competent
ERV through RNAi.

Hatzoglou and colleagues studied the apoptotic machin-
ery (21) and found that Angiogenin suppresses formation
of the apoptosome and promotes accumulation of tRNA
halves in mouse embryonic fibroblasts. After isolating cy-
tochrome C-ribonucleoprotein complexes from these fi-
broblasts, they found stress-induced tRNA halves to be the
major interacting RNAs. They also showed that apopto-
sis of mouse cortical neurons due to hyperosmotic stress
could be arrested by Angiogenin overexpression, presum-
ably through a direct interaction between cytochrome C and
induced tRNA halves. More recently, tRNA halves were in-
dependently shown to associate with cytochrome C in HeLa
cells (69).

Function: tRFs and intergenerational inheritance

The connection between diet and tRNA halves in serum was
reported early on (100). A more recent study demonstrated
that low protein diet (LPD) in mice increased the number of
recoverable small RNAs in sperm (101). Specifically, it was
found that abundant 5′-tRFs from tRNAGly are introduced
to sperm by epididymal epithelial cells, as the sperm tran-
sits the epididymis and encounters epididymosomes. These
tRFs were shown to associate with MERVL TEs in embry-
onic stem cells and in the developing embryo, potentially
influencing the observed low birth weight of pups from par-
ents on LPD.

A second study investigated the effects of high fat diet
(HFD) on tRF behavior. It was found that 5′-tRNA halves
in sperm are both enriched and differentially methylated
in mice on HFD (102). The authors observed metabolic
pathway deficits leading to glucose intolerance in offspring

from zygotes injected with these HFD enriched tRFs, with-
out a related increase in DNA methylation at CpG islands.
They concluded that tRFs mediate ‘intergenerational in-
heritance’ through an unknown mechanism. A third study
similarly reported the activity of mouse sperm tRFs in the
context of intergenerational inheritance of glucose and lipid
metabolism deficits (103).

More recently, it was demonstrated that the methyltrans-
ferase DNMT2 is necessary for the intact production of
hypermethylated and hyperabundant tRFs, 30–40 nt long,
in mouse sperm (70). Hypermethylated instances of these
tRFs, but not un-methylated or hypo-methylated ones, lead
to the intergenerational transmission of paternally acquired
metabolic disorders through currently elusive mechanisms.

Function: tRFs and the stability of RNAs

Other proteins have been implicated in tRF-mediated con-
trol of mRNA stability. In a series of papers, Elbarbary
and colleagues showed that tRNase Z(L), the endonucle-
ase responsible for tRNA 3′ end maturity, can interact
with either miRNAs or tRF species to direct cleavage of
a sequence-matched RNA (104,105). Specifically, both in
vitro and in vivo interactions between a 5′-tRNA half from
tRNAGlu and the PPM1F mRNA promoted degradation of
the mRNA target.

Interactions between sequence-matched mRNA targets
and tRFs in the absence of a protein mediator have also
been characterized. A 17 nt tRF from tRNALeu (formerly
annotated as miR-1280) was shown to interact directly with
the Notch ligand JAG2 (106). This interaction prevented
translation of this critical Notch1 and Notch2 receptor con-
nector, preventing expansion and behavior of stem cell-
like cells in HCT116 and HCT15 colorectal cancer cell
lines. This interaction appears to be critical in preventing
metastatic behavior of HCT116, through regulation of fac-
tors normally promoting the ‘pro-metastatic niche’.

Another study showed that a tRF from tRNALeuCAG sta-
bilizes the RPS28 and RPS15 mRNAs during translation,
thereby increasing the abundance of these ribosomal pro-
teins. When this tRF is inhibited in HeLa cells, stability of
the 40S ribosomal subunit is compromised due to loss of
these proteins followed by apoptosis (107).

Interestingly, tRFs have also been implicated in the sta-
bility of other noncoding RNAs. Rando and colleagues
recently commented on a mechanism whereby a 5′-tRF
from tRNAGlyGCC interacts with hnRNPF and hnRNPH
to influence the stability of Cajal bodies and the activity
of the U7 snRNA (108). This finding implicates tRFs in
a global mechanism that regulates the production of non-
coding RNAs. Future work should test the hypothesis that
tRFs can act as master regulators.

Function: tRFs and the ribosome

The interactions of tRFs with the ribosome are well charac-
terized. In several studies, Anderson and colleagues inves-
tigated the mechanism of stress-induced (109) Angiogenin-
cleaved tRNA halves (110) and showed that some tRNA
halves inhibited protein translation by directly inter-
acting with the active eukaryotic translation initiation
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factor––phospho-eIF2�––in the actively translating ribo-
some (110). At the same time, tRNA halves were further
implicated in stress granule (SG) assembly in U2OS cells,
as part of a coordinated program of cellular behavior, pre-
sumably activated to sequester mRNA and prevent trans-
lation during times of nutrient scarcity (24). It was subse-
quently demonstrated that activity of tRNA halves from
tRNACys and tRNAAla under stress conditions inhibited
protein synthesis. In this context, tRNA halves work by
directly preventing eIF4G/eIF4A from stabilizing capped
mRNAs, thereby preventing the ribosome from recogniz-
ing and initiating translation of these RNAs (23). This is
achieved by a poly(G) motif that is present in the 5′ tRNA
halves from tRNACys and tRNAAla and promotes forma-
tion of a G-quadruplex structure (111).

Interestingly, these authors reported that interaction be-
tween YBX1 and these stress-induced tRNA halves results
in SG formation, but not in translation inhibition. The
cumulative interpretation of these findings presents an in-
teresting model for the behavior of specific tRFs. Under
stress conditions, angiogenin cleaves tRNAs to promote
tRNA half formation. Those tRNA halves with stability-
conferring poly(G) motifs assemble into G quadruplex
structures that in turn confer function. Other tRNA halves,
which accumulate due to the same initiating angiogenin ac-
tivity, interact with YBX1 instead. Through both mecha-
nisms, downstream pathways are activated in order to slow
cell growth and promote recovery from stress.

Hutvagner and colleagues have been studying a different
aspect of the interactions of tRFs and the ribosome. Af-
ter characterizing the Dicer-dependent production of tRFs
(64), they followed up by demonstrating that 5′-tRFs from
tRNAGln are also capable of arresting translation in vitro
through interaction with active polysomes (112). Their find-
ings present a distinct mechanism whereby tRFs inhibit
translation. Nonetheless, the findings agree with contem-
poraneous work that showed that a 5′-tRF from tRNAVal

binds to the small ribosomal subunit of H. volcanii,
competes with mRNA binding and attenuates translation
(113).

In follow-up work, Hutvagner and colleagues returned
to the question of tRFs interfering with ribosomes and re-
ported that 5′-tRFs from tRNAGln interact with the Mul-
tisynthetase Complex (MSC). The MSC is a cytoplasmic
focus of several aminoacyl-tRNA synthetases and riboso-
mal components that coordinates assembly of mature ri-
bosomes. They showed that direct binding of the MSC by
this small tRF in HeLa cells disrupts MSC stability, inhibits
maturation of ribosomes, and globally represses translation
(114). A similar finding was subsequently reported in S.
cerevisiae (115).

As with miRNAs, tRFs have been described in bidirec-
tional control relationships with ribosome function. The
majority of the evidence suggests that 5′-tRNA halves and
other tRFs inhibit the function of ribosomes, in order
to promote stress responses. However, a recent report de-
scribed how in nutrient-deprived T. brucei a CCA-lacking
3′-tRNA half from tRNAThr, which is cleaved by an un-
known mechanism, associates with the large subunit of ac-
tive ribosomes (71). This 3′-tRNA half does not promote
formation of stress granules. Instead, because of its length,

it can prime large ribosomal subunits and promote trans-
lation by increasing the affinity of ribosomes for mRNAs
destined to be translated after relief of stress. These findings
collectively point towards a mechanism for tRF action in
T. brucei whereby 3′-tRNA halves promote ribosomal func-
tion in a length-dependent manner. This is unlike 5′-tRNA
halves that inhibit ribosomal function, in a sequence- or
modification-dependent manner. The authors provided ev-
idence of the generality of this observation by demonstrat-
ing that this 3′-tRNA half also stimulates translation in H.
volcanii, S. cerevisiae and HeLa extract in in vitro assays,
pointing to similar potential functions in other organisms.

Through a variety of discrete mechanisms and in sev-
eral different species, tRFs appear to join their size-matched
miRNA/siRNA cousins in inhibiting translation of mRNA
targets. However, while miRNA/siRNA translational inhi-
bition is sequence-specific by the nature of target-seed in-
teractions, translational arrest promoted by tRFs is not at
all target specific, but global in nature and due to interac-
tion with complexes that support translation, such as small
ribosomal subunits and tRNA synthetase complexes.

TRNA FRAGMENTS IN DISEASE SETTINGS

Disease: tRFs and stemness

One exciting discovery of a direct mechanism of tRF in-
volvement in disease involves bone marrow stem cell differ-
entiation (116). Specifically, Bellodi and colleagues showed
that pseudouridylation of tRFs modulates protein biosyn-
thesis. During self-renewal of human embryonic stem cells
(hESC), the pseudouridylase PUS7 recognizes a motif
present in several mature tRNAs––UGUAG––and pseu-
douridylates the central uridine. Pseudouridylated bases
represent a handful of the hundreds of characterized mod-
ifications on mature tRNA (117). tRFs bearing both this
pseudouridine and the 5′ poly(G) runs, initially character-
ized by Ivanov and Anderson, selectively associate with the
translation initiation factor PABPC1. On the other hand,
non-pseudouridylated tRFs interact with YBX1 and other
RBPs. Knockdown of PUS7 or loss of pseudouridylated
tRFs prevents an arrest in translation normally required to
slow the growth of hESCs long enough for them to differ-
entiate into myeloid precursors. Surprisingly, PUS7 is en-
coded in a region known to be deleted in myelodysplas-
tic syndromes (MDS)––rare disorders of blood cell pro-
genitor regulation that cause diverse symptoms and a high
risk of leukemic transformation. MDS are associated with
deletions or complete monosomy of chromosome 7, in a
currently unknown mechanism. The findings present com-
pelling evidence that dysregulation of a tRF-based regula-
tory mechanism may underlie these disorders.

Other roles for tRFs in stemness have also been dis-
cussed. tRNA methylation by NSun2 has been linked to
stress-induced reduction in stem cell protein synthesis. Frye
and colleagues showed that loss of NSun2 results in ac-
cumulation of 5′-tRNA halves in mouse tumor stem-cell
models (118). Notably, increased abundance of 5′-tRNA
halves promoted tumor activity through translation of
stress response, migration, and adhesion proteins. Fur-
ther, this work suggests that NSun2 knockout allows squa-
mous tumors to escape sensitivity to stress mediated by 5-
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fluorouracil (5FU) for example, and that this escape mecha-
nism potentially depends on 5′-tRNA half production. This
finding has implications for increasing chemotherapy effi-
cacy through the addition of tRNA methylation inhibitors
to regimens involving 5FU.

Disease: tRFs and neurologic disorders

Several links between tRF behavior and neurologic disor-
ders have been introduced in the recent literature. Ivanov
and Anderson reported that the Angiogenin-associated G-
quadruplex structures also promote motor neuron recovery
under apoptotic conditions, revealing a potential mecha-
nism for Amyotrophic Lateral Sclerosis (ALS) (111). These
authors demonstrated that the C9orf72 ALS-associated
pathogenic RNA repeats directly interfere with this pro-
tective behavior of tRNA halves. Both ALS and Parkin-
son’s Disease (PD) are associated with mutations in the an-
giogenin gene (119–121). Recently, we showed that a small
panel of serum tRFs may distinguish PD patients from con-
trols with high sensitivity and specificity (55). And tRNA
halves and Angiogenin have been investigated for their pro-
tective role in a PD experimental model (122,123). How-
ever, the relationship between Angiogenin and neurodegen-
eration may be more complicated (124). In other work, Li
and colleagues demonstrated that tRFs are involved in a re-
sponse to ischemia in rat brain, and specifically inhibit pro-
liferation of human umbilical vein cells (HUVEC) in vitro
(125). Finally, study of mutations of CLP1 (see above) re-
vealed that sensitization of cells to p53-mediated apoptosis
by a 5′U-tRF underlies a familial motor neuron disorder
(36).

Disease: tRFs and viral infections

tRFs have also been investigated as components of human
responses to viral infection. Two studies showed that 5′-
tRFs produced from tRNAGlu in response to Angiogenin
signaling after infection by the respiratory syncytial virus
directly promote infection (126,127). Infection is specifi-
cally mediated through ‘trans-silencing’ involving interac-
tions between the 3′-UTR of the antiviral APOER2 recep-
tor and the 3′ ends of these tRFs. Infection with the hepati-
tis viruses B and C was also shown to induce tRF expres-
sion in liver tissues (41). tRFs were also linked to infections
by the human T-cell leukemia virus type 1 (HTLV-1) and
shown to prime reverse transcriptase to promote HTLV-
1 infection and potentially leukemic transformation (128).
Recently, 3′-tRFs from tRNASerTGA were shown to interact
with La/SSB nuclear-cytoplasmic shuttling proteins in the
human hepatocellular carcinoma model Huh7 (32). Oh and
colleagues describe a role in which these tRFs depend on
La/SSB chaperones for stability and prevent RNA viruses
like HCV from hijacking La/SSB for initiation of IRES-
mediated translation.

Recently, tRFs were also shown to act as regulators of
normal immune responses. In activated human T-cells, se-
lect 5′-tRFs and i-tRFs are secreted actively in extracellular
vesicles (EVs), and their identities differ from those found
in EVs secreted by resting T-cells (129). Inhibition of EV
release leads to accumulation of these tRFs in multivesic-

ular bodies (MVBs). Inhibition of these tRFs using anti-
sense oligonucleotides promoted T-cell activation, point-
ing toward a potential role for tRFs in normally regulating
the level of T-cell activation. Importantly, tRFs have been
implicated in the pathogenesis of leukemia, underscoring
the potential importance of tRFs as immune cell regulators
(40,130).

Disease: tRFs, cancer and overall survival

Among diseases, the links between tRFs and cancer were
among the earliest explored. Specifically, silencing of a frag-
ment from the tRF-1 category was shown to influence tu-
mor cell line proliferation (2). For human tissues, Rigoutsos
and colleagues published the first explorations of the links
between tRFs and homeostasis or disease, and reported on
the expression profiles of tRFs in lymphoblastoid cells de-
rived from healthy individuals and in multiple subtypes of
breast cancer (37,57). Since then, they have also discussed
tRFs in prostate cancer (56), uveal melanoma (54), lung
cancer (48), bladder cancer (48), and kidney cancer (48).
In the case of uveal melanoma, they showed that tRFs are
linked to overall survival (54). Parallel work investigated
the expression and function of tRFs in: liver cancer (41),
prostate cancer (45), ovarian cancer (131), colorectal cancer
(106), hormone-responsive cancers (28), breast cancer (97),
non-small cell lung cancer (132), B-cell lymphoma (65), and
chronic lymphocytic leukemia (130). These many connec-
tions raise the possibility of using tRF expression as a proxy
for disease status. We discuss this below.

Disease: dependencies of tRF production on disease
type/subtype, tissue type and state and personal attributes

A result that was enabled by the availability of large
amounts of data was the reporting by Rigoutsos and col-
leagues that the identity and abundances of tRFs depend
on cellular context. Specifically, they were first to show that
these tRF attributes are modulated by the type of the tis-
sue at hand, the state of the tissue (healthy or diseased) and
the type/subtype of the disease (37,54–57). They have since
extended these findings to 32 tissue-type/cancer-type com-
binations and showed that each such cancer context exhibits
its own characteristic profile of tRF transcripts (4).

Additionally, they reported that the transcriptional pro-
files of tRFs also depend on personal attributes including
sex (4,37,55), population of origin (37), and race/ethnicity
(37,56,57). Importantly, they showed that these tRF depen-
dencies are linked to concomitant putative regulatory dif-
ferences between people who differ by one or more of these
characteristics. So far, they have reported such findings in
prostate cancer (56), triple negative breast cancer (57), lung
cancer, bladder cancer and kidney cancer (4), and Parkin-
son’s disease (55).

Disease: systems-level analyses of tRF function and genome
architecture

With a few exceptions, the biogenesis and functional
spectrum of tRFs remains poorly characterized. While
it is known that some tRFs are loaded on Argonaute
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(65,66,89) not all tRFs with lengths matching that of miR-
NAs do so (37,66). In other words, a miRNA-like length is
not sufficient for Argonaute loading. Moreover, analysis of
CLIP-seq data from three cancer model cell lines showed
that such loading is cell-type specific (37).

Rigoutsos and colleagues investigated tRF functions by
tapping into TCGA datasets, computing correlations be-
tween tRFs and mRNAs, and examining the genomic and
composition properties of these mRNAs and the localiza-
tion of the produced proteins (4). Figure 3 summarizes the
findings of this and related studies.

First, Rigoutsos and colleagues mined tRFs in 10 274
TCGA samples and retained 20 722 tRFs that exceed
threshold in at least one sample. For only the tumor sam-
ples, they identified mRNAs that also exceeded threshold,
computed positive and negative tRF:mRNA correlations,
and kept only statistically significant ones. For each cancer
type, they computed GO terms that were enriched among
the tRF:mRNA correlations and focused on GO terms
that recurred across the 32 cancer types. In many cancer
types, tRFs were found to be associated with mRNAs from
developmental processes, signaling, the proteasome, and
metabolic pathways. These correlations likely reflect a mix
of direct molecular interactions and indirect events. While
the same GO terms were found enriched across cancers,
the tRF:mRNA pairs giving rise to these enrichments dif-
fered from cancer to cancer.

These analyses also uncovered unexpected, wide-ranging
relationships between the transcriptome and the genome.
Specifically, relationships between tRFs and the genomic
architecture of mRNAs with which the tRFs are correlated.
In particular, tRFs were shown to be positively correlated
with genes that have shorter exons and shorter introns and
a higher density in repetitive elements. On the other hand,
tRFs were found to be negatively correlated with genes that
have longer exons and longer introns and a lower density in
repetitive elements. These findings hold true in nearly all 32
analyzed TCGA cancers. Of note, many of the tRFs that
participate in these correlations arise from mitochondrial
tRNAs. This in turn raises the possibility of previously un-
suspected connections among the mitochondrial genome,
the nuclear genome, multiple categories of human repetitive
elements, genome organization, and nuclear and mitochon-
drial transcription.

Disease: tRFs as candidate liquid biopsy biomarkers

Given their presence in many settings, their multiple depen-
dencies on tissue state, disease type and personal attributes,
and their presence in circulation, tRFs are being actively ex-
plored as non-invasive biomarkers.

The presence of tRNA halves in serum was established
early on (100). Soon thereafter, changes in serum tRNA
halves were used to diagnose breast cancer (133), and head
and neck cancer (134). Parallel work provided additional
evidence that tRFs in biofluids may serve as biomarkers in
several settings, including serum tRFs for cell renal cell car-
cinoma (135), and urine tRFs for chronic kidney disease
(136), B-cell tRFs for chronic lymphocytic leukemia (130),
and serum tRFs for PD (55). Of note, the PD tRF signature
differs between male and female PD patients. Recently, it

was also reported that the abundance in plasma of 5′-tRFs
from tRNAGly, tRNAAla and tRNAGlu increases prior to
epileptic seizures (137).

The decreasing cost of NGS is making it easier to expand
these efforts to other biofluids. A recent, wide-ranging con-
sortium study profiled many different biofluids for the pres-
ence of multiple types of short RNAs, including miRNAs
and tRFs. Specifically for tRFs, the study showed that they
are among the most abundant RNA types in biofluids, es-
pecially in urine (138).

It is important to note here that such differential tRF pro-
files are correlative in nature. While it is true that tRFs can
serve as sensitive and specific biomarkers, it remains unclear
whether the observed changes in tRF abundance are the
cause of the disease state or result from it. Future work will
need to both investigate the context in which these tRFs are
produced and identify their interactions within the cell. This
is analogous to the approach taken in miRNA research. To
facilitate these undertakings, specialized experimental and
computational tools and protocols need to be developed.
We discuss these considerations next.

TOOLS AND DATABASES

Finding tRFs in deep-sequencing datasets

The length similarity between tRFs and miRNAs prompted
several early studies to carry out tRF discovery using the
same tools that were originally used for miRNAs. In sev-
eral instances, sequenced reads were mapped on a small
database that comprised only tRNA sequences while the
rest of the genome was ignored (45,137,139–142). But as we
discussed above, such approaches did not take into account
the fact that the human genome contains hundreds of in-
complete tRNAs in it, hundreds of sequences that resemble
known tRNAs, or the fact that numerous short sequence
segments exist both inside and outside of tRNA sequences.

The approach used to populate tRFdb (42), as well as
tDRmapper (139), addressed several of these problems.
However, neither scheme was deterministic or exhaustive.
MINTmap (52) on the other hand placed emphasis on
these two points guaranteeing a deterministic and exhaus-
tive identification of tRFs in deep-sequencing datasets. To
do so, MINTmap examines the whole genome in order to
identify tRFs of ambiguous origin yet has minimal resource
requirements (it can be run on a laptop).

Measuring tRFs in experimental settings

tRFs present an additional complication when it comes to
quantifying them in one’s favorite cell line or in clinical sam-
ples. Several of the early published articles used conven-
tional approaches such as the commercially available assays
that had been developed for the study of miRNAs, includ-
ing TaqMan-miRNA (41) and Exiqon-LNA (45). Several
matters complicate the use of these approaches in the tRF
context. First, the assays are known to be susceptible to var-
ious degrees of cross-talk by co-expressed transcripts that
differ from the intended target molecule by, e.g., one or two
nucleotides at either their 5′ end, 3′ end, or both. To a much
lesser degree, they are also affected by co-expressed tran-
scripts that differ in e.g. one internal position, as would be
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Figure 3. Visual summary of the findings that emerged from the analyses of all TCGA cancers previously described by Rigoutsos and col-
leagues (4,37,43,52–57,59). The analyses are based on computing positive and negative correlations between tRFs and mRNAs (‘co-expression networks’).
These correlations capture direct molecular couplings as well as indirect interactions (e.g. decoying events and propagated regulatory effects). For those
mRNAs that participate in the correlations with tRFs, their intronic and exonic lengths, their respective genomic spans, the repetitive content of those
genomic spans, and the cellular localization of the proteins that are produced by these mRNAs were also examined. The picture that emerges is complex,
yet remarkably consistent across the 32 TCGA cancer types. Summarily, numerous tRFs of nuclear and mitochondrial origin are correlated with mRNAs.
These mRNAs belong to key processes including development, receptor tyrosine kinase signaling, the proteasome, and metabolic pathways. The mRNAs
that participate in positive correlations are generally shorter and enriched in repetitive elements. On the other hand, the mRNAs that participate in negative
correlations are longer and depleted in repetitive elements. Perhaps the most striking finding that emerges from this analysis is the prominent participa-
tion of the mitochondrial tRFs in correlations with mRNAs that belong to processes that are not mitochondria-specific. This raises the possibility of the
participation of mitochondrial tRFs in an ‘information exchange’ that could be implemented in one of two ways: either the mitochondrial tRFs exit the
mitochondrion and are shuttled to the cytoplasm and the nucleus, or they are produced by transcription of the mitochondrial ‘tRNA-lookalikes’ encoded
in the nuclear genome and subsequent processing. The picture that emerges suggests that older and younger categories of repetitive elements as well as
gene architecture are tightly-coupled with tRFs of nuclear and mitochondrial origin to a wider information exchange framework. The use of dashed gray
lines in this figure is meant to show relationships that arise from the analysis of TCGA cancers and await independent experimental validation.

the case in instances of e.g. polymorphism or mutation. Sec-
ond, these assays cannot enforce the identity of both the 5′
and 3′ endpoints of the target molecule. Third, as became
evident by the large scale analysis of all of TCGA (4), multi-
ple tRFs within a given sample have sequences that overlap
extensively, differing only in their 5′ or 3′ endpoints. This is
true of model cell lines as well (2). On a related note, coun-
terpart sequence segments from isodecoders of the same
isoacceptor can differ by a single nucleotide (52) making
the ability to distinguish among them a relevant consider-
ation. Lastly, the dependency of tRF production on tissue
type and on personal attributes indicates that one ought to
be mindful of this matter when measuring tRFs in differ-
ent settings, as e.g. the tissue dependency may lead to tRFs
that differ by one or two nucleotides at either endpoint (4);
consequently, a different assay needs to be used each time.

We evaluated how such endpoint modifications can influ-
ence the measurements that can be obtained with commer-
cial assays. Specifically, we designed assays for the canonical
isoform of miR-21-5p (0|0) and used them to evaluate syn-

thetic RNAs that differ at exactly one or both endpoints.
While the experiments revolved around miRNA isoforms,
the findings are directly applicable to tRFs. We performed
the quantification assay in water and also using a model cell
line. In all instances, the commercial assay was susceptible
to considerable cross-talk that led to an incorrect estimate
of abundance (143). Parallel studies arrived at the same con-
clusion (144,145).

While commercially available assays - other than NGS -
cannot address the problem, a recently-reported technique
provides a powerful solution to the problem. The tech-
nique, dubbed ‘dumbbell-PCR’ (146), can accurately pro-
file isomiRs and tRFs while ensuring the identities of both
terminal endpoints of the target molecule.

Databases and servers

Analysis of all TCGA datasets uncovered more than seven
thousand miRNA isoforms (147). By comparison, early ef-
forts indicated that the number of tRFs in the same sam-
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ples was going to be much higher (37). The tRFdb database
(42) represents the earliest attempt to organize the tRFs
that were being discovered in higher organisms into a cu-
rated repository. tRFfinder was a subsequent hybrid ap-
proach that comprised a repository of tRFs that had been
discovered in TCGA and an on-line search tool that allowed
web-users to search these TCGA profiles interactively (142).
Subsequent analysis indicated that tRFfinder exhibited un-
usually low sensitivity and did not account for the numer-
ous tRFs that were known to be produced by mitochondrial
tRNAs (52).

Rigoutsos and colleagues used the MINTmap tool (see
above) to profile tRFs in 12 023 human samples, from
healthy donors and patients. The samples were drawn from
the TCGA repository, the 1000 Genomes Project (148), and
other public sources. They identified 28 824 distinct tRFs
that exceed threshold in at least one of those samples. As
we discussed above, whether in homeostasis, cancer, neu-
rodegenerative disease, or viral infections, tRFs appear to
serve important roles. However, of the myriad tRFs that
were discovered using MINTmap, only a handful have been
characterized in the literature. This makes it imperative that
they be organized in a manner that facilitates their study,
in the context of specific diseases and also across diseases
and tissues. To this end, Rigoutsos and colleagues designed
and implemented MINTbase (43,44). MINTbase is a web-
based repository that permits the interactive exploration of
the 28 824 human tRFs identified so far. A user can search
for tRFs that are present in specific tissues, tRFs that satisfy
a minimum abundance criterion, tRFs that arise from spe-
cific isoacceptors, belong to one or more of the structural
categories mentioned above, etc.

CONCLUSIONS AND PERSPECTIVE

Despite being a relative newcomer to the stage of short non-
coding RNAs, tRFs have been gaining momentum for the
last 10 years. Several thousand published articles later, per
Google Scholar, the importance of tRFs as important play-
ers in the cell, is now well-established. However, there re-
mains an inherent and important difficulty when it comes
to studying them, which stems from several factors.

First, there is the sheer number of statistically-significant
tRFs that have been discovered so far. This number already
exceeds the number of protein-coding human genes. Sec-
ond, their biogenesis has yet to be established and all in-
dications are that more than one mechanisms are responsi-
ble. Third, it has been shown that tRFs, just like isomiRs,
exhibit strong dependencies on variables that were not con-
sidered previously, namely, tissue, disease, and personal at-
tributes. Essentially, a given parental tRNA isodecoder pro-
duces multiple consequential tRFs that differ from tissue to
tissue, and from person to person. This complexity compli-
cates efforts to prioritize the study of isodecoders and of
the tRFs they produce. Fourth, experimenters need to cope
with the constraint that quantification of individual tRFs
requires more involved approaches. While there is currently
one simple alternative, namely deep sequencing, it is also
an expensive solution to the problem of quantifying one or
only a few tRFs. Fifth, systems-level analyses have revealed
links between tRFs on one hand and RNAs/proteins on

the other that localize to different cellular compartments.
For example, tRFs from mitochondrial tRNAs are corre-
lated with mRNAs whose protein products are destined for
the nucleus or the cellular membrane. It is unclear currently
whether these correlations represent long-distance transfer
of information or result from the action of translocated
tRFs that interact directly with these mRNAs.

Adding to these matters are all of the findings that we
enumerated above and which highlight the need to expand
the traditional understanding of cancer and disease. More-
over, the time dynamics that are involved in disease devel-
opment now become important. For example, we discussed
how tRFs direct a temporal switch during the maturation
of stem cells, slowing translation long enough for myeloid
progenitors to differentiate.

In addition to mammals and plants, the findings we dis-
cussed above demonstrate important roles for tRFs in lower
eukaryotes (e.g. T. brucei), bacteria (e.g. S. coelicolor) and
archaea (e.g. H. volcanii). This is compelling evidence that
tRFs hold regulatory roles in all three life domains. It is now
clear that tRFs represent an elusive and, for the time being,
incompletely characterized dimension of cell biology. Col-
lectively, the findings described herein solidify tRFs as a di-
mension that warrants in-depth study.
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