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Global frog populations are threatened by an increasing number of environmental threats such as habitat
loss, disease, and pollution. Traditionally, in-person acoustic surveys of frogs have measured population loss
and conservation outcomes among these visually cryptic species. However, these methods rely heavily on
trained individuals and time-consuming field work. We propose an end-to-end workflow for the automatic
recording, presence-absence identification, and web page visualization of frog calls by their species. The
workflow encompasses recording of frog calls via custom Raspberry Pis, data-pushing to Jetstream cloud
computer, and species classification by three different machine learning models: Random Forest, Convolutional
Neural Network, and Recursive Neural Network.

CCS Concepts: • Hardware → Communication hardware, interfaces and storage; • Computing method-
ologies →Machine learning approaches; • Information systems→ Database design and models.
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1 INTRODUCTION
In the past few decades, habitat loss, disease, and pollution threaten frog populations globally.
Frogs are sensitive to these environmental changes, where they serve as bioindicators of ecosystem
health [11]. Frog call surveys inform conservation efforts and outcomes, but these sound-based
surveys are limited by labor and manual identification [14].
We have created an end-to-end acoustic workflow for the automatic capture, analysis, and

presence-absence identification of nine frog species. Calls are captured from the field with custom
Raspberry Pi recorders [9], organized into databases, and classified by species. Metadata is available
on a web portal as raw sound files, spectrograms, and species predictions. Species predictions may
come from three different machine learning models (Random Forest and two Neural Networks).
The Random Forest was faster in predicting, more accurate, and could predict more species than
the Neural Networks.
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2 METHODS
2.1 Data Management
Raspberry Pis capture frog calls at scheduled times with USB microphones and flash drives. Data is
appended to a database which merges into a master database on a Drupal [1] web portal hosted on
Jetstream Cloud [3, 12]. While recordings can be used, 5-minute Waveform Audio Files (WAV) files
from the Great Lakes Inventory and Monitoring Network served as the training and testing data
for all models.

The autodetec() function in the warbleR [4] package was optimized to isolate potential calls, or
signals, based on predetermined parameters, primarily duration and frequency. These parameters
exclude most non-frog calls, such as birds. By design, it captures overlapping signals, especially
if signal length or mean frequencies are very different. A table of 26 default signal features was
generated with the specan() function. Of the 26 features provided by warbleR pre-processing, only
14 were subset, based on results from the DecisionTreeClassifier’s feature_importance_ attribute
plots [5]. Month of calling was also added as a feature. Features were removed in order of least
importance pending stable ten-fold cross validation accuracy [10]. This output was fed into the
Random Forest model, while signal-cropped WAV files to were passed to the Neural Network
models.

Table 1. Summary of training data

Code Species Number of Calls
ANAM American toad 88
LIPI Northern leopard frog 37
LICL Green frog 455
HYVE Gray treefrogs 9830
PSMA Chorus frog 178
PSCR Spring peeper 10,000
LISY Wood frog 363
ACBL* Blanchard’s cricket frog 716
∗Neural networks do not include ACBL (Blanchard’s cricket frog)

Fig. 1. Workflow from custom Raspberry Pi’s to
Jetstream.

Fig. 2. Attribute plot of warbleR specan() features by
gini importance.
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2.2 Random Forest Model
The Random Forest model comprises 100 decision trees, truncated to a maximum depth of 10.
Tree truncation and sklearn’s OneVsRest Classification method were used to quantify probabilities
of call identification where 80+% positive probability are kept, while sub-80% are classified as
"unidentified". The 80% positive probability threshold is consistent with the accuracy required to
survey frogs for FrogWatch USA community science organization [6].
We implemented sklearn’s class_weight hyperparameter where weights are recalculated as

inversely proportional to class frequencies to address training sample imbalance (Table 1) [7]. The
Random Forest model’s hyperparameters (Table 2) were optimized to achieve the most accurate
class probabilities without sacrificing accuracy in 10-fold cross validation [10]. Confusion matrices
were used to identify which species were being misidentified [13], and these species predictions
were further investigated with class probabilities.

Table 2. Random Forest Hyperparameters

Hyperparameter Value
criterion gini
max_features n_features
class_weight balanced
n_estimators 100
max_depth 10
min_samples_leaf 1 height

2.3 Deep Learning: CNN/RNN Models
A Convolutional Neural Network (CNN) is a specific type of deep learning that uses fully connected
(dense) layers while a Recurrent Neural Network (RNN) is a sequential Neural Network model that
looks at information as ordered [15]. Raw training data was subjected to a series of transformations:
Fast-Fourier Transform, Short-time Fourier Transform/Hanning window, Mel banks, Mel Frequency
Cepstral Coefficients (Discrete Cosine Transform)[2]. This process creates a uniquely identifiable
sound profile of each species. Transformations did not allow very short signals to be processed,
leading to the exclusion of the Blanchard’s cricket frog from analysis. Efficiency and effectiveness
of the two Neural Networks were optimized using 10-fold cross validation and confusion matrices
as in the Random Forest. Optimization included batch normalization to improve convergence and
generalization in training models [2, 8], plus increasing the number of extracted samples fromWAV
files.

3 RESULTS
The Random Forest was 97.80% accurate, the CNN was 97.85% accurate, and the RNN was 97.38%
accurate in 10-fold cross validation (Table 3). While the overall accuracy for all models was compa-
rable, the Random Forest excels in minimizing prediction time and accepting very short calls. The
Random Forest model is 0.3596s/call faster than the Neural Networks in predictions. In multi-species
trials, a novel species was introduced and labeled as false positives by the RNN and Random Forest,
however false positives arose for four known species.
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Table 3. Comparing Classification Models

Random Forest* CNN RNN
Time to Build 12min 26s 50m 15s 51m 19s
Time to Predict 0.0004s/call 0.36s/call 0.37s/call
CV Accuracy 97.80% 97.85% 97.38%
Multi-Call Trial Accuracy 2 true pos, 5 false pos 0 true pos, 4 false pos 2 true pos, 5 false pos
∗Random Forest built and tested with nine species, as opposed to eight in NNs

4 CONCLUSION
For final implementation, we recommend the Random Forest model because it detects all species,
has the fastest prediction time, and is simple to rebuild and optimize. The RNN is superior to the
CNN because its LSTM layers allow the model to learn at a faster rate and better distinguish multiple
calls. In the future, false positives may be reduced by increasing the threshold for “unidentified”
calls. The Neural Networks may be improved by adjusting the sampling rate to handle shorter
calls. Adding the temperature of the environment as a signal feature may improve accuracy of the
Random Forest.
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