

IUScholarWorks at Indiana University South Bend

Secure Shared Continuous Query
Processing

Adaikkalavan, R., & Perez, T.

To cite this article: Adaikkalavan, Raman, and Thomas Perez. “Secure Shared

Continuous Query Processing.” SAC ’11: Proceedings of the 2011 ACM
Symposium on Applied Computing, Mar. 2011, pp. 1000–1005,
doi:10.1145/1982185.1982404.

This document has been made available through IUScholarWorks repository, a
service of the Indiana University Libraries. Copyrights on documents in
IUScholarWorks are held by their respective rights holder(s). Contact
iusw@indiana.edu for more information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUScholarWorks

https://core.ac.uk/display/344337151?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:iusw@indiana.edu

Secure Shared Continuous Query Processing

Raman Adaikkalavan and Thomas Perez
Computer and Information Sciences & Informatics

Indiana University South Bend
1700 Mishawaka Ave

South Bend, Indiana, USA
raman@cs.iusb.edu

ABSTRACT
Data stream management systems (DSMSs) are being used in di-
verse application domains (e.g., stock trading), however, the need
for processing data securely is becoming critical to several stream
applications (e.g., patient monitoring). In this paper, we introduce
a novel three stage (preprocessing, query processing, and post-
processing) framework to enforce access control in DSMSs. As op-
posed to existing systems, our framework allows continuous queries
to be shared when they have same or different privileges, does not
modify the query plans, introduces no new security operators, and
checks a tuple only once irrespective of the number of active con-
tinuous queries. In addition, it does not affect the DSMS quality of
service improvement mechanisms as query plans are not modifed.
We discuss the prototype implementation using the MavStream Data
Stream Management System. Finally, we discuss experimental eval-
uations to demonstrate the low overhead and feasibility of our ap-
proach.

1 Introduction
Data Stream Management Systems (DSMSs) [1, 2, 3, 4, 5] process
continuous queries (CQs) over stream data in real-time. Quality of
Service (QoS) plays a major role in data stream processing. Sev-
eral stream applications (e.g., patient monitoring) require DSMSs
to process data securely and provide stream data confdentiality.
For example, consider the patient monitoring application where a
patient’s critical condition requires an immediate response. As-
sume that data streams are generated from continuous monitoring
devices (e.g., heart rate monitor) attached to patients (i.e., they can
be driving a car). The DSMS can detect abnormal scenarios in
an online fashion and take various actions (e.g., alert physician).
On the other hand, if the DSMS cannot process the patient data
securely, it will lead to violation of data confdentiality and pri-
vacy laws (e.g., US Health Insurance Portability and Accountabil-
ity Act). Nevertheless, if the DSMS cannot satisfy the applica-
tion’s QoS requirements it can even lead to loss of lives. Access
control models and mechanisms specify and enforce authorization
policies (i.e, who can access what, when and how), preserving data
confdentiality. Existing systems [7, 8, 9] that provide access con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for proft or commercial advantage and that copies
bear this notice and the full citation on the frst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specifc
permission and/or a fee.
SAC’11 21-MAR-2011, TaiChung, Taiwan
Copyright 2011 ACM 978-1-4503-0113-8/11/03 ...$10.00.

trol to maintain data confdentiality use various techniques such as
query rewriting, post-processing, and security punctuations. These
approaches have several limitations and are discussed in detail in
Section 7. As DSMSs process high-speed data in real-time, access
control enforcement should not introduce a lot of overhead.

In this paper, we introduce a novel three stage framework to en-
force access control in a DSMS. The frst is the preprocessing stage
where tuples are checked for access control before entering the
query processor. The second is the query processing stage where
tuples are processed by privileged queries. The third is the post-
processing stage where the results are delivered to query creators.
Our framework does not introduce any special security operators.
It supports sharing of complete queries (i.e., all operators in the
query plan are shared) created by two or more users active in the
same role (user-level sharing), or active in different roles (role-level
sharing). We do not discuss sharing queries partially (system-level
sharing) where only a set of operators in a query plan are shared,
and is outside the scope of this paper. We discuss the enforcement
of Role-Based Access Control [10] (RBAC), in this paper, using
our framework. We also discuss the prototype implementation and
experimental evaluations using the MavStream [2, 4, 5] DSMS to
demonstrate the low overhead and feasibility of our approach.

Overview: We discuss DSMS and RBAC in Section 2. Access
control enforcement issues are discussed in Section 3. User-level
and role-level sharing are presented in Sections 4 and 5, respec-
tively. Prototype implementation and experimental evaluations are
discussed in Section 6. Related work is discussed in Section 7.
Conclusions and future work are presented in Section 8.

2 Background
In this section, we briefy discuss DSMS and RBAC.

2.1 Data Stream Management System (DSMS)
We have used the MavStream [2, 4, 5] DSMS to enforce RBAC. A
typical DSMS [1, 3, 5] architecture is shown in Figure 1. A Con-
tinuous Query (CQ) can be specifed using specifcation languages
[11], or as query plans [3]. The CQs defned using specifcation
languages are processed by the input processor, which generates a
query plan. Each query plan is a directed graph of operators (e.g.,
Select, Join). Each operator is associated with one or more input
queues1 and an output queue. One or more synposes2 [11] are as-
sociated with each operator (e.g., Join) that needs to maintain the
current state of the tuples for future evaluation of the operator. The
generated query plans are then instantiated, and query operators are
put in the ready state so that they can be executed.

1Queues are used by the operators to propagate tuples.
2Synposes are temporary storage structures used by the operators
(e.g., Join) that need to maintain a state.

1000

mailto:raman@cs.iusb.edu

Figure 1: Data Stream Management System

Based on a scheduling strategy (e.g., round robin), the scheduler
picks a query, an operator, or a path, and starts the execution. The
run-time optimizer monitors the system, and initiates load shed-
ding as and when required. Both these QoS improvement mech-
anisms minimize resource usage (e.g., queue size) and maximize
performance and throughput. In addition, other QoS improvement
mechanisms such as static and dynamic approximation techniques
[6] are used to control the size of synopses. All the input tuples
are frst processed by the Data Source Manager, which enqueues
the tuples to input queues of all the leaf operators associated with
the stream. In the directed graph of operators, the data tuples are
propagated from the leaf operator to the root operator. Each oper-
ator produces a stream (can also be a relation) of tuples. After a
processed tuple exits the query plan, the output manager sends it to
the query creators (or users).

2.2 Role-Based Access Control (RBAC)
Role-based access control [10] assigns object (e.g., tuple, fle) per-
missions to roles (e.g., doctor) that can then be assigned to more
than one subject (e.g., users). In any given session, a subject can
activate one or more assigned roles. After activating a role, when-
ever a subject creates an object, the active role is associated with
that object. Similarly, subjects are allowed to access objects only
if the active role(s) have the required permissions. ANSI RBAC
Standard [10] has four functional components. In this paper, we
will discuss the enforcement of Core or Flat RBAC, where a user
is assigned one or more roles and the user can activate the assigned
roles to access objects.

3 Access Control Enforcement Issues
To enforce access control, objects are set with permissions, sub-
jects are granted privileges, and subjects are allowed to process
only authorized objects. For example, fle payments.dat has the
permission (read to manager role), and user Bob is assigned
roles (programmer, manager). When RBAC is used, Bob is al-
lowed to access the fle payments.dat only when he is active in
role manager. Similarly, in a DSMS, subjects are the continuous
queries that process data on behalf of users, and objects are the
incoming data stream tuples.

Example: Patients have mobile medical devices that stream (i.e.,
send a tuple) their vitals every 30 seconds. The schemas for the data
streams HRStr (heart rate) and BPStr (blood pressure) are shown
below (timestamp (ts), patient id (patID), and device id (devID)):

HRStr (ts, patID, devID, pulseRate)
BPStr (ts, patID, devID, systolic, diastolic)

The continuous query CQ1 shown below computes the average
pulse rate and blood pressure over a sliding window of 2 minutes.
The set of input tuples are shown in Table 1.

CQ1: SELECT HRStr.patId, AVG(pulseRate),
AVG(systolic), AVG(diastolic)

FROM HRStr [Range 2 Minutes],
BPStr [Range 2 Minutes]

WHERE HRStr.patID = BPStr.patID
GROUP BY patID

Assume the following: User Bob is active in role doctor, and
user Alice is active in role administrator. Two patients with
patId 1 and patId 2, and their access control policies are:

Patient 1 Policy: Allow access to doctors
Patient 2 Policy: Allow access to nurses

Below, we discuss the enforcement issues in detail.
The stream schema should be modifed to include security poli-

cies. For example, patient 1 should be allowed to set his/her own se-
curity policy (e.g., policy 1) on their data. The granularity (stream,
tuple, attribute) at which the policies are specifed, and who (sys-
tem, data owner) can set the policies should be analyzed. In the
above example, CQ1 should be allowed to process only tuples that
authorizes CQ1. Thus, to enforce RBAC, a CQ must be associated
with roles and these roles can then act as that query’s privileges.
The query specifcation component needs to be modifed to handle
the role association. For each CQ specifed, the DSMS generates
a query plan consisting of operators, queues, and/or synopses. The
ways in which roles can be assigned to queries and the granularity
(query-level, operator-level) at which roles are assigned needs to be
analyzed. Multiple users who are active in same or different roles
can create the same CQ (i.e., same plan). When a query is created
by users active in the same roles the queries produce the same re-
sult and we term this sharing as user-level sharing. When the users
are active in different roles then these queries produce different re-
sults based on the associated roles, however, they have the same
query plan. We term this as role-level sharing. In order to support
sharing, CQ plan generation component should be analyzed and
modifed (if required).

The required access control checks for each tuple can be done at
different places (at each operator, within the query, or only once for
a tuple), and each has different costs associated with it. This plays
a major role as the access control checks must be performed for
each tuple and each query. In the above example, tuples from both
streams can be sent to CQ1 irrespective of the roles associated with
the query. Tuples can be dropped by enforcing access control using
a special fltering leaf operator, but this is expensive as all tuples are
processed by all the associated queries. In addition, this requires all
the unauthorized queries to receive and drop unauthorized tuples.
This is further complicated with role-level sharing. For example,
when a query is shared between different roles (e.g., doctor and
nurse), the Join operator needs to combine tuples based on the roles
in addition to the join condition. Moreover, the storage of tuples in
the synopses by Join operator must also be analyzed. When a query
outputs a tuple it must be sent to the user who created the query.
With role-level sharing, the query can emit tuples with different
roles, and the tuples must be sent to appropriate users. Thus, output
component needs to be modifed to handle access control and query
sharing.

4 Access Control Enforcement Framework:
User-Level Sharing

In this and Section 5, we will discuss solutions for all the issues
raised in Section 3. We assume that the DSMS shares queries

1001

HRStr BPStr
th

1 − 10 : 00 : 00, 1, X12U, 85 tb
1 − 10 : 00 : 00, 1, Y23K, 130, 80

th
2 − 10 : 00 : 30, 1, X12U, 84 tb

2 − 10 : 00 : 30, 1, Y23K, 130, 80
th

3 − 10 : 01 : 00, 1, X12U, 84 tb
3 − 10 : 01 : 00, 1, Y23K, 132, 82

th
4 − 10 : 01 : 30, 1, X12U, 95 tb

4 − 10 : 01 : 30, 1, Y23K, 136, 90
th

5 − 10 : 02 : 00, 2, X44C, 71 tb
5 − 10 : 02 : 00, 2, Y21B, 120, 75

Table 1: Data Stream Tuples

Figure 2: Access Control Enforcement Framework

between different users with the same roles, in this section, and
present our framework. Our proposed access control enforcement
framework is shown in Figure 2, and is used in the below discus-
sions. All the modifed components, in comparison to Figure 1, are
shown using boxes with white background and italics text.

4.1 Query Specifcation and Plan Generation
The specifcation of CQ1 shown in Section 3 is modifed (partially)
as shown below. The AS clause associates the role doctor with CQ1.
This authorizes the query to access any tuple that allow role doctor.

CQ1: AS doctor
SELECT HRStr.patId, AVG(pulseRate),

AVG(systolic), AVG(diastolic) ...

With systems where users can input a query plan object, the
above approach does not work. In our framework, whenever a user
creates a CQ, an active role of the user is associated with the CQ.
For example, if CQ1 is created by a user active in role R1, then CQ1 is
associated with role R1. This allows the query CQ1 to process data
streams, tuples or attributes that permit role R1. On the other hand,
situations where a user is active in more than one role are handled
by asking the user to choose one or more roles. We have added
security catalogs to store the relationship between the users, roles,
and CQs. In order to support sharing we assume that the underly-
ing DSMS’s query plan generator can identify two queries that are
the same [11], while generating the query plans. Once the system
identifes them, we use the user-role-query catalog shown in Figure
4 (discussed in Section 4.3) to associate roles and handle sharing.

4.2 Data Stream Input
Different approaches can be used to specify which roles have access
to a particular stream, tuple or attribute [7, 8, 9, 12, 13].

1. Access control policies can be pre-determined (e.g., based on
the stream source).

Figure 3: Access Control with User-Level Query Sharing

2. Access control policies can be embedded within a tuple using
a security attribute. It can also be streamed together with
each tuple using meta tuples. This approach is appropriate
when data providers need to control their data.

In this paper, we assume that each tuple contains a security at-
tribute, which includes a set of roles that defne permissions for that
tuple. A set of roles can be assigned with both conjunction (∧) and
disjunction (∨) of roles. For example, stream HRStr and tuples th1

and t5h (from Table 1) are modifed as shown below. The tuple t1h

allows access to role R1, and tuple th5 allows users who are active
in both roles R1 and R2.

HRStr(ts, patID, devID, pulseRate, roles)
th

1 : (10 : 00 : 00, 1, X12U, 85, R1)
th

5 : (10 : 02 : 00, 2, X44C, 71, R1 ∧ R2)

4.3 Stage I: Preprocessing
Figure 3(a) has Join and Select queries. The role-to-query map-
pings are shown in Figure 4. Assume that both CQ1 and CQ2 queries
are exactly the same, but submitted by users active in different
roles. Since we discuss only user-level sharing, in this section, there
are two instances of the same query plan. In Figure 3(a), all tuples
from stream HR (or HRStr from Section 3) are sent to the queues
associated with σ1, σ3, and σ5, when there is no access control.
Below, we discuss our approach to enforce access control.

CQs and incoming tuples have many-to-many relationship. As-
sume that m CQs are associated with stream HRStr, n data items
arrive each second via HRStr, and k (where k ≤ m) CQs have the
privileges to process each incoming tuple. To enforce access con-
trol, either the set of k authorized CQs needs to be determined for
each incoming data tuple, or each tuple should be sent to all CQs
and unauthorized tuples should be fltered by the CQs. This is the
most important step, as it enforces access control in two different
ways: “send tuples to authorized queries only" or “send all tuples

1002

Figure 4: User-Role-Query Catalog

Figure 5: Preprocessing: Input Routing

and let the queries flter". The former is more advantageous than
the latter as the access check is performed only once per tuple. Our
framework follows the frst approach discussed above.

If authorized CQs can be determined and tuples can be propa-
gated from the data source manager to only authorized leaf nodes,
as shown in Figure 3(b), there is no need for special flter operators
at each leaf node. This protects tuples from underprivileged CQs
and operators, and reduce resource usage. For example, only tu-
ples with role R1 from streams HR and BP should be propagated to
operators σ1 and σ2, respectively. It is also critical that this access
check operation, in the data source manager to determine which
queries can access the incoming tuple, should be carried out only
once for each tuple.

We have created a role-to-query structure to maintain query and
role associations. The structure design supports effcient insertions,
modifcations, deletions, and retrievals. This is critical as the data
source manager determines authorized CQs for every arriving tuple
using this structure. In addition, the input processor has to update
the structure every time a new CQ is created. We have designed and
developed an input routing structure shown in Figure 5(a), for stor-
ing and maintaining role-to-query mappings and to support user-
level sharing. The routing structure is a hash of a hash set. The frst
hash’s key is the role and the value is the set of associated queries.
The value for the second hash is the count of active users who re-
quire results from that query. For example, when tuple t1h (from
Section 4.2) with role R1 arrives, the data source manager retrieves
all the queries that are mapped to role R1 using the routing structure
in Figure 5(a). It retrieves query CQ1, and enqueues the tuple t1h to
the input queue of operator σ1 with role R1 as its permission. When
a role is associated with a query, the count is incremented for each
user that is executing the query, and has the said role activated. If a
user deactivates the role or stops the CQ, the count is decremented.
When a count is zero, the query can be disabled.

This stage supports user-level sharing and enforces access con-
trol by determining the set of authorized CQs for each incoming
tuple and by propagating the tuples to the authorized CQs.

Figure 6: Access Control with Role-Level Query Sharing

plan has the same role. The preprocessing stage allows the DSMS
to enforce access control prior to the propagation of a tuple to leaf
nodes. It moves access control enforcement outside the query plan
and, therefore, outside the query processor. As there is no mod-
ifcation to the query plan it neither modifes the query operator
semantics nor affects query processing.

4.5 Stage III: Post-Processing
The root operator of each CQ enqueues the fnal output tuple to
its output queue. Once enqueued these tuples are handled by the
post-processing stage. In this stage, the tuples are sent to the users
who have created the queries using the query-role-user catalog. For
example, the output from CQ1 should be sent to users U1 and U4
(see Figure 4).

5 Access Control Enforcement Framework:
Role-Level Sharing

In this section, we discuss RBAC enforcement when CQs are shared
between users with different roles. When role-level sharing needs
to be supported, all the query operators that are part of the query
plan should be able to handle the tuples with one or more roles.
Below, we discuss all the components except query specifcation
and data stream input, which were discussed in Section 4, as they
handle role-level sharing without any further modifcation. Figure
6 illustrates role-level sharing of queries CQ1 and CQ2 from Fig-
ure 3. As shown, operators σ1 and σ2 are combined to form the
operator σ1, 33.

5.1 Stage I: Preprocessing
Even with role-level sharing, the data source manager can propa-
gate tuples to appropriate CQs using the techniques discussed in
Section 4.3. For example, consider Figure 6(b) where tuples from
HRStr with role R2 is propagated to operators σ1,3 and σ5. On

4.4 Stage II: Query Processing
All the queues and sliding windows associated with operators store
tuples with only one role due to the user-level sharing. Since tuples
are enqueued to only authorized CQs, all the other operators in that
CQ can process the incoming tuple without any further checking of
role permissions. Thus, if tuples can be propagated from the data

the other hand, the same tuple cannot be sent to the same query
more than once, even when multiple roles satisfy the access control
checks. This is possible when queries are shared by different roles,
as each stream tuple can authorize multiple roles. The newly cre-
ated tuple-query timestamp cache shown in Figure 7 is used by the
data source manager to prevent duplicate propagation.

The state before the arrival of tuple t1h is shown in the left side
source manager to only authorized leaf nodes as shown in Figure
3(b), no additional checks are required to propagate this tuple to
the internal nodes, and fnally to the authorized user. This is due

in Figure 7. Assume that t1h enters the DSMS at 10:00:00 a.m.
with roles R1 and R2. The input routing structure from Figure 5(b)

to the fact that there is only user-level sharing, and the entire query 3We have used ’,’ to illustrate that two queries are combined.

1003

this point, there is one tuple in the left side synopsis and two in
the right side. Since there are two tuples that can match, T1h and T2b

are joined. If an output tuple is produced after join conditions are
met, it will have R1 as its permissions and is enqueued to its output
queue. This approach allows sharing of CQs with different permis-
sions using partitioned windows and matching the same roles.Figure 7: Tuple-Query Timestamp Cache

The cumulative approach joins tuples regardless of the roles in
the synopses. The output tuple created by the Join operator will
contain the cumulative roles as its permission set. We create cumu-is used to determine the authorized queries. Since t1h allows ac-
lative permissions using the Redundancy Law of Boolean Algebra. cess to R1 and R2, frst R1 is processed. This retrieves CQ1, 2 from
In the above example, when all the join conditions are met, cumu-Figure 5(b). Now, the cache shown in Figure 7 is accessed with
lative approach will create two tuples (T1h

1
b with a cumulative and TCQ1, 2 as the key. Since the timestamp stored there is less than the

permission Roles R1 AND R2) & (T1h and T2b with Role R1), as op-t1h’s timestamp (i.e., this tuple has not been propagated earlier), the
cache is updated as shown in the right side in Figure 7. Now, R2 is
taken for processing. When the input structure is invoked with R2
as the key, it retrieves CQ1, 2 and CQ3. When the timestamp cache
is invoked with CQ1, 2 as the key, the stored timestamp is the same
as the tuple’s timestamp and the tuple id also matches. When CQ3
is being processed, the timestamp on the left side is less than the

posed to the exact match approach that creates only one tuple (T1h

and T2b with Role R1). The tuple created with the cumulative per-
mission can only be accessed by users who are authorized to all the
included roles. In other words, the cumulative approach produces
tuples that further restricts the permissions. This approach can also
combine tuples without partitioned windows.

Both these approaches allow role-level sharing of queries and at
the same time join tuples without leaking or demoting any tuple
permissions. When the size of the sliding window is assumed to be
∞, the tuples produced by the cumulative approach subsumes the

tuple’s timestamp and the cache is updated as shown on the right
side. Since there are no more roles, the cache is used to enqueue
the tuple t1h to the left leaf operator of CQ1, 2 with roles R1, R2 and
CQ2 with role R2.

5.2 Stage II: Query Processing
In order to support role-level sharing we have not modifed any
of the operators except Join (1) and AGGREGATE. Below, we
discuss the modifcations made to the Join (1) operator processing.
We do not discuss the AGGREGATE operators, in this paper, due
to space constraints.

5.2.1 Join (1) Query Operator
Assume a sliding window4 of size one tuple, and the following
tuples (from Table 1):

tuples produced by the exact match approach. The permission set
created by cumulative approach is exactly same as the exact match
approach or more restrictive.

5.3 Stage III: Post-Processing
The post-processing stage discussed in Section 4.5 is modifed to
handle role-level sharing. We frst check the roles associated with
queries and then the users. Thus, a tuple exiting the root operator
is processed for each role that is part of the tuple permission set.

6 Prototype and Experiments
1
h

2
h (R2, 10:00:30a)(R1, 10:00:00a) & TT We have modifed the MavStream [2] DSMS developed using Java

1
b

2
b

3
b (R2, 10:01:00a)(R2, 10:00:00a), T (R1, 10:00:30a), & TT to support RBAC. We have created catalogs to store and main-

When T1b arrives, it is propagated to σ2,4 shown in Figure 6(b) tain security related data. We have modifed the input processor
to handle security specifcations, storing/updating the catalogs, and
to support user-level and role-level sharing. We have modifed the
data source manager so that it will only enqueue privileged tuples
to the input queue of the leaf operators. The Join operator algo-
rithms have been modifed to handle sharing. Since the MavStream
system does not support partitioned sliding windows, we have im-
plemented the cumulative approach discussed in Section 5. Finally,
we have modifed the CQ output manager to route the tuples to the
authorized users.

and then to right synopsis of 11,2. Since the sliding window size
is one tuple, when T2b arrives, should it replace T1b? These tuples
have two different roles, and replacing one with the other can lead
to unintended query results. We address this, in our framework,
by partitioning the sliding window [11] based on the roles. A tu-
ple with multiple roles resides in multiple partitions. For example,
sliding window (synopses) attached to the 11,2 will have two par-
titions with roles R1 and R2. An arriving input tuple with roles R1
and R2 will go to both the partitions R1 and R2. Thus, whenever a
tuple arrives it replaces only the tuples that have the same permis- Setup: For experimental evaluations, we ran the MavStream sys-
sion (i.e., in the same partition). The size of the sliding window can tem on a machine with the Linux Fedora 10 64-bit Operating Sys-
be maintained for each partition or for the entire set of tuples. tem, Intel Core2 Duo 2.0GHz processor, and 4GB of RAM. The

On the other hand, when T1h arrives, it is enqueued to σ1,3 and
fnally to the left synopsis attached to node 11,2, shown in Figure

datasets were obtained from the MavHome project [14]. Each test
was executed three times for the evaluations. Standard deviation for

6(b). When T1b arrives, it is propagated to σ2,4, and then to the all the tests was less than a second. The experiments used two input
right synopsis of 11,2. Though 11,2 has tuples from both sides, it streams (each stream with 500K to 1 Million Tuples), a query with

Join (1) and Project (Π) operators, Round Robin Priority schedul-
ing strategy, and no load shedding.

Datasets DS1 and DS4 had tuples with only role R1 in each stream.
The selectivity of the input routing was 100%. Datasets DS2 and

still cannot join them, as the two tuples have different permissions.
In our framework, we introduce two different approaches to join
tuples: 1) Exact Match: Wait till all the tuples with matching per-
missions arrive in appropriate partitions, 2) Cumulative: Join the
existing tuples with cumulative permissions.

DS5 had tuples with roles R1, R2, and R3. The selectivity of the
In the exact match approach, tuples T1h and T1b are not combined, input routing was at 100%. Five users were active: three in role

as they have different permissions. When T2b arrives, it is propa-
gated to σ2,4, then to 11,2, and is placed in the R1 partition. At

R1, two in R2, and two in R3. Datasets DS3 and DS6 had a uniform
random distribution of six roles: R1, R2, R3, R4, R5 and R6. The

4Sliding windows allow the blocking operators such as Join to pro- selectivity of the input routing was at 50%, as the same fve users
duce continuous output. and three roles were used (i.e., tuples with roles R4, R5 and R6

1004

Figure 8: Experimental Results

were dropped at the data source manager). Results can be viewed
in Figure 8. Each experiment builds on the previous to show costs.

• Exp#1 captured the current system as a control, without us-
ing any access control using data sets DS1 and DS4. Other
data sets were not used as they involve access control.

• Exp#2 we ran the DSMS with user-level sharing enabled us-
ing data sets DS1 and DS4. This included all the three stages.

• Exp#3 we ran the DSMS with role-level sharing enabled.
This included all the three stages with the modifed Join op-
erator algorithm based on the cumulative approach.

Analysis - User-Level Sharing: As shown in Figure 8, over-
head due to the access control enforcement (Exp#2) when com-
pared with Exp#1 is 0.7% (DS1) with 1M tuples and 2% (DS4)
with 2M tuples. Without user-level sharing, the system would have
executed 3 instances of the query.

Analysis - Role-Level Sharing: We evaluated the overhead us-
ing Exp#3. With 100% selectivity, Exp#3 took 52.586 seconds
for dataset DS2 and 103.355 seconds for DS5. When comparing
Exp#3 on DS2 and Exp#1 on DS1 (no access control), it is an over-
head of approximately 4%. When comparing Exp#3 on DS5 and
Exp#1 on DS4, the overhead is approximately 6.9%.

Analysis - Total Tuples Processed : The number of tuples pro-
cessed by the system overall is also reduced based on the selectivity
of the input routing. The total number of tuples processed by the
CQs with DS3 and DS6 are reduced by 50% (approximately) since
the selectivity of the input routing operator was set at 50%. This is
in contrast to the existing approaches where tuples are not fltered
before the query processing.

7 Related Work
In this section, we will highlight some of the problems with those
architectures. Punctuation-based enforcement of RBAC over data
streams is proposed in [7]. Access control policies are transmit-
ted every time using one or more security punctuations before the
actual data tuple is transmitted. Query punctuations defne the priv-
ileges for a CQ. Both punctuations are processed by a special fl-
ter operator (stream shield) that is part of the query plan. If the
access check is successful, the data tuples that follow the punctu-
ations are allowed to pass. Major limitations of this approach are:
1) A set of these fltering operators are placed throughout the query
plan. Thus, a data tuple and its corresponding punctuations entering
the system are routed to all queries (authorized and unauthorized)
and are dropped if the access check fails. 2) This approach also
modifes the query plan affecting the scheduling strategies and load
shedding provided by the underlying system. 3) If there is one or
more punctuations per data tuple, which is usually the case with
DSMS applications (e.g., health-care monitoring), and many con-
current data submitters, then it creates is a lot of overhead. 4) This
approach does not support sharing of queries.

The second architecture focuses on supporting RBAC via query
rewriting techniques [13, 8]. To enforce access control policies,

query plans are rewritten and policies are mapped to a set of map
and flter operations. When a query is activated, the privileges of
the query submitter are used to produce the resultant query plan.
The major limitations of this approach are the modifcation of query
plans and embedding access control within the query plan, affecting
QoS optimizations and preventing query sharing. The fnal archi-
tecture [9] uses a post-query flter to enforce access control policies.
The flter applies security policies after query processing but before
a user receives the results from the DSMS. The major limitations
of this model are: 1) Access control is only applied at the stream
level. 2) All tuples have to be processed by all queries and fnally
fltered before the result is shown.

8 Conclusions and Future Work
We discussed various issues that need to be addressed to enforce ac-
cess control and support user-level and role-level sharing in DSMSs.
We presented our three stage framework to enforce access con-
trol without introducing special operators, rewriting or modifying
query plans, or affecting QoS improvements. Our framework moved
access control enforcement outside the query processing. Our ap-
proach prevents underprivileged CQs from processing all tuples.
We have shown the feasibility and demonstrated the low overhead
of our approach (i.e., less than 2% for user-level sharing and 6.9%
for role-level sharing), and also reduced the total number of tuples
processed by the query processor. As part of the future work, we
are investigating to support attribute-level access control, system-
level sharing, and implementation of exact match approach.

9 Acknowledgments
This work was supported, in part, by IU South Bend Faculty Re-
search Grant. We would like to thank Prof. Sharma Chakravarthy
for providing us with the MavStream DSMS.

10 References
[1] B. Babcock et al., “Models and issues in data stream systems.” in

PODS, June 2002, pp. 1–16.
[2] A. Gilani, S. Sonune et al., “The Anatomy of a Stream Processing

System,” in BNCOD, 2006, pp. 232–239.
[3] D. Carney, U. Cetintemel, et al., “Monitoring streams - a new class

of data management applications,” in VLDB, Sep 2002.
[4] Q. Jiang, R. Adaikkalavan, and S. Chakravarthy, “MavEStream:

Synergistic Integration of Stream and Event Processing.” in IEEE
International Workshop on Data Stream Processing, ICDT, Jul. 2007.

[5] S. Chakravarthy and Q. Jiang, Stream Data Processing: A Quality of
Service Perspective, ser. Advances in Database Systems , Vol. 36.
Springer, 2009.

[6] R. Motwani, J. Widom et al., “Query processing, resource
management, and approximation,” in CIDR, 2003, pp. 245–256.

[7] R. V. Nehme, E. A. Rundensteiner, and E. Bertino, “A security
punctuation framework for enforcing access control on streaming
data,” in ICDE, 2008, pp. 406–415.

[8] B. Carminati, E. Ferrari, and K.-L. Tan, “Enforcing access control
over data streams,” in ACM SACMAT, 2007, pp. 21–30.

[9] W. Lindner and J. Meier, “Securing the borealis data stream engine,”
in IDEAS, 2006, pp. 137–147.

[10] RBAC Standard, ANSI INCITS 359-2004, 2004.
[11] A. Arasu, S. Babu, and J. Widom, “The CQL continuous query

language: semantic foundations and query execution,” VLDB
Journal, vol. 15, no. 2, pp. 121–142, 2006.

[12] R. V. Nehme, H.-S. Lim et al., “StreamShield: A stream-centric
approach towards security and privacy in data stream environments,”
in ACM SIGMOD, 2009, pp. 1027–1030.

[13] J. Cao, B. Carminati, E. Ferrari, and K.-L. Tan, “Acstream: Enforcing
access control over data streams,” in ICDE, 2009, pp. 1495–1498.

[14] Q. Jiang and S. Chakravarthy, “Data stream management system for
MavHome,” in ACM SAC, 2004, pp. 654–655.

1005

