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ABSTRACT 
Data stream management systems (DSMSs) are being used in di-
verse application domains (e.g., stock trading), however, the need 
for processing data securely is becoming critical to several stream 
applications (e.g., patient monitoring). In this paper, we introduce 
a novel three stage (preprocessing, query processing, and post-
processing) framework to enforce access control in DSMSs. As op-
posed to existing systems, our framework allows continuous queries 
to be shared when they have same or different privileges, does not 
modify the query plans, introduces no new security operators, and 
checks a tuple only once irrespective of the number of active con-
tinuous queries. In addition, it does not affect the DSMS quality of 
service improvement mechanisms as query plans are not modifed. 
We discuss the prototype implementation using the MavStream Data 
Stream Management System. Finally, we discuss experimental eval-
uations to demonstrate the low overhead and feasibility of our ap-
proach. 

1 Introduction 
Data Stream Management Systems (DSMSs) [1, 2, 3, 4, 5] process 
continuous queries (CQs) over stream data in real-time. Quality of 
Service (QoS) plays a major role in data stream processing. Sev-
eral stream applications (e.g., patient monitoring) require DSMSs 
to process data securely and provide stream data confdentiality. 
For example, consider the patient monitoring application where a 
patient’s critical condition requires an immediate response. As-
sume that data streams are generated from continuous monitoring 
devices (e.g., heart rate monitor) attached to patients (i.e., they can 
be driving a car). The DSMS can detect abnormal scenarios in 
an online fashion and take various actions (e.g., alert physician). 
On the other hand, if the DSMS cannot process the patient data 
securely, it will lead to violation of data confdentiality and pri-
vacy laws (e.g., US Health Insurance Portability and Accountabil-
ity Act). Nevertheless, if the DSMS cannot satisfy the applica-
tion’s QoS requirements it can even lead to loss of lives. Access 
control models and mechanisms specify and enforce authorization 
policies (i.e, who can access what, when and how), preserving data 
confdentiality. Existing systems [7, 8, 9] that provide access con-
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trol to maintain data confdentiality use various techniques such as 
query rewriting, post-processing, and security punctuations. These 
approaches have several limitations and are discussed in detail in 
Section 7. As DSMSs process high-speed data in real-time, access 
control enforcement should not introduce a lot of overhead. 

In this paper, we introduce a novel three stage framework to en-
force access control in a DSMS. The frst is the preprocessing stage 
where tuples are checked for access control before entering the 
query processor. The second is the query processing stage where 
tuples are processed by privileged queries. The third is the post-
processing stage where the results are delivered to query creators. 
Our framework does not introduce any special security operators. 
It supports sharing of complete queries (i.e., all operators in the 
query plan are shared) created by two or more users active in the 
same role (user-level sharing), or active in different roles (role-level 
sharing). We do not discuss sharing queries partially (system-level 
sharing) where only a set of operators in a query plan are shared, 
and is outside the scope of this paper. We discuss the enforcement 
of Role-Based Access Control [10] (RBAC), in this paper, using 
our framework. We also discuss the prototype implementation and 
experimental evaluations using the MavStream [2, 4, 5] DSMS to 
demonstrate the low overhead and feasibility of our approach. 

Overview: We discuss DSMS and RBAC in Section 2. Access 
control enforcement issues are discussed in Section 3. User-level 
and role-level sharing are presented in Sections 4 and 5, respec-
tively. Prototype implementation and experimental evaluations are 
discussed in Section 6. Related work is discussed in Section 7. 
Conclusions and future work are presented in Section 8. 

2 Background 
In this section, we briefy discuss DSMS and RBAC. 

2.1 Data Stream Management System (DSMS) 
We have used the MavStream [2, 4, 5] DSMS to enforce RBAC. A 
typical DSMS [1, 3, 5] architecture is shown in Figure 1. A Con-
tinuous Query (CQ) can be specifed using specifcation languages 
[11], or as query plans [3]. The CQs defned using specifcation 
languages are processed by the input processor, which generates a 
query plan. Each query plan is a directed graph of operators (e.g., 
Select, Join). Each operator is associated with one or more input 
queues1 and an output queue. One or more synposes2 [11] are as-
sociated with each operator (e.g., Join) that needs to maintain the 
current state of the tuples for future evaluation of the operator. The 
generated query plans are then instantiated, and query operators are 
put in the ready state so that they can be executed. 

1Queues are used by the operators to propagate tuples. 
2Synposes are temporary storage structures used by the operators 
(e.g., Join) that need to maintain a state. 
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Figure 1: Data Stream Management System 

Based on a scheduling strategy (e.g., round robin), the scheduler 
picks a query, an operator, or a path, and starts the execution. The 
run-time optimizer monitors the system, and initiates load shed-
ding as and when required. Both these QoS improvement mech-
anisms minimize resource usage (e.g., queue size) and maximize 
performance and throughput. In addition, other QoS improvement 
mechanisms such as static and dynamic approximation techniques 
[6] are used to control the size of synopses. All the input tuples 
are frst processed by the Data Source Manager, which enqueues 
the tuples to input queues of all the leaf operators associated with 
the stream. In the directed graph of operators, the data tuples are 
propagated from the leaf operator to the root operator. Each oper-
ator produces a stream (can also be a relation) of tuples. After a 
processed tuple exits the query plan, the output manager sends it to 
the query creators (or users). 

2.2 Role-Based Access Control (RBAC) 
Role-based access control [10] assigns object (e.g., tuple, fle) per-
missions to roles (e.g., doctor) that can then be assigned to more 
than one subject (e.g., users). In any given session, a subject can 
activate one or more assigned roles. After activating a role, when-
ever a subject creates an object, the active role is associated with 
that object. Similarly, subjects are allowed to access objects only 
if the active role(s) have the required permissions. ANSI RBAC 
Standard [10] has four functional components. In this paper, we 
will discuss the enforcement of Core or Flat RBAC, where a user 
is assigned one or more roles and the user can activate the assigned 
roles to access objects. 

3 Access Control Enforcement Issues 
To enforce access control, objects are set with permissions, sub-
jects are granted privileges, and subjects are allowed to process 
only authorized objects. For example, fle payments.dat has the 
permission (read to manager role), and user Bob is assigned 
roles (programmer, manager). When RBAC is used, Bob is al-
lowed to access the fle payments.dat only when he is active in 
role manager. Similarly, in a DSMS, subjects are the continuous 
queries that process data on behalf of users, and objects are the 
incoming data stream tuples. 

Example: Patients have mobile medical devices that stream (i.e., 
send a tuple) their vitals every 30 seconds. The schemas for the data 
streams HRStr (heart rate) and BPStr (blood pressure) are shown 
below (timestamp (ts), patient id (patID), and device id (devID)): 

HRStr (ts, patID, devID, pulseRate) 
BPStr (ts, patID, devID, systolic, diastolic) 

The continuous query CQ1 shown below computes the average 
pulse rate and blood pressure over a sliding window of 2 minutes. 
The set of input tuples are shown in Table 1. 

CQ1: SELECT HRStr.patId, AVG(pulseRate), 
AVG(systolic), AVG(diastolic) 

FROM HRStr [Range 2 Minutes], 
BPStr [Range 2 Minutes] 

WHERE HRStr.patID = BPStr.patID 
GROUP BY patID 

Assume the following: User Bob is active in role doctor, and 
user Alice is active in role administrator. Two patients with 
patId 1 and patId 2, and their access control policies are: 

Patient 1 Policy: Allow access to doctors 
Patient 2 Policy: Allow access to nurses 

Below, we discuss the enforcement issues in detail. 
The stream schema should be modifed to include security poli-

cies. For example, patient 1 should be allowed to set his/her own se-
curity policy (e.g., policy 1) on their data. The granularity (stream, 
tuple, attribute) at which the policies are specifed, and who (sys-
tem, data owner) can set the policies should be analyzed. In the 
above example, CQ1 should be allowed to process only tuples that 
authorizes CQ1. Thus, to enforce RBAC, a CQ must be associated 
with roles and these roles can then act as that query’s privileges. 
The query specifcation component needs to be modifed to handle 
the role association. For each CQ specifed, the DSMS generates 
a query plan consisting of operators, queues, and/or synopses. The 
ways in which roles can be assigned to queries and the granularity 
(query-level, operator-level) at which roles are assigned needs to be 
analyzed. Multiple users who are active in same or different roles 
can create the same CQ (i.e., same plan). When a query is created 
by users active in the same roles the queries produce the same re-
sult and we term this sharing as user-level sharing. When the users 
are active in different roles then these queries produce different re-
sults based on the associated roles, however, they have the same 
query plan. We term this as role-level sharing. In order to support 
sharing, CQ plan generation component should be analyzed and 
modifed (if required). 

The required access control checks for each tuple can be done at 
different places (at each operator, within the query, or only once for 
a tuple), and each has different costs associated with it. This plays 
a major role as the access control checks must be performed for 
each tuple and each query. In the above example, tuples from both 
streams can be sent to CQ1 irrespective of the roles associated with 
the query. Tuples can be dropped by enforcing access control using 
a special fltering leaf operator, but this is expensive as all tuples are 
processed by all the associated queries. In addition, this requires all 
the unauthorized queries to receive and drop unauthorized tuples. 
This is further complicated with role-level sharing. For example, 
when a query is shared between different roles (e.g., doctor and 
nurse), the Join operator needs to combine tuples based on the roles 
in addition to the join condition. Moreover, the storage of tuples in 
the synopses by Join operator must also be analyzed. When a query 
outputs a tuple it must be sent to the user who created the query. 
With role-level sharing, the query can emit tuples with different 
roles, and the tuples must be sent to appropriate users. Thus, output 
component needs to be modifed to handle access control and query 
sharing. 

4 Access Control Enforcement Framework: 
User-Level Sharing 

In this and Section 5, we will discuss solutions for all the issues 
raised in Section 3. We assume that the DSMS shares queries 
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HRStr BPStr 
th 

1 − 10 : 00 : 00, 1, X12U, 85 tb 
1 − 10 : 00 : 00, 1, Y23K, 130, 80 

th 
2 − 10 : 00 : 30, 1, X12U, 84 tb 

2 − 10 : 00 : 30, 1, Y23K, 130, 80 
th 

3 − 10 : 01 : 00, 1, X12U, 84 tb 
3 − 10 : 01 : 00, 1, Y23K, 132, 82 

th 
4 − 10 : 01 : 30, 1, X12U, 95 tb 

4 − 10 : 01 : 30, 1, Y23K, 136, 90 
th 

5 − 10 : 02 : 00, 2, X44C, 71 tb 
5 − 10 : 02 : 00, 2, Y21B, 120, 75 

Table 1: Data Stream Tuples 

Figure 2: Access Control Enforcement Framework 

between different users with the same roles, in this section, and 
present our framework. Our proposed access control enforcement 
framework is shown in Figure 2, and is used in the below discus-
sions. All the modifed components, in comparison to Figure 1, are 
shown using boxes with white background and italics text. 

4.1 Query Specifcation and Plan Generation 
The specifcation of CQ1 shown in Section 3 is modifed (partially) 
as shown below. The AS clause associates the role doctor with CQ1. 
This authorizes the query to access any tuple that allow role doctor. 

CQ1: AS doctor 
SELECT HRStr.patId, AVG(pulseRate), 

AVG(systolic), AVG(diastolic) ... 

With systems where users can input a query plan object, the 
above approach does not work. In our framework, whenever a user 
creates a CQ, an active role of the user is associated with the CQ. 
For example, if CQ1 is created by a user active in role R1, then CQ1 is 
associated with role R1. This allows the query CQ1 to process data 
streams, tuples or attributes that permit role R1. On the other hand, 
situations where a user is active in more than one role are handled 
by asking the user to choose one or more roles. We have added 
security catalogs to store the relationship between the users, roles, 
and CQs. In order to support sharing we assume that the underly-
ing DSMS’s query plan generator can identify two queries that are 
the same [11], while generating the query plans. Once the system 
identifes them, we use the user-role-query catalog shown in Figure 
4 (discussed in Section 4.3) to associate roles and handle sharing. 

4.2 Data Stream Input 
Different approaches can be used to specify which roles have access 
to a particular stream, tuple or attribute [7, 8, 9, 12, 13]. 

1. Access control policies can be pre-determined (e.g., based on 
the stream source). 

Figure 3: Access Control with User-Level Query Sharing 

2. Access control policies can be embedded within a tuple using 
a security attribute. It can also be streamed together with 
each tuple using meta tuples. This approach is appropriate 
when data providers need to control their data. 

In this paper, we assume that each tuple contains a security at-
tribute, which includes a set of roles that defne permissions for that 
tuple. A set of roles can be assigned with both conjunction (∧) and 
disjunction (∨) of roles. For example, stream HRStr and tuples th1 

and t5h (from Table 1) are modifed as shown below. The tuple t1h 

allows access to role R1, and tuple th5 allows users who are active 
in both roles R1 and R2. 

HRStr(ts, patID, devID, pulseRate, roles) 
th

1 : (10 : 00 : 00, 1, X12U, 85, R1) 
th

5 : (10 : 02 : 00, 2, X44C, 71, R1 ∧ R2) 

4.3 Stage I: Preprocessing 
Figure 3(a) has Join and Select queries. The role-to-query map-
pings are shown in Figure 4. Assume that both CQ1 and CQ2 queries 
are exactly the same, but submitted by users active in different 
roles. Since we discuss only user-level sharing, in this section, there 
are two instances of the same query plan. In Figure 3(a), all tuples 
from stream HR (or HRStr from Section 3) are sent to the queues 
associated with σ1, σ3, and σ5, when there is no access control. 
Below, we discuss our approach to enforce access control. 

CQs and incoming tuples have many-to-many relationship. As-
sume that m CQs are associated with stream HRStr, n data items 
arrive each second via HRStr, and k (where k ≤ m) CQs have the 
privileges to process each incoming tuple. To enforce access con-
trol, either the set of k authorized CQs needs to be determined for 
each incoming data tuple, or each tuple should be sent to all CQs 
and unauthorized tuples should be fltered by the CQs. This is the 
most important step, as it enforces access control in two different 
ways: “send tuples to authorized queries only" or “send all tuples 
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Figure 4: User-Role-Query Catalog 

Figure 5: Preprocessing: Input Routing 

and let the queries flter". The former is more advantageous than 
the latter as the access check is performed only once per tuple. Our 
framework follows the frst approach discussed above. 

If authorized CQs can be determined and tuples can be propa-
gated from the data source manager to only authorized leaf nodes, 
as shown in Figure 3(b), there is no need for special flter operators 
at each leaf node. This protects tuples from underprivileged CQs 
and operators, and reduce resource usage. For example, only tu-
ples with role R1 from streams HR and BP should be propagated to 
operators σ1 and σ2, respectively. It is also critical that this access 
check operation, in the data source manager to determine which 
queries can access the incoming tuple, should be carried out only 
once for each tuple. 

We have created a role-to-query structure to maintain query and 
role associations. The structure design supports effcient insertions, 
modifcations, deletions, and retrievals. This is critical as the data 
source manager determines authorized CQs for every arriving tuple 
using this structure. In addition, the input processor has to update 
the structure every time a new CQ is created. We have designed and 
developed an input routing structure shown in Figure 5(a), for stor-
ing and maintaining role-to-query mappings and to support user-
level sharing. The routing structure is a hash of a hash set. The frst 
hash’s key is the role and the value is the set of associated queries. 
The value for the second hash is the count of active users who re-
quire results from that query. For example, when tuple t1h (from 
Section 4.2) with role R1 arrives, the data source manager retrieves 
all the queries that are mapped to role R1 using the routing structure 
in Figure 5(a). It retrieves query CQ1, and enqueues the tuple t1h to 
the input queue of operator σ1 with role R1 as its permission. When 
a role is associated with a query, the count is incremented for each 
user that is executing the query, and has the said role activated. If a 
user deactivates the role or stops the CQ, the count is decremented. 
When a count is zero, the query can be disabled. 

This stage supports user-level sharing and enforces access con-
trol by determining the set of authorized CQs for each incoming 
tuple and by propagating the tuples to the authorized CQs. 

Figure 6: Access Control with Role-Level Query Sharing 

plan has the same role. The preprocessing stage allows the DSMS 
to enforce access control prior to the propagation of a tuple to leaf 
nodes. It moves access control enforcement outside the query plan 
and, therefore, outside the query processor. As there is no mod-
ifcation to the query plan it neither modifes the query operator 
semantics nor affects query processing. 

4.5 Stage III: Post-Processing 
The root operator of each CQ enqueues the fnal output tuple to 
its output queue. Once enqueued these tuples are handled by the 
post-processing stage. In this stage, the tuples are sent to the users 
who have created the queries using the query-role-user catalog. For 
example, the output from CQ1 should be sent to users U1 and U4 
(see Figure 4). 

5 Access Control Enforcement Framework: 
Role-Level Sharing 

In this section, we discuss RBAC enforcement when CQs are shared 
between users with different roles. When role-level sharing needs 
to be supported, all the query operators that are part of the query 
plan should be able to handle the tuples with one or more roles. 
Below, we discuss all the components except query specifcation 
and data stream input, which were discussed in Section 4, as they 
handle role-level sharing without any further modifcation. Figure 
6 illustrates role-level sharing of queries CQ1 and CQ2 from Fig-
ure 3. As shown, operators σ1 and σ2 are combined to form the 
operator σ1, 33. 

5.1 Stage I: Preprocessing 
Even with role-level sharing, the data source manager can propa-
gate tuples to appropriate CQs using the techniques discussed in 
Section 4.3. For example, consider Figure 6(b) where tuples from 
HRStr with role R2 is propagated to operators σ1,3 and σ5. On 

4.4 Stage II: Query Processing 
All the queues and sliding windows associated with operators store 
tuples with only one role due to the user-level sharing. Since tuples 
are enqueued to only authorized CQs, all the other operators in that 
CQ can process the incoming tuple without any further checking of 
role permissions. Thus, if tuples can be propagated from the data 

the other hand, the same tuple cannot be sent to the same query 
more than once, even when multiple roles satisfy the access control 
checks. This is possible when queries are shared by different roles, 
as each stream tuple can authorize multiple roles. The newly cre-
ated tuple-query timestamp cache shown in Figure 7 is used by the 
data source manager to prevent duplicate propagation. 

The state before the arrival of tuple t1h is shown in the left side 
source manager to only authorized leaf nodes as shown in Figure 
3(b), no additional checks are required to propagate this tuple to 
the internal nodes, and fnally to the authorized user. This is due 

in Figure 7. Assume that t1h enters the DSMS at 10:00:00 a.m. 
with roles R1 and R2. The input routing structure from Figure 5(b) 

to the fact that there is only user-level sharing, and the entire query 3We have used ’,’ to illustrate that two queries are combined. 
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this point, there is one tuple in the left side synopsis and two in 
the right side. Since there are two tuples that can match, T1h and T2b 

are joined. If an output tuple is produced after join conditions are 
met, it will have R1 as its permissions and is enqueued to its output 
queue. This approach allows sharing of CQs with different permis-
sions using partitioned windows and matching the same roles.Figure 7: Tuple-Query Timestamp Cache 

The cumulative approach joins tuples regardless of the roles in 
the synopses. The output tuple created by the Join operator will 
contain the cumulative roles as its permission set. We create cumu-is used to determine the authorized queries. Since t1h allows ac-
lative permissions using the Redundancy Law of Boolean Algebra. cess to R1 and R2, frst R1 is processed. This retrieves CQ1, 2 from 
In the above example, when all the join conditions are met, cumu-Figure 5(b). Now, the cache shown in Figure 7 is accessed with 
lative approach will create two tuples (T1h 

1
b with a cumulative and TCQ1, 2 as the key. Since the timestamp stored there is less than the 

permission Roles R1 AND R2) & (T1h and T2b with Role R1), as op-t1h’s timestamp (i.e., this tuple has not been propagated earlier), the 
cache is updated as shown in the right side in Figure 7. Now, R2 is 
taken for processing. When the input structure is invoked with R2 
as the key, it retrieves CQ1, 2 and CQ3. When the timestamp cache 
is invoked with CQ1, 2 as the key, the stored timestamp is the same 
as the tuple’s timestamp and the tuple id also matches. When CQ3 
is being processed, the timestamp on the left side is less than the 

posed to the exact match approach that creates only one tuple (T1h 

and T2b with Role R1). The tuple created with the cumulative per-
mission can only be accessed by users who are authorized to all the 
included roles. In other words, the cumulative approach produces 
tuples that further restricts the permissions. This approach can also 
combine tuples without partitioned windows. 

Both these approaches allow role-level sharing of queries and at 
the same time join tuples without leaking or demoting any tuple 
permissions. When the size of the sliding window is assumed to be 
∞, the tuples produced by the cumulative approach subsumes the 

tuple’s timestamp and the cache is updated as shown on the right 
side. Since there are no more roles, the cache is used to enqueue 
the tuple t1h to the left leaf operator of CQ1, 2 with roles R1, R2 and 
CQ2 with role R2. 

5.2 Stage II: Query Processing 
In order to support role-level sharing we have not modifed any 
of the operators except Join (1) and AGGREGATE. Below, we 
discuss the modifcations made to the Join (1) operator processing. 
We do not discuss the AGGREGATE operators, in this paper, due 
to space constraints. 

5.2.1 Join (1) Query Operator 
Assume a sliding window4 of size one tuple, and the following 
tuples (from Table 1): 

tuples produced by the exact match approach. The permission set 
created by cumulative approach is exactly same as the exact match 
approach or more restrictive. 

5.3 Stage III: Post-Processing 
The post-processing stage discussed in Section 4.5 is modifed to 
handle role-level sharing. We frst check the roles associated with 
queries and then the users. Thus, a tuple exiting the root operator 
is processed for each role that is part of the tuple permission set. 

6 Prototype and Experiments 
1
h 

2
h (R2, 10:00:30a)(R1, 10:00:00a) & TT We have modifed the MavStream [2] DSMS developed using Java 

1
b 

2
b 

3
b (R2, 10:01:00a)(R2, 10:00:00a), T (R1, 10:00:30a), & TT to support RBAC. We have created catalogs to store and main-

When T1b arrives, it is propagated to σ2,4 shown in Figure 6(b) tain security related data. We have modifed the input processor 
to handle security specifcations, storing/updating the catalogs, and 
to support user-level and role-level sharing. We have modifed the 
data source manager so that it will only enqueue privileged tuples 
to the input queue of the leaf operators. The Join operator algo-
rithms have been modifed to handle sharing. Since the MavStream 
system does not support partitioned sliding windows, we have im-
plemented the cumulative approach discussed in Section 5. Finally, 
we have modifed the CQ output manager to route the tuples to the 
authorized users. 

and then to right synopsis of 11,2. Since the sliding window size 
is one tuple, when T2b arrives, should it replace T1b? These tuples 
have two different roles, and replacing one with the other can lead 
to unintended query results. We address this, in our framework, 
by partitioning the sliding window [11] based on the roles. A tu-
ple with multiple roles resides in multiple partitions. For example, 
sliding window (synopses) attached to the 11,2 will have two par-
titions with roles R1 and R2. An arriving input tuple with roles R1 
and R2 will go to both the partitions R1 and R2. Thus, whenever a 
tuple arrives it replaces only the tuples that have the same permis- Setup: For experimental evaluations, we ran the MavStream sys-
sion (i.e., in the same partition). The size of the sliding window can tem on a machine with the Linux Fedora 10 64-bit Operating Sys-
be maintained for each partition or for the entire set of tuples. tem, Intel Core2 Duo 2.0GHz processor, and 4GB of RAM. The 

On the other hand, when T1h arrives, it is enqueued to σ1,3 and 
fnally to the left synopsis attached to node 11,2, shown in Figure 

datasets were obtained from the MavHome project [14]. Each test 
was executed three times for the evaluations. Standard deviation for 

6(b). When T1b arrives, it is propagated to σ2,4, and then to the all the tests was less than a second. The experiments used two input 
right synopsis of 11,2. Though 11,2 has tuples from both sides, it streams (each stream with 500K to 1 Million Tuples), a query with 

Join (1) and Project (Π) operators, Round Robin Priority schedul-
ing strategy, and no load shedding. 

Datasets DS1 and DS4 had tuples with only role R1 in each stream. 
The selectivity of the input routing was 100%. Datasets DS2 and 

still cannot join them, as the two tuples have different permissions. 
In our framework, we introduce two different approaches to join 
tuples: 1) Exact Match: Wait till all the tuples with matching per-
missions arrive in appropriate partitions, 2) Cumulative: Join the 
existing tuples with cumulative permissions. 

DS5 had tuples with roles R1, R2, and R3. The selectivity of the 
In the exact match approach, tuples T1h and T1b are not combined, input routing was at 100%. Five users were active: three in role 

as they have different permissions. When T2b arrives, it is propa-
gated to σ2,4, then to 11,2, and is placed in the R1 partition. At 

R1, two in R2, and two in R3. Datasets DS3 and DS6 had a uniform 
random distribution of six roles: R1, R2, R3, R4, R5 and R6. The 

4Sliding windows allow the blocking operators such as Join to pro- selectivity of the input routing was at 50%, as the same fve users 
duce continuous output. and three roles were used (i.e., tuples with roles R4, R5 and R6 
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Figure 8: Experimental Results 

were dropped at the data source manager). Results can be viewed 
in Figure 8. Each experiment builds on the previous to show costs. 

• Exp#1 captured the current system as a control, without us-
ing any access control using data sets DS1 and DS4. Other 
data sets were not used as they involve access control. 

• Exp#2 we ran the DSMS with user-level sharing enabled us-
ing data sets DS1 and DS4. This included all the three stages. 

• Exp#3 we ran the DSMS with role-level sharing enabled. 
This included all the three stages with the modifed Join op-
erator algorithm based on the cumulative approach. 

Analysis - User-Level Sharing: As shown in Figure 8, over-
head due to the access control enforcement (Exp#2) when com-
pared with Exp#1 is 0.7% (DS1) with 1M tuples and 2% (DS4) 
with 2M tuples. Without user-level sharing, the system would have 
executed 3 instances of the query. 

Analysis - Role-Level Sharing: We evaluated the overhead us-
ing Exp#3. With 100% selectivity, Exp#3 took 52.586 seconds 
for dataset DS2 and 103.355 seconds for DS5. When comparing 
Exp#3 on DS2 and Exp#1 on DS1 (no access control), it is an over-
head of approximately 4%. When comparing Exp#3 on DS5 and 
Exp#1 on DS4, the overhead is approximately 6.9%. 

Analysis - Total Tuples Processed : The number of tuples pro-
cessed by the system overall is also reduced based on the selectivity 
of the input routing. The total number of tuples processed by the 
CQs with DS3 and DS6 are reduced by 50% (approximately) since 
the selectivity of the input routing operator was set at 50%. This is 
in contrast to the existing approaches where tuples are not fltered 
before the query processing. 

7 Related Work 
In this section, we will highlight some of the problems with those 
architectures. Punctuation-based enforcement of RBAC over data 
streams is proposed in [7]. Access control policies are transmit-
ted every time using one or more security punctuations before the 
actual data tuple is transmitted. Query punctuations defne the priv-
ileges for a CQ. Both punctuations are processed by a special fl-
ter operator (stream shield) that is part of the query plan. If the 
access check is successful, the data tuples that follow the punctu-
ations are allowed to pass. Major limitations of this approach are: 
1) A set of these fltering operators are placed throughout the query 
plan. Thus, a data tuple and its corresponding punctuations entering 
the system are routed to all queries (authorized and unauthorized) 
and are dropped if the access check fails. 2) This approach also 
modifes the query plan affecting the scheduling strategies and load 
shedding provided by the underlying system. 3) If there is one or 
more punctuations per data tuple, which is usually the case with 
DSMS applications (e.g., health-care monitoring), and many con-
current data submitters, then it creates is a lot of overhead. 4) This 
approach does not support sharing of queries. 

The second architecture focuses on supporting RBAC via query 
rewriting techniques [13, 8]. To enforce access control policies, 

query plans are rewritten and policies are mapped to a set of map 
and flter operations. When a query is activated, the privileges of 
the query submitter are used to produce the resultant query plan. 
The major limitations of this approach are the modifcation of query 
plans and embedding access control within the query plan, affecting 
QoS optimizations and preventing query sharing. The fnal archi-
tecture [9] uses a post-query flter to enforce access control policies. 
The flter applies security policies after query processing but before 
a user receives the results from the DSMS. The major limitations 
of this model are: 1) Access control is only applied at the stream 
level. 2) All tuples have to be processed by all queries and fnally 
fltered before the result is shown. 

8 Conclusions and Future Work 
We discussed various issues that need to be addressed to enforce ac-
cess control and support user-level and role-level sharing in DSMSs. 
We presented our three stage framework to enforce access con-
trol without introducing special operators, rewriting or modifying 
query plans, or affecting QoS improvements. Our framework moved 
access control enforcement outside the query processing. Our ap-
proach prevents underprivileged CQs from processing all tuples. 
We have shown the feasibility and demonstrated the low overhead 
of our approach (i.e., less than 2% for user-level sharing and 6.9% 
for role-level sharing), and also reduced the total number of tuples 
processed by the query processor. As part of the future work, we 
are investigating to support attribute-level access control, system-
level sharing, and implementation of exact match approach. 
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