

TECNOLÓGICO NACIONAL DE MÉXICO

I. Mathematical model of intestinal-type gastric adenocarcinoma growth with ACI

We propose a qualitative mathematical model composed of three first-order Ordinary Differential Equations (ODEs), which describes some survival mechanisms of intestinal-type gastric adenocarcinoma and the interaction of the immune system. The model consists of three types of cell populations, gastric cancer cells, Dendritic Cells (DCs), and T cells. We cover interesting aspects such as cell cannibalism and the prolonged presence of *Helicobacter Pylori* (H. Pylori) that could stimulate tumor growth and survival beyond its initial carrying capacity. We explore the effects of Adoptive Cellular Immunotherapy (ACI) by incorporating a treatment parameter into the model.

2.1. Biological assumptions.

In order to construct our model, biological assumptions are established to limit the complexity of the problem:

- 1. In the absence of an immune response and a proper treatment, the gastric cancer cells grow logistically.
- 2. There is evidence in [1] to support the statement that gastric cancer cells cannibalize neutrophils. Further, in other tumor types, malignant cells have also been shown to cannibalize other effector cells such as T cells. Therefore, cannibalism is considered a mechanism to suppress the immune response.
- 3. There is a proliferation of gastric cancer cells due to the presence of bacterium H. Pylori, which contribute to the formation of gastric adenocarcinoma [2].
- 4. The DCs remain in a homeostatic state. Nonetheless, these cells become activated and grow logistically through stimulation of their cellular receptors by identifying tumor antigens of gastric cancer cells [3].
- 5. The DCs die by apoptosis after presenting tumor antigens to the T cells [3].
- 6. Activated T cells are capable of eliminating gastric cancer cells by cell lysis.
- 7. There is a natural death of T cells. Furthermore, these cells are eventually inactivated after a certain number of encounters with gastric cancer cells [3].
- 8. The total tumor cells population eliminated by ACI treatment is a factor of the number of T cells supplied which we represent as a treatment parameter.

2.2. Model equations.

The model describes the interactions between gastric cancer cells x(t), DCs y(t)and T cells z(t) by the following ODEs:

<i>x</i> =	$= \alpha_x x (1 - \beta_x x) +$	$\eta_x x$	+ $\delta_x xz$	
	Logistic growth of x	Growth by H. Pylori	Cell cannil	balism Ir
ý =	$= \alpha_y y (1 - \beta_y y) +$	$\underbrace{\delta_y xy}{\checkmark}$		$\underbrace{\gamma_y yz}{\checkmark}$
	Logistic growth of y	DCs activation by x	DCs death	n by T cells
• Z =	= $\delta_z yz$	$ \gamma_z xz$		$\underbrace{\mu_z z}_{}$

T cells activation by DCs T cells inactivation by x Natural deat It should be noted that the dynamics of the system (1)-(3)nonnegative orthant defined by

$$\mathbb{R}^{3}_{+,0} = \{x(t) \ge 0, y(t) \ge 0, z(t) \ge 0\}.$$

The dimension per unit for all cell populations is 10^{11} cells, and the time scale is considered to be in months. For simulation purposes, we used an artificial intelligence software called Eureqa [4] to estimate the parameter values. Figure 1 illustrates the interactions between cells populations, H. Pylori, and the treatment.

Intercollegiate Biomathematics Alliance/International Symposium on Biomathematics and Ecology education and Research (eBEER-2020) – Cartel Presentation.

In silico modelling for the treatment of gastric cancer

Leonardo F. Martinez^{*}, Diana Gamboa, Paul A. Valle.

Postgraduate Program in Engineering Sciences, BioMath Research Group, Tecnológico Nacional de México/ I.T. de Tijuana, México. *Correspondence: leonardo.martinez16@tectijuana.edu.mx

$$\gamma_x xz$$
 (1)

mmune response by z

interaction

+
$$\alpha_z$$
 (3)
h ACI treatment
B) is located in the

II. Localization of Compact Invariant Sets

The method of Localization of Compact Invariant Sets (LCIS) it is useful to study the short- and long-time dynamics of any ODEs system by computing the so-called *localizing domain* [5]. In **Theorem 1**, we summarize our results concerning the LCIS for the intestinal-type gastric adenocarcinoma system (1)-(3).

Theorem 1. If conditions $\gamma_x > \delta_z$ and $\gamma \ge \delta_z / \gamma_v$ are satisfied, then all compact invariant sets of the system (1)-(3) are located either inside or at the boundaries of the following compact localizing domain:

$$K_{xyz} = K_x \cap K_y \cap K_z,$$

$$K_{x} = \left\{ 0 \le x(t) \le x_{\sup} = \frac{\alpha_{x} + \eta_{x}}{\alpha_{x}\beta_{x}} - \frac{(\gamma_{x} - \delta_{x})}{\alpha_{x}\beta_{x}} z_{\inf} \right\},$$

$$K_{y} = \left\{ 0 \le y(t) \le y_{\sup} = \frac{1}{\beta_{y}} + \frac{\delta_{y}}{\alpha_{y}\beta_{y}} x_{\max} - \frac{\gamma_{y}}{\alpha_{y}\beta_{y}} z_{\inf} \right\},$$

$$K_{z} = \left\{ z_{\inf} = \frac{\alpha_{z}}{\mu_{z} + \gamma_{z}x_{\max}} \le z(t) \le z_{\sup} = \frac{\alpha_{z}}{\mu_{z}} + \frac{\Upsilon(\mu_{z} + \alpha_{y} + \delta_{y}x_{\max})^{2}}{4\alpha_{y}\beta_{y}\mu_{z}} \right\}$$

III. Tumor clearance and global stability

We propose the candidate Lyapunov function $h_5 = x$ and perform the corresponding mathematical analysis to establish that the Lie derivative of the function h_5 is negative semidefinite, i.e., $L_f h_5 \leq 0$, if the following condition is fulfilled:

$$\alpha_{z} > \frac{\mu_{z}(\alpha_{x} + \eta_{x})}{\gamma_{x} - \delta_{x}} + \frac{\gamma_{z}(\alpha_{x} + \eta_{x})^{2}}{\alpha_{x}\beta_{x}(\gamma_{x} - \delta_{x})}$$
(4)

by assuming the condition $\gamma_x > \delta_z$ also holds. Figure 2 illustrates the temporal dynamics of the system (1)-(3) without and with ACI treatment. For $a_{Z} = 0$, the tumor gastric mass is cycled in approximately 9 months. During 2 or 3 months, the tumor reaches a value close to its maximum carrying capacity and then descends to almost zero in a state known as tumor latency [3]. The system (1)-(3) converges to the tumor-free equilibrium point given by

 $P_0 = \left(0, 0, \frac{\alpha_z}{\mu_z}\right).$

The solution of the cancer cells population converges to zero in short time when condition (4) is satisfied.

IV. Conclusions

The mathematical model exhibits periodic oscillations in the Valle, P. A., Coria, L. N., & Salazar, Y. (2019). Tumor Clearance Analysis on a Cancer Chemo-Immunotherapy absence of treatment. These oscillations illustrates patterns Mathematical Model. *Bull. of Math. Bio.*, 81(10), 4144-4173. related to tumor latency and recurrence, which partially coincide Mokadem, I., Dijksterhuis, W. P. M.,.., & Verhoeven, R. H. A. (2019). Recurrence after preoperative chemotherapy and with the recurrence time observed in patients with gastric surgery for gastric adenocarcinoma: a multicenter study. *Gastric Cancer*, 22(6), 1263-1273. adenocarcinomas [6]. We present a sufficient condition of global Acknowledgments. asymptotic stability of the tumor-free equilibrium point P_0 , which This work was supported by TecNM with project number 8063.20-P titled "Development of protocols for the implies the elimination of the gastric adenocarcinoma. administration of cancer treatments based on the analysis of mathematical models of ODEs".

Figure 1. Interactions between gastric cancer cells [x(t)], DCs [y(t)], T cells [z(t)] and ACI treatment.

For $a_{Z} = 8.9$, the solutions are shown in panels *d* to *f*.

References.

- mitogen-activated protein kinase cascade. *Wld. J. of GE*, 12(37), 5972.
- Weinberg, R. A. (2012). The biology of cancer (2nd ed.). Garland science.
- [4] Nutonian. (2020). Eureqa: The A.I.-Powered Modeling Engine.

[1] Caruso, R. A., Muda, A. O.,..., & Inferrera, C. (2002). Morphological evidence of neutrophil-tumor cell phagocytosis (cannibalism) in human gastric adenocarcinomas. *Ultrastructural pathology*, 26(5), 315-321.

[2] Chen, Y. C., Wang, Y.,..., & Zhang, Y. L. (2006). H pylori stimulates proliferation of gastric cancer cells through activating