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53 Pages 

This research explores the use of Sentinel-2 satellite to determine the spatiotemporal 

patterns of lake water quality indicators (e.g. chlorophyll a) in Lake Bloomington and Evergreen 

Lake. Lake water quality issues related to algal blooms is a serious problem in basins with 

abundant agricultural lands causing harmful effects to freshwater ecosystems such as pollution of 

beaches, taste and odor problems in drinking water, depletion of oxygen levels causing fish kills 

and the issue of water exceeding safe drinking water standards. Developing monitoring techniques 

using various water quality indicators of algal blooms is crucial. In this project, remote sensing 

and field sampling methods were employed to assess the state of water quality of two small lakes, 

Lake Bloomington and Evergreen Lake, in Central Illinois. Water samples were collected from 

selected locations from the lakes to test for various water quality variables including nitrate, 

phosphorus and chlorophyll a. An exo sonde instrument and secchi disk was used to measure 

additional water quality parameters such as turbidity, secchi depth, and temperature. Concurrent 

satellite images obtained from Sentinel-2 with flyover with ±5 days were processed and analyzed, 

and the results were compared with field sampling data. Single and multiple pixel analyses were 

conducted on various algorithms such as Bottom-of-Atmosphere (BOA), Maximum Chlorophyll 

Index (MCI), and band ratios. These algorithms were tested to identify the best algorithm for 

estimating water quality parameters using satellite data for the two lakes. A regression analysis 



was conducted to derive a linear model which was used to create water quality indicator maps that 

showed the spatial pattern of algae in the lakes. From the results of the research, Lake Bloomington 

was more turbid and had higher concentrations of chlorophyll a than Evergreen Lake. Except for 

band ratio of B1/B2 of Sentinel-2 data, a poor regression relationship between satellite and field 

water quality values was observed for Lake Bloomington. This poor relationship could be due to 

the high turbidity of the lake. Evergreen Lake, on the other hand, showed a stronger relationship 

between satellite values and chlorophyll a. Generally, spatial analysis reveals that chlorophyll a 

distribution was heterogeneous, and it increased from downstream areas to upstream areas.  
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CHAPTER I: INTRODUCTION 

Freshwater is the most important source of drinking water for the United States population 

and when there is a high concentration of algal blooms in the water, it degrades the quality of water 

by rendering it unfit for consumption or even recreational purposes (Hilborn et al., 2014). Algal 

blooms occur in freshwater when there is a sudden rise in the population of algae in the water body 

and it leads to changes in water (Glibert et al., 2005). Temperature, nitrogen and phosphorus have 

been identified as factors that may contribute to the occurrence of algal blooms in freshwater 

(Anderson et al., 2002; Carmichael, 2008; Havens, 2008). There are both harmless and harmful 

algal blooms (Glibert et al., 2005) and the most common harmful algal bloom (HAB) found in 

freshwater is the blue-green algae, also known as cyanobacteria (Hudnell, 2008). Cyanobacteria, 

like plants and true algae, can photosynthesize by using sunlight energy captured by chlorophyll a 

which it possesses. Cyanobacteria also need nutrients like nitrogen and phosphorus found in the 

water to grow and because of this, cyanobacteria may be more abundant in lakes, rivers and 

reservoirs where these nutrients are high (Bartram and Chorus, 1999). Unlike most plants, 

cyanobacteria can capture and fix nitrogen from the atmosphere (Braig IV et al., 2011).  The 

impacts/issues of HABs are increasing globally and appear to increase with global changes such 

as climate change and human activities (Braig IV et al., 2011; Fu et al., 2012).  

When assessing the suitability and availability of a reservoir or water source for drinking 

purposes, water quality is usually considered as an important factor (Raman and Twait, 1994).. 

Algae have a wide range of beneficial and harmful consequences on freshwater ecosystem and 

water quality (Stevenson, 2014).  They serve as important sources of food for the lake ecosystem 

and are therefore important to the food web of freshwater ecosystems (Guo et al., 2016). 

Cyanobacteria  produce toxins known as cyanotoxins (Carmichael, 2008) that have negative 
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impacts on freshwater ecosystem, the environment and human health. Some of these negative 

impacts include change of freshwater color and taste, change of and development of odor in 

freshwater, fish die-offs, anoxia and health risks for humans such as skin irritation, vomiting and 

in some cases death (Carmichael, 2008; Clark et al., 2017). Assessment of the suitability and 

availability of a reservoir for various purposes, including drinking purposes, usually involves 

monitoring of the reservoir and the concentration of algal blooms is usually an important indicator 

of degraded water quality (Richardson, 1996) and the aquatic ecosystem health. Field sampling 

methods have been used to monitor algae in freshwater for years. Due to the limitations associated 

with monitoring of lakes using field sampling methods only, new methods such as satellite remote 

sensing have been developed and used in addition to field methods to monitor lakes (Ritchie et al., 

2003).   

Satellite remote sensing serves as an effective complement to field sampling methods (Li 

and Li, 2004). Satellites have certain advantages over in-situ/field sampling methods. Satellite 

remote sensing provides a cost-effective and less time-consuming way to acquire information from 

lakes (Olmanson et al., 2002). The information acquired from this remote sensing method is 

spatially unbiased and allows for the collection of data from very large areas (Li and Li, 2004).  

Monitoring of lakes using conventional field sampling methods is expensive, dependent on the 

size of the lake and also time consuming (Li and Li, 2004), thus they are only used on small areas 

of the lake. Even though satellite remote sensing cannot be used to capture cyanotoxins present in 

cyanobacteria in lakes (Stumpf et al., 2016), concentration of algae can be quantified via 

chlorophyll a concentration using remote sensing (Clark et al., 2017; Richardson, 1996). Satellite 

image processing results have been successfully used to show the temporal and spatial distribution 

of chlorophyll a, phytoplankton biovolume and cyanobacteria biovolume in various lakes 



3 

(Isenstein et al., 2014). Remote sensing data have also been used to estimate the spatial distribution 

of Water Quality Parameters (WQPs) such as chlorophyll a, total phosphorus, and total nitrogen  

in rivers (Lim and Choi, 2015). 

 Monitoring of lakes using satellite remote sensing data is useful in estimating and 

understanding water quality problems (Kloiber et al., 2002). Remote sensing involves using 

satellites to capture information about objects on earth without having direct contact with them. 

Satellite remote sensing involves the extraction and interpretation of information from images 

acquired from the satellite which uses electromagnetic radiation (reflected or emitted from the 

Earth’s surface) in various electromagnetic spectrum (Campbell and Wynne, 2011; Richards and 

Richards, 1999). Each object on earth possesses a unique intensity of radiation which is emitted or 

reflected. Remote sensing satellites are able to capture information reflected from objects on earth 

using sensors that have different wavelength bands (Gupta, 2017). Numerous remote sensing 

satellites including Landsat, Sentinel, MODIS have been launched and they are used to capture 

information from objects on earth including from water bodies including lakes.  Data acquired 

using satellite remote sensing can be used to estimate algal bloom concentrations (Brezonik et al., 

2005) in lakes by determining the concentration of chlorophyll a in the lake. However, satellite 

remote sensing can only be used to determine the spatial extent of algal blooms potential, further 

information is required to determine whether an algal bloom is a harmful algal bloom by 

comparing to data obtained from field sampling done on the lake with satellite remote sensing data 

(Park and Ruddick, 2007). 

 A new series of next-generation satellite program, Sentinel program, that provides 

continuous data to ensure that there are no gaps in ongoing studies has been launched by the 

European Space Agency (ESA). The Sentinel program was developed by the ESA to replace older 
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ESA’s Earth observation missions that have reached retirement or currently nearing the end of 

their operational life span (Martimort et al., 2007). The Sentinel program is made up of 6 Sentinel 

missions (Sentinel 1 – 6), with each mission made up of two satellites. Sentinel-2 mission is 

composed of two polar-orbiting satellites (S2A and S2B) that provide high-resolution optical 

imagery (Djamai and Fernandes, 2018). The Sentinel-2 satellites have a 5-day overpass time which 

means that it passes across the same location in 5 days intervals. Sentinel-2A and Sentinel-2B were 

launched on 23 June 2015 and 7 March 2017 respectively, with a mission focused on land 

monitoring including vegetation, soil and coastal areas (Main-Knorn et al., 2015). Sentinel-2 has 

been used for various studies including the estimation of colored dissolved organic matter (Chen 

et al., 2017), retrieval of suspended particulate matter concentrations (Liu et al., 2017), mapping 

of phytoplankton blooms in lakes (Bresciani et al., 2018), and mapping of lake water quality 

(Toming et al., 2016).  

Objectives, Question, and Hypothesis 

1.  Understand conditions that influence and facilitate chlorophyll a variability: 

 What factors influence the spatial distribution of chlorophyll a? 

 Variation is influenced by nutrients and temperature. 

2. Compare satellite to field chlorophyll a. 

 How well does the satellite imagery capture chlorophyll a? 

 Satellite imagery will be a good predictor of chlorophyll a.  

3. Predict lake water quality indicator variability using remote sensing: 

 What is the spatial pattern of chlorophyll a in the lakes? 

 Chlorophyll a concentration will vary spatially and temporally rather than have a 

 homogenous distribution.  
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CHAPTER II: STUDY AREA 

The study lakes, Lake Bloomington and Evergreen Lake, are in McClean County, Central 

Illinois (Figure 1). Lake Bloomington (LB) and Evergreen Lake (EV) serve as water supply 

reservoirs for the City of Bloomington. Evergreen Lake is larger in size and depth than Lake 

Bloomington. Lake Bloomington (Figure 1) is located 24 km North of Bloomington, Illinois in 

Hudson, Illinois, United States. It is a man-made lake built in 1929 by constructing an earth dam 

across Money Creek, with an original purpose of supplying Bloomington with a reliable, primary 

source of drinking water (Stall et al., 1958) and it presently supplies water to over 80,000 people. 

It is owned, maintained and operated by the city’s water department (Roberts, 1948). In addition, 

Lake Bloomington is also used for recreational purposes and serves as host to over 220 residential 

sites (Raman and Twait, 1994). The lake has a surface area of 2.6 km2, a drainage area of 

approximately 158 km2, a storage capacity of about 8.3 million m3 (2.2 billion gallons) and a mean 

depth of 3.9 m (Raman and Twait, 1994; Roberts, 1948; Stall et al., 1958). 

 Evergreen lake (Figure 1) is also located 24 km North of Bloomington, Illinois in Hudson, 

United States. It was built in 1971, by impounding Six Mile Creek where it meets with Mackinaw 

River, to increase the water supply to the City of Bloomington and for recreational purposes 

(Raman and Twait, 1994). The lake is owned by the City of Bloomington and is managed by the 

McLean County Department of Parks and Recreation.  The lake has a surface area of 3.6km2, a 

storage capacity of about 18.5million m3 (4.9 billion gallons) and a mean depth of 5.1m (Meyers, 

2014; Raman and Twait, 1994).   

Money Creek and Six Mile Creek watersheds are the two primary tributaries of Lake 

Bloomington and Evergreen Lake respectively and are also major tributaries to Mackinaw River 

(Kelly et al., 1998). The Money Creek Watershed has a surface area of 181.07 km2 while the Six 
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Mile Creek is 109.95 km2. Their land uses are dominantly agriculture (corn and soybean) and rural 

grassland, with row crops covering 90% of the watersheds. Four glacial advances dominate the 

geological history of Illinois and as such, glaciers were very important in the development and 

formation of the soil types and terrains of McClean County (Hanna, 2013). The soil is poorly 

drained, very fertile, drought resistant and mostly silty clay loams and silt loams (Collman et al., 

2002).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Location map of Lake Bloomington and Evergreen Lake.  
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CHAPTER III: DATA AND METHODS 

This study used three approaches, (1) in-situ field sampling, (2) remote sensing, and (3) 

regression analysis (Figure 2), to test the conditions that influence chlorophyll a variability, to 

evaluate the usefulness of satellite imagery in detecting algal blooms in small lakes and to predict 

the spatial pattern of chlorophyll a in the study area. Lake sampling was conducted from various 

locations of the lakes and satellite images were downloaded from the European Satellite Agency’s 

(ESA) Sentinel website, processed, and information was extracted. The information extracted from 

the images were extracted from the same locations where water samples were collected. The 

satellite images were processed using the ESA’s Sentinel Application Platform (SNAP) software. 

Lastly, a regression analysis was conducted for these two data sets to test how well the satellite 

imagery can be used to determine algal biomass. The linear model generated was used to estimate 

water quality of other locations across the lake surface that were not sampled during this study.  
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Figure 2. Flowchart of research methodology showing steps from acquisition of data from lake 

sampling and remote sensing to linear regression model and prediction of water quality. 

Data 

In-Situ Field Sampling 

Four field campaigns were carried out on August 16, September 18, and October 14 of 

2018 and on October 16, 2019. Field water quality tests were conducted using the EXO sonde, 

which is made up of a sonde with sensors and an exo handheld, and a secchi disc. The sensors can 

measure temperature, dissolved oxygen, conductivity, pH, chlorophyll a concentration and 

phycocyanin parameters. The sonde was connected to the handheld via Bluetooth on site and the 

sensor end of the sonde immersed into the water and water quality parameters were deployed to 

the EXO sonde. During these four sampling events, except for August 16, 2018, 19 one-liter grab 
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samples of surface water were collected from each location (Figure 3) to determine chlorophyll a, 

nitrate, and phosphorus concentrations. Nine samples (LB1 – LB 9), except for August 16 where 

only six samples were collected (LB1 – LB6), were collected from nine geolocated (Table 1) 

sampling locations on Lake Bloomington (Figure 4) and ten samples (EV1 – EV10) were collected 

from ten geolocated (Table 1Error! Reference source not found.) sampling locations from 

Evergreen Lake (Figure 3). LB 9 could not be accessed on October 16, 2019 and water was 

sampled from a nearby location at this date.  A total of 33 samples were retrieved from Lake 

Bloomington and 40 samples from Evergreen Lake during the sampling period. 

Table 1 

Latitude and Longitude Used to Geolocate the Sampling Locations 

Sample Location Latitude Longitude 

LB 1 40.39.37 88.56.5 

LB 2 40.39.23 88.55.39 

LB 3 40.39.13 88.55.55 

LB 4 40.38.45 88.56.3 

LB 5 40.39.3 88.55.22 

LB 6 40.38.47 88.55.1 

LB 7 40.38.23 88.55.22 

LB 8 40.37.56 88.55.42 

LB 9 40.37.38 88.55.46 

EV 1 40.38.43 89.3.26 

EV 2 40.38.54 89.3.14 

EV 3 40.39.5 89.2.48 

EV 4 40.38.52 89.2.28 

EV 5 40.38.33 89.2.5 

EV 6 40.38.23 89.2.21 

EV 7 40.38.14 89.2.10 

EV 8 40.37.58 89.1.45 

EV 9 40.38.21 89.1.48 

EV 10 40.37.49 89.1.17 
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Figure 3. Sampling locations of (a) Lake Bloomington and (b) Evergreen Lake. 

Remote Sensing 

Satellite remote sensing images from August 19, 2018, September 23, 2018, October 16, 

2018 and October 13, 2019 were downloaded from the sentinel open access hub 

(https://scihub.copernicus.eu/dhus/#/home, accessed on October 13, 2019). The Sentinel-2 

mission option was used because it provides high resolution optical image data that supports land 

monitoring including soil cover, water cover, inland waterways and coastal areas. Sentinel-2 is 

comprised of two twin satellites S2A and S2B which carries the Multispectral Instrument (MSI) 

optical sensor made up of 13 bands (Table 2) with three spatial resolutions – 10m, 20m, and 60m.  

Bands 2, 3, 4 and 8 have a spatial resolution of 10m, bands 5, 6, 7, 8A, 11 and 12 have a spatial 

resolution of 20m and bands 1, 9 and 10 have a spatial resolution of 60m. The red edge bands, 

(a (b
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Bands 5 – 7, are of interest for this study because they are useful in the estimation of chlorophyll 

a (Delegido et al., 2011). 

Table 2 

Sentinel-2 Bands with Wavelength and Spatial Resolutions 

Band Band Name Spectral Range 

(nm) 

Resolution (m) 

1 Coastal aerosol 443  60 

2 Blue 490 10 

3 Green 560 10 

4 Red 665 10 

5 Vegetation Red 

Edge 

705 20 

6 Vegetation Red 

Edge 

740 20 

7 Vegetation Red 

Edge 

783   20 

8 Near Infrared 

(NIR) 

842 10 

8A Vegetation Red 

Edge 

865 20 

9 Water Vapor 1360-1380 60 

10 SWIR - Cirrus 10600-11190 60 

11 SWIR 1610 20 

12 SWIR 2190 20 

 

Methods 

Laboratory Analysis 

The monochromatic method (Wetzel and Likens, 2013) was used to calculate chlorophyll 

a concentration for all samples.  The water samples were filtered through a 0.45 μm glass-fiber 

filter and the filter placed into a labelled 15 ml centrifuge tube. Ninety percent acetone was added 

into the centrifuge tube which was left overnight in a freezer. Absorption rate of each sample was 

measured using a spectrophotometer and chlorophyll a concentration calculated using the 

following equation (Equation 1): 
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Chlorophyll − a �ug/L� = ��.� � [����������� – �����������] �  !"#$% !& �'%(!)%
*!"#$% !& +�$,"% � " …………… (1) 

Where: 

b is absorbance before acidification 

a is absorbance after acidification 

volume of acetone is the volume of 90% acetone used in the extraction (in ml) 

volume of sample is the volume of water filtered (in L), and 

l is the cuvette path length (cm) (typically 1cm). 

For phosphorus, the Molybdate determination method of soluble reactive phosphorus was 

used to analyze the samples using the Genesys 10S UV-VIS spectrophotometer. A stock standard 

of 1 g/L P-PO4
3- was diluted into a working stock solution of 5 mg/l P-PO4

3-. The working stock 

was further diluted into four different standard concentrations in mg/L P-PO4
3- (0.2, 0.5, 0.8, and 

1 mg/L) in 100 ml volumetric flasks. A 0.8 ml of mixed reagent comprised of 5 N H2SO4, 

potassium antimony tartrate solution, ammonium molybdate solution, and ascorbic acid solution 

was added to 5 ml of the four standard concentrations in a test tube. This was also repeated for the 

19 samples collected from the lakes. Absorbance of the standards and samples were read at 880 

nm using the spectrophotometer. Phosphorus concentration was then calculated using the equation 

(Equation 2) below: 

Phosphorus �mg/L� = 0123415678 – 9:3;8
<6=8478;=  …………………………… (2) 

Nitrate was measured using the DIONEX ICS-1100 Ion Chromatography System and the 

DIONEX AS40 automated sampler. The standard method was used, and the samples were run 

using freshly prepared eluent solutions and three standards. The standards were used to calibrate 

each species of anion (chloride, fluoride, nitrate, bromide, Nitrate-N, PO4-P and sulfate). 5ml of 

each stock standard was poured into a vial, covered with a vial cap and placed into a cassette from 
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left to right, the cassette was then inserted into the auto-sampler and then run. The same procedure 

was repeated for each of the lake samples, making sure there was enough eluent for the total run 

time. 

Remote Sensing Data Processing and Algorithm 

Image processing 

Due to the lack of availability of cloud free images, Sentinel-2 satellite imageries were 

acquired from the Sentinel open access hub within ±2 to 5 days from the dates of field sampling. 

Before any processing of the Sentinel images, the Top-Of-Atmosphere (TOA) reflectance values 

were extracted from the images on SNAP. Radiation from the sun and radiation reflected from the 

target objects alongside the components of the atmosphere (often referred to as “atmospheric 

noise”), interfere with the remote sensing process to create atmospheric errors (Aggarwal, 2004) . 

These components of the atmosphere disperse and absorb the radiation reflected from the target 

objects and change its spatial distribution. Atmospheric correction of raw images downloaded is 

important to remove atmospheric interference in order to determine the true reflectance of the 

remotely sensed image. The Top-Of-Atmosphere (TOA) reflectance values are the values 

available after the download of the sentinel images and they are inclusive of atmospheric 

interference. The Sentinel images were atmospherically corrected, to remove atmospheric 

interference, using the Sentinel-2 Toolbox (Sen2cor v2.5.5) on SNAP. Sen2cor performs the 

atmospheric correction of Top-Of Atmosphere Level 1C (L1C) product to create Bottom-Of 

Atmosphere (BOA) Level 2A (L2A) corrected reflectance images (Muller-Wilm et al., 2013). 

Although other research work have classified Sen2cor as not suitable and designed for aquatic 

environments (Toming et al., 2016), it was used because of it was more readily available. After 
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the correction of the Sentinel images, information in the form of BOA reflectance values was 

extracted.  

Remote sensing data extraction and analysis 

The field sampling locations were located on the images using the GPS coordinates 

collected from the field. Single-pixel (1x1) extractions were conducted on the Top-Of-Atmosphere 

sentinel images before any atmospheric correction was done, while single-pixel (1x1) and 

multiple-pixel (3x3 and 5x5) extractions were conducted on the atmospherically corrected Bottom-

Of-Atmosphere sentinel images. Both TOA and BOA extractions were conducted to compare their 

results, in order to validate the need for atmospheric correction. To extract information for the 

multiple pixels, resampling of the sentinel bands to 10 m was conducted because the 

atmospherically corrected sentinel-2 image product is a multi-sized product that contains bands of 

different sizes and spatial resolutions.  Resampling of the images enabled the product to become a 

single spatial resolution image. For the multiple pixel extractions, the mean reflectance values of 

the combined pixels were used in all the analysis conducted.   

To determine how well the satellite data could predict chlorophyll a, the relationship 

between chlorophyll a and three remote sensing algorithms were examined. These three remote 

sensing algorithms were BOA, Maximum Chlorophyll Index (MCI), and band ratios. These 

algorithms were tested to determine the most suitable for the lakes. For each of these algorithms, 

both single-pixel (1x1) and multiple-pixel (3x3 and 5x5) analysis were conducted. The multiple 

pixel analysis is important because it reduces noise introduced on one pixel. The BOA algorithm 

involved the extraction of reflectance values from the atmospherically corrected Sentinel-2 image. 

The band ratio algorithm involved dividing the BOA extracted reflectance value of one band by 

another e.g. B1/B2. Band correlation was conducted to determine which bands are highly 



15 

correlated. Bands that are highly correlated could be better predictors when used as ratios against 

chlorophyll a. The MCI algorithm, on the other hand, involves further processing of the BOA 

atmospherically corrected images. The MCI algorithm uses the height of the measurement in a 

certain spectral band above a baseline, which passes through two other spectral bands (Gower et 

al., 1999). The MCI algorithm on SNAP was modified from Gower’s general baseline algorithm. 

The equation for the MCI algorithm (Equation 3) is shown below; 

>?@ = A₂ − C X EL₁ + �L₃ − L₁� X I₂ �I₁
I₃ �I₁J…………………………… (3) 

Where L is the water-leaving radiance computed for the Sentinel bands, centered at a wavelength 

λ, the indices 1 and 3 indicate the baseline bands (B4 and B6) and index 2 is the peak wavelength 

(B5), and k is a cloud correction constant (1.005). 

Regression Analysis 

After identifying the best relationship between the remote sensing algorithms and field 

water quality parameter, a linear regression model was fit to the data, using R, to determine the 

empirical relationship between chlorophyll a and Sentinel-2 satellite data. During the regression 

analysis, Sentinel-2 reflectance values were taken as the independent variable while chlorophyll a 

was considered as the dependent variable. Algorithm performance was also evaluated by using 

coefficient of determination (R2), root-mean-squared error (RMSE), and probability value (p-

value). The values of R2, RMSE and p-value for all algorithms were then compared to determine 

the best model for chlorophyll a monitoring of the two lakes using Sentinel-2 satellite imagery.    
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CHAPTER IV: RESULTS 

In Situ 

Chlorophyll a, phosphorus, nitrate and turbidity were generally higher in Lake 

Bloomington than in Evergreen Lake (Table 3 and 4). Temporally, from August to October, there 

was generally a decreasing trend in the concentration of chlorophyll a for each sampling location 

for Lake Bloomington, except for LB 4 and LB 5 (Figure 4) which showed an increase from August 

to September and then decreased in October. Nitrate concentration in the lakes was generally the 

highest in August and lowest in September while phosphorus was generally highest in October 

and lowest in August and September except for LB 5, LB 8 and LB 9 (Figure 4). 

Unlike Lake Bloomington, there was no seasonal trend in chlorophyll a concentration for 

Evergreen Lake. There was however a spatial pattern where chlorophyll a was higher upstream 

and lower downstream (Figure 5). Temperature showed a decreasing trend from August to 

October. Nitrate concentrations were too low to be detected (recorded “n.a.”) for most of the 

sampling locations for August and September 2018 sampling campaign but were generally higher 

in October 2018 than October 2019 (Figure 5). For the sampling campaign on the 16th of October 

2018, the concentration of phosphorus for Evergreen Lake were the same in all sampling locations 

except for EV 9. Phosphorus was higher in the upstream locations (EV 9 and 10) than the 

downstream locations (Figure 5). 
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Table 3  

Summary of in situ Data for Lake Bloomington from the Laboratory and Exo Sonde (Field) 

 

  

Water Quality Parameter Min Max Mean Standard 

Deviation 

Chlorophyll a (µg/L) 2.84 150.82 50.62 29.12 

Sonde chlorophyll (RFU) 1.82 12.16 4.63 2.27 

BGA-PC (RFU) 0.80 6.56 3.41 1.70 

Conductivity (µs/cm) 178.83 460.46 365.32 58.18 

ODO (%) 58.28 201.79 110.93 40.27 

ODO (mg/L) 4.74 16.44 9.99 2.90 

Temp (°C) 10.04 27.46 19.96 6.06 

Turbidity (FNU) 4.52 93.89 16.90 23.78 

Secchi depth (cm) 14.00 70.00 46.76 14.33 

Fluoride (mg/L) 0.15 2.36 0.27 0.38 

Chloride (mg/L) 27.69 43.82 35.25 3.41 

Bromide (mg/L) 0.12 0.13 0.12 0.01 

Nitrate-N (mg/L) 0.30 1.85 0.81 0.36 

PO4-P (mg/L) 0.05 0.44 0.27 0.19 

Sulfate (mg/L) 7.97 51.59 17.17 6.71 

Measured Phosphorus (mg/L) 0.00 0.34 0.04 0.06 
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Table 4 

Summary of in situ Data for Evergreen Lake from the Laboratory and Exo Sonde (Field) 

 

  

Water Quality Parameter Min Max Mean Standard 

Deviation 

Chlorophyll a (µg/L) 1.62 82.86 34.30 17.13 

Sonde chlorophyll (RFU) 0.24 6.97 3.04 1.59 

BGA-PC (RFU) 0.96 3.51 1.98 0.63 

Conductivity (µs/cm) 134.90 474.40 375.13 82.27 

ODO (%) 64.05 469.50 121.54 63.40 

ODO (mg/L) 6.16 163.75 13.75 24.40 

Temp (°C) 2.96 28.64 21.21 6.78 

Turbidity (FNU) 2.93 98.76 11.65 15.86 

Secchi depth (cm) 15.00 120.00 53.18 23.49 

Fluoride (mg/L) 0.15 0.27 0.20 0.02 

Chloride (mg/L) 36.37 50.87 45.96 5.32 

Bromide (mg/L) 0.11 0.13 0.12 0.01 

Nitrate-N (mg/L) 0.31 1.00 0.54 0.25 

PO4-P (mg/L) - - - - 

Sulfate (mg/L) 12.27 23.92 16.95 2.10 

Measured Phosphorus (mg/L) 0 0.07 0.01 0.01 
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Figure 4. Temporal trend of water quality parameters for Lake Bloomington (a) chlorophyll a; 

(b) temperature; (c) nitrate; (d) phosphorus.  
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Figure 5. Temporal trend of water quality parameters for Evergreen Lake (a) chlorophyll a; (b) 

temperature; (c) nitrate; (d) phosphorus. 

Turbidity was higher upstream and lower downstream for both lakes, Lake Bloomington 

and Evergreen Lake (Figure 6). Similar pattern was observed for phosphorus for Lake 

Bloomington. However, Lake Bloomington, which had a mean turbidity of 16.90FNU (Table 3), 

was more turbid than Evergreen Lake, which had a mean turbidity of 11.65FNU (Table 4). Secchi 

depth, which is a measure of the clarity of lake water, was lower in Lake Bloomington than in 

Evergreen Lake. This means that Evergreen Lake was clearer than Lake Bloomington, which 

confirms the turbidity results. Secchi depth was low upstream and high downstream for both lakes. 
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Except for LB 7 and EV 6, Secchi depth showed a temporal increase from August to October in 

2018, while October 2018 was generally higher than October 2019 (Figure 6).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Turbidity and Secchi depth field data – turbidity: (a) Lake Bloomington; (b) Evergreen 

Lake; Secchi depth: (c) Lake Bloomington and (d) Evergreen Lake. The sample ids indicate 

sampling locations in space, higher id numbers (e.g. EV 10, LB 9) are upstream, while lower id 

numbers are downstream. 

 The Secchi depth pattern has an inverse relationship with chlorophyll a for Lake 

Bloomington (Figure 7). Temporally, as the Secchi depth increases, chlorophyll a decreased from 

August to October in Lake Bloomington. Turbidity also had an inverse relationship with 

chlorophyll a for Lake Bloomington where the less turbid the water is the higher the chlorophyll a 

concentration and the vice versa (Figure 7).  

(c) (d) 
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Figure 7. Chlorophyll a and turbidity/Secchi depth relationship for Lake Bloomington (a) Secchi 

depth and (b) turbidity. 

Evergreen Lake showed similar relationships as Lake Bloomington between chlorophyll 

a and Secchi depth. However, there is a direct relationship between chlorophyll a and Turbidity 

(Figure 8) as opposed to that observed in Lake Bloomington. The more turbid the water, the 

higher the chlorophyll a and vice versa. 

 

    

 

 

 

 

 

Figure 8. Chlorophyll a and turbidity/Secchi depth relationship for Evergreen Lake (a) Secchi 

depth (b) turbidity. 

Satellite Remote Sensing 

After the images were atmospherically corrected (Figure 9) using SNAP, band correlation 

was conducted for all bands and adjacent bands correlated better to each other (Chen et al., 2017). 

For the correlation analysis of the bands, band 10 became unavailable after atmospheric correction 

(a) (b) 
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was conducted for all the sentinel-2 images while band 8 became unavailable after atmospheric 

correction was conducted for the October 13, 2019 sentinel image. The reason for this 

unavailability of these bands could be because the BOA reflectance values were too low. 

Therefore, Bands 8 and 10 were not used for the correlation analysis between bands.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Atmospherically corrected sentinel image showing Lake Bloomington and Evergreen 

Lake.  

The correlation coefficient between the bands for Evergreen Lake (Table 5) indicated that 

most of the bands had high correlation to their adjacent bands. For example, Band 2 is highly 

correlated with Band 1 and Band 3 which are adjacent to it and Band 4 is highly correlated with 

Bands 3 and 5 which are adjacent to it. However, some bands did not have a high correlation with 

Lake 

Bloomington 
Evergreen 

Lake 

Lake 

Bloomington 

Evergreen 

Lake 
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adjacent bands. For example, Band 6 correlated highly with Bands 1 and 2 in contrast to Bands 5 

and 6 which are its adjacent bands, while Bands 11 and 12 had no strong correlation with any band.  

Table 5 

 

Correlation Coefficient (r) Values of Sentinel-2 Bands for Evergreen Lake (Single Pixel) 

 

Band No Band 

1 

Band 

2 

Band 

3 

Band 

4 

Band 

5 

Band 

6 

Band 

7 

Band 

8A 

Band 

9 

Band 

11 

Band 1 — — — — — — — — — — 

Band 2 0.94 — — — — — — — — — 

Band 3 0.86 0.92 — — — — — — — — 

Band 4 0.69 0.80 0.91 — — — — — — — 

Band 5 0.62 0.71 0.86 0.94 — — — — — — 

Band 6 0.90 0.96 0.94 0.84 0.82 — — — — — 

Band 7 0.91 0.96 0.93 0.83 0.79 1.00 — — — — 

Band 8A 0.88 0.93 0.89 0.77 0.75 0.98 0.98 — — — 

Band 9 0.93 0.94 0.86 0.67 0.61 0.94 0.94 0.93 — — 

Band 11 0.50 0.59 0.52 0.54 0.46 0.61 0.63 0.67 0.59 — 

Band 12 0.26 0.24 0.25 0.18 0.17 0.32 0.33 0.32 0.36 0.20 

Note. High correlation values are highlighted in bold. 

The correlation coefficients between the bands also indicated that most adjacent bands are 

highly correlated for Lake Bloomington. For example, Band 2 is highly correlated with Band 1 

and Band 3 which are adjacent to it, and Band 4 highly correlated with Band 3 and 5 which are 

adjacent to it (Table 6). There were also some bands that did not have a strong correlation with 

any bands i.e. bands 6, 7, and 11. 
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Table 6 

Correlation Coefficient (r) Values of Sentinel-2 Bands for Lake Bloomington (Single Pixel) 

Band No Band 

1 

Band 

2 

Band 

3 

Band 

4 

Band 

5 

Band 

6 

Band 

7 

Band 

8A 

Band 

9 

Band 

11 

Band 1 — — — — — — — — — — 

Band 2 0.88 — — — — — — — — — 

Band 3 0.61 0.84 — — — — — — — — 

Band 4 0.25 0.60 0.88 — — — — — — — 

Band 5 0.37 0.63 0.85 0.90 — — — — — — 

Band 6 0.81 0.93 0.85 0.69 0.79 — — — — — 

Band 7 0.81 0.91 0.80 0.64 0.74 0.99 — — — — 

Band 8A 0.78 0.89 0.74 0.6 0.66 0.95 0.97 — — — 

Band 9 0.73 0.56 0.38 0.16 0.22 0.55 0.60 0.60 — — 

Band 11 0.20 0.22 0.11 0.20 0.15 0.30 0.37 0.49 0.41 — 

Band 12 0.10 0.13 0.07 0.21 0.09 0.20 0.25 0.36 0.36 0.87 

Note. Top row bands are divided by side column bands. High correlation values are highlighted 

in bold. 

 

Bottom-Of-Atmosphere (BOA) Vs Top-Of-Atmosphere Reflectance (TOA) 

This comparison was done using the 1x1 pixel reflectance extracted from the satellite 

imageries. The purpose is to compare the relationship between TOA and BOA values with 

chlorophyll a and choose the optimum approach.  

Lake Bloomington 

When plotted against chlorophyll a after the atmospheric correction (conversion of TOA 

to BOA) was conducted using SNAP, there was mostly a decline in the correlation coefficient (r) 

values for Lake Bloomington (Table 7). Improvement was observed only in bands 1,4, 9, and 12, 

with the greatest percentage increase in band 12 which has a 900% increase from 0.03 to 0.30 in 

correlation (Table 7). However, most of the correlation coefficients were very insignificant with 

the most significant correlation coefficient observed in band 1, which increased from TOA 

correlation coefficient of 0.22 to BOA correlation coefficient of 0.36.  
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Evergreen Lake 

Except for bands 1 and 12 which had a decline of 17% and 86% respectively, there was 

generally an improvement in the correlation coefficients from TOA to BOA for Evergreen Lake. 

The greatest percentage increase was observed in band 2 which had a 227% increase from 0.11 to 

0.36 (Table 7), but the highest correlation coefficient value was observed in band 5 with an 18% 

increase from 0.56 to 0.66 (Table 7).  

 Overall, the relationship between the BOA reflectance and chlorophyll a showed higher 

correlation coefficient than the TOA reflectance for both Lake Bloomington and Evergreen, and 

as such, the BOA reflectance was used for all subsequent analyses. 

Table 7 

Cross Relationship Between Chlorophyll a and TOA and BOA Atmospheric Correction for Lake 

Bloomington and Evergreen Lake 

Lake Bloomington Evergreen Lake 

Bands TOA BOA % 

Change 

TOA BOA % 

Change 

Bands 

Band 1 0.22 0.36 64 0.30 0.25 -17 Band 1 

Band 2 0.17 0.12 -29 0.11 0.36 227 Band 2 

Band 3  0.10 0.05 -50 0.38 0.48 26 Band 3  

Band 4 0.03 0.28 833 0.44 0.55 25 Band 4 

Band 5 0.05 0.04 -20 0.56 0.66 18 Band 5 

Band 6 0.26 0.10 -62 0.30 0.48 60 Band 6 

Band 7 0.28 0.11 -61 0.30 0.45 50 Band 7 

Band 8  0.27 0.19 -30 0.30 - - Band 8  

Band 8A 0.28 - - 0.17 0.45 165 Band 8A 

Band 9 0.12 0.24 100 0.28 0.30 7 Band 9 

Band 10 0.11 - - 0.26 - - Band 10 

Band 11 0.20 0.09 -55 0.22 0.28 27 Band 11 

Band 12 0.03 0.30 900 0.28 0.04 -86 Band 12 

Note. Comparison of TOA and BOA reflectance with chlorophyll a was conducted with only the 

1x1 pixel analysis and the numbers represent r values.  
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Chlorophyll a Vs Remote Sensing Algorithms 

The measured concentrations of chlorophyll a for all sampling events were plotted against 

reflectance values from the three algorithms. 1x1, 3x3 and 5x5 pixel analyses were conducted for 

all three remote sensing algorithms. Extraction of MCI values for the August 19, 2018 image could 

not be conducted because the lakes were not detected after processing for MCI (Figure 10). This 

prompted the MCI analysis to be carried out without including MCI values from the August 2018 

image. For the Band ratio Algorithm, only two-band ratio models (2-B models) were tested 

because the 2-B models are simple and enough to not introduce uncertainty factors that additional 

wavelengths would (Zhu et al., 2014).  All possible 2-B combination for single and multiple pixel 

analysis was tested using bands 1-7 since they can readily detect algae. 

A comparison of the best results from all three algorithms was conducted to show the 

algorithms with the highest correlation with chlorophyll a. This was important because the best 

algorithm was chosen and used for the regression analysis conducted.  
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Figure 10. MCI images showing Lake Bloomington and Evergreen Lake (a) September 23, 2018 

image (b) August 19, 2019 image. White color indicates areas covered with water while black 

indicates areas without water. 

Lake Bloomington 

Bottom of Atmosphere Algorithm 

Lake Bloomington showed poor correlation between chlorophyll a and all the band 

reflectance for both single-pixel and multiple pixels analysis. The correlation coefficients for Lake 

Bloomington ranged from 0.05 to 0.36 for the single pixel analysis, 0.01 to 0.33 for the 3x3-pixel 

analysis, and from 0.01 to 0.35 for the 5x5-pixel analysis (Table 8). The highest correlation was 

observed between band 1 and chlorophyll a for all pixel analyses. For band 1, 1x1-pixel analysis 

had a correlation coefficient of 0.36, 3x3-pixel analysis had a correlation coefficient of 0.33, while 

5x5-pixel analysis had a correlation coefficient of 0.35. Except for Bands 3, 5 and 11, the 1x1-

pixel analysis showed higher correlation coefficients than both 3x3- and 5x5- pixel analyses.  
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Maximum Chlorophyll Index (MCI) Algorithm 

The MCI for Lake Bloomington showed no significant correlation with the measured 

chlorophyll a for all pixel analyses (Table 8). The highest correlation coefficient of 0.16 was 

observed in the 3x3-pixel analysis. 

Table 8 

BOA and MCI Cross Relationship (r values) for Lake Bloomington 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. Analysis is between chlorophyll a and BOA/MCI algorithms. 

Band Ratio Algorithm 

For Lake Bloomington, the 1x1 pixel analysis produced greater correlation coefficients 

except for B1/B2, B1/B6, B1/B7, B3/B5, B6/1 and B7/B1 (Tables 9, 10 and 11). The highest 

correlation coefficient was observed in B1/B2 in all the pixel analyses, but it was highest in the 

5x5-pixel analysis with a 0.55 correlation coefficient.   

  

Bands Single-

Pixel 

3x3-Pixel 5x5-Pixel 

Band 1 0.36 0.33 0.35 

Band 2 0.12 0.10 0.10 

Band 3  0.05 0.06 0.04 

Band 4 0.28 0.24 0.23 

Band 5 0.04 0.05 0.05 

Band 6 0.10 0.07 0.07 

Band 7 0.11 0.07 0.07 

Band 8  - - - 

Band 8A 0.05 0.01 0.01 

Band 9 0.24 0.22 0.20 

Band 10 - - - 

Band 11 0.09 0.12 0.14 

Band 12 0.30 0.22 0.24 

MCI 0.09 0.16 0.14 
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Table 9 

Cross Relationship (r values) Between Chlorophyll a and 2-B Ratio for Lake Bloomington 

(Single Pixel) 

 

 

 

 

Note. Top row bands divided by side column bands (highest values are highlighted in bold).  

 

Table 10 

Cross Relationship (r values) Between Chlorophyll a and 2-B Ratio for Lake Bloomington (3x3 

Pixel) 

Band No Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 

Band 1 — 0.50 0.41 0.43 0.35 0.34 0.33 

Band 2 0.52 — 0.18 0.31 0.09 0 0.01 

Band 3 0.47 0.19 — 0.35 0.01 0.08 0.09 

Band 4 0.49 0.32 0.39 — 0.38 0.20 0.20 

Band 5 0.44 0.19 0 0.40 — 0.13 0.13 

Band 6 0.10 0 0.09 0.19 0.07 — 0.07 

Band 7 0.32 0.04 0.12 0.21 0.10 0.09 — 

Note. Top row bands divided by side column bands (highest values are highlighted in bold). 

 

  

Band No Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 

Band 1 — 0.51 0.42 0.45 0.35 0.34 0.31 

Band 2 0.47 — 0.23 0.36 0.13 0 0.03 

Band 3 0.49 0.24 — 0.49 0.03 0.12 0.13 

Band 4 0.51 0.37 0.50 — 0.44 0.23 0.23 

Band 5 0.45 0.23 0.01 0.46 — 0.15 0.15 

Band 6 0.28 0.04 0.09 0.21 0.07 — 0.08 

Band 7 0.29 0.29 0.12 0.22 0.11 0.09 — 
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Table 11 

Cross Relationship (r values) Between Chlorophyll a and 2-B Ratio for Lake Bloomington (5x5 

Pixel) 

Band No Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 

Band 1 — 0.52 0.41 0.43 0.36 0.36 0.35 

Band 2 0.55 — 0.16 0.31 0.09 0 0.01 

Band 3 0.47 0.17 — 0.38 0.01 0.07 0.07 

Band 4 0.49 0.32 0.42 — 0.38 0.20 0.19 

Band 5 0.45 0.18 0.03 0.41 — 0.13 0.12 

Band 6 0.31 0 0.08 0.19 0.07 — 0.06 

Band 7 0.33 0.04 0.11 0.20 0.10 0.08 — 

Note. Top row bands divided by side column bands (highest values are highlighted in bold). 

Based on the results above, the best result for the BOA algorithm was in the 1x1-pixel 

analysis for Band 1 with a correlation coefficient of 0.36. The best result for the MCI algorithm 

was the 3x3-pixel analysis which showed a correlation coefficient of 0.16. The band ratio was in 

the 5x5-pixel analysis for B1/B2 which showed a correlation coefficient of 0.55. Overall, the best 

result for the band ratio produced the best results for Lake Bloomington. 

Evergreen Lake 

Bottom of Atmosphere Algorithm 

Evergreen Lake showed a stronger correlation than Lake Bloomington between 

chlorophyll a and the bands of the BOA algorithm for all pixel analyses. The correlation 

coefficients for Evergreen Lake ranged from 0.04 to 0.66 for the single-pixel analysis, from 0.20 

to 0.66 for 3x3-pixel analysis and from 0.12 to 0.66 for 5x5-pixel analysis (Table 12). The highest 

correlation was observed in band 5 for all pixel analyses. For band 5, all pixel analyses showed a 

correlation coefficient of 0.66. 
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Maximum Chlorophyll Index (MCI) Algorithm 

The MCI for Evergreen Lake showed significant correlation with measured chlorophyll a 

for both the single and multiple pixel analyses (Table 12). The highest correlation of 0.69 was 

observed in the 5x5- pixel analysis. 

Table 12 

BOA and MCI Cross Relationship (r values) for Evergreen Lake 

 

 

 

 

 

 

 

 

 

Note. Analysis is between chlorophyll a and BOA/MCI algorithms. 

Band Ratio Algorithms 

For Evergreen Lake, the multiple pixel analyses (3x3 and 5x5) produced greater correlation 

coefficients than the single-pixel analysis with the highest overall correlation in the 5x5-pixel 

analysis (Tables 13, 14 and 15). The highest correlation coefficient was observed in B5/B4 in all 

the pixel analyses, but it was highest in the 3x3- and 5x5-pixel analysis with a 0.69 correlation 

coefficient.  

  

Bands Single-

Pixel 

3x3-Pixel 5x5-Pixel 

Band 1 0.25 0.24 0.24 

Band 2 0.36 0.37 0.37 

Band 3  0.48 0.48 0.48 

Band 4 0.55 0.57 0.57 

Band 5 0.66 0.66 0.66 

Band 6 0.48 0.47 0.47 

Band 7 0.45 0.45 0.45 

Band 8  - - - 

Band 8A 0.45 0.45 0.46 

Band 9 0.30 0.28 0.27 

Band 10 - - - 

Band 11 0.28 0.29 0.30 

Band 12 0.04 0.20 0.12 

MCI 0.68 0.67 0.69 
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Table 13 

Cross Relationship (r values) Between Chlorophyll a and 2-B Ratio for Evergreen Lake (Single 

Pixel) 

 

 

Note: Top row bands divided by side column bands (highest values are highlighted in bold).  

 

Table 14 

Cross Relationship (r values) Between Chlorophyll a and 2-B Ratio for Evergreen Lake (3x3 

Pixel) 

 

 

Note: Top row bands divided by side column bands (highest values are highlighted in bold).  

 

  

Band No Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 

Band 1 — 0.04 0.11 0.02 0.23 0.59 0.59 

Band 2 0.06 — 0.16 0.04 0.39 0.58 0.52 

Band 3 0.05 0.13 — 0.31 0.64 0.47 0.43 

Band 4 0.06 0.04 0.33 — 0.64 0.39 0.35 

Band 5 0.26 0.38 0.62 0.60 — 0.25 0.21 

Band 6 0.38 0.47 0.41 0.42 0.33 — 0.17 

Band 7 0.47 0.38 0.35 0.32 0.24 0.03 — 

Band No Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 

Band 1 — 0 0.09 0.05 0.24 0.60 0.60 

Band 2 0.06 — 0.19 0.04 0.40 0.57 0.53 

Band 3 0.04 0.15 — 0.34 0.63 0.46 0.43 

Band 4 0.08 0.06 0.36 — 0.69 0.36 0.35 

Band 5 0.26 0.40 0.61 0.66 — 0.26 0.23 

Band 6 0.44 0.49 0.45 0.43 0.36 — 0.21 

Band 7 0.49 0.41 0.38 0.34 0.27 0.09 — 
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Table 15 

Cross Relationship (r values) Between Chlorophyll a and 2-B Ratio for Evergreen Lake (5x5 

Pixel) 

 

Note. Top row bands divided by side column bands (highest values are highlighted in bold).  

 

Based on the results above, the best result for the BOA algorithm was observed in band 5 

with all pixel analyses having the same correlation coefficient of 0.66. The best result for the MCI 

algorithm was the 5x5-pixel analysis which showed a correlation coefficient of 0.69. The best 

result for the band ratio was in the 3x3- and 5x5-pixel analyses for B5/B4 which showed a 

correlation coefficient of 0.69. Overall, the MCI and band ratio produced the best results for 

Evergreen. 

Regression Analysis 

Lake Bloomington 

The satellite reflectance data for Lake Bloomington showed weak relationships with 

chlorophyll a for the algorithms tested. A comparison of each field sampling event (August – 

October) and their corresponding satellite data was conducted using the 5x5-pixel reflectance 

values for Lake Bloomington. The strongest relationship was observed in Band 5 and B1/B2 ratio 

(Table 16) but the band ratio was used for used for the regression analysis. The results of the 

regression analysis (Table 17) showed that the relationships between the field and satellite data 

Band No Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 

Band 1 — 0 0.08 0.01 0.24 0.60 0.61 

Band 2 0.07 — 0.18 0.05 0.40 0.56 0.52 

Band 3 0.03 0.15 — 0.34 0.63 0.46 0.43 

Band 4 0.08 0.06 0.36 — 0.69 0.38 0.35 

Band 5 0.26 0.40 0.62 0.67 — 0.25 0.22 

Band 6 0.46 0.50 0.45 0.43 0.35 — 0.18 

Band 7 0.49 0.44 0.40 0.36 0.28 0.09 — 
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were statistically insignificant (p-value>0.05). The relationships observed in Lake Bloomington 

were not strong enough or statistically significant to perform further analysis. 

Table 16 

Cross Relationship for Individual Sampling Events for Lake Bloomington 

Month and Year Band 5 B1/B2 MCI 

August 2018 0.24 0.32 - 

September 2018 0.0005 0.04 0.005 

October 2018  0.62 0.0007 0.80 

October 2019 0.04 0.27 0.10 

Note: Correlation coefficient (r) values between chlorophyll a and satellite data for individual 

sampling. 

 

Table 17 

Regression Analysis for Lake Bloomington between B1/B2 and Chlorophyll a for Individual 

Month 

Month and Year Slope p-value Intercept p-value R2 p-value 

Aug-2018 250.4 0.238 -108.1 0.453 0.324 0.238 

Sep-2018 -111.7 0.59 149.5 0.324 0.044 0.59 

Oct-2018 -4.569 0.944 37.37 0.22 0.0007 0.944 

Oct-2019 -493.7 0.114 266.9 0.114 0.266 0.1557 

 

Evergreen Lake 

The satellite reflectance data for Evergreen lake showed stronger relationships with 

chlorophyll a for each of the algorithms tested. A comparison of each field sampling event (August 

– October) and their corresponding satellite data was conducted using the 5x5-pixel reflectance 

values for Evergreen Lake. For the BOA reflectance and band ratio algorithms, a stronger 

relationship was observed in Band 5 and B5/B4 ratio respectively (Table 18) and these were used 
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for the regression analysis. The highest correlation coefficient for the months was observed as 

follows; Band 5 for August 2018 with a correlation coefficient of 0.68 and R2 of 0.46, band ratio 

B5/B4 for September 2018 with a correlation coefficient of 0.80 and R2 of 0.64, MCI for October 

2018 with a correlation coefficient of 0.97 and R2 of 0.94  and band ratio B5/B4 for October 2019 

with a correlation coefficient of 0.75 and R2 of 0.56 (Figure 11). Data from October 2018 showed 

the highest correlation values compared to all the other months. 

Table 18 

Cross Relationship for Individual Sampling Events for Evergreen Lake 

Month and Year Band 5 B5/B4 MCI 

August 2018 0.68 0.58 - 

September 2018 0.73 0.80 0.73 

October 2018  0.94 0.93 0.97 

October 2019 0.71 0.75 0.74 

Note. Correlation coefficient (r) values between chlorophyll a and satellite data for individual 

sampling. 
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Figure 11. Scatter plot of the best results of the regression analysis for Evergreen Lake between 

chlorophyll a and remote sensing algorithms for individual months (a) August 2018 (b) 

September 2018 (c) October 2018 (d) October 2019. 

To estimate spatial variation of chlorophyll a for Evergreen Lake, a linear regression model 

was fit to the data. The result of the comparison of band ratio (B5/B4) and chlorophyll a was used 

for this estimation for individual sampling events. The results showed that the August 2018 model 

was not statistically significant because the p-values for each variable tested was greater than 0.05 

(p-value>0.05). However, the other sampling events were statistically significant with p-values 

<0.05 for each variable tested, and October 2018 having the highest R2 of 0.87 (Table 19).   

 

 

  

(a) (b) 

(c) 
(d) 
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Table 19 

Regression Analysis for Evergreen Lake Between B5/B4 and Chlorophyll a for Individual Month 

Month and Year Slope p-value Intercept p-value R2 p-value 

Aug-2018 108.87 0.08 -94.47 0.19 0.34 0.077 

Sep-2018 46.09 0.01 -25.44 0.11 0.64 0.006 

Oct-2018 68.53 8.80E-05 -44.4 0.0033 0.87 8.80E-05 

Oct-2019 133.7 0.013 -130.21 0.039 0.56 0.013 
  

The results of the regression analysis were used as inputs for the creation of interpolated 

spatial maps that show the spatial distribution of chlorophyll a in Evergreen Lake. 
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CHAPTER V: DISCUSSION 

What Factors Influence the Distribution of Chlorophyll a? 

Lake Bloomington 

The seasonal trend displayed by chlorophyll a in Lake Bloomington is evidently influenced 

by the observed seasonal changes in temperature, as the lake water temperature decrease from 

August to October. The higher the temperature, the higher the concentration of chlorophyll a which 

translates to a higher number of algae in the summer than in fall. Nutrients, on the other hand, do 

not have a consistent seasonal or spatial pattern. Phosphorus was higher upstream and lower at 

downstream sampling locations while nitrate was higher downstream and decreases upstream. The 

higher concentration of phosphorus observed upstream could be due to the presence of more 

sediments upstream than downstream. Sediments play an important role in phosphorus metabolism 

because they are able to retain and release phosphorus in lakes (Pettersson, 1998). The higher 

concentration of nitrate downstream could be because it is a water-soluble nutrient and is readily 

transported due to its high solubility and mobility characteristics (Vesper et al., 2001). Lake 

Bloomington was more turbid upstream than downstream and secchi depth was low upstream and 

high downstream. For Lake Bloomington, the clearer the water, the lower concentration of 

chlorophyll a and vice versa. One would expect more turbid waters to have higher concentrations 

of chlorophyll a, and vice versa, but this was not the case. The inverse relationship observed 

between turbidity and chlorophyll a could be because sediment load contributed to Lake 

Bloomington’s turbidity more than algae. This sediment load could interfere with the satellite and 

make it more difficult for the detection of chlorophyll a in the more turbid waters. 

 

 



40 

Evergreen Lake 

The seasonal increase in nitrate observed for Evergreen Lake could be because farmers 

apply fertilizers before the growing season in April/May and after harvest in October/November. 

Because of its high solubility and mobility, nitrate is easily dissolved and leached from the ground 

which would explain why most of the August and September 2018 nitrate were too low to be 

detected. Another reason for the low detection of nitrate could be because there was no water flow 

into the fields from streams or tiles. Another technique for measuring and estimating nitrate can 

be employed given that the lake levels were usually high during the sampling periods. The 

temporal increase observed in October 2019 when compared to October 2018 could be due to the 

types of crops grown each year. Farmers would generally apply more fertilizers when corn is 

dominantly grown and less fertilizers when soybeans is dominantly grown. Phosphorus showed 

no temporal changes but spatially seems to be high upstream and lower downstream. This spatial 

pattern of phosphorus, like in Lake Bloomington, can also be attributed to the presence of more 

sediments upstream than downstream. The seasonal pattern observed in chlorophyll a is influenced 

by the concentration of Phosphorus as the higher the concentration of phosphorus, the higher the 

chlorophyll a concentration and the lower the phosphorus, the lower the chlorophyll a. The direct 

relationship between turbidity and chlorophyll a in Evergreen Lake could be because algae rather 

than sediment load contributed more to the turbidity of the lake.   

 

  



41 

How Well Does the Satellite Imagery Capture Chlorophyll a? 

The results from the remote sensing analysis showed there was no significant relationship 

between chlorophyll a and the sentinel algorithms after atmospheric correction was conducted for 

Lake Bloomington. Except for band ratio Band1/Band2 (B1/B2), which had a correlation 

coefficient of 0.55 and an R2 value of 0.31 for a 5x5-pixel averaging window, the relationships 

observed were very weak. Weak relationship between chlorophyll a and the satellite algorithms 

could be because of the interference of turbidity with the satellite on Lake Bloomington. Even 

though there are algae present in Lake Bloomington as evidenced by the measured chlorophyll a 

values, the turbidity might be inducing noise on the reflectance values recorded by the satellite. 

When different zones of the lakes were analyzed, the deep-water zone (LB1 – LB4) showed a 

general improvement in the correlation coefficients with the highest correlation coefficient of 0.74 

and an R2 of 0.56 observed in Band 4. Small lakes can easily become turbid with large influx of 

sediment load into the lake. This better correlation results observed in the less turbid portions of 

the lake shows that remote sensing data can be used to predict chlorophyll a concentrations in 

lakes with low turbidity but is difficult in reservoirs with high turbidity rates. Previous studies 

suggested that atmospheric correction might not be required for the estimation of chlorophyll a, in 

small turbid waterbodies (Matthews et al., 2010).  

The relationship observed in Evergreen Lake were stronger and more significant than those 

of Lake Bloomington. This could be because Evergreen Lake is bigger and less turbid than Lake 

Bloomington. This could also be because algae contributed more to the turbidity of the lake than 

sediment load, reducing the interference of sediment load with the reflectance recorded by the 

satellite. After atmospheric correction was conducted to convert TOA to BOA, there was 

improvement in the relationships between chlorophyll a and the reflectance values. Therefore, 
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atmospherically corrected images can be used in the analysis of the less turbid and bigger 

Evergreen Lake. The most significant relationships were observed in band 5 for the BOA 

algorithm, band ratio B5/B4 for the two-band ratio algorithm and in the MCI algorithm for 

Evergreen Lake. For the analysis of the individual sampling events, October 2018 recorded the 

highest correlation coefficient for BOA, MCI and band ratio. The time window between field 

sampling and collection of data by the satellite is within ±2 days for October 2018 as opposed to 

±3-5 days for the other three sampling events. This means that remote sensing analysis for 

chlorophyll a should be limited to a time window of ±2 days, because the October 2018 sampling 

event was within ±2 days and the other sampling events were within ±3-5 days.  

The satellite imagery was a better predictor of chlorophyll a for Evergreen Lake than Lake 

Bloomington. As stated earlier, this could be as a result of the high turbidity of Lake Bloomington, 

contributed by sediment load rather than algae. Due to weather conditions and the availability of 

cloud free images, there were limited sampling events (only four) and lack of sampling events that 

coincided with satellite overpass time for this project. This could also be a reason for the regression 

results observed in the two lakes. Previous studies have shown that when predicting chlorophyll a 

using satellites, the time window between field sampling and satellite image acquisition should be 

limited to ±2 days (Stadelmann et al., 2001). Frequent sampling of the lakes, e.g. every two weeks 

or once a month, could help reduce errors and produce better results with the satellite data. Better 

remote sensing atmospheric correction methods and algorithms could also be tested out on the 

lakes to see if there would be any improvements. The traditional empirical line method (ELM) has 

been used over the Sen2Cor tool on SNAP (Ha et al., 2017) because it is a more precise method 

for atmospheric correction over water areas. The slope model (SLMSI) and Normalized Difference 

Chlorophyll Index (NDCI) algorithms (Watanabe et al., 2018) developed for turbid waters have 
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also been successfully used in the prediction of chlorophyll a concentrations using satellite 

imagery. These atmospheric correction methods and algorithms can be applied to and tested on 

Lake Bloomington and Evergreen lake. 

What is the Spatial Pattern of Chlorophyll a in the Lakes? 

Since the satellite imagery captured chlorophyll a better in Evergreen Lake, the spatial 

pattern analysis was conducted for Evergreen Lake only. Maps showing the spatial pattern of 

chlorophyll a in Evergreen Lake were created for each sampling event (Figure 12) using pixel 

values from band ratio B5/B4. Chlorophyll a concentrations used to create the maps were gotten 

from the linear regression equation for each month; 

y = βx – α 

Where y is the unknown variable (chlorophyll a), β is the slope, x is the pixel value of pixels in 

the B5/B4 sentinel-2 image and α is the intercept. 

 The spatial pattern shown by all sampling events showed a high concentration upstream 

and decreases as you move downstream. This is consistent with the pattern observed with the lab 

measurements of chlorophyll a for Evergreen Lake. The higher concentration of chlorophyll a 

observed upstream might be because the movement of the water is slower upstream due to the lake 

meandering more upstream and even forming a loop (e.g. where EV8 and EV 9 are located). 

Another reason might be because the lake is narrower upstream than it is downstream. There is 

also the presence of more vegetation upstream than there is downstream, and this could contribute 

to the increase of chlorophyll a content upstream.  

The September map showed the lowest concentration of chlorophyll a distributed across 

the lakes while August showed the highest concentrations of chlorophyll a distributed across the 

lakes. October 2019 map showed higher concentrations of chlorophyll a than October 2018. This 
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is also consistent with the results observed with the field data. Results of statistical analysis carried 

out on each map to test the accuracy of the models by comparing the Sentinel-2 estimated 

chlorophyll a and the measured chlorophyll a in the laboratory is shown in Table 18. Error analysis 

including the mean error, mean square error (MSE), root mean squared error (RMSE) and 

correlation coefficient (r) were conducted. The October and September 2018 models performed 

better than the other two models, but the September 2018 model had lower MSE and RMSE than 

the October 2018 model.  However, the October 2018 model had a higher R2 and correlation 

coefficient than the September 2018 model. The October 2018 model showed a good performance 

a correlation coefficient of 0.92, bias of 0.31, mean error of 0.10 and RMSE of 4.91. The August 

2018 and October 2018 models had MSE and RMSE that are very much higher than the September 

and October 2018 results. 

Table 20 

Error Analysis Based on the Comparison Between Interpolated Model Estimation and Field 

Observed Data 

Sampling 

Event 

Observed 

Average Chl-a 

(µg/L) 

Mean 

Error 

(µg/L) 

Bias 

(µg/L) 

MSE 

(µg/L)2 

RMSE 

(µg/L) 

R2 Correlation 

Coefficient 

(r) 

August 2018 39.95 0.41 1.02 244.95 15.65 0.34 0.58 

September 

2018 

27.05 -0.11 -0.39 20.89 4.57 0.67 0.81 

October 

2018 

32.85 0.10 0.31 24.08 4.91 0.85 0.92 

October 

2019 

37.35 -0.20 -0.55 198.58 14.09 0.57 0.75 
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Figure 12. Estimated chlorophyll a based on individual sampling events for Evergreen Lake.
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CHAPTER VI: CONCLUSION 

The temporal distribution of chlorophyll a was closely related to that observed for 

temperature in Lake Bloomington. Chlorophyll a was highest in the summer months when 

temperature was highest and lowest in the fall months when the temperature was lower in Lake 

Bloomington. For Evergreen Lake, phosphorus was the dominant factor that was closely related 

to chlorophyll a. A higher concentration of phosphorus was observed upstream than downstream, 

and this same pattern was consistent with the distribution of chlorophyll a in Evergreen Lake.  

Lake Bloomington showed no strong correlation with the remote sensing data and this 

could be because of the noise effects induced by the turbidity of the lake. It is difficult to measure 

the chlorophyll a content of small lakes that display high turbidity and since the lake is a small 

lake, it can easily become turbid with a large influx of sediments into the lake. However, the deep-

water zones of Lake Bloomington showed strong correlation relationships when analyzed 

separately. Evergreen Lake showed a good correlation with the remote sensing data and the results 

of the analysis showed that there was a general improvement in the relationship between 

chlorophyll a and the satellite reflectance values after atmospheric correction was conducted. Band 

5 for the BOA algorithm, B5/B4 for the two-band ratio algorithm and the MCI can be used to carry 

out chlorophyll a analysis for Evergreen Lake. However, the time window between field sampling 

and satellite overpass time should be limited to ±2 days as better results were observed for time 

windows that were ±2 days. 

Prediction of the chlorophyll a concentration of the other locations not sampled was carried 

out, using ArcGIS tools, after the regression analysis was conducted for Evergreen Lake. 

Chlorophyll a showed a heterogenous spatial pattern where it was higher upstream and lower 

downstream for Evergreen lake.   
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