
Objective: The aim of this study is to assess the relation-
ship between eye-tracking measures and perceived workload in 
robotic surgical tasks.

Background: Robotic techniques provide improved dex-
terity, stereoscopic vision, and ergonomic control system over 
laparoscopic surgery, but the complexity of the interfaces and 
operations may pose new challenges to surgeons and compromise 
patient safety. Limited studies have objectively quantified work-
load and its impact on performance in robotic surgery. Although 
not yet implemented in robotic surgery, minimally intrusive and 
continuous eye-tracking metrics have been shown to be sensitive 
to changes in workload in other domains.

Methods: Eight surgical trainees participated in 15 robotic 
skills simulation sessions. In each session, participants performed 
up to 12 simulated exercises. Correlation and mixed-effects 
analyses were conducted to explore the relationships between 
eye-tracking metrics and perceived workload. Machine learning 
classifiers were used to determine the sensitivity of differentiating 
between low and high workload with eye-tracking features.

Results: Gaze entropy increased as perceived workload 
increased, with a correlation of .51. Pupil diameter and gaze entropy 
distinguished differences in workload between task difficulty levels, 
and both metrics increased as task level difficulty increased. The 
classification model using eye-tracking features achieved an accuracy 
of 84.7% in predicting workload levels.

Conclusion: Eye-tracking measures can detect perceived 
workload during robotic tasks. They can potentially be used to 
identify task contributors to high workload and provide measures 
for robotic surgery training.

Application: Workload assessment can be used for real-time 
monitoring of workload in robotic surgical training and provide 
assessments for performance and learning.

Keywords: perceived workload, eye movements, robotics and 
telesurgery, simulation training, statistics and data analysis

Introduction
Compared with traditional open surgery, min-

imally invasive surgery (MIS) offers potential 
benefits of smaller incisions, reduced infection 
risks, decreased postoperative pain, and short-
ened patient recovery time (Fuchs, 2002; Ver-
hage, Hazebroek, Boone, & Van Hillegersberg, 
2009). Despite benefits, early MIS techniques 
like laparoscopic surgery have been observed 
to increase mental and physical workload (Ber-
guer, Chen, & Smith, 2003; Berguer, Forkey, & 
Smith, 2001; Hemal, Srinivas, & Charles, 2001; 
Yu, Lowndes, Thiels, et al., 2016) due to limita-
tions in tactile sensation, video displays, inter-
face design, and the disconnection of separating 
the surgeons’ hands from target organs (Ballan-
tyne, 2002; Hamad & Curet, 2010; Lowndes & 
Hallbeck, 2014; Yu, Lowndes, Morrow, et  al., 
2016).

Advances in robotic surgical systems have 
the potential to address some of the ergonomic 
limitations observed in laparoscopic surgery 
(Moorthy et al., 2004; Yu et al., 2017) by provid-
ing increased dexterity, adjustable console posi-
tions, and stereoscopic visualization (Lanfranco, 
Castellanos, Desai, & Meyers, 2004). Yet, men-
tal workload in robotic surgery may be a greater 
concern due to increased technique complexity, 
unique interfaces, and the disconnection with 
the surgical team (Catchpole et al., 2019; Weber, 
Catchpole, Becker, Schlenker, & Weigl, 2018; 
Yu et al., 2017). For example, similar to laparo-
scopic surgery, flow disruptions in robotic sur-
gery have been observed to occur frequently, 
and disruption severity has been associated with 
increased self-reported workload (ρ = .34 ) 
(Blikkendaal et  al., 2017; Weber et  al., 2018). 
The lack of tactile feedback is another known 
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disadvantage that could increase surgeon work-
load (Talamini, Chapman, Horgan, & Melvin, 
2003; Wottawa et al., 2016) and lead to adverse 
surgery outcomes (Hubens, Ruppert, Balliu, & 
Vaneerdeweg, 2004). These new challenges 
necessitate quantifying and monitoring work-
load in robotic surgery training.

Several studies have attempted to objectively 
measure surgeons’ workload during robotic sur-
gery. Physical workload has been measured 
using surface electromyography and motion 
tracking sensors (Lee et  al., 2014; Yu et  al., 
2017; Zihni, Ohu, Cavallo, Cho, & Awad, 2014). 
Measurement of perceived workload is more 
limited and has primarily focused on self-
reported methods, for example, National Aero-
nautical and Space Administration Task Load 
Index (NASA-TLX; Lee et al., 2014) and Sur-
gery Task Load Index (SURG-TLX; Moore 
et al., 2015). These measures have been success-
ful in distinguishing mental workload between 
surgical techniques, team roles, and experience 
level. However, subjective approaches have 
potential bias (e.g., inter-subject variability and 
the ability to self-assess), disrupt the surgical 
task, and are available at the completion of the 
case when they are typically administered (Car-
swell, Clarke, & Seales, 2005; Miller, 2001; 
Young, Brookhuis, Wickens, & Hancock, 2015). 
Continuous and objective measures are needed 
to reliably detect specific events that increase 
perceived workload and to provide feedback to 
enhance learning.

With advances in wireless sensors and signal 
analytics, physiological measures are becoming 
more feasible in the operating room and can pro-
vide objective approaches to continuously moni-
tor surgeons’ workload without interfering intra-
operative work (Dias, Ngo-Howard, Boskovski, 
Zenati, & Yule, 2018; S. Liu et  al., 2018; Yu 
et al., 2017). The relationship between physio-
logical measures and mental workload has been 
published in many domains. Examples of physi-
ological measures include pupillometry, blink 
rate, heart rate variability (HRV), and electroen-
cephalograms (EEGs). Applications of EEG to 
surgery workload are still nascent, and prelimi-
nary works have shown that EEG metrics cor-
related with objective performance and per-
ceived workload during robotic procedures 

(Guru, Esfahani, et  al., 2015; Guru, Shafiei, 
et al., 2015). However, the extensive setup time, 
intrusive setup procedure, and susceptibility to 
motion/muscle artifacts have limited EEG’s 
application and reliability in the fast-paced and 
dynamic surgical environment (Ayaz et  al., 
2012; Cao, Chintamani, Pandya, & Ellis, 2009; 
Miller, 2001). Heart rate sensors are easier to 
implement and have been frequently used to 
infer workload (Moore et  al., 2015; Roscoe, 
1993). However, emotional stimulus and physi-
cal workload could also increase heart rate 
(Jorna, 1992, 1993), and many studies have 
noted that HRV might not be sensitive enough 
for measuring mental workload (Gabaude, Bara-
cat, Jallais, Bonniaud, & Fort, 2012; Nickel & 
Nachreiner, 2003).

Similar to the aforementioned physiological 
measures, eye-tracking metrics have also shown 
strong associations with perceived workload in 
other domains (Beatty, 1982; de Greef, Lafeber, 
van Oostendorp, & Lindenberg, 2009; Marquart, 
Cabrall, & de Winter, 2015). With advances in 
wireless and wearable sensors, this approach 
may address some of the usability and reliability 
concerns of the other physiological modalities. 
In surgery, eye tracking has seen growing appli-
cations in training and evaluation (Henneman, 
Marquard, Fisher, & Gawlinski, 2017; Tien 
et al., 2014). These studies showed that gaze pat-
terns differentiated between expert and novice 
surgeons (Khan et al., 2012; Wilson et al., 2010) 
and recommended projecting experts’ gaze pat-
terns to trainees to improve their performance 
and accelerate the learning process (Chetwood 
et al., 2012; Wilson et al., 2011).

Preliminary works have also applied several 
eye-tracking metrics to measure surgical work-
load. For example, peak pupil size increased 
with task difficulty while novices transported 
rubber objects over dishes with different target 
sizes and distances (Zheng, Jiang, & Atkins, 
2015). Lower blink frequency range was associ-
ated with higher NASA-TLX ratings during 
simulated laparoscopic tasks (Zheng et  al., 
2012). In addition, blink rate was higher for 
experts than novices during the cutting phase of 
simulated microsurgery although it did not vary 
for any of the other phases (Bednarik, Koski-
nen, Vrzakova, Bartczak, & Elomaa, 2018). 
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However, these studies were limited to basic 
skills tasks and laparoscopic techniques. The 
accuracy of eye-tracking measures for robotic 
tasks with more complex interfaces remains 
unknown. Research is needed to determine the 
impact of robotic interfaces and high technical 
complexity of telesurgery on eye-tracking tech-
nology’s implementation and its ability to pre-
dict workload.

This initial study aims to explore the relation-
ship between perceived workload and eye-track-
ing metrics in robotic surgical tasks. Workload is 
manipulated by task difficulty, as perceived 
workload tends to increase with increased task 
demand (Marinescu et al., 2018; Miyake, 2001). 
We hypothesize that (1) eye-tracking metrics 
can predict trainees’ perceived workload and (2) 
eye-tracking metrics are sensitive to task diffi-
culty levels.

Materials and Methods
Participants

This study was reviewed by the university’s 
institutional review board. The study popula-
tion was surgical trainees who participated in 
robotic skills training (i.e., limited previous 
robotic experience). Eight surgical trainees from 
a large academic medical school were recruited 
voluntarily. All of the participants were right-
hand dominant, four were female, and the mean 
(±standard deviation) age was 26 (± 1.6) years. 
None had prior clinical robotics experience. 
They performed robotics tasks (described later) 
periodically over the course of 4 months.

Robotic System and Tasks
The da Vinci Surgical System (dVSS; Intui-

tive Surgical, Inc., Sunnyvale, CA) was used 
at times when it was not needed for clinical 
procedures. The system consisted of a surgeon 
console with controls (e.g., foot pedals, master 
controls, and controls to adjust positioning) and 
tele-surgical robotic arms. The console also 
included a widely used simulation software 
(M-Sim®) provided by the da Vinci manufac-
turer, which enabled trainees to perform simu-
lated exercises without physically activating the 
actual robotic arms. Both the console and the 
software were used in this study.

Tasks and difficulties were selected from the 
simulation software based on recommendations 
from the surgical education community. Inter-
views with experts in robotic surgery and medi-
cal education were used to select six tasks that 
can assess skills required to perform robotic sur-
gery. These tasks required trainees to use camera 
control, endowrist manipulation, clutching, nee-
dle control, and needle driving to transfer or 
suture objects (Alzahrani et al., 2013; Perrenot 
et al., 2012). Depending on the specific task, up 
to three levels of difficulty were available in the 
simulation software, and all available levels 
were used in the study. A task at a certain level is 
referred to as an exercise in this paper. Prelimi-
nary task analysis based on the human processor 
model (Card, Moran, & Newell, 1986; Y. Liu, 
Feyen, & Tsimhoni, 2006) and Therbligs (Gil-
breth & Kent, 1911) was conducted to briefly 
describe the task demands across task levels. 
The human processor model divides the task 
process into three discrete serial stages: percep-
tual, cognitive, and motor. For our tasks, these 
were translated into visual, cognitive, and man-
ual demand of the task. Within each demand, 
actions were decomposed into basic motion ele-
ments defined by Therbligs. See Table A1 in the 
appendix for task descriptions and task demands. 
Task order was not randomized due to the cur-
riculum-building nature of the training sessions, 
that is, simpler tasks were prerequisites of more 
advanced tasks. Based on the task order in previ-
ous studies (Finnegan, Meraney, Staff, & Shich-
man, 2012; Kenney, Wszolek, Gould, Libertino, 
& Moinzadeh, 2009), tasks were performed in 
the following order: Camera Targeting, Peg 
Board, Ring and Rail, Sponge Suturing, Dots 
and Needles, and Tubes. In each task, lower 
(easier) levels were presented before higher 
(more difficult) levels.

Data Collection
Performance data.  The simulation software 

automatically assessed trainees’ performance 
based on several criteria, for example, task time, 
economy of motion, drops, instrument colli-
sions, excessive instrument force, instrument 
out of view, and master workspace range (Per-
renot et al., 2012), which was summarized as an 
overall score (0%–100%) with higher scores 

https://journals.sagepub.com/doi/suppl/10.1177/0018720819874544
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representing better performance. This overall 
score was recorded and used as the measure-
ment of performance. Due to the design of the 
software, this overall score was displayed upon 
completion of each exercise, allowing the par-
ticipant to see their performance score.

NASA-TLX.  The NASA-TLX survey (Hart 
& Staveland, 1988) was used to assess per-
ceived workload. The NASA-TLX contains six 
sub-dimensions of workload (mental demand, 
physical demand, temporal demand, perfor-
mance, effort, and frustration) and each was 
rated on a visual analogue scale that ranged 
from 0 (very low) to 10 (very high). Scores from 
each dimension were summed to calculate the 
final NASA-TLX workload score, resulting in a 
final value between 0 and 60. Although a 
weighted NASA-TLX has also been used by 
other investigators, many studies have demon-
strated a summed score as an acceptable imple-
mentation of NASA-TLX (Hart, 2006).

Eye-tracking metrics.  A wearable eye-tracking 
system, Tobii Pro Glasses 2.0 (Tobii Technol-
ogy AB, Danderyd, Sweden) was used to bin-
ocularly sample eye movements at 50 Hz. The 
eye-tracking device consisted of two major 
parts. A camera was located in the middle of the 
glass frame (outer side) to record the view of 
the scene while sensors were mounted in the 
inner side of the glass frame to capture eye 
movements and pupil diameter.

Pupil diameter and gaze points were continu-
ously recorded by the system during sessions. 
Recordings were annotated using the Tobii Pro 
Lab Software (Tobii Technology AB) and 
extracted for further analysis. Four eye-tracking 
metrics were calculated from the raw data: pupil 
diameter (mean of left and right), gaze entropy, 
fixation duration, and percentage of eyelid clo-
sure (PERCLOS), defined as follows.

Pupil diameter.  This metric was estimated 
by the eye-tracking system using images of the 
eyes. Previous work showed association 
between larger pupillary dilations and increased 
cognitive load (Beatty, 1982; Beatty & Kahne-
man, 1966; Granholm & Steinhauer, 2004; Pal-
inko, Kun, Shyrokov, & Heeman, 2010; 
Pomplun & Sunkara, 2003).

Gaze entropy.  It is an index that measured 
visual scanning randomness and was previously 

used as a measure of mental workload in avia-
tion tasks (Harris, Tole, Stephens, & Ephrath, 
1982; Tole, 1983). The rationale was that the 
exploration pattern became more random when 
workload increased, but divergent results had 
been reported in previous studies (Allsop & 
Gray, 2014; Di Nocera, Camilli, & Terenzi, 
2007). It was adopted for the current study and 
calculated based on the Shannon entropy theory 
(Di Stasi et al., 2016; Shannon, 2001):

	
H p x y p x yXg ( ) ( , ) log ( , ),= ∑ ⋅− 2 �

where p x y( , )  was the probability of gaze fall-
ing in the p x y( , ).  A gaze point was estimated 
as coordinates in relation to the two-dimensional 
field of view (1,920 × 1,080). Gaze entropy for 
an exercise was calculated based on all gaze 
points that were monitored during the exercise, 
across all possible x and y in the field of view.

Fixation duration.  It is the total amount of 
time spent in fixations. Studies had suggested 
that fixation duration reflected information pro-
cessing load (Morris, Rayner, & Pollatsek, 
1990; Reimer, Mehler, Wang, & Coughlin, 
2010) and increased as workload increased (de 
Greef et al., 2009; Recarte & Nunes, 2000). We 
scaled the absolute time to the percentage of 
time in the exercise duration:

	
FD =

Sumof fixationdurations

Exerciseduration
100%.% ×

�

PERCLOS.  In previous research, PER-
CLOS had been calculated as the percentage of 
time during which the pupils were covered by 
the eyelids by more than 80% of their area 
(Wierwille, Wreggit, Kirn, Ellsworth, & Fair-
banks, 1994). Studies had shown that higher 
PERCLOS reflected increased fatigue and 
decreased vigilance (Marquart et  al., 2015; 
Singh, Bhatia, & Kaur, 2011; Sommer & Golz, 
2010). It had also been used as a machine learn-
ing feature to predict workload (Halverson, 
Estepp, Christensen, & Monnin, 2012; Tian, 
Zhang, Wang, Yan, & Chen, 2019). In this 
study, since the device did not support eyelid 
closure measurement, it was estimated by the 



Perceived Workload in Robotic Surgery	 5

percentage of time duration (per exercise) 
where neither left pupil nor right pupil was 
detected. Since participants’ head movements 
were constrained, this estimation was not con-
founded by participants looking away. It could 
be potentially confounded by missing data (lost 
pupil frames due to device malfunction), which 
was 1% for our device.

Study Procedure
This study was an exploratory study to 

determine the potential usage of eye tracking in 
robotic surgery, and a prospective observational 
study design was used. The number of sessions 
was not predetermined, and participants were 
observed every time they attended robotic train-
ing sessions over the 3-month study period. 
Data collection sessions were also scheduled 
based on robotic console availability. Partici-
pants were informed of the study at least 1 
week in advance. Data collection was conducted 
when any participant confirmed attendance.

For each session, after arriving to the operat-
ing room, the participants reviewed a study 
information sheet and completed the demo-
graphic questionnaire. They were then fitted 
with the eye-tracking system. The system was 
calibrated at the beginning of each session. 
Baseline pupil diameter for the participants was 
collected following procedures recommended 
by previous work (Beatty & Lucero-Wagoner, 
2000; Marshall, 2000; Mosaly, Mazur, & Marks, 
2017). Specifically, each participant looked at 
the center of a white screen for 10 s (minimum 
diameter) and then a black screen (maximum 
diameter) for 10 s.

Instructions for basic operations of the console 
(e.g., functions of buttons, and foot pedals) were 
provided to all participants in their first session. 
Although they were allowed to familiarize them-
selves with the controls, no practice sessions on 
the study tasks were provided. During each task, 
the console would display pre-programmed  
messages on task goals and operations, and a 
researcher was present to address any questions 
or concerns throughout the session. In each ses-
sion, participants were expected to perform 12 
exercises. To maintain consistency with the train-
ees’ curriculum and system usage schedule, the 
time constraint of each session was 45 min. 

Therefore, considering participants’ skill and 
capability, advanced difficulty levels were not 
completed in the early phase of training. After 
completing each exercise, the participant com-
pleted a NASA-TLX survey. Eye-tracking data 
were continuously recorded throughout the entire 
session and post-processed in the Tobii Pro Lab 
software.

Statistical Analysis
Pupil diameter and gaze entropy were nor-

malized using the feature scaling formula given 
following (Bo, Wang, & Jiao, 2006) to scale 
the data to the range of [0, 1], accounting for 
potential variation from individual differences 
in pupil diameter and pupil dilation. It also pre-
vented a distortion in analysis caused by vari-
able magnitude differences. Here, 0 denoted the 
minimum value for an individual and 1 denoted 
the maximum for an individual:

	
′ =

−
x

x x

x x

min( )

max( ) min( )
.

− �

Repeated measures correlation tests, rrm  
(Bakdash & Marusich, 2017), were used to 
examine how strongly NASA-TLX ratings were 
associated with task performance. Similarly, 
they were used to test associations between eye-
tracking metrics and NASA-TLX ratings. 
Instead of the more common Pearson correla-
tion, rrm  coefficient was estimated using analy-
sis of covariance (ANCOVA), where participant 
was treated as a factor level. This technique gave 
a more accurate estimation of the association 
between two variables when underlying indi-
vidual factors can affect the relationship. The 
formula of rrm  was expressed in the form of sum 
of squares:

	
r

SS

SS SSrm
Measure

Measure Error

=
+

.
�

Mixed-effects models were used to determine 
eye-tracking metric sensitivity to changes in task 
levels (difficulty). This approach accounted for 
random effects of subject and repeated measures 
by allowing varying intercept (Cnaan, Laird, & 
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Slasor, 1997; Dingemanse & Dochtermann, 
2013). Each task was fitted by separate models, 
resulting in five models (Task Tubes had only 
one level of difficulty, therefore the effect of dif-
ficulty was not tested). Significance level for all 
statistical analyses was set at α=.05. When 
appropriate, p-values were corrected using the 
Benjamini–Hochberg procedure (Benjamini & 
Hochberg, 1995).

Classification
To explore the joint capability of various 

eye-tracking features for detecting high work-
load, the Naïve Bayes algorithm (Friedman, 
Geiger, & Goldszmidt, 1997) was used. The 
algorithm was based on Bayesian theorem: 
P C X P C P x Cj j i j( | ) ( ) ( | ),∝ ∏  the probability 
of a certain class, given all evidence, was the 
product of prior probability of the class and all 
conditional probabilities of evidence. Distribu-
tion for each variable was constructed based on 
observed data. Naïve Bayes classifier has been 
applied in real-world tasks with demonstrated 
efficiency and accuracy in error detection and 
text classification (Amor, Benferhat, & Elouedi, 
2004; McCallum & Nigam, 1998). The main 
advantages of this technique were the effec-
tiveness for small datasets (Jyothi & Bhargavi, 
2009) and applicability to different types of data 
(Domingos & Pazzani, 1997) such as those col-
lected in this study.

Perceived workload levels were determined 
by categorizing the total NASA-TLX scores into 
either high or low workload. Although there is 
still much debate on what NASA-TLX threshold 
is considered “high workload,” some studies 
observed that scores above 50 to 55 (out of 100) 
may lead to increased performance errors (Colle 
& Reid, 2005; Mazur et  al., 2014; Mazur, 
Mosaly, Hoyle, Jones, & Marks, 2013; Yu, 
Lowndes, Thiels, et al., 2016). Therefore, in this 
study, scores above 30 (out of 60) were catego-
rized as high workload. Limited studies have 
discussed the threshold of low workload. In our 
training environment, low workload may indi-
cate that the tasks were too easy. We assumed 
that the distribution of workload scores (n = 
168) resembled a normal distribution (Grier, 
2015), and the number of low workload instances 

were sampled to be the same as those in the high 
end. Scores in the middle were not used for clas-
sification considering that they were ambiguous 
and may not necessarily represent either high or 
low workload. A k-fold cross-validation proce-
dure was used for model training and testing 
(Hastie, Friedman, & Tibshirani, 2001). Based 
on sample size, three folds were performed. A 
confusion matrix was used to determine the 
accuracy and sensitivity of eye metrics in pre-
dicting workload. All analyses were conducted 
in R (R Core Team, 2018; RStudio Team, 2016).

Results
A total of 15 sessions across all participants 

were collected over the study period. Two 
participants completed three sessions, three 
participants completed two sessions, and three 
participants one session. A total of 168 exer-
cises were collected, including performance 
scores, NASA-TLX ratings, and eye-tracking 
features. Minimum exercises completed in a 
session was n = 8, and all participants completed 
each exercise at least once. For some sessions, 
participants did not complete all 12 exercises as 
explained in the “Materials and Methods” sec-
tion. Average and standard deviation of exercise 
completion time was 194 ± 157 s. The standard 
deviation was large because difficult exercises 
took more time than easy exercises (Table 1).

Workload and Task Performance
Repeated measures correlation was used to 

test the association between perceived work-
load (NASA-TLX rating) and task performance 
score. The correlation between NASA-TLX 
ratings and performance scores across all exer-
cises (n = 168) was –.55 (p < .001), indicating 
that when workload was perceived to be high, 
performance was poorer.

Focusing on the relationship between work-
load and performance for each task, the correla-
tions were significant for Ring and Rail 
( rrm = .79 , p < .001) and Suture Sponge 
( rrm = .79 , p < .001). For Camera Targeting, the 
value was marginally significant (p = .053). 
Correlation values for all tasks are reported in 
Table 2 (a). Effect sizes were defined as large, 
medium, and small for rrm  at threshold .50, .30, 
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and .10, respectively (Bakdash & Marusich, 
2017).

Workload and Eye-Tracking Metrics
Correlation values for other eye-tracking met-

rics with perceived workload are reported in 
Table 2 (b–e). Of the four eye-tracking metrics, 
only gaze entropy had significant correlation 
with NASA-TLX ratings ( rrm = .51 , p < .001), 
indicating increases in gaze entropy increased 
perceived workload. Figure 1 illustrates the 
distribution of eye-tracking measures and  

workload, colored shapes representing different 
participants.

Task Difficulty on Eye-Tracking 
Measures

Mixed-effects models were used to test eye-
tracking metric sensitivity to changes in task 
difficulty. With task goal and skill remaining 
consistent, the simulator increased difficulty 
levels by incorporating additional task require-
ments, which was expected to influence work-
load (see Table A1). Since changes in difficulty 

Table 1: Mean and Standard Deviation of Completion Time by Task and Level

CT PB RR SS DN T

Task 
Level 1 2 1 2 1 2 1 2 3 1 2  

M 73 139 84.7 99 42.5 317 294 265 312 237 225 270
SD 45.4 68.9 40.4 37.4 22.5 193 201 165 208 140 83.5 68.3

Note. CT = Camera Targeting; PB = Peg Board; RR = Ring and Rail; SS = Suture Sponge; DN = Dots and Needles;  
T = Tubes.

Table 2: Repeated Correlation Between NASA-TLX and (a) Performance and (b–e) Eye Metrics

By Task

Metrics
CT

(n = 30)
PB

(n = 30)
RR

(n = 30)
SS

(n = 40)
DN

(n = 26)
T

(n = 12)
All Task
(n = 168)

(a) Performance
  rrm –.48 –.09 –.79 –.61 –.46 –.52 –.55
  p .053 .782 <.001 .001 .107 .383 <.001
(b) Pupil diameter
  rrm .52 .19 .58 .43 .55 .63 –.12
  p .032 .538 .014 .032 .039 .250 .221
(c) Gaze entropy
  rrm .62 .34 .76 .49 .45 –.42 .51
  p .009 .224 <.001 .014 .119 .522 <.001
(d) Fixation duration
  rrm –.20 –.53 –.11 –.03 .07 .36 .10
  p .522 .032 .736 .851 .815 .561 .261
(e) PERCLOS
  rrm .20 .70 .13 –.04 –.08 –.61 .04
  p .522 .002 .702 .851 .815 .263 .572

Note. CT = Camera Targeting; PB = Peg Board; RR = Ring and Rail; SS = Suture Sponge; DN = Dots and Needles;  
T = Tubes; PERCLOS: percentage of eyelid closure.
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levels varied by task, each task was fitted with 
a model separately. Results for mixed-effects 
models are shown in Table 3, excluding results 
for fixation duration and PERCLOS, which did 
not reach statistical significance.

 Increasing difficulty was observed to sig-
nificantly increase pupil diameter for all tasks 
(all p-values <.05). The positive coefficients 

suggested that pupil diameters in Level 2 for all 
tasks were larger than that in Level 1. Level 
effects in tasks were very large (Cohen’s d) 
except for task Peg Board. However, when 
there were three levels of difficulty (Suture 
Sponge), a Tukey post hoc test suggested that 
there was no difference between Levels 2 and 3 
(p = .964).

Figure 1. Distribution of eye-tracking measures over workload. Colored shapes represent 
different participant (only gaze entropy was significant with medium effect size). NASA-
TLX = National Aeronautical and Space Administration Task Load Index; PERCLOS = 
percentage of eyelid closure.

Table 3: Mixed Models Summary for Effects of Task Level (Level 1 Is Reference Group) on  
Eye-Tracking Metrics

CT PB RR SS DN

  Task Level 2 2 2 2 3 2

Pupil diameter Coefficient .08 .03 .12 .08 .07 .05
  p <.001 .026 <.001 <.001 <.001 .024
  Cohen’s d 2.38 1.04 3.02 1.49 1.40 1.20
Gaze entropy Coefficient .11 .05 .38 .17 .18 .03
  p .004 .082 <.001 <.001 <.001 .427
  Cohen’s d 1.40 0.79 3.91 1.86 2.01 0.41

Note. Level 1 was the reference level. Effect size of Cohen’s d: small = 0.20, medium = 0.50, large = 0.80, very  
large = 1.20 (Sawilowsky, 2009). CT = Camera Targeting; PB = Peg Board; RR = Ring and Rail; SS = Suture Sponge; 
DN = Dots and Needles.
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For gaze entropy, a significant effect of dif-
ficulty level was observed in the following 
tasks: Camera Targeting, Ring and Rail, and 
Suture Sponge. Based on Cohen’s d, effects 
were large in all of the three tasks. The positive 
coefficients suggested that gaze entropy in 
Level 2 was greater than that of Level 1. Gaze 
entropy between Levels 2 and 3 in task Suture 
Sponge was not significantly different. Mean 
value of all metrics are reported in Table 4 by 
task and difficulty level. NASA-TLX ratings 
were higher in higher level of difficulty.

Workload Classification
There were 43 high workload instances with 

NASA-TLX scores above 30, which is the 75% 
quantile. The same number of instances (43) at 
the lowest end was labeled as low workload, 
which had values below or equal to 14.5 (25% 
quantile). Using the Naïve Bayes model, nine 
features were included to classify low/high 
workload: two demographic features (partici-
pant gender and trainee level [medical student/
surgical resident]) and seven eye-tracking fea-
tures (left/right pupil diameter mean, left/right 
pupil diameter standard deviation, gaze entropy, 
fixation duration, and PERCLOS). Average pre-
cision of eye-tracking measures in predicting 
workload was 82.8% and average classification 
accuracy was 84.7%. The confusion matrix for 
the three-fold cross-validations is presented in 
Table A2 in the appendix.

Discussion
Eye Metrics and NASA-TLX

This study investigated the relationship 
between eye-tracking measures and perceived 
workload in robotic surgery. The first hypoth-
esis (eye-tracking metrics can predict the level 
of subjective workload) was tested with both 
correlation analyses and machine learning clas-
sification techniques.

Gaze entropy increased significantly as NASA-
TLX ratings increased. Limited studies studied 
the impact of gaze entropy in robotic surgery, yet 
Di Stasi et  al. (2016, 2017) showed that gaze 
entropy increased with laparoscopic surgical task 
complexity. They explained that without know-
ing the optimal visual exploration strategy, sur-
geons might follow a suboptimal approach, 
which caused gaze to move constantly, especially 
during complex tasks.

Although many studies reported increases in 
pupil diameter and fixation duration with 
increased workload, we found no significant 
correlations with NASA-TLX. One possible 
explanation may be the robotic infrastructure. 
The light condition inside the enclosed console 
was controlled and determined by the video 
display of the simulation. This environment 
differed from previous applications of these 
eye-tracking metrics and may have affected 
pupil diameter. PERCLOS had been more com-
monly linked to fatigue, yet also proposed as a 
measure for estimating workload (Halverson 

Table 4: Mean Value of All Metrics Across Task and Level

CT PB RR SS DN T

Task Level 1 2 1 2 1 2 1 2 3 1 2 0

Performance 77.6 69.9 77.2 89.7 88.9 65.0 68.8 68.8 64.2 77.6 68.4 56.7
NASA-TLX 13.6 19.7 15.6 17.0 17.3 30.4 24.4 26.1 26.6 25.9 26.8 30.8
Pupil diameter 0.54 0.62 0.67 0.71 0.47 0.59 0.45 0.54 0.53 0.48 0.54 0.63
Gaze entropy 0.50 0.60 0.58 0.63 0.38 0.76 0.51 0.68 0.70 0.60 0.60 0.72
Fixation duration 0.84 0.80 0.81 0.79 0.83 0.83 0.81 0.84 0.84 0.87 0.84 0.81
PERCLOS 0.07 0.09 0.10 0.11 0.10 0.08 0.13 0.08 0.08 0.08 0.10 0.12

Note. CT = Camera Targeting; PB = Peg Board; RR = Ring and Rail; SS = Suture Sponge; DN = Dots and Needles;  
T = Tubes; NASA-TLX= National Aeronautical and Space Administration Task Load Index; PERCLOS = percentage 
of eyelid closure.

https://journals.sagepub.com/doi/suppl/10.1177/0018720819874544
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et al., 2012; Tian et al., 2019). When under pro-
longed states of low workload, a state of drows-
iness can co-occur with a state of low atten-
tional arousal. However, PERCLOS did not 
distinguish between task difficulty and per-
ceived workload in this study. In this robotic 
training setting where participants were 
actively engaged, low arousal levels were 
unlikely, which can explain the low mean PER-
CLOS values observed.

The relationship between NASA-TLX rat-
ings and physiological measures has been long 
studied, yet it remains debatable which one is a 
better measurement of workload. For perceived 
workload, NASA-TLX has been more widely 
used and recommended as a practical and accu-
rate way for measuring surgeons’ workload 
(Carswell et al., 2005; Dias et al., 2018). Recent 
work by Matthews, Reinerman-Jones, Barber, 
and Abich (2015) found that many physiological 
measures as well as NASA-TLX ratings were 
sensitive to changes in workload, but their esti-
mates were uncorrelated. They suggested that 
this was caused by individual differences or the 
failure of assuming workload as a unitary latent 
construct. Other studies explained that physio-
logical methods gave more information on how 
individuals responded to workload instead of 
what was imposed on them (Cain, 2007; Mesh-
kati, Hancock, Rahimi, & Dawes, 1995). Our 
results showed that gaze entropy was signifi-
cantly correlated with NASA-TLX, supporting 
the assumption that a latent workload construct 
can be estimated by both subjective and physio-
logical methods. However, there remained unex-
plained variability between our gaze entropy 
and NASA-TLX correlation, which supports the 
argument that workload is multi-factorial and 
each method measured unique information. 
Therefore, the machine learning classification 
approach was used to combine four eye-tracking 
measures and investigate whether they can esti-
mate the same level of workload as the NASA-
TLX does, but in a less disruptive way.

In the Naïve Bayes model, the nine features 
classified between low and high workload labels 
with an average accuracy of 84.7%. Similar 
work by Halverson et  al. (2012) reported an 
accuracy range of 16%–98% using different 
model specifications. In Halverson’s study, there 

were two tasks: high workload tasks and low 
workload tasks, where participants needed to 
monitor more vehicles in the high workload 
task. In contrast, we did not classify the different 
tasks, but the different levels of perceived work-
load from the participants using their NASA-
TLX ratings. This method is relevant to our 
research question of perceived workload and 
reflects the surgeons’/trainees’ capacity of deal-
ing with task demand. Classification of work-
load is clinically helpful to surgical education. 
The eye-tracking technique is able to provide 
real-time feedback on trainees’ workload status, 
and the instances of high workload, which indi-
cate when trainees are experiencing difficulty.

Eye Metrics and Task Difficulty
The second hypothesis tested was whether 

eye-tracking metrics can distinguish between 
varying work demands due to task difficulty 
level. The findings generally supported the 
sensitivity of eye-tracking metrics for distin-
guishing the differences. Mixed-effects models 
found significant level difficulty effects on pupil 
diameter and gaze entropy.

The phenomenon that pupil diameter was 
larger under higher level of difficulty agrees with 
previous studies in surgical laparoscopy (Zheng 
et  al., 2012) and other domains (Beatty, 1982; 
Beatty & Kahneman, 1966; Granholm & Stein-
hauer, 2004; Palinko et  al., 2010; Pomplun & 
Sunkara, 2003). Results for gaze entropy support 
the hypothesis that visual exploration becomes 
less fixed (i.e., the gaze pattern becomes more 
random) during more complex tasks.

Gaze Behavior in Robotic Surgery
Visual search is an indispensable step in 

robotic surgery. The task demands in this study 
were consistent with live robotic surgeries, 
where surgeons must rely on visual cues for 
completing the operation. These visual cues are 
delivered from the camera inside the patient that 
captures both current tissue states and robotic 
arm location. This information (e.g., current 
locations with respect to their desired target) is 
critical for planning actions necessary for com-
pleting the task goals. When searching for the 
target, trainees need to visually locate the target 
and also physically move controls to reach the 
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target, which constitutes a source of workload. 
Thus, eye-tracking measures can directly pro-
vide data for understanding trainees’ task per-
formance and learning process. For example, 
when trainees are unfamiliar with the environ-
ment, they may not adopt the optimal scanning 
strategy. As the task difficulty increases, they 
need more glances to compensate for the sub-
optimal strategy. Similarly, when trainees are 
novice in console operations, they tend to make 
mistakes and need more movements to com-
plete tasks. Therefore, quantitative eye metrics 
provide feedback regarding when the trainees’ 
visual behaviors are inefficient and when they 
experience high workload. Instructors can per-
sonalize training tasks to help trainees learn 
how to process visual cues and practice specific 
skills before proceeding to more complex tasks.

Although promising, future work is ongoing 
to address the current study’s limitations. For 
example, due to the curriculum-progression 
nature, task orders in this study were not ran-
domized, which might produce order effects. In 
addition, the number of sessions and exercises 
for each participant was not controlled in the 
study; having a consistent number of sessions 

can improve analysis accuracy and contribute 
to the understanding of task learning curve. 
Although gaze entropy was a sensitive mea-
surement in tasks that demanded exploratory 
visual search, it could be less reliable in other 
tasks. Eye metric interaction with visual skills, 
cognitive skills, and manual manipulation 
skills have not been explored in this study but 
could be of potential interest in further work.

Results from this study should be viewed as 
initial findings from an exploratory effort. One 
purpose of this paper is to inspire further works 
on glance patterns during acquisition of new 
robotic surgical techniques: to prompt other 
researchers to explore the use of glance metrics 
in training and assessing surgical robotics skills. 
Eye-tracking metrics can identify difficult 
phases during training and help with the curricu-
lum design. It may also identify trainees who are 
experiencing unusually high workload and are 
in need of extra help. In the future, more compli-
cated techniques may be used to identify high-
level tasks (Lalys, Riffaud, Bouget, & Jannin, 
2012) and decompose tasks and skills (Reiley & 
Hager, 2009), which will augment the interpre-
tation of workload.
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Key Points

•• Workload measurement techniques in surgery are 
primarily subjective, but eye tracking can be a 

less-intrusive, continuous, and objective workload 
measurement technique.

•• Task performance scores, NASA-TLX ratings, 
and eye metrics were collected. NASA-TLX was 
found significantly correlated with performance. 
Performance accounted for between 0.84% and 
62.82% of variance in NASA-TLX ratings.

•• Gaze entropy was positively correlated with 
NASA-TLX during robotic surgical tasks. Gaze 
entropy accounted for between 17.51% and 
38.53% of variance in NASA-TLX ratings.

•• Naïve Bayes Model using the eye-tracking metrics 
and demographic information distinguish between 
self-reported workload in high and low scenarios 
with on average 84.7% accuracy.

Table A2: Classification Confusion Matrix

The confusion matrix shows the results of k-fold cross-validation of Naïve Bayes classification, with 10 
indices:
True positive (TP): Proportion of instances that were classified correctly as high workload
False positive (FP): Proportion of instances that were classified incorrectly as high workload
True negative (TN): Proportion of instances that were classified correctly as low workload
False negative (FN): Proportion of instances that were classified incorrectly as low workload

Precision=
TP

TP+FP
100%×

Negative predictive value (NPV)=
TN

TN+FN
100%×

Sensitivity=
TP

TP+FN
100%×

Specificity=
TN

TN+FP
100%×

Accuracy=
TP+TN

P+N
100%×

F1 score=
2TP

TP+FP+FN

Results were reported as the mean ± standard deviation of three validations.

  Actual Class  

  High Workload Low Workload  

Predicted class
  High workload 44.1% ± 2.2%

TP
9.4% ± 5.6%

FP
82.8% ± 9.5%

Precision
 

  Low workload 5.9% ± 2.2%
FN

40.6% ± 5.5%
TN

87.1% ± 5.4%
NPV

 

  88.3% ± 4.4%
Sensitivity

81.1% ± 11.2%
Specificity

84.7% ± 7.7%
Accuracy

0.85 ± 0.07
F1 score
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