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Abstract 

Propensity score based-methods or multiple regressions of the outcome are often used for 

confounding adjustment in analysis of observational studies. In either approach, a model 

is needed: A model describing the relationship between the treatment assignment and 

covariates in the propensity score based-methods, or a model for the outcome and 

covariates in the multiple regressions.  The two models are usually unknown to the 

investigators and must be estimated.  The correct model specification, therefore, is 

essential for the validity of the final causal estimate.  We describe in this paper a doubly 

robust estimator which combines both models propitiously to offer analysts two chances 

for obtaining a valid causal estimate, and demonstrate its use through a data set from the 

Lindner Center Study. 
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1. Background 
 

Observational data is a rich source for investigation of exposure effects, for example, in 

the research of comparative effectiveness and safety of treatments. Exposure effects, or 

causal effects can be formulated in terms of potential outcomes in Rubin’s causal model 

framework1.  Given a choice of two exposures (mutually exclusive for a certain time 

interval), a patient has a pair of potential outcomes, one outcome for each exposure. In 

actuality, a patient is assigned to only one exposure and thus only one potential outcome is 

observed. Suppose we could rewind the time machine, and have the patient experience the 

other exposure and observe the outcome, the causal effect for this patient can be defined as 

some contrast (e.g. absolute difference) between the two potential outcomes under 

respective exposures, and the average causal effect (ACE) is the average of differences of 

the two potential outcomes across all patients in a relevant population. Because we can 

only observe one potential outcome in reality, patient-level causal effect is not directly 

estimable. Thus, it is usually the ACE that is the target of most studies. In fact, ACE can 

also be defined without the conceptual involvement of patient-level causal-effect.  For 

example, risk differences, average causal effects for binary outcomes can be risk ratios or 

odds ratios.  

 

Randomization in clinical trials is a tool that enables the estimation of ACE through 

randomly creating exposure groups, both of which are representative of the entire 

population with the only difference being the treatment assignment. However, although 

randomization is useful in ensuring exchangeability of treatment groups, the ACE on the 

efficacy of an intervention can only be estimated when the randomized trial is "perfectly" 
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executed, with perfect adherence to assigned treatment, no protocol deviations, perfect data 

capture and no loss of patients to follow up and so on. In contrast, the treatment assignments 

in observational studies are not randomized and often depend on patients' characteristics 

(confounding by indication), simple group comparisons tend to lead to biased causal 

estimates.  For example, physicians make treatment decisions based on patients' 

demographics and pre-treatment health status that are associated with the outcomes, 

rendering differences in outcomes between treatment groups not exclusively attributable 

to the causal effect of the treatment on the outcomes.  Therefore, factors affecting the 

treatment assignment and associated with the outcome need to be accounted for to remove 

the confounding bias in the analysis to produce valid causal estimate. In causal inference, 

the most essential assumption for unbiased estimation of a treatment effect is that we have 

at our disposal all variables (X) that are associated with both the treatment and the outcome 

(namely, confounders; this assumption is known as the assumption of no unmeasured 

confounders). Various statistical methods have been developed to adjust for confounding 

to enable valid comparisons, among which multivariable regression models of the outcome 

and propensity score-based approaches are often used in applications2-6. Notably, the topic 

of propensity score-based methods as well as their implementations is the focus of an 

earlier article5 in the series of Primer on Statistical Methods of this journal. 

 
In this report, we describe two common but contrasting approaches to causal effect 

estimation: multivariable regressions that focus on outcome modelling and inverse 

probability weighting using propensity score that focuses on exposure modelling.   We 

discuss the common challenges to both, and then introduce their fortuitous combination — 

the doubly robust (DR) estimator.  Using a public data set from the Lindner Center Study, 



 5 

we demonstrate the steps of DR estimation to assess the effect of the treatment of 

abciximab on patients' 6-month mortality and the cardiac related costs incurred within 6 

months of patients' initial percutaneous coronary intervention. 

1.1 Multivariable Outcome Regressions  
 

The most common approach to causal estimation is the prediction of potential outcomes 

for every subject via the use of the classic multivariable outcome regression models — 

for example, linear, logistic, Cox PH models, and so on — in which an outcome is 

modelled in terms of the exposure variable and a set of baseline covariates, which should 

include variables associated with both the exposure and the outcome (confounders), and 

preferably variables related to the outcome only (prognostic factors). The confounders are 

necessary for reducing bias in the causal estimate and improving its precision; the 

prognostic factors are primarily for further enhancement in the precision of the estimate.  

 

We will focus on the two common outcomes, continuous and binary.  Estimating the 

marginal ACE requires marginalization.  Specifically, the estimated outcome regression 

model is used to produce a pair of predicted potential outcome values for each subject 

using this subject’s baseline covariates, one for each exposure.  The marginal mean of 

each potential outcome can be estimated by taking the average across all subjects.  The 

ACE can then be constructed based on the specific metric of interest by using the two 

estimated marginal means, be it the treatment difference, the risk difference, the risk ratio 

or the odds ratio.  The marginalization process is the same if two models are used for a 

continuous outcome with one model for each exposure group7. The outcome regression 
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estimator is consistent for ACE provided that there are no unmeasured confounders (all 

is, all relevant confounders are available and included in the analysis) and the relationship 

between the outcome and the treatment and a host of covariates is specified correctly in 

the multivariable model for the outcome.   

 

1.2 Inverse Probability Weighting using the Propensity Score 
 
The propensity score (PS) of an exposure (or treatment) for a subject is defined as the 

conditional probability of receiving the exposure given the values of the baseline 

confounders of the subject.  The PS is a one-dimensional representation of the multi-

dimensional (even high-dimensional in some cases) baseline confounders.  The fact that 

subjects with the same PS share a common distribution of the baseline confounders 

(included in the PS model) across exposure groups enables researchers to control for 

confounding through the use of the PS so as to derive causal estimate with minimal bias.  

The PS adjustment is especially useful when the conventional approach of a multivariable 

regression to simultaneously control many confounders is not feasible because of the rarity 

of the outcome.  The PS can be used in the analyses in a variety of ways: PS matching, PS 

stratification, inverse probability weighting by PS (IPTW) or PS as a covariate in an 

outcome regression5. These PS approaches are equivalent (see Appendix B) subject to the 

validity of three assumptions: a) there are no unmeasured confounders, b) the PS is strictly 

greater than zero and less than one, and c) models are correctly specified in respective PS 

approach.  In practice, PS matching is often used to estimate the average causal effect for 

the treated rather than ACE.  The approach of IPTW is to weight each subject with the 

inverse of the subject’s PS or 1-PS: each subject with confounder values X in a treatment 
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group is assigned a weight of 1/PS indicating that there are 1/PS subjects in the population 

with confounder values X;  and  each subject with confounders X in a control group is 

assigned a weight of 1/(1-PS) for similar reasons8.  The consequence of such a weighting 

scheme is that the weighted groups are “similar” in confounders (that is, having the same 

distribution of the confounders) and thus comparable. Any differences in the distribution 

of the outcomes between the weighted groups can then be attributed to the treatment, after 

the differences in the confounders being accounted for by PS weighting.  The ACE can 

then be estimated using the weighted outcomes from the two groups. 

1.3 Model Estimation of Outcome Regression and PS 
 

Regardless of which approach researchers take to estimate the ACE, a model is needed: 

an outcome regression model in the approach of modeling the outcome, or a PS model in 

the approach of modeling the exposure. Assuming no uncontrolled confounders, the 

validity of the final causal estimates is contingent on the validity of respective models. To 

build a model in general, we need to decide what independent variables should be 

included and how these variables are related to the dependent variable.  Hence, either the 

PS model or the outcome regression model should include X.  In addition, it is shown9,10 

that there may be further gains in efficiency to include in either models the covariates V 

that are not related to treatment exposure but are associated with potential response.   

Therefore, all confounders X and all covariates that are prognostic should be included 

provided the sample size allows for reliable estimation of the model.  
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Model checking and diagnostics for either models should follow the standard practice.  

Furthermore, for propensity-based methods in general, the PS distributions should be 

examined for overlap.  In the case of substantial non-overlap, researchers may want to 

restrict their estimation task to the overlap, and as a consequence clarify the appropriate 

inferential population to which the causal estimate resulting from the subsample is 

applicable. 

2 The Doubly Robust Estimator  
 
The doubly robust (DR) estimator we discuss in this paper is a propitious combination of 

the IPTW and  outcome regression, which is a consistent estimator (i.e., verging to be 

unbiased as sample size tends toward infinity) if either the PS model or the  outcome 

regression model is correctly specified, and is the most efficient if both are correct11.  The 

idea behind this estimator is proposed by Robins et al11 to improve the IPTW by 

augmenting it with the prognostic information in the confounders. When the PS model is 

correct, the expectation of the IPTW term is the causal effect and the expectation of the 

second term is zero because of the expectation of the weighted residuals of the PS model 

is zero, even if the  outcome regression model is wrong; when the  outcome regression 

model is correct, the expectation of both terms combined yields the causal effect, even if 

the PS model is wrong.  Of course, when both the PS and the outcome regression models 

are correct, the DR estimator estimates the causal effect of interest, whereas when both 

are wrong, the DR estimator does not necessarily estimate the causal effect.  Nonetheless, 

the DR estimator does offer us two opportunities to get a valid estimate of the causal 

effects through the specifications of the PS and outcome regression models.  Since the 
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DR estimator we present here is an extension of the IPTW, it is also called augmented 

IPTW method5.  

2.1 Implementation 
 

The implementation of the DR estimator for ACE in terms of marginal differences in 

potential outcomes is straightforward as depicted in the Flowchart in Figure 1: 

1. Estimate the PS model, and obtain the predicted probability 𝜋𝜋�𝑖𝑖 for every subject 

in the entire sample.  

2. Estimate the  outcome regression models, one for each treatment group.  Once the 

models are estimated, obtain the predicted values for the entire sample using each 

estimated model.  The predicted values 𝑌𝑌�𝑖𝑖1from the model estimated based on the 

exposed group are the counterfactual outcomes had all subjects been exposed; 

likewise, the predicted values 𝑌𝑌�𝑖𝑖0from the model estimated based on the non-

exposed group are the counterfactual outcomes had all subjects not been exposed. 

3. Calculate the DR causal estimate Δ�𝐷𝐷𝐷𝐷 (see the appendix for notations). 

If one is interested in obtaining ACE in terms of the risk ratio or the odds ratio for a 

binary outcome, one can obtain the marginal means of the potential outcomes — the two 

terms as separated by the minus sign in Step 3 — and calculate the risk ratio or the odds 

ratio. 

 

The DR estimator as described above is implemented in a SAS macro12 developed at the 

University of North Carolina at Chapel Hill, where the macro and a sample dataset are 

available for download.  The macro is suited to the scenario of a dichotomous treatment 
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variable, and either a dichotomous or a continuous outcome variable.  The authors 

demonstrated in the manual through the sample data set that DR estimates are consistent 

as long as one of two models, PS or outcome regression, is specified correctly. The 

authors include in their manual examples with a binary and a continuous outcome.   

 

In the next section, we will analyze one real-life data example using SAS, a popular 

platform for statistical analysis.  SAS’s new procedure (as of November 2016) 

causaltrt offers all three estimators, outcome regression, IPTW and DR. 

 

3 Application to the Lindner data  

3.1 The Lindner Center study  

The Lindner Center Study is an observational study to evaluate the impact of adjunctive 

pharmacotherapy with abciximab platelet GP IIb/IIIa blockade during percutaneous 

coronary intervention (PCI) on costs and clinical outcomes in a high-volume interventional 

practice, Ohio Heart Health Center of The Christ Hospital, in 199713.  Confounding bias 

exists as the treatment was not assigned by randomization. In the original publication, PS 

stratification method was used to adjust for confounding bias. The average reduction in 

mortality rate at 6 months after abciximab therapy increases from the crude 3.4% to 4.9% 

after the PS stratification adjustment and no substantially higher cost is found associated 

with the treatment. However, due to the issues of data privacy and confidentiality, only a 

subset of the study data is included in the R package USPS14 for public use. This dataset 

will be used in this paper to illustrate the DR approach to estimate the average treatment 

effect of abciximab on both the mortality and the cost. 
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The dataset in the R package USPS consists of observations on 996 patients who were 

followed for at least 6 months after receiving an initial PCI. Among them, 698 of them 

received the treatment with the abciximab platelet GP IIb/IIIa blockade during PCI, and 

the remaining 298 patients received usual-care-alone while undergoing their PCI. For each 

patient, we have data on 10 variables described in Table 1.  

 

The variable lifepres assumes only two distinct values, 0 if died within 6 months, or 

11.6 years otherwise. We define the 6-month mortality status mort as a binary variable, 1 

if died within 6 months and 0 otherwise. 

 
Mean baseline characteristics by whether they were treated with abciximab (1) or not (0) 

are summarized in the unweighted portion of Table 2. The unadjusted mortality rates were 

5% for patients treated with the usual care and 2% for those treated with abciximab; the 

unadjusted average costs were $14612.22 and $16126.68 for those treated with the usual 

care and those treated with abciximab respectively. 

 
From this simple summary, the two groups of patients do not appear to be readily 

comparable.  The abciximab-treated patients seem to be in worse pre-treatment cardiac 

related conditions than the usual-care patients.  For example, the number of patients who 

had acute myocardial infarction prior to PCI is two times more in the abciximab-treated 

cohort than in the usual-care cohort.  If we look at the outcomes, abciximab-treated 

cohort has a 6-month mortality rate 3% lower than the usual-care cohort, but with about 

$1,500 more cost. An interesting question is whether the treatment is cost-effective, after 
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adjusting for the confounding factors. In the following sections, we will demonstrate our 

analysis using this data set.  

3.2 Analysis  

We begin by estimating the PS by using logistic regression with main effects of all the 

seven covariates in Table 2. The distributions of estimated PS for the two groups, 

abciximab treated and not treated, are displayed in Figure 2, where we see that the two 

distributions appear to overlap quite well.   We will examine the balance of covariates in 

the two groups by summarizing the unweighted and the PS-weighted standardized 

differences for the seven covariates in Table 3, following the recommendations15,16 of best 

practice.  By Cochran’s 0.25-rule, if the standardized difference of a variable exceeds 0.25, 

the variable is imbalanced between the two groups. The unweighted standardized 

differences of variables stent, acutemi and ves1proc as shown in Table 2 exceed 0.25 and 

thus those three variables are imbalanced between the treated and the untreated groups. In 

contrast, after inverse weighting by propensity score, the standardized differences of all 

seven covariates are well within 0.25 (Table 2). This indicates the appropriateness of the 

PS model, in addition to the Hosmer-Lemeshow test (p=0.37) of the goodness of the model 

fit. 

 

 
Next we fit two logistic models for the mortality outcome, one for the abciximab 

treatment group, and one for the non-treated group.  Then we use each model in turn to 

predict the counterfactual responses for all patients in the sample – now each patient has 

two predicted probabilities of mortality if he or she was treated by abciximab, and if he or 

she was not-treated.  We can now employ the formulae (in the Appendix A) to compute 
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the ACE on mortality and its standard error.  For the cost outcome, we follow the same 

steps, except that we fit two linear regression models instead because this outcome is 

continuous.   

 

Thanks to a SAS’s new procedure, proc causaltrt as released in SAS/STAT 14.2, 

all the above steps are packaged in a compact and user-friendly procedure.  We used the 

procedure to obtain the doubly robust estimates for both outcomes of the 6-month 

mortality and the cost in Table 3, with standard errors by the robust sandwish formula 

and alternatively by bootstraping 1000 times.  For comparison we also display the results 

from the IPTW and the outcome regression approach. 

 
From Table 3 we see that all three estimators yield essentially the same results: treatment 

with abciximab afforded survival advantage by at least 5% while maintaining similar cost 

to the non-abciximab treated group.  For both outcomes, the outcome regression 

estimator has the smallest SE and the IPW estimator has the largest SE. 

 

The SAS code for this analysis is included in the Appendix C. 

 

4 Discussion  

In this paper we describe a doubly robust estimator that combines two causal estimators 

advantageously, the IPTW and the outcome regression, to offer us two chances to obtain 

a consistent causal estimate of a treatment effect.  As long as we specify one of the two 

models correctly, the causal estimate is valid (in the sense that its bias diminishes as 

sample size increases).  One can afford to get one of the two models wrong and still 



 14 

obtain asymptotically unbiased causal estimate, which is certainly more advantageous in 

terms of robustness in estimation to a single model approach as in either IPTW or 

outcome regression.   We outline the steps for the computation of the DR estimator and 

its standard error, with the relevant formulae in the appendix.  We demonstrate the DR 

estimation process in contrast with IPTW and outcome regression through a real-life data 

set using a recently released SAS procedure causaltrt.  From the results, we observe 

that although we arrive at the same conclusion by all three estimators, the estimators 

exhibit different variability.  As a matter of fact, these estimators have the following 

behaviors in large samples. If both the PS model and the outcome regression model are 

specified correctly, the DR estimator has the smallest variance among all consistent 

estimators that involve ‘inverse weighting’; if the PS is modeled correctly, the DR 

estimator will have smaller variance than the simple inverse weighted estimator; if the 

outcome regression is modeled correctly, the DR estimator will likely have larger 

variance than the regression estimator9. The implication of the above theoretical results is 

that when sample sizes are small, the inversed weighted estimators, IPTW and DR, may 

not have the precision needed for inference because the associated confidence intervals 

are wide.  In contrast, outcome regression estimators have narrower confidence intervals, 

but they may be centered on the biased estimates if the outcome regression models are 

wrong.  When sample sizes are large, bias becomes the upmost concern, DR is perhaps 

the best estimator among the three because it offers some protection against model-

misspecification while IPTW and outcome regression do not.  Finally, if both the PS and 

the outcome models are wrong, then DR estimator does not estimate the causal effect of 

interest and will give a wrong answer.  On the other hand, if a non-doubly robust 
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estimator (IPTW or outcome regression) uses a wrong model, it also will not estimate the 

cause effect of interest and the resulting estimate is wrong.  Doubly robust estimators 

afford protection against model misspecification by offering two chances at getting right 

answers (consistent estimates).   
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Variable 
Name  

Definition  

lifepres  Mean life years preserved due to survival for at least 6 month  
 following PCI  
cardbill  Cardiac related costs incurred within 6 months of patient’s  
 initial PCI  
abcix  Treatment indicator: 1 for abciximab and 0 for usual-care-alone  
stent  Coronary stent deployment: 1 for yes and 0 for no  
height  Height in centimeters  
female  Gender indicator: 1 for female and 0 for male  
diabetic  Diagnosis of diabetes mellitus: 1 for yes and 0 for no  
acutemi  Acute myocardial infarction within the seven days prior to PCI:  
 1 for yes and 0 for no  
ejecfrac  The left ventricular ejection fraction  
ves1proc  Number of vessels involved in the patient’s initial PCI  

Table 1: List of Variables in the Lindner Center Data  
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 control group abcixib group  
Variable mean sd mean Sd Standardized 

diff (%) 
Unweighted 

stent 0.58 0.49 0.70 0.46 25 
height 171 11 171 11 0.034 
female 0.39 0.49 0.33 0.47 11 
diabetic 0.27 0.44 0.20 0.40 15 
acutemi 0.06 0.24 0.18 0.38 37 
ejecfrac 52 10 50 10 18 
ves1proc 1.2 0.48 1.5 0.71 43 

Weighted 
stent 0.67 0.47 0.67 0.47 0.63 
height 171 12 171 11 1.1 
female 0.33 0.47 0.34 0.48 2.2 
diabetic 0.24 0.43 0.22 0.42 5.2 
acutemi 0.14 0.35 0.14 0.35 0.29 
ejecfrac 51 10 51 10 0.049 
ves1proc 1.4 0.7 1.4 0.66 6.5 

Table 2.  Mean, standard deviation and standardized difference between groups, 
unweighted and weighted. 
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Method Outcome 𝝁𝝁𝟎𝟎 𝝁𝝁𝟏𝟏 ACE Robust 
SE 

Bootstrap SE Wald 95% CI Bootstrap Bias 
Corrected 95% 

CI 
DR Mortality 0.082 0.015 -0.066 0.025 0.026 (-0.115,-0.018) (-0.119, -0.016) 

Cost 15744 15995 251.46 1128.8 1110.4 (-1961.0, 2464.0) (-2205.7, 2146.7) 

IPTW Mortality 0.082 0.015 -0.067 0.029 0.031 (-0.123, -0.011) (-0.144, -0.018) 

Cost 16009 15981 -27.85 1292.0 1396.1 (-2560.2, 2504.5) (-3598.2, 2222.8) 

REG Mortality 0.068 0.015 -0.054 0.020 0.021 (-0.093, -0.014) (-0.097,  -0.014) 

Cost 15056 16037 981.6 906.2 915.1 (-794.5, 2756.7) (-1040.5, 2570.3) 

Table 3.  𝜇𝜇0, 𝜇𝜇1 are the averages of counterfactuals, ACE is the treatment effect. The 
Wald 95% CI is based on the Robust SE. 
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Figure 1. Flowchart of steps of a DR analysis. 
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Figure 2. Distribution of logit of PS for the two groups, one treated with abciximab 
(abcix=1) and the other not (abcix=0). 
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Appendix A: Doubly robust estimator for the average treatment effect 
 

Suppose we have i.i.d. data (𝑌𝑌𝑖𝑖,𝐴𝐴𝑖𝑖 ,𝑋𝑋𝑖𝑖), 𝑖𝑖 = 1, … ,𝑁𝑁 on 𝑁𝑁 subjects where 𝑌𝑌𝑖𝑖 indicates the 

observed outcome, 𝐴𝐴𝑖𝑖 = 0 𝑜𝑜𝑜𝑜 1  indicates the binary treatment, and 𝑋𝑋𝑖𝑖 indicates a p-

dimensional vector of pre-treatment covariates. We use 𝜋𝜋(𝑋𝑋) = 𝑃𝑃𝑜𝑜 (𝐴𝐴 = 1|𝑋𝑋) to denote 

the propensity score, the probability of being exposed conditional on the pre-exposure 

covariate vector 𝑋𝑋. Also we use 𝑌𝑌𝑖𝑖0  to denote a patient’s potential outcome if the patient 

receives the control and 𝑌𝑌𝑖𝑖1 to denote a patient’s potential outcome if the patient receives 

the treatment. Of course in reality, a patient is assigned to either control or treatment but 

not both and so only one potential outcome is actually observed. In this paper the parameter 

of interest is the average treatment effect, 𝛥𝛥𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐸𝐸(𝑌𝑌𝑖𝑖1 − 𝑌𝑌𝑖𝑖0).  

The DR estimator is defined as: 

Δ�𝐷𝐷𝐷𝐷 = 𝑛𝑛−1��
𝐴𝐴𝑖𝑖
𝜋𝜋�𝑖𝑖
𝑌𝑌𝑖𝑖 −

𝐴𝐴𝑖𝑖 − 𝜋𝜋�𝑖𝑖
𝜋𝜋�𝑖𝑖

𝐸𝐸�(𝑌𝑌|𝐴𝐴 = 1,𝑋𝑋𝑖𝑖)�
𝑛𝑛

𝑖𝑖=1

−𝑛𝑛−1��
1 − 𝐴𝐴𝑖𝑖
1 − 𝜋𝜋�𝑖𝑖

𝑌𝑌𝑖𝑖 +
𝐴𝐴𝑖𝑖 − 𝜋𝜋�𝑖𝑖
1 − 𝜋𝜋�𝑖𝑖

𝐸𝐸�(𝑌𝑌|𝐴𝐴 = 0,𝑋𝑋𝑖𝑖)�
𝑛𝑛

𝑖𝑖=1

 

       ≡ 𝑛𝑛−1 ∑ Δ�𝑖𝑖,𝐷𝐷𝐷𝐷𝑛𝑛
1   

 
  

where  𝜋𝜋�𝑖𝑖 is the estimated propensity score at 𝑋𝑋𝑖𝑖 and 𝐸𝐸�(𝑌𝑌|𝐴𝐴 = 𝑎𝑎,𝑋𝑋𝑖𝑖),𝐴𝐴 = 0,1, is the 

estimated potential outcome for a subject with covariate vector 𝑋𝑋𝑖𝑖 under each of the two 

treatments using outcome regressions. Under the assumptions of the consistency (i.e., 

𝑌𝑌𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑌𝑌𝑖𝑖1 + (1 − 𝐴𝐴𝑖𝑖)𝑌𝑌𝑖𝑖0), no unmeasured confounders (NUC, 𝑌𝑌𝑎𝑎 ⊥ 𝐴𝐴|𝑋𝑋, 𝑎𝑎 = 0,1) and 

positivity (𝑃𝑃(𝐴𝐴 = 𝑎𝑎|𝑋𝑋) > 0), Δ�𝑖𝑖,𝐷𝐷𝐷𝐷 is the doubly robust estimate of the treatment effect 

for subject 𝑖𝑖 (that is, the difference in the two counterfactuals for this subject).  Note that 
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taking only the first terms inside the curly brackets from both lines of the formula yields 

the IPTW estimator. The standard error for the DR estimator is9, 

𝑆𝑆𝐸𝐸Δ�𝐷𝐷𝐷𝐷= 𝑛𝑛−1�∑ � Δ�𝑖𝑖,𝐷𝐷𝐷𝐷 − Δ�𝐷𝐷𝐷𝐷�
2𝑛𝑛

1 . 

Note that the standard error can also be estimated by simply employing the bootstrap 

method.   
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Appendix B:  Equivalence of outcome regression and PS-based methods 
 

Under the assumptions of the consistency, NUC and positivity (see Appendix A), 

seemingly different approaches of confounding adjustment are equivalent in the 

population sense based on the following equalities (subscript i is dropped for clarity in 

the equations below), 

 𝐸𝐸(𝑌𝑌𝑎𝑎) = 𝐸𝐸[𝐸𝐸(𝑌𝑌𝑎𝑎|𝑋𝑋)] 

= 𝐸𝐸[𝐸𝐸(𝑌𝑌𝑎𝑎|𝐴𝐴 = 𝑎𝑎,𝑋𝑋)] 

=  𝐸𝐸[𝐸𝐸(𝑌𝑌|𝐴𝐴 = 𝑎𝑎,𝑋𝑋)] 

=  𝐸𝐸�𝐸𝐸�𝑌𝑌�𝐴𝐴 = 𝑎𝑎,𝜋𝜋(𝑋𝑋)�� 

= 𝐸𝐸 �
𝐼𝐼(𝐴𝐴 = 𝑎𝑎)
𝑃𝑃(𝐴𝐴 = 𝑎𝑎|𝑋𝑋)

𝑌𝑌� 

 

  

 (B.1) 

 (B.2) 

 (B.3) 

Equations (B.1), (B.2) and (B.3) say that 𝐸𝐸[𝑌𝑌𝑎𝑎] can be obtained by regressing observed 𝑌𝑌 

on the treatment indicator 𝐴𝐴 and covariates 𝑋𝑋 (or the PS 𝜋𝜋(𝑋𝑋)) followed by averaging 

over 𝑋𝑋 (or 𝜋𝜋(𝑋𝑋)), or through inverse probability weighting (IPTW). However, regression 

approaches motivated by Equations (B.1), (B.2) require additional model specification of 

the response of 𝑌𝑌 in terms of 𝐴𝐴 and 𝑋𝑋 or 𝜋𝜋(𝑋𝑋) compared to the IPTW approach of (B.3).  

Furthermore, when 𝑋𝑋 or 𝜋𝜋(𝑋𝑋)  is discrete, (B.1) or (B.2) motivates a matching 

(also a stratification) approach through conditioning on the exact values of 𝑋𝑋 or 𝜋𝜋(𝑋𝑋). 

Matching is an intuitive and popular approach to adjust for confounding in the estimation 

of causal effects. Matching approaches seek to balance variables in 𝑋𝑋 within matched sets 

between groups as defined by 𝐴𝐴 so as to estimate the effect of 𝐴𝐴 on the outcome 𝑌𝑌 with 

minimal bias. Once the matched sets are formed, an average treatment effect is calculated 

by a weighted average of the differences of average outcomes between the treated and the 
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control patients within strata with weights proportional to the stratum sizes. When 𝑋𝑋is 

discrete, we can stratify the entire sample (the treated and the control patients) by the 

exact values of 𝑋𝑋. That is, patients with a given value of 𝑋𝑋 form a matched set. In this 

case, a saturated regression with strata defined by unique values of 𝑋𝑋 is equivalent to the 

matching approach on the exact values of 𝑋𝑋.  

Exact matching on 𝑋𝑋 is often difficult or near impossible, especially when 𝑋𝑋 is high-

dimensional and contains continuous variables. Instead of matching exactly on 𝑋𝑋, strata 

or matched sets can be formed based on some distance measure (a form of dimension 

reduction), e.g., Mahalanobis distance, or distance derived from the probability of 

receiving treatment, 𝜋𝜋(𝑋𝑋). 
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Appendix C: SAS code for the analysis of Lindner data 
 
data lindner (drop = lifepres); 
 set dat; 
 mort = lifepres = 0; 
run; 
 
/* examine covariate means by treatment prior to weighting  */ 
proc means data=lindner maxdec=2; 
 class abcix; 
 var mort cardbill stent height female diabetic acutemi ejecfrac 
ves1proc; 
run; 
 
  
/* DR for mortality. Plot of logit of PS for 2 treatment arms, and 
produce standardized differences pre- and -post weighting.*/ 
ods graphics on; 
proc causaltrt data=lindner method=aipw covdiffps poutcomemod 
nthreads=2; 
 class abcix mort; 
 psmodel abcix (ref='0') = stent height female diabetic acutemi 
ejecfrac ves1proc/plots=LPS; 
 model mort (event='1') = stent height female diabetic acutemi 
ejecfrac ves1proc/dist=bin; 
 bootstrap seed=1234 plots=hist(effect); 
 output out=ps_weights ipw=ps_weight; 
run; 
 
/* DR for cost (cardbill) */ 
proc causaltrt data=lindner method=aipw covdiffps poutcomemod 
nthreads=2; 
 class abcix mort; 
 psmodel abcix (ref='0') = stent height female diabetic acutemi 
ejecfrac ves1proc; 
 model cardbill = stent height female diabetic acutemi ejecfrac 
ves1proc; 
 bootstrap seed=1234 plots=hist(effect); 
run; 
 
/* examine covariate mean by treatment post weighting by PS */ 
proc means data=ps_weights maxdec=2; 
 class abcix; 
 var mort cardbill stent height female diabetic acutemi ejecfrac 
ves1proc; 
 weight ps_weight; 
run; 
 
/* IPW for mortality */ 
 
proc causaltrt data=lindner method=ipw covdiffps; 
 class abcix mort; 
 psmodel abcix (ref='0') = stent height female diabetic acutemi 
ejecfrac ves1proc; 
 model mort (event='1') /dist=bin; 
 bootstrap seed=1234 plots=hist(effect); 
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run; 
 
/* IPW for cost (cardbill) */ 
proc causaltrt data=lindner method=ipw covdiffps; 
 class abcix mort; 
 psmodel abcix (ref='0') = stent height female diabetic acutemi 
ejecfrac ves1proc; 
 model cardbill; 
 bootstrap seed=1234 plots=hist(effect); 
run; 
 
/* Regression for mortality */ 
 
proc causaltrt data=lindner method=regadj; 
 class abcix mort; 
 psmodel abcix (ref='0'); 
 model mort (event='1') = stent height female diabetic acutemi 
ejecfrac ves1proc/dist=bin; 
 bootstrap seed=1234 plots=hist(effect); 
run; 
 
/* Regression for cost (cardbill) */ 
proc causaltrt data=lindner method=regadj; 
 class abcix mort; 
 psmodel abcix (ref='0'); 
 model cardbill = stent height female diabetic acutemi ejecfrac 
ves1proc; 
 bootstrap seed=1234 plots=hist(effect); 
run; 
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