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Abstract

Large-scale genome wide association studies (GWASs) have led to discovery of many

genetic risk factors in Alzheimer’s disease (AD), such as APOE, TOMM40 and CLU.

Despite the significant progress, it remains a major challenge to functionally validate these

genetic findings and translate them into targetable mechanisms. Integration of multiple

types of molecular data is increasingly used to address this problem. In this paper, we

proposed a modularity-constrained Lasso model to jointly analyze the genotype, gene

expression and protein expression data for discovery of functionally connected multi-omic

biomarkers in AD. With a prior network capturing the functional relationship between SNPs,

genes and proteins, the newly introduced penalty term maximizes the global modularity

of the subnetwork involving selected markers and encourages the selection of multi-omic

markers with dense functional connectivity, instead of individual markers. We applied this

new model to the real data collected in the ROS/MAP cohort where the cognitive perfor-

mance was used as disease quantitative trait. A functionally connected subnetwork involv-

ing 276 multi-omic biomarkers, including SNPs, genes and proteins, were identified to bear

predictive power. Within this subnetwork, multiple trans-omic paths from SNPs to genes

and then proteins were observed. This suggests that cognitive performance deterioration

in AD patients can be potentially a result of genetic variations due to their cascade effect on

the downstream transcriptome and proteome level.

Introduction

Alzheimer’s disease (AD) is the most common form of brain dementia characterized by the

gradual loss of memory and other cognitive function. With rapidly increasing aging popula-

tion, AD is drawing more and more attention in the United States and around the world [1].

Unfortunately, the underlying mechanism of AD remains largely unknown and no clinically
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validated drug is available for disease treatment and prevention. Recent large-scale genome

wide association studies (GWASs) have led to discovery of many genetic risk factors associated

with AD, such as APOE, TOMM40 and CLU. However, they are mostly individual markers,

possibly without functional interactions, which presents difficulties to validate these findings

and to relate them to downstream biology [2, 3]. Therefore, it remains a challenge to translate

them into targetable mechanisms related to disease pathogenesis. Novel biomarkers are in

need that can potentially serve as targets in the future therapeutic interventions.

Recently, there is a substantial increase of multi-omic data in AD. Example projects include

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [4] and the Religious Orders Study

and Memory and Aging Project (ROSMAP) [5]. Instead of limiting their perspective to a single

data type, these data collections create a molecular landscape spanning the genome, transcrip-

tome, proteome and metabolome. Coupling with various biological networks (e.g., protein-

protein interaction (PPI) network), these data provides a valuable resource with rich content

and opens numerous opportunities for more comprehensive analyses of AD. These multi-

omic data has been increasingly recognized to be a potential key enabler of novel biomarker

discovery [6, 7]. It not only allows us to examine the disease from different molecular scales,

but also provides insights into their interactions which is critical for translation of genetic find-

ings into targetable mechanism.

In this paper, we proposed a modularity-constrained Lasso model to jointly analyze the

genotype, gene expression and protein expression data for discovery of functionally connected

multi-omic biomarkers in AD. We constructed a network between SNPs, genes and proteins

to capture their functional relationship and used it as a priori in the proposed model. Based on

this, the newly introduced penalty term maximizes the global modularity of the subnetwork

involving selected markers and encourages the selection of multi-omic markers with not only

predictive power but also dense functional connectivity evidenced in the prior knowledge. We

applied this new model to the real data collected in the ROS/MAP cohort and used the cogni-

tive performance as disease quantitative trait. As a result, we identified a functionally con-

nected subnetwork involving 276 multi-omic biomarkers, including SNPs, genes and proteins.

Within this subnetwork, we observed a plenty number of paths cutting across multiple molec-

ular types, from SNPs to genes and then proteins. This suggests that cognitive performance

deterioration in AD patients can be potentially a result of genetic variations due to their cas-

cade effect on the downstream transcriptome and proteome level. Such connected pattern can

help improve not only the reliability of identified biomarkers, but also their replicability and

interpretability.

Data and method

Study sample

All the data analyzed were obtained from the Religious Orders Study (ROS) and Memory and

Aging Project (MAP). It was launched by Rush University to build a cohort from religious

communities to measure the progression of amnestic mild cognitive impairment (MCI, a pro-

dromal stage of AD) and early probable AD. The combined ROS/MAP cohort includes around

600 participants under age 90, which constitute a very rich repository of multi-modal data

including GWAS data, whole genome sequencing (WGS) data, cognitive, behavioral and clini-

cal data. The more detailed description could be found in [5]. In this paper, GWAS genotype

data and quality controlled RNA-Seq gene expression and protein expression data collected

from prefrontal cortex tissue in the brain were downloaded. To perform the proposed joint

analysis, only subjects with all three types of data were included. In total, we have 262 subjects
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with full set of data, including 115 cognitive normals (CN), 67 MCIs and 80 AD patients. The

detailed demographic information can be found in Table 1.

GWAS genotype data preparation

ROS/MAP samples were genotyped on the Affymetrix GeneChip 6.0 platform [8]. We per-

formed sample and SNP quality control procedures on GWAS data (SNP call rate<95%,

Hardy-Weinberg equilibrium test p< 10−6 in controls, and frequency filtering MAF<1%)

were performed. After the standard quality control procedures for genetic markers and sub-

jects, only non-Hispanic Caucasian participants were selected by clustering with CEU (Utah

residents with Northern and Western European ancestry from the CEPH collection) + TSI

(Toscani in Italia) populations using HapMap 3 genotype data and the multidimensional

scaling (MDS) analysis [9]. Un-genotyped SNPs were imputed using MaCH and the 1000

Genomes Project as a reference panel [10]. Final SNP data used for the analysis is coded as the

number of minor alleles.

RNA-Seq gene expression preparation

RNA-Seq gene expression data in the ROS/MAP cohort were collected from the prefrontal

cortex tissue in the brain. The RNA-Seq data were recently reprocessed in parallel with other

AMP-AD RNAseq datasets, and this second version of the data were downloaded for our sub-

sequent analysis. The input data for the RNA-Seq reprocessing effort was aligned reads in bam

files that were converted to fastq using the Picard SamToFastq function. Fastq files were re-

aligned to the reference genome using STAR with twopassMode set as Basic. Gene counts

were computed for each sample by STAR by setting quantMode as GeneCounts. These gene

level counts further went through normalization and adjustment to remove the effects of

relevant factors such as age, gender, education, batch, RNA integrity number (RIN) and post-

mortem interval (PMI). Detailed reprocessing and normalization steps can be found in the

AMP-AD knowledge portal (https://www.synapse.org/#!Synapse:syn9702085/).

Protein expression data preparation

Selected reaction monitoring (SRM) proteomics was performed using frozen tissue from dor-

solateral prefrontal cortex (DLPFC). The samples were prepared for LC-SRM analysis using

standard protocol as described in [11, 12]. All the data were manually inspected to ensure cor-

rect peak assignment and peak boundaries. The abundance of endogenous peptides was quan-

tified as a ratio to spiked-in synthetic peptides containing stable heavy isotopes. The “light/

heavy” ratios were log2 transformed and shifted such that median log2-ratio is zero. Normali-

zation adjusted for differences in protein amounts between the samples. During that normali-

zation, the log2-ratios were shifted for each sample to make sure the median is set at zero.

Detailed processing steps can be found in the AMP-AD knowledge portal (https://www.

synapse.org/#!Synapse:syn8456629). Using the regression weights derived from the cognitive

Table 1. Demographic information of the ROS/MAP participants included in this study.

Dignosis CN MCI AD

Subject Number 115 67 80

ROS/MAP 69/46 27/40 40/40

Male/Female 51/64 28/39 31/49

Education(mean± std.) 16.9 ± 3.5 16.6 ± 3.3 16.9 ± 3.8

Age(mean± std.) 83.0 ± 4.7 85.0 ± 4.2 86.3 ± 3.7

https://doi.org/10.1371/journal.pone.0234748.t001
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normal participants, peptide abundance data were further adjusted to remove the effects of

age, gender, education, PMI and batch.

Selection of SNPs, genes and proteins

We focused our analysis on a set of SNPs, genes and proteins with known functional connec-

tions. Though we have genome-wide genotype and transcriptome-wide gene expression data

available in the ROS/MAP cohort, only a limited number of proteins are measured, which

forms a bottleneck for the joint data analysis. To address this problem, we took a bottom-up

approach where proteins measured in the prefrontal cortex were used as seeds to select a subset

of relevant SNPs and genes for subsequent analysis. As shown in Fig 1, in the proteomic level,

abundance level of 186 peptides, corresponding to 126 unique genes, were measured in the

ROS/MAP cohort. In the functional interaction network obtained from the REACTOME data-

base, these 126 genes were found to interact with 954 genes and these interactions were all

manually curated from known pathways [13]. Among these 1080 (=126+954) candidate genes,

743 of them without missing RNA-seq data were included to represent the transcriptomic

level. Of note, we did not further filter these genes based on their differential expression in

AD. In the genomic level, we identified SNPs located on the upstream of these 743 genes

within the boundary of 5K. To ensure the functional connection of selected SNPs and the

downstream genes, we included only SNPs significantly affecting the transcription factor bind-

ing activity, based on the SNP2TFBS database [14]. These relationships between SNPs, genes

and proteins/peptides are used to build a trans-omic functional interaction network to guide

the search of functionally connected biomarkers in the subsequent analysis.

Memory outcomes

Cognitive performance of participants in the ROS/MAP cohort was estimated through the

mini mental state examination, a standardized screening measure for collecting 30 items in

related with dementia [15, 16]. This score ranges from 0 to 30, and is scaled to quantify the

severity of dementia. In this study, we used this memory test score as the AD quantitative trait

for biomarker discovery. Using the regression weights derived from the cognitive normal par-

ticipants, the memory score is adjusted to remove the effect of age, sex and education.

Modularity-constrained Lasso

Throughout this section, we write matrices as boldface uppercase letters and vectors as bold-

face lowercase letters. Given a matrix M = (mij), its i-th row and j-th column are denoted as

mi and mj respectively. Let X = [x1, x2, . . ., xn]T be the multi-omic features as predictors and

y = [y1, y2, . . ., yn]T be the disease quantitative trait as outcome (i.e., cognitive performance).

Here, xj � R
p

is a concatenated vector of genotype, gene expression and protein expression

data for j-th subject.

The least absolute shrinkage and selection operator (Lasso) is a shrinkage and selection

method for linear regression [17]. It minimizes the usual sum of squared errors with a bound

on the sum of the absolute values of the coefficients, which is also known as L1 norm (Eq 1).

min
w
ky � Xwk2 s:t: kwk1 ¼

Xp

j¼1

jwjj � t ð1Þ

With this constraint, Lasso aims to minimize the number of selected features, which signifi-

cantly improved the interpretability of results compared to traditional linear regression, where

almost all features are considered to be outcome-relevant with non-zero weight. However,
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when dealing with a group of highly correlated features, L1 norm penalty will result in a ran-

dom selection. In this case, multiple runs of Lasso on the same set of data will possibly generate

different set of selected features, which presents challenges for replicating and interpreting

the results. To address this problem, several groups proposed to explicitly incorporate the

correlation structure into the sparse prediction model and encourage the selection/exclusion

of all highly correlated features together [18–21]. Among those is GraphNet, where a graph

G � Rp�p
indicating the correlation structure between predictors is used as a priori to guide

the feature selection (Eq 2) [21].

min
w
ky � Xwk2

þ lwTLw s:t: kwk
1
� t ð2Þ

Here, L is the corresponding Laplacian matrix of graph G. However, GraphNet only accounts

for the local topology information with a focus on pairwise similarity. For multi-omic bio-

marker discovery, using this penalty still can not guarantee the connectivity of selected features

in the prior network.

In this paper, we propose a new modularity-constrained Lasso which leverages the global

network property to encourage the selection of a sub-network rather than individual markers

scattered in the prior network. Given the trans-omic network capturing the functional relation-

ships between SNPs, genes and proteins, we formulate it as a graph and its corresponding adja-

cency matrix is denoted as G � Rp�p. B is the modularity matrix [22], where Bij ¼ Gij �
hihj
2m .

It evaluates whether the number of links between nodes i and j is significantly more than

expected. hi and hj are the degrees of the i-th and j-th node in the network, and m is the total

number of links in the network. Inspired by the module identification problem [23, 24], we pro-

pose a new penalty term as PM(w, B) =< wT w, B> to impose a modular structure in the identi-

fied biomarkers. Here,<> is the Frobenius inner product defined by<A, B> = tr(AT B).

Fig 1. The selection of SNPs in upstream 5K boundary for each gene.

https://doi.org/10.1371/journal.pone.0234748.g001
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Maximizing the Frobenius inner product between wT w and the modularity matrix B encour-

ages the selection of features with dense functional connections in the prior multi-omic net-

work. Taken together, our new modularity-constrained Lasso objective is formulated as in Eq 3.

min
w

Xq

i¼1

ky � Xwk2
� PMðw;BÞ s:t: kwk1

� t ð3Þ

Here, λ and t are the parameters that control and balance the contribution from two regulariza-

tion terms. Note that the objective function in Eq 3 is not convex because the modularity matrix

B used in PM(w, B) =< wT w, B> is indefinite. To make B negative-definite, we introduced an

auxiliary function where B is replaced by B − λB I and λB is the absolute maximum eigenvalue

of B. Eq 3 can be easily solved by obtaining a closed form solution without L1 constraint, fol-

lowed by soft-thresholding method [17].

Results

Performance comparison with competing methods

In this section, we denote our modularity-constrained Lasso as M-Lasso and GraphNet-con-

strained Lasso as G-Lasso. We compared M-Lasso with three state-of-the-art sparse regression

models: G-Lasso, elastic net and traditional Lasso. For M-Lasso and G-Lasso, nested 5-fold

cross validation (CV) procedure was applied to tune the parameters. Elastic net and traditional

Lasso were both implemented using glmnet Matlab package with 5-fold cross validation. To

provide an unbiased estimate of the prediction performance of each method tested in the

experiments, all methods were evaluated using the same partition of subjects during the cross

validation procedure. The portion of AD, MCI and CN participants was kept the same for

each fold. Root Mean Square Error (RMSE) and mean absolute error (MAE) between the pre-

dicted values and actual values of all the test subjects were used to compare the prediction per-

formances across different methods.

Prediction performance, measured by RMSE and MAE, of four different regression models

on test data set is shown in Table 2. It is observed that, across all 5 folds, M-Lasso largely out-

performs G-Lasso, elastic net and traditional Lasso. Traditional Lasso occasionally shows the

best performance with smallest prediction error. However, its selected markers are much less

connected than those of M-Lasso and G-Lasso due to lack of prior structure constraints and

thus will present challenges for further interpretation.

Table 2. Performance comparison on test set between M-Lasso and other methods.

fold 1 fold 2 fold 3 fold 4 fold 5 Mean

RMSE M-Lasso 0.852 1.082 0.905 0.959 0.874 0.935

G-Lasso 0.876 1.128 1.019 1.178 1.415 1.123

Elastic Net 0.871 1.073 0.936 0.968 1.577 1.085

Lasso 0.852 1.039 0.931 0.952 2.259 1.207

MAE M-Lasso 0.699 0.872 0.659 0.723 0.671 0.725

G-Lasso 0.726 0.893 0.751 0.881 0.872 0.825

Elastic Net 0.743 0.861 0.687 0.757 0.857 0.781

Lasso 0.726 0.831 0.686 0.758 0.992 0.799

1 RMSE: root mean square error;
2 MAE: mean absolute error.

https://doi.org/10.1371/journal.pone.0234748.t002
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For feature selection, M-Lasso identified around 600 features including SNPs, genes and

proteins, to be predictive of cognitive performance, while G-Lasso only identified a handful of

them (i.e., less than 20 for all 5 folds). When mapped to the prior functional connectivity net-

work, markers identified by G-Lasso scatters across the network with much fewer connections,

which suggests that the local topology information used in GraphNet penalty is not strong

enough to form subnetwork structure among identified biomarkers. Although the total num-

ber of markers identified in G-lasso is much fewer, lack of connections makes them hard to

interpret and presents challenges for further functional validation. For M-Lasso, multi-omic

biomarkers identified are largely connected to each other in the prior network. Taken together,

the sparsity constraints in M-Lasso is still encouraged, but not as strict as in traditional Lasso,

elastic net and G-Lasso. Compared to the ridge penalty in elastic net and the GraphNet penalty

in G-Lasso, the modularity penalty in M-Lasso further relaxed the sparsity constraint such that

subnetworks, instead of individual features, can be identified as biomarkers.

Take the result from one fold as example, 650 features were selected in M-Lasso, including

255 SNPs, 339 genes and 56 proteins. In particular, there are 7 subnetworks with more than 5

nodes and the largest connected network component involves 276 multi-omic features with

366 edges (Fig 2). The rest of the multi-omic markers identified in M-Lasso mostly form small

connected components, ranging in size from 2 to 4. These features are found predictive yet not

well functionally connected, possibly due to the fact that they are false positives or their func-

tional connections have not been previously studied yet. In the subsequent part, we focus on

the multi-omic biomarkers in the largest connected component, which are not only predictive

of cognitive performance but also functionally connected with evidence from prior knowledge.

Functionally connected multi-omic biomarkers

Shown in Fig 2 are the 7 subnetworks with more than 5 nodes, which were obtained after map-

ping 650 features back to the prior network. Size of each node is made proportional to their

degree. APOE gene and its corresponding protein, a top risk factor of AD, is found in one of

the subnetworks involving 1 SNP and 5 genes, including LRP2, PPARG, LPL, LPLRAP1 and

GHIHBP1. Across all the subnetwoks, we observed that there are multiple trans-omic paths

from SNPs to genes and then proteins. Note that these SNPs are located upstream of their con-

nected genes and has significant effect on the transcription factor binding activity. Thus, these

SNPs are very likely to have an influence on the expression of their connected genes. Also, the

functional interaction between genes and proteins are curated from the REACTOME path-

ways with direction information. Therefore, genes have a regulatory role toward the expression

of their connected proteins in the prior network. Taken together, these trans-omic paths sug-

gest that cognitive performance can be potentially affected by the genetic variations (i.e.,

SNPs) due to their cascade effect on the expression of downstream genes, which further regu-

late the protein expression. In addition, we examined 63 SNPs involved in the largest con-

nected component in the BRAINEAC database. This database provides the association

between SNPs and gene expression tested on 134 neuropathologically confirmed control indi-

viduals of European descent. SNPs significantly associated with gene expression are named as

expression quantitative trait loci (eQTLs). EQTL mapping is a widely used tool for identifying

genetic variants that affect gene regulation [25]. Details of the eQTL analysis can be found in

[26]. For 63 SNPs in the largest subnetwork, 58 of them were found to be eQTLs in the frontal

cortex tissue (FDR corrected p< 0.05).

For the largest connected subnetwork, we further performed network analysis using Net-

workAnalyzer in Cytoscape [27] and identified the biomarkers with top centrality values,

such as degree, betweenness and closeness (Table 3). Top nodes by degree in this subnetwork
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included proteins PIK3R1, GRB2, FYN, CD44, RPS2, BCL2L1, BCL2L1 and PTPN11, and genes

EP300 and SPCS3. Most hub nodes are also found to have the top centrality value in between-

ness and closeness, such as PIK3R1, FYN, and EP300. Majority of these genes and proteins

have been previously reported in association with AD. For example, PIK3R1 encodes the regu-

latory subunit of the phosphoinositide-3-kinase protein complex PI3Ks, which are known to

play a key role in insulin signaling. Results from recent studies start to show evidence of intrin-

sic insulin resistance inside AD brains [28]. The hub gene EP300 encodes the enzyme histone

Fig 2. Top 7 connected components with biomarkers identified using M-Lasso mapped to prior network. Inside the

red box is the subnetwork involving APOE gene, a top risk factor of Alzheimer’s disease.

https://doi.org/10.1371/journal.pone.0234748.g002
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acetyltransferase P300 or E1A-associated protein P300. This enzyme functions as histone acet-

yltransferase that regulates transcription of genes via chromatin remodeling. Findings from

multiple studies have suggested the potential of P300 to act as a biomarker for dementia assess-

ment and monitoring AD [29, 30]. In addition, GRB2 was found to interact with APP, a well-

known gene related to AD. GRB2 interacts with APP requiring phosphorylation of APP at

Tyr-682 [31]. This could lead to the activation of the MAPK pathway, since GRB2 are known

to link growth factor receptors to signaling pathways, such as MAPK and PI3K, and participate

in oncogenic proliferation, neuronal development, cell differentiation, and apoptosis [32–37].

In addition to rank, a subsampling procedure can help determine a hard cut-off threshold

for identification of a smaller set of significant features [38]. For example, we can repeatedly

select the same number of random features, map them to the prior network and use the aver-

age (or 25% percentile) of the derived network centrality values as threshold to select signifi-

cant features.

Finally, hub genes are known to be likely disease-associated genes. Features with higher

degree in the identified subnetworks are expected to be more important with higher absolute

regression weights. Therefore, we further tested the association between degree of features and

their absolute regression weights derived from M-Lasso. Across 5 folds, the average Pearson’s

correlation value between node degree and absolute weight is only 0.18. However, when we

excluded the features with low degree (degree <3), the average correlation increases signifi-

cantly to 0.4. This indicates that the importance of identified multi-omic features is more pro-

portional to their degrees only when they already have many interactions in the prior network.

Upon further examination, features with high degree were found to have medium to high

regression weights. Features with low degree can have very small or very high weights. This

is possibly due to the fact that their low degree may be a result of no interaction or no known

interaction. Therefore, their importance is less determined than that of hub ones.

Pathway enrichment analysis

For 166 genes, 47 proteins and 63 SNPs in the largest connected subnetwork, we performed

pathway enrichment analysis based on the Kyoto Encyclopedia of Genes and Genomes

(KEGG) database [39]. The enrichment analysis was performed using ClueGO as left-sided

tests based on the hypergeometric distribution [40]. In total, 77 pathways were found to be sig-

nificantly enriched by our gene/protein set, with Bonferroni corrected term p-value smaller

than 5% (corrected p� 0.05). Shown in Table 4 was the top 20 enriched KEGG pathways with

smallest p values after correction. The top hit is PI3K-Akt signaling pathway, a major mediator

of effects of insulin. Two recent studies have found a significant correlation between peripheral

insulin resistance and brain Aβ levels as measured by Pittsburgh compound B-positron emis-

sion tomography (PiB-PET) [41, 42]. The impaired insulin-PI3K-Akt signaling observed

in the AD brain has led to clinical trials studying whether the enhancement of this pathway

using intranasal insulin (IN) treatment is beneficial [43]. Other enriched pathways that are

Table 3. Nodes with top centrality values in the largest connected subnetwork.

Degree PIK3R1, GRB2, FYN, CD44, EP300, RPS2, SPCS3 BCL2L1, RPL10A, PTPN11
Average Shortest Path Length PIK3R1, SP1, FYN, LYN, LDHA, PDGFRB, EP300, APP, CSK, CD44
Betweenness PIK3R1, SP1, FYN, EP300, MYC, GRB2, LDHA, CD44, RPL10A, LYN
Closeness PIK3R1, SP1, FYN, LYN, LDHA, PDGFRB, EP300, APP, CSK, CD44

1 rs- IDs: SNPs; Bold: genes; The rest: proteins.

https://doi.org/10.1371/journal.pone.0234748.t003

PLOS ONE Functionally connected multi-omic biomarkers for Alzheimer’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0234748 June 17, 2020 9 / 14

https://doi.org/10.1371/journal.pone.0234748.t003
https://doi.org/10.1371/journal.pone.0234748


previously reported with a key role in AD include Focal adhesion [44], ECM-receptor interac-

tion [45], Ras signaling pathway [46], MAPK signaling pathway [47], Rap1 signaling pathway

[48], etc. Many of the top enriched pathways are related to cancer, such as PI3K-Akt signaling

pathway, prostate cancer and small lung cancer. In addition, we performed pathway enrich-

ment analysis for the subnetwork involving APOE gene and protein. Interestingly, the

cholesterol metabolism pathway was significantly enriched by these genes and proteins. This

provides support to recent findings in the association between cholesterol metabolism and

memory performance [49–51].

Conclusion

In this study, we proposed a new modularity-constrained Lasso model to jointly analyze the

genotype, RNA-Seq gene expression and protein expression data. The newly introduced pen-

alty term maximizes the global modularity of selected biomarkers in the prior network and

encourages the selection of multi-omic biomarkers forming network modules. With this new

penalty term, M-Lasso is advantageous in that features can be selected either because they are

predictive or because they are closely connected with many predictive ones in the prior net-

work. Thus, the sparsity constraint in M-Lasso is much more relaxed than in G-Lasso, elastic

net and traditional Lasso. Compared to the GraphNet penalty that enforces local pairwise simi-

larity, modularity-based penalty helps identify more biomarkers with significantly improved

functional connectivity. In particular, we found that some biomarkers form trans-omic paths

from SNP to gene and then protein, suggesting the potential cascade effect of genetic variations

on the downstream transcriptome and proteome level. To the best of our knowledge, this is

the first study that explored the potential of functional multi-omic subnetworks as biomarkers

in AD.

Table 4. Top enriched KEGG pathways by the genes and proteins in the largest connected subnetwork.

Pathway # of markers in the pathway # of genes in the pathway p-value Corrected p-value

PI3K-Akt signaling pathway 64 354 2.24E-36 3.39E-34

Focal adhesion 41 199 2.81E-25 4.22E-23

Pathways in cancer 59 530 8.78E-22 1.31E-19

ECM-receptor interaction 25 82 4.04E-20 5.97E-18

Human papillomavirus infection 42 330 1.54E-17 2.26E-15

Ras signaling pathway 34 232 3.65E-16 5.34E-14

Small cell lung cancer 22 93 3.12E-15 4.53E-13

MAPK signaling pathway 36 295 1.65E-14 2.38E-12

Kaposi sarcoma-associated herpesvirus infection 27 186 6.77E-13 9.67E-11

Toxoplasmosis 21 113 2.20E-12 3.13E-10

Prostate cancer 18 97 9.14E-11 1.29E-08

Chronic myeloid leukemia 16 76 1.45E-10 2.03E-08

Phospholipase D signaling pathway 21 148 4.49E-10 6.25E-08

Amoebiasis 17 96 6.70E-10 9.25E-08

Human cytomegalovirus infection 25 225 1.83E-09 2.51E-07

Relaxin signaling pathway 19 130 1.91E-09 2.60E-07

Acute myeloid leukemia 14 66 1.93E-09 2.60E-07

Proteoglycans in cancer 23 201 4.84E-09 6.49E-07

ErbB signaling pathway 15 85 7.42E-09 9.87E-07

Rap1 signaling pathway 23 206 7.81E-09 1.03E-06

https://doi.org/10.1371/journal.pone.0234748.t004
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Despite the promising findings, the proposed M-Lasso still has multiple limitations. First,

only one disease quantitative trait is used as outcome in the prediction model. Considering

the potential bias introduced in data collection procedure, the biomarkers and their func-

tional connectivity network identified here may not reflect the optimal pattern. Incorporat-

ing multiple correlated outcomes and performing a multitask prediction will possibly help

improve the performance. Second, like many multi-view prediction models, the proposed

M-Lasso is not very capable in handling the missing data problem. Each subject has to

have all types of data to be included in the analysis. Therefore, subjects with missing data

in one or more data types are inevitably excluded. This missing data problem can be partly

addressed using imputation methods such as singular value decomposition [52] and matrix

completion [53]. In case of subjects with large chunk of missing data, one possible solution is

to examine two types of data at a time to maximize the number of available subjects. Future

efforts are in need to further improve this model to enable the integrative analysis of multi-

view data from decoupled subjects.
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