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Abstract

Background: DNA methylation (DNAmM) age has been widely accepted as an epigenetic biomarker for biological
aging. Emerging evidence suggests that DNAmM age can be tissue-specific and female breast tissue ages faster than
other parts of the body. The Horvath clock, which estimates DNAmM age across multiple tissues, has been shown to
be poorly calibrated in breast issue. We aim to develop a model to estimate breast tissue-specific DNAmM age.

Methods: Genome-wide DNA methylation sequencing data were generated for 459 normal, 107 tumor, and 45
paired adjacent-normal breast tissue samples. We determined a novel set of 286 breast tissue-specific clock CpGs
using penalized linear regression and developed a model to estimate breast tissue-specific DNAmM age. The model
was applied to estimate breast tissue-specific DNAmM age in different breast tissue types and in tumors with distinct
clinical characteristics to investigate cancer-related aging effects.

Results: Our estimated breast tissue-specific DNAmM age was highly correlated with chronological age (r = 0.88; p = 29 x
10" in normal breast tissue. Breast tumor tissue samples exhibited a positive epigenetic age acceleration, where DNAmM
age was on average 7 years older than respective chronological age (p = 1.8 x 107%). In age-matched analyses, tumor
breast tissue appeared 12 and 13 years older in DNAm age than adjacent-normal and normal breast tissue (p = 40 x 10°°
and 1.0 x 10°°, respectively). Both HER2+ and hormone-receptor positive subtypes demonstrated significant acceleration
in DNAmM ages (p = 0.04 and 3.8 x 107°, respectively), while no apparent DNAm age acceleration was observed for triple-
negative breast tumors. We observed a non-linear pattern of epigenetic age acceleration with breast tumor grade. In
addition, early-staged tumors showed a positive epigenetic age acceleration (p = 0.003) while late-staged tumors
exhibited a non-significant negative epigenetic age acceleration (p = 0.10).

Conclusions: The intended applications for this model are wide-spread and have been shown to provide biologically
meaningful results for cancer-related aging effects in breast tumor tissue. Future studies are warranted to explore whether
breast tissue-specific epigenetic age acceleration is predictive of breast cancer development, treatment response, and
survival as well as the clinical utility of whether this model can be extended to blood samples.
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Introduction

DNA methylation (DNAm) levels in specific sets of
cytosine-phosphate-guanines (CpGs) in the human genome
can be used to establish an epigenetic biomarker of bio-
logical age [1-6], known as an “epigenetic clock,” where the
resulting age estimate is commonly referred to as “epigen-
etic age” or “DNAm age.” Increasing evidence suggests that
many facets of aging are epigenetic [7, 8] and that DNAm
age captures both the genetic and environmental influences
across time on cellular functions [1, 2, 4, 6]. Furthermore,
the difference between DNAm and chronological ages,
known as epigenetic age acceleration, has been shown to be
associated with various health conditions and outcomes,
including obesity [9], lifetime stress [10], HIV infec-
tion [11, 12], cognitive impairment [13-15], cancer
[16, 17], and mortality [18—20].

A multi-tissue DNAm age estimator was developed re-
cently using a large dataset of DNAm profiles measured
on the Illumina Methylation 27K and 450K microarray
platforms (Illumina Inc., San Diego, CA, USA). This
model, known as the Horvath clock model, displays a re-
markable accuracy in predicting chronological age across
multiple tissue types using the methylation levels of only
353 CpG loci in the human genome [6]; however,
DNAm ages estimated with this model were not well
calibrated in several tissue types, including breast tissue,
uterine endometrium, dermal fibroblasts, skeletal muscle
tissue, and heart tissue [6]. Further studies using the
Horvath clock model suggested that female breast tissue
ages faster than other parts of the body [6, 21, 22]. As
age is an established risk factor for breast cancer, a
breast tissue-specific DNAm age estimator may be more
appropriate in studying aging effects on breast tissue
and their contribution to breast cancer development;
however, no model has been developed to estimate
breast tissue-specific DNAm age. This study aims to de-
velop a model that estimates breast tissue-specific
DNAm age. We hypothesize that a novel set of breast-
tissue specific CpG markers can be identified to estimate
DNAm age accurately in breast tissue.

The increasing availability of next-generation sequen-
cing data also calls for method development that uses
DNA methylation sequencing data in targeted tissue to
estimate tissue-specific DNAm age. In this study, we uti-
lized a large data set of breast tissue-specific DNAm
profiles generated using the Illumina TruSeq Methyl-
Capture EPIC Library Prep Kit and next-generation se-
quencing technology (EPIC-seq), comprising 459 normal
(K) breast tissue samples from healthy women, and 107
tumor (T) and 45 matched adjacent-normal (N) tissue
samples from breast cancer patients. We used a random
subset of normal breast tissue samples (N = 368) to con-
struct a breast tissue-specific model of DNAm age esti-
mation. We performed a pathway analysis of the genes
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annotated to the CpGs identified in the model to assess
biological influences of aging in healthy normal breast
tissue. Further, we applied the model to the remaining
data sets of normal (N = 91), tumor, and adjacent-
normal breast tissue. The resulting DNAm age estimates
were used to investigate epigenetic age acceleration in
different breast tissue types as well as in breast tumors
with distinct clinical characteristics.

Results

Breast tissue-specific model of epigenetic age

The elastic net regression algorithm generates sparsity
from its regularization terms and, as a consequence, per-
forms automatic feature selection [23]. Of the 2,471,574
candidate CpGs entering the algorithm, 286 were se-
lected as breast tissue-specific clock CpGs. A model was
constructed for the estimation of breast tissue-specific
DNAm age using these identified clock CpGs and re-
gression coefficients (Additional file 1). We evaluated
the accuracy of the model using two measures: the Pear-
son correlation coefficient between DNAm age and
chronological age and the absolute median predictive
“error” defined as the median absolute difference be-
tween the estimated DNAm age and chronological age.
While the accuracy in training data set is likely overly
optimistic due to overfitting (r = 0.99; p < 1 x 107%% me-
dian absolute error = 1.1 years), the assessments in the
testing data set are unbiased. In the testing data set,
breast tissue-specific epigenetic age was found to be
highly correlated with chronological age (r = 0.88; p =
2.9 x 107!, Fig. 1). The absolute median predictive error
in the testing data set was 4.2years, indicating that
DNAm age differed from chronological age by less than
4.2 years in 50% of the subjects.

Breast tissue-specific clock CpGs

The set of 286 breast tissue-specific clock CpGs com-
prises 190 and 96 CpGs whose DNAm levels are posi-
tively and negatively associated with chronological age,
respectively. Positively associated CpGs were primarily
located in CpG islands (84% in islands, 7% in shores,
and 9% in open sea), while negatively associated CpGs
were more interspersed (66% in islands, 15% in shores,
and 19% in open sea). An Ingenuity Pathway Analysis
(IPA) [24] of the genes that co-locate with the 286 clock
CpGs showed significant enrichment in functions in-
cluding gene expression, cellular development, and cell
morphology. While positively associated CpGs suggested
top canonical pathways including epidermal growth fac-
tor (EGF) signaling and estrogen-receptor (ER) signaling,
negatively associated CpGs suggested canonical path-
ways including Ataxia-Telangiectasia Mutated (ATM)
signaling and apoptosis signaling.
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Fig. 1 The performance of breast tissue-specific DNAmM age model in the normal breast tissue testing data set: a correlation between DNAmM age
and chronological age and b distribution of model estimation error, defined as the difference between DNAm and chronological age
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Age-adjusted DNAm levels of the 286 clock CpGs
across all samples from three breast tissue types are il-
lustrated in a heat map (Fig. 2). A clear distinction can
be seen in the DNAm levels between breast tumor tissue
and normal or adjacent normal tissue, where most of the
positively associated CpGs (with age) were hypermethy-
lated in breast tumor tissue when compared to normal
and adjacent-normal tissue. This pattern was better
quantified when differentially methylated clock CpGs
were identified in pairwise tissue comparisons (Fig. 3).
In the comparison between tumor and normal breast tis-
sue, 56 clock CpGs were differentially methylated, of
which 9 were hypomethylated and 47 were hypermethy-
lated in tumor breast tissue. Similarly, in the comparison
between tumor and adjacent-normal breast tissue, 48
clock CpGs were differentially methylated, of which 5
were hypomethylated and 43 were hypermethylated in
tumor breast tissue. There was a 94% overlap of CpGs
between the two comparisons. An Ingenuity Pathway
Analysis of the genes annotated to these differentially

Table 1 Age distributions of breast tissue data sets in the study

Tissue type N Mean age (years) SD (years)
Normal 459 47.7 134
Training set 368 477 135
Testing set 91 47.7 129
Adjacent normal* 45 53.1 121
Tumor* 107 553 136
HER2+ 21 56.8 16.9
ER+ or PR+/HER2- 42 544 1.7
ER-/PR-/HER2- 15 539 124

HER2 epidermal growth factor receptor 2, ER estrogen receptor, PR

progesterone receptor

*Age distribution is significantly different from the normal breast tissue testing

data set (p < 0.05)

methylated CpGs suggested nicotinamide adenine di-
nucleotide (NAD) biosynthesis pathway for the hyper-
methylated clock-CpG genes in tumors, while no
statistically significant pathways were identified for the
hypomethylated clock-CpG genes. No statistically sig-
nificant and differentially methylated CpGs were identi-
fied in the comparison between normal and adjacent-
normal breast tissue.

DNAm age estimation in different breast tissue types

Using our model, we estimated DNAm age in tumor
and adjacent-normal breast tissue samples and further
calculated respective epigenetic age acceleration differ-
ence (EAAD) values. In general, breast tumor tissue ap-
peared to have much larger variation in both DNAm age
and EAAD values compared to normal and adjacent-
normal tissue (Figs. 4 and 6a). We fitted a fixed-
intercept linear model for each tissue type by regressing
DNAm age on chronological age (Fig. 4), where the
slope of each line indicates the change in DNAm age
corresponding to each unit change in chronological age
and provides a measure of epigenetic age acceleration
rate. We found that tumor breast tissue exhibited a higher
rate (slope = 1.17) than both normal and adjacent-normal
tissue (slope = 1.00 and 0.97, respectively). While the slope
differences are not statistically significant, it suggests that
breast tumor tissue might be aging at a faster rate than nor-
mal and adjacent-normal tissue (p = 0.47 and 0.67, respect-
ively). We further assessed the magnitude and direction of
epigenetic age acceleration in each tissue type using EAAD
values (Fig. 6a). We found that there was no statistically sig-
nificant epigenetic age acceleration in either breast normal
tissue (median EAAD = 0.7 years, p = 0.18) or adjacent-
normal tissue (median EAAD = - 2.3 years, p = 0.07). How-
ever, breast tumor tissue had a pronounced epigenetic age
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Fig. 3 Volcano plots of differentially methylated clock CpGs in pairwise comparisons a adjacent-normal (N) vs normal (K); b tumor (T) vs normal
(K); and ¢ tumor (T) vs adjacent-normal (N) breast tissue. Differentially methylated clock CpGs (in cyan) are identified if [AB| > 0.1 and t test p
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Fig. 4 Scatter plot of DNAm age and chronological age in three
tissue types. A regression line is fitted for each tissue type. The slope
of each regression line indicates the change in DNAm age
corresponding to each unit change in chronological age, or
epigenetic age acceleration rate. Interquartile ranges (IQR) are
reported for each tissue type

acceleration towards older ages (median EAAD = 6.8 years,
p=18x107%).

As our breast tumor and adjacent-normal tissue sam-
ples are significantly older than our normal tissue sam-
ples, confounding by chronological age needs to be
considered when comparing DNAm age and its related
measures across different tissue types. We utilized two
approaches to control for confounding by chronological
age when comparing tissue types. First, we performed
chronological age-matched analyses between tissue types
(Fig. 5). We found that breast tumor tissue had much
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older DNAm age than age-matched normal and adjacent-
normal tissue (median A (DNAm age) = 12.8 and 11.8
years, p = 1.0 x 107° and 4.0 x 107°, respectively), while
there was no significant difference in DNAm age between
age-matched normal and adjacent-normal tissue (median
A (DNAm age) = — 0.2 years, p = 0.90). Secondly, we com-
pared epigenetic age acceleration residual (EAAR) values
across different tissue types (Fig. 6b). We observed that
breast tumor tissue had higher EAAR values than normal
and adjacent-normal tissue (median EAAR = 2.1, - 7.0,
and - 8.1 years, respectively), indicating tumor tissue was
relatively 9.1 and 10.2 years epigenetically older than nor-
mal and adjacent-normal tissue (p = 3.0 x 10°® and 1.6 x
1077, respectively). These results were consistent with
those from chronological age-matched analyses, suggest-
ing tumor breast tissue exhibits significant epigenetic age
acceleration towards older ages when compared to normal
and adjacent-normal breast tissue.

DNAm age estimation in breast tumors with distinct
clinical features

We further explored DNAm age in breast tumor sub-
groups with distinct clinical features, including molecu-
lar subtype, tumor grade, and tumor stage. We defined
three molecular tumor subtypes based on HER2 and
hormone receptor (HR) status: HER2+, HR+ (ER+ or
PR+)/HER2-, and HER2-/ER-/PR- (triple negative,
TNBC). We found that both HER2+ and HR+/HER2-
tumor subtypes had significant epigenetic age accelera-
tions towards older ages (median EAAD = 8.9 and 8.8
years, p = 0.04 and 3.8 x 107%, respectively), while TNBC
showed no significant epigenetic age acceleration (me-
dian EAAD = - 1.3vyears, p = 0.86) (Fig. 7a). A non-
linear pattern was observed between epigenetic age ac-
celeration and tumor Scarff-Bloom-Richardson (SBR)
grade (Fig. 7b). Epigenetic age acceleration was near zero
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for grades 3-5, peaked around grade 6, and then de-
creased as grade increased. A significant epigenetic age ac-
celeration towards older ages was observed for grades 6
and 7 (median EAAD = 24.0 and 9.1 years, p = 1.5 x 10™*
and 0.03, respectively). Early-stage breast tumors (stage II)
showed a significant epigenetic age acceleration towards
older ages (median EAAD = 19.0 years, p = 0.003), while
late-stage breast tumors (stages III and IV) had non-
significant epigenetic age acceleration towards younger
ages (median EAAD = - 11.1 years, p = 0.10) (Fig. 7c).

We compared epigenetic age acceleration across dif-
ferent tumor subgroups, controlling for confounding by
chronological age using EAAR values. We observed that
HER2+ and HR+/HER2- samples were relatively 8.2 and
10.5 years older than TNBC samples (p = 0.11 and 0.02,
respectively) (Fig. 7d). In addition, age-adjusted epigen-
etic age acceleration showed a similar relationship with
tumor grade, where the largest acceleration was ob-
served around grade 6, which then decreases as grade in-
creases (Fig. 7e). Early- and late-stage breast tumors
appeared to have opposite directions in epigenetic age
acceleration and early-stage tumors were relatively 26.3
years older than late-stage tumors (p = 0.001).

Comparison to the Horvath clock model

Our model was trained using data from targeted normal
breast tissue, while the Horvath clock model was devel-
oped using data across multiple tissues. The two models
likely are not comparable because of the difference in
reference tissues. We found only one clock CpG directly
overlaps between our model and the Horvath clock
model. Despite the expansive coverage of the EPIC-seq
platform, only 268 of the 353 Horvath clock CpGs were
profiled in our sequencing dataset. This limits our ability
to directly compare DNAm age estimates from the Hor-
vath clock model and our breast-tissue specific model
using the same sequencing data. Previous studies have
shown that the Horvath clock model can be reliably ap-
plied to EPIC-Array platform data with minimal induced
variance [25, 26]. We thus compared DNAm age esti-
mates from our breast tissue-specific model to those
from the Horvath clock model in a small subset of sam-
ples (N = 9) for which we obtained DNAm profiles using
both the EPIC-Array and EPIC-Seq technologies. Al-
though DNAm age estimates from the two models were
in good concordance (r = 0.79, p = 0.01), we observed
that the median absolute difference in DNAm age was
9.0 years between the two models (Fig. 8).

Discussion

DNAm age is an epigenetic marker of biological aging
that reflects age-related cumulative changes in DNA
methylation influenced by both environmental and gen-
etic risk factors. The Horvath method has been widely

Page 7 of 14

r=0.79; p=0.01 .
120 -
8
©
£
»
L
3 100
o
=
8
S ‘
3 80t .
o * -
=
[ .
n
2
3 60F . .
o .
om

60 70 80

Horvath Model Estimate

Fig. 8 Concordance of DNAm ages estimated by our breast tissue-
specific model and by the Horvath clock model. Horvath clock
model estimates were obtained using data profiled with the
Infinium MethylationEPIC BeadChip technology, while our model
estimates were obtained using data profiled with the TruSeq
Methyl-Capture EPIC sequencing technology in same samples. The

dotted line indicates complete concordance
(. J

used to estimate DNAm age based on methylation levels
of 353 clock CpGs measured from earlier array tech-
nologies [6]. Compared to recent data from sequencing
technologies, these array data have a limited coverage
and resolution on genome-wide DNA methylation.
Thus, the increased availability of sequencing data may
provide an unprecedented opportunity to refine the Hor-
vath clock model by considering more CpGs in training
and selecting optimal clock CpGs for DNAm age estima-
tion. On the other hand, the Horvath clock model is
poorly calibrated in breast tissue with a high error rate
and breast tissue appearing older than other parts of the
body [6]. Therefore, it is reasonable to single out on
breast tissue and develop a breast tissue-specific model
to more accurately estimate DNAm age in breast tissue.
To the best of our knowledge, this is the first study that
develops a breast tissue-specific model for DNAm age
estimation using DNAm sequencing data. We have
shown that the tissue-specific model developed in the
study not only has a higher accuracy in DNAm age esti-
mation for normal breast tissue, but also is applicable to
other breast tissue types and yields biologically meaning-
ful results.

Our breast tissue-specific model selected 286 clock
CpGs for DNAm age estimation, the number of which is
about 20% less than the 353 clock CpGs in the Horvath
clock model. Despite the smaller number of clock CpGs,
our model has a significantly improved predictive accur-
acy in breast tissue (r = 0.88, median error = 4.2 years),



Castle et al. Clinical Epigenetics (2020) 12:45

compared to the Horvath clock model (r = 0.73, median
error = 8.9 years). This drastic improvement in accuracy
is likely a result of the optimal selection of clock CpGs
in our model that better capture tissue-specific changes.
The Horvath clock model is likely less sensitive to
tissue-specific changes, given that its reference training
data is across multiple tissue types. This could lead to an
“averaging out” of tissue-specific changes in order to
achieve a pan-tissue epigenetic clock. Further, the Hor-
vath clock model is not well calibrated in female breast
tissue, which will add additional noise to studies involv-
ing this tissue type. Since our model targets breast tissue
specifically, it reduces both the averaging-out and in-
duced noise limitations of the Horvath clock model in
breast tissue. To ensure our model selected the most
relevant set of CpGs, we conducted a sensitivity analysis
where the model was retrained on two sets of CpGs that
underwent “loose” and “strict” levels of quality control
(QQ). For the strict-QC model, CpGs were restricted to
have <1% missingness across samples to reduce the de-
pendence on imputation. A total of 1.2 million CpGs
remained after QC. Model training selected 247 clock
CpGs, of which 122 overlapped with the current model.
The strict model had a slight reduction in predictive ac-
curacy (r = 0.87, median error = 4.5years). For the
loose-QC model, CpGs had no restrictions on missing-
ness, and all missing values were simply imputed. A total
of 3.3 million CpG probes remained after QC. Model
training selected 280 clock CpGs, of which 191 overlap
with the current model. This loose model had a slight
increase in predictive accuracy (r = 0.89, median error =
3.5 years), which might be attributed to overfitting as a
result of a large increase in the number of imputed
CpGs. We applied both the strict-QC and loose-QC
models to all other analyses in the study and found es-
sentially identical results. The consistency of results be-
tween the three model instances supports the robustness
of the model developed in our study.

Although only one clock CpG directly overlaps be-
tween the 286 and the 353 clock CpGs in our model and
the Horvath clock model, the DNAm age estimates from
both models were still in good concordance (r = 0.79),
suggesting both sets of clock CpGs might capture bio-
logical pathway or functions related to general aging
processes. Indeed, the Ingenuity Pathway Analysis of an-
notated genes in both models suggests enrichment of
functions including cell death and survival, cellular
growth and proliferation, tissue development, and can-
cer; however, the annotated genes in our model may be
more related to tissue-specific aging through multiple
stages of cell life. Of particular interest, the top clock
CpGs positively associated with age in our model and
their annotated genes are enriched in EGF and estrogen-
receptor signaling. It is hypothesized that hormone
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cycling during menstruating years is responsible for the
observed accelerated aging in female breast tissue with
respect to the rest of the body [6, 21, 22]. Further, EGF
overexpression is observed in all subtypes of breast can-
cer and has been shown to be associated with larger
tumor size, poor differentiation, and poor outcomes
[27-29]. Top clock CpGs negatively associated with age
and their annotated genes are enriched in ATM and
apoptosis signaling, both of which are linked to genome
integrity and aging [30] as well as sustaining breast-
cancer tumorigenicity [31] and tumor morphology [32].
The correlation of these cancer-related CpGs with
DNAm age provides a mechanistic link through which
aging contributes to cancer development.

The DNA methylation patterns of our 286 clock CpGs
across all samples and tissue types showed a clear separ-
ation of tumor breast tissue from normal or adjacent-
normal breast tissue. Differentially methylated clock
CpGs between tumor and normal or adjacent-normal
breast tissue are enriched in cancer-related pathways.
Hypermethylated clock CpGs in tumors were related to
NAD biosynthesis, which declines during the aging
process [33]. It has been proposed that this decline trig-
gers the interaction between DCB1 and PARP1, which
decreases the frequency of DNA damage repair [33].
These hypermethylated clock CpGs suggest potential
biological functions involved in acceleration of the aging
process in breast tumor tissue relative to normal and
adjacent-normal breast tissue, which is consistent with
our other observations that breast tumor tissue has a
positive acceleration of DNAm age.

When considering all 286 clock CpGs jointly to esti-
mate DNAm age in our model, we found the DNAm age
could easily distinguish breast tumor tissue from normal
and adjacent-normal tissue. As chronological age was in-
creased, DNAm age in breast tumor tissue increased at a
much higher rate (by = 17%) compared to almost no in-
crease in normal and adjacent-normal breast tissue. On
average, breast tumor tissue was about 7 years older in
DNAm age than its chronological age, while no signifi-
cant age acceleration was observed for normal and
adjacent-normal breast tissue. The larger inter-sample
variation of DNAm age estimates in breast tumor tissue
might be consistent with well-known tumor heterogen-
eity and its underlying complex etiology. In addition,
breast tumor tissue was approximately 13 and 12 years
older than normal and adjacent-normal breast tissue in
DNAm age, respectively, in age-match analysis, also in-
dicating a much higher age acceleration in tumor tissue.
These results suggest that DNAm age is not only a
marker for aging, but also a promising marker for breast
cancer development.

Since our model is not directly comparable to the
Horvath model due to differences in the scope of our
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training data sets (breast tissue-specific vs pan tissue), it
raises questions as to whether our model captures aging
mechanisms that are unique to or behave differently in
breast tissue when compared to those from the Horvath
clock model. Indeed, pathway analyses revealed that our
model includes some clock CpGs and annotated genes
that may be specific to the breast tissue aging process.
Furthermore, our model yields a smaller error rate of
DNAm age estimation in breast tissue compared to the
Horvath clock model. The more accurate estimation of
DNAm age would lead to more study power to access
epigenetic age acceleration in a given tissue or to com-
pare relative epigenetic age acceleration across different
tissue types. Thus, our model is likely to be more rele-
vant and accurate when assessing aging effects on the
development of breast diseases such as breast cancer. In-
deed, our study has sufficient power to detect moderate
differences in DNAm age acceleration between tissue
types. Specifically, our study has 80% power to detect a
difference in DNAm age acceleration of 1.1, 1.3, and 1.7
years between tumor and normal, between adjacent-
normal and normal, and between tumor and adjacent-
normal breast tissue, respectively.

Breast cancer is a heterogeneous disease characterized
by distinct clinical and pathological features and molecu-
lar subtypes [34], reflecting different underlying molecu-
lar mechanisms for cancer development. Thus, it is of
interest to further explore the performance of DNAm
age estimation in these breast tumor subgroups. We
found that both HER2+ and HR+/HER2- tumors, which
are more responsive to hormone recycling, showed a
similar magnitude of positive age acceleration (approxi-
mately 10 years). This is in line with the results of our
earlier pathway analysis showing enrichment in the EGF
and estrogen-receptor signaling pathway for our selected
clock CpGs. In contrast, we observed a negligible age ac-
celeration in TNBC, which is an aggressive subtype of
the disease with poor outcomes [35]. Recent studies sug-
gest that cancer stem cells are enriched in TNBC and
play an important role in tumorigenesis and tumor biol-
ogy of this subtype [36—38]. Cancer stem cells have the
unique ability for both self-renewal as well as the
ability to re-establish a heterogeneous population of
tumor cells (potential to differentiate). Similar to em-
bryonic stem cells, which have been shown to have a
DNAm age close to zero [6], we expect that the
DNAm age for cancer stem cells to be very young.
This, in turn, may “cancel out” the age acceleration
in the developed tumor cells in TNBC samples and
explain the lack of age acceleration observed. Previous
studies using the Horvath clock model found consist-
ent relative epigenetic age acceleration differences for
HR+/HER2- and TNBC tumors [6, 39], supporting
the validity of our results in this study.
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Further inspection of DNAm age with tumor morph-
ology (grade and stage) provided additional insights on
the relation of epigenetic age acceleration and the ability
of tumor cells to proliferate, differentiate, and potentially
metastasize. We observed a non-linear epigenetic age ac-
celeration relationship with Scarff-Bloom-Richardson
grade, where epigenetic age acceleration is near zero for
grades 3-5, then peaks near grade 6, and then gradually
decreases for higher grades. Compared to low-grade tu-
mors, high-grade tumors are undifferentiated, or poorly
differentiated, and are more likely to grow and prolifer-
ate. Thus, it is conceivable that epigenetic age acceler-
ation in high-grade tumors tends towards younger or
smaller values compared to low-grade tumors after cer-
tain stage. These speculations are further supported by
our epigenetic age acceleration results in relation to
tumor stage, where we observed a large, positive age ac-
celeration in early-stage tumors but a negative age accel-
eration in late-stage/advanced tumors. Similar to high-
grade tumors, advanced and late stage tumors are more
likely to be poorly differentiated and have a greater po-
tential to metastasize to distal locations. A previous
study using the Horvath clock model suggested a similar
negative association between stage and age acceleration
in thyroid cancer [6]. These observations are in line with
the theory that DNAm age is in some way related to the
biological processes underlying development, cell differ-
entiation, and the maintenance of cellular identity.
Therefore, epigenetic age acceleration may capture both
intracellular changes in losing cellular identity and
changes in cell composition [40]. While providing inter-
esting insights, these findings were obtained using a rela-
tively small number of case samples and need to be
validated in larger studies.

Our study has several strengths. First, we measured
genome-wide DNA methylation using next-generation
sequencing technology, which provides a much higher
coverage and resolution of the human genome com-
pared to previous data from array technology. This al-
lows for more CpGs to be considered when building our
model, which ultimately leads towards choosing the op-
timal set of CpGs that accurately captures age-related
DNAm changes. Second, our data is from targeted
breast tissue and therefore allows us to capture age-
related DNAm changes specific to female breast tissue.
The tissue specificity of our model overcomes limita-
tions (e.g., induced noise) set by the poor calibration of
breast tissue in the Horvath clock model and allows for
more powerful studies. Third, we are able to apply the
developed model to different breast tissue types includ-
ing breast normal, adjacent-normal, and tumor tissue
and demonstrate that DNAm age changes across tissue
type. Lastly, with our model and data, we are able to
examine the relationship between DNAm age and
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several tumor clinical features, providing insights on epi-
genetic aging during tumor progression. We also acknow-
ledge the limitations of our study, including small sample
size in the tumor subgroup analyses and the limited
adjacent-normal breast tissue samples. Larger and inde-
pendent samples are needed to validate the findings of this
study. In addition, since we include only breast tissue in
this study, we are unable to evaluate the performance of
our breast tissue-specific model in other tissues such as
blood. Furthermore, our epigenetic analysis was per-
formed on whole breast issue and did not account for spe-
cific cell types in the normal breast. Future studies are
needed to assess whether and how DNAm age differs
among different cell types of the normal breast.

Conclusions

In this study, we developed a breast tissue-specific model to
estimate DNAm age using next-generation sequencing data.
Breast tissue-specific DNAm age was calculated based on
the methylation of a novel set of 286 clock CpGs that were
selected by a penalized regression model trained on data
from normal breast tissue. We found that the estimated
DNAm age was highly correlated with chronological age
with a minimal error. We used this model to explore epigen-
etic aging in different breast tissue types, including normal,
adjacent-normal, and tumor breast tissue. We observed that
epigenetic age acceleration was significantly higher in breast
tumor tissue than that of normal or adjacent-normal tissue,
while there was no significant difference between normal
and adjacent-normal breast tissue. We have also observed
that epigenetic age acceleration in breast tumors appeared to
be associated with distinct tumor clinical features including
molecular subtype, grade, and stage. Further, the decreased
epigenetic age acceleration in aggressive molecular subtypes
and more advanced diseases is of note. While larger studies
are needed to confirm these findings, future research could
explore the following questions: whether our breast tissue-
specific model of DNAm age estimation can be applied to
the blood and other easily accessible tissues, such as saliva,
buccal cells, and serve as a surrogate marker of breast aging;
whether and how breast tissue-specific DNAm age is influ-
enced by various factors, especially by known breast cancer
risk factors; and if breast tissue-specific DNAm age could be
used as a predictive biomarker for cancer development,
treatment response, and survival.

Methods

Breast tissue samples

The main aim of the study is to develop a model to esti-
mate breast tissue-specific DNAm age. We developed
the model using data from normal breast tissue. Our
study included 459 normal breast tissue samples from healthy
women who were randomly selected from a pool of women
who donated both blood and normal breast tissue samples to
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the Komen Tissue Bank between 2005 and 2009 and were
free of breast cancer up to the time of donation. These partici-
pants encompass a wide range of ages (18—83 years), repro-
ductive history, and lifestyle exposures. See Additional file 2
(Supplementary Table 1). Such diversity ensures the robust-
ness of our model to estimate breast tissue-specific DNAm
age. In order to apply our developed model to estimate
DNAm age in other breast tissue types, separately, we in-
cluded 107 primary breast tumor and 45 matched histologi-
cally normal breast tissue (adjacent to primary tumor site)
samples from breast cancer patients with untreated tumors
from the Indiana University Simon Cancer Center (IUSCC)
Tissue Bank. These cases are patients with pathologically con-
firmed primary breast cancer diagnosed at one of three hospi-
tals in Indianapolis, IN, between 1998 and 2009: University
Hospital, Wishard Hospital, and IUSCC. All breast tissue sam-
ples were snap-frozen in liquid nitrogen within 5 min of re-
moval and determined to be of high quality through
histological and molecular quality control tests. Tumor
samples were pathologically verified for high tumor
content. Table 1 presents age distribution of breast tissue data-
set in the study. While the mean chronological age was similar
in the training and the testing data sets of normal breast tissue
(p = 0.99), breast tumor and adjacent-normal tissue samples
were approximately 5-7 years older than normal breast tissue
samples on average (p = 7.5 x 107> and 0.02, respectively).

DNA extraction and breast tissue-specific DNA
methylation profiling

Genomic DNA was extracted from freshly frozen normal,
tumor, and adjacent-normal breast tissue samples using the
Qiagen DNeasy Blood and Tissue Kit (Qiagen Inc., Venlo,
Netherlands). Extracted DNA was first evaluated for its
quantity and quality using Agilent TapeStation 4200 (Agilent
Technologies, Santa Clara, CA, USA) electrophoresis and
Thermo Fisher Qubit 3.0 (Thermo Fisher Scientific, Wal-
tham, MA, USA) flurometry technologies. Genome-wide
DNAm profiling was performed using the Illumina TruSeq
Methyl Capture EPIC Library Prep Kit [41] and next-
generation sequencing technology for genomic DNA se-
quencing. Five hundred nanograms of high-quality genomic
DNA were used for library preparation. Specifically, DNA li-
brary preparation first included fragmentation to an average
size of 150—200 bp using a Covaris S2 ultrasonicator (Covaris
Inc, Wobnurn, MA, USA), followed by end-repair, 3’ A-
tailing, and adaptor ligation. Libraries were then pooled in
groups of four in equal aliquot, on which two rounds of
hybridization and capture using Illumina-optimized EPIC
probe sets (covering > 3.3 million targeted CpG sites), bisul-
fite conversion, and amplification were performed. Five per-
cent PhiX DNA (Illumina Inc.) was added to each library
pool during cluster amplification to boost diversity. Con-
struction of DNA libraries and subsequent processing and
DNA sequencing of paired-end reads (2 x 100 nt reads) were
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performed according to the standard Illumina protocol using
the HiSeq4000 sequencing systems.

DNA methylation sequencing data pre-processing

Raw sequencing reads were trimmed to remove both poor-
quality calls and adapters using Trim Galore! v0.4.4 [42].
Trimmed reads were then aligned to the Genome Reference
Consortium human genome build 37 [43] using Bismark
v0.19.0 [44]. Duplicated reads were removed and cytosine
methylation calls were extracted from the deduplicated
reads. Methylation calls that overlap with the Illumina EPIC-
seq targets were used in downstream analyses. Deduplicated
reads on each cytosine locus were used to determine the
DNAm levels (5 values); a 8 value is evaluated as the ratio of
the number of sequenced methylated cytosine reads to the
total number of reads for each locus. Thus, 5 values range
from O (completely un-methylated) to 1 (completely methyl-
ated). To ensure high quality data, samples with > 20% miss-
ing CpGs were excluded, including three normal and two
tumor breast tissue samples. A CpG was included if it had a
B value determined with > 10 total reads, had < 10% missing-
ness across samples, and was present in each tissue-type data
set. After these QC steps, a total of 2,471,574 CpGs remained
for downstream analyses.

Imputation was performed after QC to recover any re-
sidual missing CpG S values. Since cancer has been shown
to affect DNAm patterns [45, 46], missing CpG f values
were imputed separately for each tissue type data set. Miss-
ing CpG probe S values were recovered using k-nearest
neighbor (KNN) imputation as implemented in the R-
Bioconductor package “impute” [47]. Since studies have
shown that the methylation levels of neighboring CpG sites
are more likely to be co-methylated [48-51], methylation
matrices were sorted by chromosome and base-pair position
prior to kNN imputation to maximize the likelihood of the
algorithm selecting the optimum neighbors for imputation.

DNAm age estimation using a penalized regression

model

Since cancer is known to have profound effect on DNAm
levels, we used only normal breast tissue from healthy
women to construct the model for DNAm age estimation.
Specifically, normal breast tissue samples were randomly di-
vided into training (N = 368) and testing (N = 91) data sets.
Chronological ages were transformed by the function below
prior to model training [6]:

log(x + 1)- log(C + 1),x<C
o ={ =2

cCrl x>C

Here, C is set at 20 years for humans. This transform-
ation was performed to provide additional stability dur-
ing model training. The training data set was then used
to regress the transformed chronological ages on the
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methylation levels of approximately 2.4 million profiled
CpGs using a penalized regression model implemented
in the R package “glmnet” [52]. The alpha parameter for
the model was chosen as 0.5, for the elastic
net algorithm, and the lambda parameter was deter-
mined by the average of 100 iterations of 10-fold cross
validation (lambda = 0.0343). After successful training of
the model, values that the model predicted for each sam-
ple were converted into DNAm ages using the inverse of
the above age transformation function (Additional file
3). We validated the DNAm age estimator defined in the
training dataset in the independent testing data set of
normal breast tissue.

To assess the accuracy of DNAm age estimates from
our model, we considered two measures: the Pearson
correlation coefficient between the estimated DNAm age
and chronological age and the absolute median predict-
ive “error,” defined as the median absolute difference be-
tween the estimated DNAm age and the chronological
age.

We further examined age-adjusted DNAm levels of the
286 clock CpGs across all samples from the three breast
tissue types. We obtained DNAm residuals for each CpG
locus by regressing /3 values on chronological age and vi-
sualized how DNAm levels changed across samples and
across tissue types. Analyses were also performed to iden-
tify clock CpGs that were differentially methylated across
tissue types. A clock CpG was considered significantly and
differentially methylated between two tissue types if it had
amean |AB| > 0.1 with p < 0.05.

DNAm age estimation and epigenetic age acceleration in
different breast tissue types

We applied our model to estimate DNAm age in differ-
ent types of breast tissue, including normal, tumor, and
adjacent-normal breast tissue. We further investigated
three measures of epigenetic age acceleration: epigenetic
age acceleration rate defined as the increase in DNAm
age per unit increase in chronological age, epigenetic age
acceleration difference defined as the difference between
estimated DNAm age and chronological age, and epigen-
etic age acceleration residual defined as the residual of a
linear model that regresses DNAm age on chronological
age. For a given tissue type, a Wilcoxon rank-sum test
was used to determine whether DNAm age was signifi-
cantly higher or lower than chronological age, or EAAD
value was significantly different from zero.

Because aging significantly influences changes in
DNA methylation, DNAm age is highly correlated
with chronological age [6, 21, 53]. Thus, when com-
paring DNAm age across different groups, confound-
ing by chronological age difference between the
groups needs to be considered and accounted for.
While the mean chronological age was similar in the
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training and the testing data sets for normal breast
tissue (p = 0.99), breast tumor and adjacent-normal
tissue samples were approximately 10years older
than normal breast tissue samples on average (p =
7.5 x 107> and 0.02, respectively). We utilized two
approaches to account for the confounding effects by
chronological age when comparing epigenetic age ac-
celeration across tissue types in our study. First, we
performed age-matched paired analyses and exam-
ined the difference of the estimated DNAm ages be-
tween two groups. A Wilcoxon rank-sum test was
used to determine if the DNAm age difference be-
tween the two groups was significantly different from
zero. For the comparison between tumor and adja-
cent normal breast tissue, since the samples are
paired from the same woman, a Wilcoxon signed
rank test was used instead. This approach controls
of confounding by age but may result in a smaller
sample size and reduced study power due to un-
matched samples. Second, we performed analyses
using EAAR values that inherently control for
chronological age. The interpretation of EAAR values
within a single group, however, is less straightfor-
ward when compared to the interpretation of EAAD
values and, as such, are only considered when asses-
sing relative differences between groups. A Kruskal-
Wallis one-way ANOVA test followed by a post hoc
Dunn’s test was used to test for significant differ-
ences in the location parameters for the EAAR dis-
tributions between groups. This approach maximizes
sample size and study power when compared to the
age-matched paired analysis.

DNAm age estimation in breast tumor tissue with distinct
clinical characteristics

DNAm age was also estimated in breast tumor sub-
groups with distinct clinical characteristics, including
molecular subtype, Scarff-Bloom-Richardson [54] tumor
grade, and tumor stage. For each tumor subgroup, we
calculated EAAD values based on the estimated DNAm
ages, and tested if the median EAAD value was signifi-
cantly different from zero using a Wilcoxon rank-sum
test. Given the smaller sample size in tumor subgroups,
we used EAAR values to facilitate the comparisons
across tumor subgroups to maximize the study power
and control for confounding by chronological age. A
Kruskal-Wallis one-way ANOVA test followed by a post
hoc Dunn’s test was used to test for significant differ-
ences in the location parameters for the EAAR distribu-
tions across tumor subgroups.

All p values were based on two-sided tests and were
considered statistically significant if p < 0.05. Statistical
analyses were performed using the R software version
3.5.1 (https://cran.r-project.org).
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Supplementary information accompanies this paper at https://doi.org/10.
1186/513148-020-00834-4.

Additional file 1. Coefficient values for the breast tissue-specific DNAmM
age model. This comma-delimited value (csv) text file contains the
genomic location, model coefficients, and gene annotations for the set
of 286 clock CpGs derived in this study.

Additional file 2. Supplementary Table 1. Characteristics of healthy
women participants who contributed normal breast tissue samples to the
current study.

Additional file 3. R software tutorial. This file contains R software
(https://cran.r-project.org/) which reads in Additional file 1 as well as
user-provided DNAm data and returns the estimated DNAmM ages for
each sample within the user-provided data set.
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