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SUMMARY Numerous applications such as autonomous driving, satel­
lite Imagery sensing, and biomedlcal imaging use computer vision as an 
Important tool for perceptlon tasks. For Intelligent Transportation Systems 
(ITS), It Is required to precisely recognize and locate scenes in sensor data. 
Semantic segmentation Is one of computer vision methods intended to per­
form such tasks. However, the existing semantic segmentation tasks 
label each pixel with a single object's class. Recognizing object 

attributes, e.g., pedestrian orientation, will be more informatJve and help 
for a bener scene understanding. Thus, we propose a method to perform 
semantJc segmenta-Uon with pedestrian attribute recognition 
simultaneously. We introduce an attribute-aware Joss functJon that can be 
applied to an arbitrary base model. Furthermore, a re-annotatJon to the 
existing Cityscapes dataset enriches the ground-truth labels by annotating 
the attributes of pedestrian orientation. We implement the proposed 
method and compare the experimental results with others. The anrlbute­

aware semantic segmentation shows the ability to outperform baseline 
methods both in the traditional object segmentation task and the expanded 
attribute detection task. 
key words: semantic segmentation, attribute-aware, pedestrian orienta­
ti.on, deep neural network 

1. Introduction

Computer vision plays an important role in perception tasks 
and has been widely utilized for various purposes such as au­
tonomous driving [l], satellite imagery sensing [2], biomed­
ical imaging [3], [4], face recognition [5], and robotics nav­
igation [6]. For Intelligent Vehicle (IV) applications, it is 
very important to have a comprehensive understanding of 
surrounding scenes captured by in-vehicle cameras. For ex­
ample, weather conditions can be predicted by recognizing 
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road and sky [7] for vehicle safety. Ground marking detec­
tion is useful for vehicle localization purposes [8], [9] and it 
is also necessary to mark drivable roads for lane instructions 
in a smart car [JO]. Moreover, recognizing the behavior of 
pedestrians is also important to plan the vehicle actions [11]. 

Obstacle detection is important for an autonomous ve­
hicle to avoid collisions by breaking, lowering or keeping 
the speed. However, understanding the situation around the 
obstructing objects instead of only focusing on the obstacles 
will allow us to handle even more complicated situations. 
Semantic segmentation, as one of computer vision tasks, 
classifies all desired things in an input image and locates 
their areas, ultimately in pixel-level precision. This provides 
more decisive information than just detection to help an au­
tonomous vehicle in achieving a better scene understanding; 
Semantic segmentation provides more environmental infor­
mation to instruct the vehicle with an immediate breaking 
or further to recommend an optimal path for collision avoid­
ance. 

Only in a few years, semantic segmentation has at­
tracted many studies in building deep neural network mod­
els. They include Fully Convolutional Network [12], SegNet 
[l], Bayesian SegNet [13], PSPNet [14], Mask R-CNN [1 5], 
ICNet [16], and the DeepLab from versions v l  to v3+ [17]­
[19]. Several datasets consisting of input images and the 
ground-truth annotations such as Cam Yid [20], KITTI [2 1], 
and Cityscapes [2 2] are also publicly available for bench­
marking purpose. The latter is very popular in the semantic 
segmentation task for autonomous driving, pushing many 
researchers and practitioners in such competition to reach 
higher ranks. 

However, most of the existing semantic 
segmentation methods only learn to recognize object types 
such as road, building, car, and person. For autonomous 
vehicles, addi-tional information describing an object in 
details such as its attributes could help the better 
understanding of scenes [11]. Figure I illustrates the 
ultimate goal of this newly proposed task should we apply it 
to some moving objects. In addition, breaking down a class 
into several sub-classes can reduce the variation of class 
instances to help the classification process. Therefore, as our 
objective, we aim at improving the segmen-tation accuracy 
in pixel-level by considering attribute infor-mation 
attached to particular objects. This paper exploits the 
attribute-aware semantic segmentation, with the simul­
taneous combination of attribute recognition and semantic 
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Table 2 Comparing performances on the object segmentation.

Method Loss Training gAcc cAcc mIoU IoUpfunction data
FCN8s [12] standard Cityscapes 88.44 57.12 46.33 48.01
FCN8s.23cls standard CityWalks 88.72 57.05 47.08 44.80
FCN8s.prop proposed CityWalks 88.84 57.73 47.64 47.45
PSPNet [14] standard Cityscapes 94.94 78.02 70.25 74.08
PSPNet.23cls standard CityWalks 94.86 79.48 70.85 71.69
PSPNet.comp standard CityWalks 92.54 71.45 59.02 63.72
PSPNet.prop proposed CityWalks 94.98 79.90 72.15 74.35

Table 3 Comparing performances on the attribute segmentation;
IoU19, IoU20, IoU21, and IoU22 are the IoU scores for orientations
back, right, front, and left, respectively.

Method Average IoU19 IoU20 IoU21 IoU22
FCN8s.23cls 19.53 27.64 6.98 18.78 24.70
FCN8s.prop 21.34 28.52 5.58 25.51 25.75
PSPNet.23cls 38.52 54.63 23.26 49.56 26.63
PSPNet.comp 42.02 59.12 24.98 57.74 26.24
PSPNet.prop 41.17 56.83 26.85 50.54 30.48

Table 4 Performances of semantic segmentation on the validation set for all object classes measured
in each class’s IoU and the Mean IoU.
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M
ea
n
Io
U

r o
ad

sid
e w

al
k

bu
ild

in
g

w
al
l

f e
nc

e

po
le

tr
affi

c
lig

ht

tr
affi

c
sig

n

v e
ge
ta
tio

n

te
rr
ai
n

sk
y

pe
rs
on

ri
de

r

ca
r

tr
uc
k

bu
s

tr
ai
n

m
o t
or
cy
cl
e

bi
cy
cl
e

FCN8s [12] 46.33 93.56 60.57 80.45 27.31 33.28 12.26 16.93 28.89 81.42 40.53 75.47 48.01 28.23 80.70 32.11 41.95 34.51 17.03 47.10
FCN8s.23cls 47.08 93.57 60.67 80.94 29.10 34.30 12.43 18.93 29.10 81.80 41.91 76.89 44.80 27.86 80.29 33.30 39.04 44.09 18.28 47.12
FCN8s.prop 47.64 93.59 60.34 81.20 28.80 34.42 12.63 19.07 29.26 81.81 42.44 77.60 47.45 27.93 80.57 36.69 39.90 42.08 22.02 47.36
PSPNet [14] 70.25 97.59 80.89 90.50 49.25 50.22 51.24 59.83 71.02 90.89 60.85 93.82 74.08 53.18 93.15 67.01 79.55 46.25 55.26 70.14
PSPNet.23cls 70.85 97.41 79.99 90.37 48.52 50.06 51.98 59.86 70.45 91.01 63.29 93.74 71.69 53.89 93.07 67.54 81.46 58.58 53.35 69.89
PSPNet.comp 59.02 95.93 71.27 87.10 31.03 37.57 38.65 41.80 53.35 88.19 53.94 91.25 63.72 38.30 88.66 48.59 63.03 44.09 25.22 59.73
PSPNet.prop 72.15 97.50 80.34 90.67 52.98 52.23 50.58 58.86 70.10 90.83 62.63 93.47 74.35 54.53 93.18 71.08 83.73 69.67 54.29 69.91

Table 5 Comparing performances of FCN8s and PSPNet models using
the proposed attribute-aware loss function with various β̂o and β̂a values.

β̂o , β̂a
FCN8s PSPNet

gAcc mIoU IoUp gAcc mIoU IoUp
0.0, 1.0 88.72 47.08 44.80 94.86 70.85 71.69
0.1, 0.9 88.63 47.16 46.57 94.91 70.60 73.69
0.2, 0.8 88.77 46.91 46.70 94.91 70.84 73.45
0.3, 0.7 88.72 46.79 47.02 94.92 70.61 73.87
0.4, 0.6 88.73 47.00 47.52 94.84 70.10 73.65
0.5, 0.5 88.64 47.08 47.11 94.98 72.15 74.35
0.6, 0.4 88.69 46.85 47.36 94.93 69.51 74.32
0.7, 0.3 88.84 47.64 47.45 94.95 71.00 74.26
0.8, 0.2 88.64 46.56 47.51 94.94 71.21 74.34
0.9, 0.1 88.40 46.71 47.41 94.97 71.21 73.89
1.0, 0.0 88.44 46.33 48.01 94.94 70.25 74.08

is the best among all methods.

5.4 Performances with Various β̂o and β̂a

The weights β̂o and β̂a are the key parameters of the pro-
posed attribute-aware loss function. Therefore, we trained
the PSPNet and FCN8smodels using the proposed loss func-
tion with various combinations of β̂o and β̂a. Each weight
value ranges from 0.0 to 1.0. In this case, assigning β̂o and
β̂a with 0.0 and 1.0, respectively, means that the base model
is trainedwith 23 classes but using the standard loss function,
which corresponds to our previous work [24]. On the other
way, assigning those weights with 1.0 and 0.0, respectively,
is equivalent to the base model trained with 19 classes using
the standard loss function, since the loss only considers the
object loss in the learning process.

Table 5 shows the results of this experiment, comparing
object segmentation performances based on gAcc, mIoU,
and IoUp. Numbers in bold indicate the best three in each
column. For the FCN8s model, we can see that the pattern
is not so clear on which pair of β̂o and β̂a results in the best

performance among all settings. However, for the PSPNet
model, we can see better and best performances commonly
yield from β̂o larger or equal to β̂a. Compared to the first
and last rows, which do not handle both object and attribute
classes simultaneously, the proposed method with various
β̂o and β̂a has better results in general.

6. Discussion

According to Table 2, we can see that for both base models,
the proposed method that uses the attribute-aware loss func-
tion outperforms other methods in the object segmentation
task. This is also reinforced by what is shown in Table 4
where the proposed methods for both base models dominate
the higher scores over all objects classes. The experimen-
tal results also show that the comparative method performs
well particularly in the attribute segmentation task but loses
much in the object segmentation task. This winning case is
reasonable since the comparative method splits the attribute
segmentation task away from the object segmentation. The
classification task to learn by the comparative method’s at-
tribute branch has only four classes, which is much easier
than the proposed method has. Nevertheless, looking at
the results in Table 3, the proposed method is still able to
compete with it. On the other hand, the performance of
PSPNet.comp in classifying 19 object classes is worse than
the other methods; It might require more epochs to fit the
weights during training process due to additional trainable
parameters introduced by the attribute branch. Thus, we
can infer that by adding attributes to enrich the information
of a particular type of object and treating it with a suitable
loss function provided by our proposed method, the seg-
mentation performance improves. This not only provides
more information in the segmentation using pedestrian ori-
entation, but also increases the ability to perform pixel-wise



classification, and furthermore, improves the global segmen-
tation accuracy. The proposed method can also be applied to
other base models not included in this experiment to see the
improvement of segmentation performance. For more ITS
applications, this technique can be extended to the training
with other datasets enriched with more variability in envi-
ronment and weather in order to better understand various
conditions of traffic scenes.

Based on the experimental results, we consider that the
gAcc of around 85∼90% is sufficient to detect and locate
some objects, but insufficient for the pixel-wise segmenta-
tion task. This means that with level of gAcc, we can use
it to predict whether pedestrians exist or not, but still inad-
equate to help plan future actions. Therefore, we expect a
higher accuracy of about 95% for a better environmental un-
derstanding. With a higher pixel-level accuracy, it will allow
us to precisely locate the objects including their surrounding
areas and will be helpful in predicting vehicle’s future path to
avoid collision. Thus, a more accurate segmentation result is
needed for complex ITS applications. Additionally, we con-
sider that accuracy improvement in semantic segmentation
is necessary to better classify two or more similar objects
but destined to have different labels. To see the improved
results, wemay refer to Fig. 10 showing that person and rider
are actually the same object but classified into two different
classes. In this case, a more accurate segmentation helps the
autonomous driving system to distinguish those two classes
and make a correct decision. Any small improvement is
also important to make clearer boundaries between person
and surrounding pixels that can help predict an alternative
path to avoid obstacles or other further actions. Besides, for
the attribute-aware semantic segmentation task, the pixel-
level accuracy is important to avoid multiple attribute values
labeled on the same object instance.

6.1 Qualitative Result

Figure 10 shows some results that indicate how the proposed
method enhances the segmentation outputs. Some parts of
person pixels are often misclassified as rider since they are
quite similar. In input (1) and (2), the proposed method
performs better while the baseline method labels incorrectly
in some parts of the person pushing a cart. Sometimes,
the baseline method is also confused to label a rider who
stands and looks like a person as seen in input (3), while the
proposed method can handle it correctly. In another case,
the segmentation might fail to form a complete person. For
example, at the leg part of input (4), the proposed method
can form complete legs better than the baseline method.
This figure demonstrates that the proposedmethod is capable
of improving the segmentation accuracy by considering the
pedestrian’s attribute.

In terms of objects combined with attributes segmen-
tation, let us inspect Fig. 11 to see sample results of the
proposed method. A pedestrian group with the same ori-
entation is shown in column (1), while a pedestrian with a
different orientation from a group is shown in column (2).

Fig. 10 Qualitative results in the object segmentation task, comparing the 
baseline (PSPNet [14]) and the proposed methods (PSPNet.prop); the 
difference is seen inside the yellow-dashed box.

Columns (3) and (4) represent cases of crossing pedestrians. 
The proposed method shows its capability to correctly dis-
tinguish pedestrians with body orientation attributes left or 
right. Column (5) also shows the superiority of the proposed 
method in segmenting a crowd of people with various orien-
tation attributes. Overall, these figures verify that the results 
yielded by the proposed method are in good quality thanks 
to the multi-tasking segmentation by combining object and 
attribute recognitions.

6.2 Computational Cost

We point out the load of computation to execute the training 
process with several settings according to GPU usage and the 
number of epochs completed per day. We used the NVIDIA 
GeForce GTX 1080 Ti GPU to train each model. Table 6 
shows the summary results of computational costs recorded 
during each training. The first three rows indicate the costs 
to run the baseline, comparative, and the proposed methods, 
respectively. We can see that there is no significant difference 
among the three methods as long as the image and window 
cropping sizes are the same. For the comparative method, 
although it splits the layers, the cost of computation is not 
affected much since the additional branch is placed in the 
final l ayer. We c an i nfer t hat t he p roposed method using 
the attribute-aware loss function is capable of performing an 
MTL-based task but takes no risk on the computational cost. 
This is in accordance with the explanation in Sect. 3.

The computational cost in the training process is, how-
ever, mostly influenced by t he image s ize and t he window 
cropping size. In the fourth row of Table 6, when the image 
size is doubled, the training speed is much slower, but the








