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ABSTRACT
In this paper, we study the downward routing for network con-
trol/actuation in large-scale and heterogeneous wireless sensor
networks (WSNs) and Internet of Things (IoT). We propose the
Opportunistic Source Routing (OSR), a scalable and reliable down-
ward routing protocol for WSNs/IoT. OSR introduces opportunistic
routing into traditional source routing based on the parent set of
a node’s upward routing in data collection, significantly address-
ing the drastic link dynamics in low-power and lossy WSNs. We
devise a novel adaptive Bloom filter mechanism to effectively and
efficiently encode a downward source-route in OSR, which enables
a significant reduction of the length of source-route field in packet
header. OSR is scalable to very large-size WSN/IoT deployments,
since each resource-constrained node in the network only stores
the set of its direct children. The probabilistic nature of the Bloom
filter passively explores opportunistic routing. Upon a delivery fail-
ure at any hop along the downward path, OSR actively performs
opportunistic routing to bypass the obsolete/bad link. We demon-
strate the desirable scalability of OSR against the standard RPL
downward routing. We evaluate the performance of OSR via both
simulations and real-world testbed experiments, in comparison
with the standard RPL (both storing mode and non-storing mode),
ORPL, and the representative dissemination protocol Drip. Our
results show that OSR significantly outperforms RPL and ORPL
in scalability and reliability. OSR also achieves significantly better
energy efficiency compared to TinyRPL and Drip which are based
on the same TinyOS platform as OSR implementation.
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1 INTRODUCTION
Wireless sensor networks (WSNs) and Internet of Things (IoT) have
been increasingly applied to various areas such as environmental
monitoring, structure monitoring, smart buildings, smart cities, pre-
cision agriculture, and e-health systems. Data collection is the basic
application scenario inWSNs, where sensor nodes periodically sam-
ple and transmit data packets upward to one or multiple network
sink(s). On the other hand, delivering control packets downward
from the sink to individual sensor/actuator nodes is also essential
in many WSN/IoT application scenarios, including actuating target
actuator(s), reconfiguring node parameters (e.g., sampling rate), and
querying data from specific node(s). However, the WSN downward
routing is significantly less studied than WSN upward routing. The
major downstream protocols, such as Drip [39], Glossy [8], and

Opportunistic Flooding [12], are flooding based and disseminate
control packets to the entire network. The lack of ability in address-
ing individual node(s) in those dissemination protocols makes them
inefficient and impractical for network actuation in low-power and
large-scale WSN/IoT deployments.

The standard RPL, the IPv6 routing protocol for low-power and
lossy networks [42], offers the capacity of downward routing, but
it has been found that RPL has several significant flaws in its down-
ward point-to-multipoint communication (e.g.,[4, 6, 13, 14, 17–21]).
RPL essentially suffers from the severe scalability problem for down-
ward routing [4, 13, 14, 21]. In RPL storing mode, a node stores
routing entries for all destinations in its subgraph/subtree, poten-
tially suffering from severe scalability and reliability problem in
large WSNs. On the other hand, RPL non-storing mode uses source
routing [16] through the sink/root, which suffers from not only
increased risk of packet fragmentation and thus increased battery
power and network capacity consumption, but also the scalability
issue of the possible length of route in a network, given constrained
wireless layers, such as IEEE 802.15.4 with a maximum frame size
of 127 bytes (including header) [34]. Moreover, it seems that RPL
(non-storing mode) might not effectively fix any unreachable fail-
ure in downward routing due to wireless link dynamics. Although
recent approaches such as ORPL [7] and CBFR [30] attempted to
address the scalability issue of downward routing, these improve-
ments are limited for highly resource-constrained wireless devices
(see [14], for example). Indeed, it is increasingly urgent to systemat-
ically study scalable, reliable and resource-efficient WSN/IoT down-
ward routing for emerging large-scale and resource-constrained
WSN/IoT system.

Source routing includes the source-route information in the
packet header to route packets from the source node to destination
without building and maintaining routing tables at intermediate
nodes. However, a direct application of source routing (e.g., RPL
non-storing mode) to WSN/IoT downward routing is problematic.
First, the dynamic nature of WSNs significantly affects the reliabil-
ity of the traditional source routing. The specified source-route of a
control packet may be obsolete and therefore unavailable when the
packet arrives at an intermediate node due towireless link dynamics.
Second, the traditional source routing does not scale well in WSNs,
because physical layer protocols of WSNs are designed to have a
small frame size (e.g., IEEE 802.15.4 [34]) for energy efficiency. As
the network diameter and hence the path length increases, contain-
ing the full source-route in a packet is inefficient and may even be
infeasible. Thus, a desirable and practical source routing protocol in
WSNs/IoT must simultaneously satisfy the requirements of reliabil-
ity under a highly dynamic wireless communication environment
and scalability for very large WSN/IoT deployments.
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Figure 1: A conceptual illustration of downward packet de-
livery with OSR versus RPL/ORPL/CBFR.

In this work, we present an Opportunistic Source Routing proto-
col, referred to as OSR, to achieve desirable scalability and reliability
for heterogeneous WSN/IoT actuation. Our approach is leveraged
on the recent new WSN capability of the reconstruction of upward
routing paths [10, 24, 25], where individual upstream data packet
paths from WSN nodes to the sink can be reconstructed at the
sink with a minimal overhead of path encoding piggybacking to
each data packet and updated in every data collection cycle. Our
designed OSR protocol introduces opportunistic routing into the
source routing, which is based on the parent set [27] of a node’s
upward routing, to exploit alternative downward paths to address
wireless link dynamics. We devise a novel adaptive Bloom filter
mechanism to efficiently encode and compress the source-route
path. The probabilistic nature of the Bloom filter passively enables
opportunistic routing for downward packet forwarding. In addition,
when a downward link between a parent node and its child node is
broken, active opportunistic routing is activated to find one or more
other parent(s) in the child’s parent set to continue the downward
forwarding. OSR only requires that each node store its direct child
set rather than its entire subgraph of descendants as in RPL (storing
mode) or in ORPL (compressed entire subgraph) for making down-
ward routing decision, and therefore, OSR is extremely scalable for
constrained WSN/IoT sensor/actuator nodes. The proposed OSR is
general and independent of the underlying link layer.

To illustrate, Fig. 1 shows an example of WSN/IoT downward
actuation. To deliver a packet to node G, OSR includes the source-
route encoded using Bloom filter and the destination in the packet
header; each node only stores its direct children. In contrast, RPL
(non-storing mode) specifies the raw source-route and destination
in the packet header, whereas RPL (storing mode)/ORPL/CBFR only
specifies the destination in the packet header, with each node stor-
ing the entire subgraph of its descendants either uncompressed in
RPL or compressed using Bloom filter in ORPL/CBFR, thus suffering
from scalability problem.

The main contributions of this paper are:
• We propose OSR, a highly scalable and reliable downward
routing approach for constrained heterogeneous WSN/IoT
actuation. OSR introduces opportunistic routing into source
routing to achieve reliable packet delivery in lower-power
and lossy networks (LLNs). A novel adaptive Bloom filter
is devised to significantly reduce the path representation

overhead. OSR enables each node to only store its direct
child set as the node’s downward routing table, and therefore
scales well to large-size WSN/IoT deployments.

• We develop our OSR protocol, working with the popular
Collection Tree Protocol (CTP) [11]. OSR inspects CTP data
packets to build the direct child set of each node. Thus, the
energy overhead is negligible for building and maintaining
the downward routing table. Downward routing paths are
obtained based on network upward routing topology tomog-
raphy.

• We evaluate our OSR protocol through both simulations
and real-world testbed experiments. We show that OSR sig-
nificantly outperforms RPL (both storing and non-storing
modes) and ORPL on scalability and reliability. OSR is also
much more energy efficient than TinyRPL and Drip which
are based on the same TinyOS platform as OSR implementa-
tion.

The remainder of the paper is organized as follows. Section 2
presents the design of OSR. Section 3 evaluates OSR via both simu-
lations and testbed experiments. Section 4 discusses our insights
and the limitations of the current OSR implementation. Section 5
describes the related work in detail. Finally, Section 6 concludes
our work and discusses the future work.

2 OSR DESIGN
OSR introduces opportunistic routing into source routing, and cre-
ates an adaptive Bloom filter mechanism to encode the downward
source-route path. This section presents the core mechanisms of
OSR including path representation, direct child set maintenance,
and opportunistic routing.

2.1 Adaptive Bloom Filter for Path Encoding
In traditional source routing, the entire raw routing path is included
in the packet header. As network grows, this approach consumes too
much overhead or may even be infeasible for large-scale WSNs. For
instance, containing a source-route of 20 hops using two-byte short
address in IEEE 802.15.4 takes nearly one third of the maximum link
layer frame size (i.e., 127 bytes). Thus, path encoding becomes a ne-
cessity for source routing to scale in resource-restricted WSNs/IoT.
OSR exploits the Bloom filter [2, 36] to encode the source-route
path, that is, a Bloom filter representing the source-route is included
in the packet header instead of the raw path.

Bloom filter [36] is a space efficient probabilistic data struc-
ture that supports insertion and membership query. To insert an
element into a Bloom filter of m bits, k independent hash func-
tions are applied to deterministically generate k hash values hi ∈
{0, 1, ...,m − 1}, and the corresponding bits are set to 1. For mem-
bership query, the element is hashed using the same set of hash
functions. If all the k bits are matched in the Bloom filter, the ele-
ment is considered being included/matched. A membership query
may result in false positives, but never in false negatives. The false
positive (FP) rate of a Bloom filter can be calculated according the
following equation [36]:

p =
(
1 −

(
1 − 1

m

)kn )k
, (1)



wherem is the length of the Bloom filter in bits, k is the number of
hash functions, and n is the number of elements that are already
encoded in the Bloom filter.

As an example of path encoding using Bloom filter, suppose in
a large-scale WSN a path length n = 20, the length of the Bloom
filterm = 128 bits, and k = 3 hash functions are used. The resulted
probability of a false positive match (i.e., false positive rate) is 5.29%.
Assuming each node address in the path occupies two bytes, using
a 128-bit Bloom filter leads to 60% space saving compared to the
raw path representation mechanism, indicating the effective use of
Bloom filter in source routing in WSNs/IoT.

Since multi-hop WSNs usually need to be scalable in practice,
using a fixed-length Bloom filter is inefficient. For instance, a too
short Bloom filter would introduce high false positive rate for a
long path, whereas a long Bloom filter may have more bits than
a short raw path itself. We devise an adaptive path Bloom filter
whose length m (bits) is proportional to the hop count H of the
route:

m =

{
8H H ≤ L
8L H > L

, (2)

where L is the maximum Bloom filter length of any encoded source
route in bytes. Even with a minimum node ID (i.e., address) length
of two bytes, the devised Bloom filter (2) for path encoding leads
to at least 50% space saving compared to the use of raw source
route in RPL (non-storing mode), indicating the potential merit of
our adaptive Bloom filter. Fig. 2 demonstrates the analytical false
positive rate based on (1) of the devised adaptive Bloom filter with
L = 40 bytes and its corresponding space saving compared to the
raw path. Clearly, our devised Bloom filter mechanism scales well
with respect to the raw source route length. The resulting false pos-
itive rate is lower than 3.6% when hop counts do not exceed 40; the
false positive rate actually drops as a path length increases. When
a raw source route exceeds 70 hopes, our approach works fine only
at a higher FP rate (<13%). In fact, our approach would still work for
any long raw path potentially of hundreds (or even thousands) of
hops at somewhat degraded performance (i.e., a higher FP rate). In
contrast, traditional source routing, such as RPL non-storing mode,
simply does not work for any raw path exceeding the maximum
frame size of underlying link layer, which would be less than 64
hops for RPL with IPv6 address compression. If more false positives
are tolerable, a shorter Bloom filter can be used to reduce packet
overhead even more. In practice, a maximum Bloom filter length L
(MAX_BFLT_LEN ) is configurable for given WSN/IoT applications.

Due to the resource constraints in sensor/actuator nodes, hash
functions employed in a Bloom filter should consume as less re-
source as possible. We adopt three hash functions, namely Thomas
Wang’s hash function [41], Bob Jenkins’ hash function [15], and
FNV hash [9] in our Bloom filter structure due to their resource
efficiency [30]. Note that, k’s value can also be adaptive to the
Bloom filter size and path length, as optimal k = m

n × ln2 [36]. If
optimal k is needed, we can further adopt SAX (Shift-and-Xor) hash
to generate multiple hash values [7, 29].

When a downward packet is initialized at the sink, the source-
route is encoded in a Bloom filter by ORing the Bloom filters of
all the (intermediate) node addresses in the source-route. Upon
reception of a downstream packet, a node checks if there exists any

Figure 2: The false positive rate of adaptive Bloom filter
and the corresponding space saving. Path length is H hops;
Bloom filter length m is based on (2); the number of hash
functions k = 3;MAX_BFLT_LEN = 40 bytes.

ALGORITHM 1: Bloom Filter Membership Query
Input: path Bloom filter path_bf lt , node’s hash values hi , i ∈ {1, ..., k }.
Output: query result r et .
r et = 1;
for i = 1 to k do

if (((1 ≪ hi ) & path_bf lt )==0) then
r et = FALSE ;
break;

end
end
return r et

match of its direct child(ren) through the Bloom filter membership
query of its each child, which can be done efficiently by an AND
operation, as shown in Algorithm 1. If any of its direct child matches
the Bloom filter, the packet is forwarded downward to the matched
child node(s).

2.2 Direct Child Set
WSN/IoT nodes are usually highly resource limited. For example,
a MicaZ node platform, only has 4K bytes of RAM. Even a TelosB
node that is widely used in real-world WSN deployments only has
10K bytes of RAM. Existing approaches such as RPL [42] (storing
mode), RBD [32], CBFR [30], and ORPL [7] require each node to
store/encode its entire subgraph of descendants for making down-
ward routing decisions, causing the inherent scalability problem
for large WSNs/IoT. In contrast, OSR only requires each node to
store its one-hop direct children, referred to as the direct child set,
for downward routing. Therefore, OSR is scalable on the size of the
network with respect to node’s memory.

As an illustration, we tested a data collection WSN application
based on CTP in Indriya testbed densely deployed across three
floors in a school building [5], which contained 95 available TelosB
nodes at the experiment time. The test lasted for about 6 hours.
We analyzed all the (parent, child) pairs and computed the node
distribution on the number of direct children they had. The statistics
is shown in Fig. 3. As we can see, around 50% of the nodes are leaf
nodes, and no node has more than 12 direct children. In contrast, the
subtree of an intermediate node can grow up to a size comparable
to the entire network size, especially for the nodes near the sink.



Figure 3: Node distribution on the number of direct children
for the Indriya testbed with 95 nodes available.

OSR takes advantage of the underlying data collection routing
protocol to establish the direct child set. When a node forwards an
upstream packet, it inspects the packet header and adds the link
layer sender’s address to its direct child set. Some protocols provide
easy access methods. For instance, CTP in TinyOS [38] offers an
Intercept interface for other applications to check the contents of a
forwarded CTP packet.

To accommodate wireless link dynamics and hence the coming
and leaving of a direct child, each direct child is associated with a
time to live (TTL) flag. The TTL value decreases based on a periodic
timer. When a child’s TTL reaches 0, the child is removed from the
direct child set. Every time a child is refreshed or added, its TTL
value is reset. With TTL, the direct child set should be able to cover
all the (parent, child) relationships in the data collection network
within the time window of length TTL. If an intermediate node
is in the path Bloom filter of a downward packet but none of the
node’s direct child, it is highly possible that the node itself is a false
positive.

2.3 Opportunistic Routing
In data collection WSNs/IoT, a node may have multiple candidate
parents that are able to forward its data packets within a time win-
dow, forming a parent set [27] of the node. Moreover, the parent
nodes belonging to a same parent set have a high probability being
within the transmission range of each other. Based on these obser-
vations, OSR introduces opportunistic routing into the traditional
source routing by exploring alternative routes based on node’s par-
ent set to improve the reliability of downward routing in dynamic
WSNs/IoT. Note that in OSR, nodes are not aware of their parent
set explicitly. Instead, a node implicitly joins a child’s parent set
when it adds the child into its direct child set.

The introduced OSR opportunistic routing acts in two aspects.
First, the probabilistic nature of the Bloom filter of the source-route
would be able to potentially, albeit in a passive way, explore the
parent nodes of an in-route node not given in the source-route but
opportunistically matched by false positives. This in fact provides
alternative route(s), beyond the given source-route, for downward
packet forwarding. During the OSR downward routing process,
whenever a node has multiple matched children in the path Bloom
filter, OSR transmits the packet to all the matched children by local
multicast. In the case that the matched child(ren) due to the false

(a) Passive OR (b) Active OR

Figure 4: Illustration of (a) passive opportunistic routing
(OR) and (b) active opportunistic routing (OR) in OSR. The
source-route is marked as circles with double line border.

positive(s) is/are also in the parent set of the grandchild in the
downward path, the packet is then opportunistically delivered to
the grandchild. Therefore OSR, to some extent, turns false posi-
tives in the Bloom filter into potential opportunities for downward
packet forwarding, which can improve the reliability without any
false positive recovery scheme. Second, OSR actively performs op-
portunistic routing by requesting the other parent nodes in the
parent set of a child node to assist packet forwarding whenever a
normal downstream unicast based on the source-route fails. Due
to the drastic wireless link dynamics in low-power WSNs/IoT, a
source-route may be obsolete when the downstream packet arrives
at an intermediate node. Source routing fails if the next hop in the
source-route becomes unreachable at an intermediate node. In such
an event, the intermediate node will broadcast the packet to its
neighborhood, hoping that one or more of its neighbors belonging
to the parent set of the next-hop child node opportunistically re-
ceive(s) it. Upon reception of a broadcast packet, the node will check
whether any of its direct child is in the source-route. If yes, which
indicates the node likely belongs to the next-hop child’s parent set,
the node would forward the packet to the matched child(ren).

Fig. 4 illustrates how opportunistic routing is conducted in OSR.
The passive opportunistic routing is shown in Fig. 4a. The source-
route specifies [· · · P → C1 → T ]. NodesC1,C2, andC3 are children
of node P which are matched in the path Bloom filter of the down-
ward packet. In addition to (C1 → T ), node C2 is also in the parent
set of grandchild node T , hence (C2 → T ) is an alternative path
explored through the passive opportunistic routing. The active op-
portunistic routing is illustrated in Fig. 4b. Node T is a child of
node P as specified in the downstream source-route. When P fails
to deliver the packet to T , it broadcasts the packet to its neighbors.
Three neighbors have received the broadcast; whereas neighborU
is not in the parent set of T and will ignore the packet, neighbor
PA and PB will forward the packet to T because they are in the
parent set of T . Thus, the obsolete link from P to T is successfully
bypassed by the opportunistic routing activated by node P .

2.4 Downward Routing Decision
Unicast is the basic MAC layer transmission scheme used in OSR to
deliver a downstream actuation packet. If any unicast fails after its



maximum retransmissions, broadcast is used for active opportunis-
tic routing. In addition, if a node has multiple direct children that
are included in the source-route, it uses local multicast to deliver
the packet to all the matched children for passive opportunistic
routing.

OSR includes two-bit information in a downstream packet header
to distinguish the three transmissions types (i.e., unicast, local
multicast, or broadcast) of the packet; nodes process the received
packets based on the two-bit header information accordingly. While
a multicast reception would require each receiving node to check
its membership to the received path Bloom filter, broadcast does not
require each receiving node to check its membership. In the case of
lacking the support of multicast in the MAC layer, multicast can
be implemented by broadcast. OSR would benefit from multicast-
supported MAC layers. Unicast reception indicates the receiver
node must be included in the path Bloom filter without the check
of the membership.

We have devised the OSR algorithm (i.e., Algorithm 2) for the
routing decision making process at an intermediate node. If a node
receives a multicast packet and passes the membership check, it
starts to check the direct child(ren); otherwise the packet is ignored.
If a node receives a unicast or broadcast packet, it immediately
starts to check the membership of its direct children in the path
Bloom filter (path_bflt). If a node has multiple children included
in the path_bflt, the packet is forwarded using local multicast. If
there is only one matched child, the packet is forwarded by uni-
cast. Any unicast failure would trigger active opportunistic routing
through broadcasting. If there is no any matched child, the packet
is ignored, since it is of high probability that the node itself is a
false positive. In our design, each node keeps a history of recently
received downstream packets to avoid duplicates and forwarding
loops. Duplicate packets are ignored immediately. A time-to-live
(TTL) field (e.g., initialized as two times of the path length) is also
associated with the packet to avoid infinite forwarding loops.

3 EVALUATION
We implemented OSR in TinyOS 2.1.2, integrating CTP as the under-
lying data collection protocol, and performed a series of simulations
and real-world WSN testbed experiments to evaluate and compare
it against existing protocols. After a few initial data collection cy-
cles, the sink starts to issue actuation commands to each individual
node. We plan to make our OSR implementation, including all the
test applications, publicly available.

3.1 Methodology and Setup
OSR is evaluated against RPL (both storing and non-storing modes),
ORPL1, and Drip. Drip is a TinyOS implementation of the repre-
sentative dissemination protocol Trickle [23]. We consider both
ContikiRPL [40] and TinyRPL [37], the two most widely used open-
sourced RPL implementations. ContikiRPL supports both storing
mode and non-storing mode, whereas TinyRPL only supports stor-
ing mode. ORPL is implemented based on ContikiRPL storing mode
[7]. The test application of RPL is written based on the examples
that come with the RPL and ORPL implementations. OSR’s direct

1https://github.com/simonduq/orpl

ALGORITHM 2: Downward OSR
path_bf lt : the Bloom filter contains the IDs along the downstream path.
matched_count : the number of matched children in path_bf lt .
tx_typet : the transmission type of the recieved downward packet.
if packet is duplicate then

return
end
if tx_type is Multicast) then

if local ID is NOT included in path_bf lt then
Ignore the packet and return

end
end
Check children for match
if (matched_count > 1) then

Multicast the packet
else if (matched_count > 0) then

Unicast the packet
if unicast fails then

if tx_type is not Broadcast then
/*Opportunistic routing*/
Broadcast the packet

end
end

else
/*no matched children, ignore the packet*/

end

child set was configured to 20 with the child TTL value initialized
to 4, which was updated every collection cycle.

We consider the following key performance metrics. First, scala-
bility, indicated by the protocol’s performance as downward path
length increases. Second, the network downward Packet Delivery
Ratio (PDR), defined as the ratio between the number of actuation
packets received by the target nodes and the total number of pack-
ets sent by the sink. Then, the Duty Cycle (DC), the portion of time
when the radio is on in low power MAC, as the measurement of
energy efficiency with the same implementation platform. For all
the performance results the sink’s transmissions are not included,
as the sink/root is considered to have unlimited power supply.

3.2 Evaluation in Cooja
We first conducted simulations in Cooja [28] using TelosB platform
to evaluate the scalability of OSR against RPL and ORPL.

In the smart city scenario, urban structures may shape the net-
work to a peculiar topology [14]. Inspired by [14], we evaluate the
scalability limit of the protocols in a linear network topology with
small twigs, which may be quite common in urban areas. The linear
network consists of 74 nodes and builds up to 68 hops, with the
sink/root being at one end (as illustrated in Fig. 5). We use the Unit
Disk Graph Medium (UDGM) with exponential distance loss as
radio model and a maximum link quality of 90% to account for uni-
form random noise. A node sends upward data packets randomly
with an average interval of 10 minutes. After 20 minutes of network
initialization, the sink starts to send an actuation packet every 10
seconds to a randomly selected target node. Upward packet payload
is 60 bytes and downward packet payload is 20 bytes. Table 1 lists
the compiled RAM usage of the test application with each protocol
under different network size configurations. OSR was configured



Figure 5: The illustration of the linear topology. Root is at
the left end.

Table 1: Comparison of RAM sizes for TelosB platform

WSN
Size

RAM Usage (bytes)

TinyRPL ContikiRPL
(S)

ContikiRPL
(NS)

ORPL OSR &
CTP

2 5952 7280

7164 9710a 3958
50 8160 9104
74 9264 10016
225 +5972b +5516
400 +14022 +12164

aORPL includes a whole set of tools for logging.
bNumbers with "+" indicates the amount that overflowed the TelosB RAM space.

Table 2: Scalability Comparison on Linear Network

Protocol Max Reachable Hops PDR(%)

OSR 68 99.86
ContikiRPL (NS) 32 33.31
ContikiRPL (S) – 76.91

TinyRPL – 27.95
ORPL – 63.06

with the same MTU as the default in TinyRPL (i.e., 112 bytes). Since
RPL storing mode has scalability issues in terms of memory when
the routing table size increases, the routing table size in ContikiRPL
(storing) and TinyRPL is configured to be 50, which results in 9104
bytes and 8160 bytes of memory footprint for ContikiRPL (stor-
ing) and TinyRPL, respectively. Each simulation ran for 4 hours, in
which the total of 1320 downward packets were sent out.

The evaluation results are shown in Table 2. OSR has successfully
reached all the nodes (i.e., up to 68 hops) along the linear topology
with 99.86% downward PDR. In contrast, all RPL implementations
suffer scalability problems. ContikiRPL (non-storing) only reached
as far as 32 hops from the sink, far less than the theoretical threshold
of 64 hops. Consequently, ContikiRPL (non-storing) has a poor
PDR since more than half of the nodes are unreachable due to its
scalability issue. On the other hand, the maximum reachable hop
count in both ContikiRPL and TinyRPL storing modes as well as
in ORPL is ad hoc, depending on the dynamics of nodes’ limited
routing table establishment. As we can see, their PDR performances
are also significantly lower than that of OSR.

To better understand about the protocols’ scalability, we show
in Fig. 6 the network PDR up to the first 25 hops in the downward

Figure 6: Downward PDR for linear topology based on down-
ward path length in the first 25 hops.

routing. As we can see, the PDR of TinyRPL drops quickly as the
path length increases. ContikiRPL (non-storing) experiences a steep
drop after the 17th hop, where the downward packet fragmenta-
tion begins due to the long downward path length. ContikiRPL
(storing) maintains high PDR for most of the time, but suffers from
performance drop at several random hops, which is likely due to
the probabilistic occupation in their ancestor nodes’ routing ta-
bles at times, which is also observed for TinyRPL. In contrast, OSR
achieved nearly 100% PDR regardless of the downward path length.
ORPL also achieved high PDR within the first 25 hops.

To summarize, ContikiRPL (non-storing) suffers scalability prob-
lem regarding the network diameter, whereas ContikiRPL (storing)
and TinyRPL suffers scalability problem regarding the network
size. IP fragmentation harms the performance of ContikiRPL (non-
storing) significantly. ORPL also severely suffers from the scalability.
We speculate that the network linear topology might have affected
the anycast mechanism of ORPL. In contrast, OSR scales signifi-
cantly better than all of the RPL implementations and ORPL. In
fact, since OSR uses localized direct child set, it does not suffer
as network size increases. Moreover, due to its Bloom filter based
path encoding, OSR should be able to work with any path length
of hundreds of hops.

3.3 Evaluation in Indriya
Next we evaluate the reliability and energy efficiency of the OSR in
comparison with TinyRPL and Drip protocols in the Indriya testbed.
ContikiRPL and ORPL were not included since they are based on
the Contiki MAC and the datalink layer on Contiki platform which
is very different from the TinyOS platform. As we know, energy ef-
ficiency is heavily dependent on the platform in addition to routing
protocol2.

The Indriya testbed consisted of 95 TelosB nodes during the
experiment time. The testbed was configured to be low power for
our experiments. Node 31 at the corner on the first floorwas selected

2However, we have conducted simulations in Cooja to compare the relative energy
efficiency of the protocols with their collection-only baseline. The test application
is similar to that of Section 3.2, with a random topology. Compared to ContikiRPL
baseline, the storing-mode has increased the node average duty cycle for 13.80%, non-
storing mode has increased the average node duty cycle for 10.34%. Compared to a
CTP baseline (in TinyOS), OSR has increased the average node duty cycle for 12.59%.



Table 3: Comparison between OSR and TinyRPL on Low
Power Indriya Testbed with 47 nodes

PDR (%) Duty Cycle (%)

CTP Baseline – 4.26 ± 0.07
TinyRPL 89.45 ± 0.04 18.67 ± 0.45

OSR 97.80 ± 0.01 4.43 ± 0.17

as the sink to maximize the network diameter. TheMAX_BFLT_LEN
was configured to 16 bytes.

3.3.1 Comparison against RPL. Since TinyRPL could not work
on the entire Indriya testbed, we conducted several experiment
trials (30 minutes each) only using a half size of the testbed (i.e., 47
nodes with odd IDs) to evaluate OSR versus RPL. The test applica-
tion collected data packets for the first 10 minutes in each trial for
the network’s initialization. The sink then sent downward packets
to a randomly selected individual node every 10 seconds. Nodes
were configured to be low power with a sleep interval of 1 seconds
using the default TinyOS MAC (i.e., BoX-MAC [26]), whereas the
sink was configured to be always on. We also conducted a pure
CTP application as the baseline, where sink sends no downward
packets, and node stops sending upward packets after the network’s
initialization.

Table 3 shows the performance results of OSR versus TinyRPL
averaged on four trials. As we can see, OSR (with CTP) performs
significantly better than TinyRPL on both the downward PDR and
the duty cycle. TinyRPL’s high duty cycle is mainly caused by its
high DAO packet rate. We believe a careful tuning of the DAO
rate could benefit TinyRPL’s performance, however, it requires a
systematic adjustment and is not the focus of this work. In particular,
OSR itself only adds a very little to the duty cycle compared with
the CTP baseline, demonstrating its energy efficiency.

3.3.2 Comparison against Drip. Next, we compare OSR versus
Drip in Indriya with all 95 available nodes. Drip is built on top
of Trickle [23] for dissemination the entire network. For unicast
actuation, a target_id field is included in Drip’s application packet
to ensure only the targeted node would act when the command is
received.

The WSN test application has a collection cycle interval of 4
minutes. Nodes operated on low power with a sleep interval of 1
second. The sink was configured to be always on. The sink started
to issue one downstream packet to a randomly selected node every
minute starting from the beginning of the third cycle if the node’s
upward packet was collected. Each experiment ran for about 6.8
hours, with 400 downward actuation packets were issued.

Table 4 lists the downward performance comparison between
OSR and Drip. Drip achieved 100% downward PDR due to its flood-
ing nature. OSR, on the other hand, achieved a PDR of 97.50%. For
energy efficiency, OSR (with CTP) achieved an average node duty
cycle of 2.78%, which is 45.81% lower than the 5.13% of Drip (with
CTP). The result demonstrates that OSR is reliable and much more
energy efficient than Drip.

Table 4: Comparison between OSR and Drip on Low Power
Indriya Testbed with 95 nodes

PDR (%) Duty Cycle (%)

Drip 100 5.13 ± 1.19
OSR 97.50 2.78 ± 1.26

3.4 Evaluation in TOSSIM
We further conducted more simulations using TOSSIM [22] for
much larger network sizes and higher dynamics. We observed dur-
ing the experiments in Indriya that the parent set size was one for
most nodes when using CTP as the underlying collection protocol,
since the communication environment of the indoor testbed is not
very dynamic. As a result, the opportunistic routing of OSR could
not be sufficiently evaluated when unicast failure occurs since there
were few potential helper forwarders.

We generated two networks of sizes 225 and 400 nodes uniformly
distributed in a square area with the sink at a corner. The 400-node
network was expanded from the 225-node network on both di-
mensions, retaining the same node density. The resulting network
diameter was 11.58 hops and 19.07 hops, respectively. The collection
cycle interval was 10 minutes. The sink sent a command packet to a
randomly picked node every minute starting from the third cycle in
simulation. The simulation terminated when 600 downstream pack-
ets were sent. TheMAX_BFLT_LEN was configured to 16 bytes and
20 bytes for 225-node and 400-node simulations, respectively. Since
TOSSIM is targeted for MicaZ platform, the MTU was configured
to 72 bytes to fit in MicaZ RAM space.

Most nodes in the simulations switched their parent nodes rapidly.
On average, most nodes have more than 3 parents in their parent
set with in a time window of 4 collection cycles.

The evaluation results are shown in Table 5. Both tests achieved
PDR above 98%, which was not affected by the expansion of the
network. The link unicast retransmission ratio for both tests were
around 50%, indicating a noisy and dynamic network condition.
Regarding opportunistic routing, 3.33% and 4.33% of the packets
experienced at least one active opportunistic routing occurrences
(due to unicast delivery failure) in the 225-node simulation and
400-node simulation, respectively. On the other hand, both tests
resulted in much more passive opportunistic routing occurrences
(due to multiple matched children) than the active ones. We ob-
served that for 225-node network, 13.33% of the downward packets
have experienced at least one instance of passive opportunistic
routing, whereas for the 400-node network it was 36.33%, about
3 times of that compared to the 225-node test, due likely to the
larger network size and the longer downward path length. The
occurrences of the opportunistic routing introduced about 15% to
18% duplicate traffic compared to the traditional source routing,
which is inevitable due to the probabilistic nature of the Bloom
filter (e.g., 9% to 50% duplicate traffic as reported in ORPL figure 6d
[7]).

To test the effect of the maximum Bloom filter length, we also car-
ried out simulation on the 400-node network withMAX_BFLT_LEN
being 10 bytes. The result is also shown in Table 5. As we can
see, OSR also achieves the similar high PDR with a much smaller



Table 5: OSR Performance in TOSSIM Simulation

WSN
Size

PDR
(%)

Max.
Bflt
(bytes)

Ucast
Retx

Dup.
Traffica

(%)

Pkt. with Opp.
Routing

Active Passive

225 98.67 16 49.15% 15.32 3.33% 13.33%
400 98.67 20 51.69% 17.92 4.33% 36.33%
400 98.50 10 58.46% 37.31 4.83% 45.17%

aWith regard to link layer transmissions.

maximum Bloom filter length. However, due to a higher false posi-
tive rate, the duplicate traffic has increased to 37.31%, which then
caused more collisions, as indicated by the higher link unicast re-
transmission rate. Both the active and passive opportunistic routing
occurrences have increased as well.

4 DISCUSSION
OSR has achieved reliable delivery of the downward unicast packets
and desirable scalability as the network diameter and network size
increase. OSR (with CTP) has also shown to achieve better energy
efficiency compared to TinyRPL and Drip (with CTP) implemented
on the same TinyOS platform. In this sectionwe discuss our insights,
and the limitations of current OSR implementation.

Scalability. Through our comprehensive evaluations, OSR achieves
significantly better scalability compared to RPL storing and non-
storing modes on two implementations and ORPL. OSR enables
a very small and localized routing table compared to RPL storing
mode and ORPL; simultaneously, OSR compresses the source-route
effectively with respect to RPL non-storing mode. Therefore, OSR
provides desirable scalability for resource-constrained real-world
WSN/IoT deployments.

Opportunistic routing. OSR depends on the upward traffic to
build the child/parent set. Thus, if the collection protocol is the
best-path oriented, OSR may not be able to offer significant oppor-
tunistic routing due to the lack of potential helper forwarders in
a relatively static communication environment. Even though in
such a situation, OSR would degrade back to the traditional source
routing in routing perspective, its compression of source-route in
packet header is still exactly effective. OSR could benefit by working
with a load balanced data collection protocol (e.g., CTP+EER [27]),
which actively switches parents to balance the traffic load hence
expands the parent set, in the case of static network condition. On
the other hand, opportunistic routing in OSR introduces duplicate
traffic to some degree due to its probabilistic nature.

Link Asymmetry. To build any downward path, OSR relies on
upward routing tomography, whereas RPL non-storing mode uses
the DAO messages to maintain the network topology at the root.
Both approaches may lead to suboptimal downward path selection
due to the link asymmetry.

Interaction with IP. We implemented OSR protocol, working with
CTP in TinyOS, to validate our OSR approach for downward rout-
ing scalability and reliability. Thus, our current implementation

lacks the ability to interact with IP like that of RPL and its varia-
tions. However, the principles of OSR can be readily applied to RPL
non-storing mode to extend and improve its capability, which is
considered in our future work.

Differences from ORPL/CBFR. OSR uses the Bloom filter to en-
code the source-route, whereas both ORPL and CBFR uses Bloom
filter to compress the subgraph at each intermediate node. Each
intermediate node stores its direct child set in OSR versus the sub-
graph of descendants in ORPL/CBFR. Also, OSR constructs the
direct child set easily by intercepting the data collection packets,
which is strictly localized and has negligible overhead. CBFR also
intercepts the data collection packets, however, like ORPL, it re-
quires the nodes in the network to exchange their Bloom filters
to gather the subgraph information, introducing additional trans-
mission overhead. Moreover, OSR can, to some extent, turn false
positive into an opportunity in its passive opportunistic routing via
local multicast. In CBFR, transmissions are broadcast based to ex-
plore all the possible downward paths to reach the destination node,
resulting in a high transmission cost. On the other extreme, ORPL
opportunistically selects only one node at a time for downward
routing in the situation of multiple matches, hence it risks of deliv-
ering the packet to a false positive target node. An additional false
positive recovery scheme is required in ORPL to address this prob-
lem, with increased delay. In contrast, OSR either opportunistically
multicasts to all matched nodes, or opportunistically broadcasts
when the downward link is broken. Hence, OSR is much less ag-
gressive than CBFR, and has no need for false positive recovery in
comparison with ORPL. The packet TTL and duplicate suppression
in OSR ensure that the packet forwarding by false positives would
not chain forever.

5 RELATEDWORK
Downward actuation protocols in WSNs can be classified into two
categories: broadcast based and unicast/multicast based. A large
portion of downward protocols, such as Drip [39], Glossy [8], and
Opportunistic Flooding [12] are broadcast based that disseminate
small data to the entire network (e.g., control packets). It would
be very inefficient when using such broadcast based downstream
protocols for individual node(s) actuation in LLNs, since the actua-
tion commands would have to be flooded over the entire network.
Recently, the demand to individual node(s) actuation arises as het-
erogeneity becomes popular in WSN/IoT deployments, in which
individual nodes play different roles in the network. RoCoCo [31]
integrates the data collection and command dissemination. The
command information is piggybacked in the routing beacons of the
collection protocol, where the receivers’ addresses are also included,
hence enables dissemination to a subset of nodes. CBFR [30] and
RBD [32] utilize the tree structure for downward routing. At each
intermediate node, the route is determined by checking the whole
subtree information stored at that node. Whereas RBD stores the
raw addresses of the nodes in the subtree, CBFR utilizes counting
Bloom filter to reduce the memory overhead and supports gradual
forgetting for nodes mobility.

RPL [42] is a recent standard routing protocol for LLNs that
supports upward, downward, and point-to-point (P2P) traffic pat-
terns. RPL supports two modes for downward traffic, either through



the entire subtree stored at each intermediate node’s routing table
(storing mode), or through the source-route specified at the root
(non-storing mode). Storing mode suffers scalability problem with
regard to the network size due to the limited memory in resource-
constrained nodes, whereas non-storing mode suffers scalability
problem with regard to the network diameter, due to the limitation
in the frame size of the LLNs. A recent and comprehensive survey
of RPL can be found in [19]. ORPL [7] brings opportunistic routing
into RPL and improves the performance of RPL. Similar to CBFR,
ORPL adopts Bloom filter/bitmap to represent node’s subgraph
(i.e., routing table) to reduce the memory overhead. ORPL using
Bitmap only works for predefined static networks. When using
ORPL on dynamic networks, the Bloom filter compression of a
node’s subgraph is propagated upward the collection tree in order
for parents to update their routing tables. When the network is
large, the Bloom filter size may also grow quickly and it would be
inefficient for nodes to exchange their Bloom filters. Hence ORPL
and CBFR also suffer from the scalability problem for large-size
WSNs/IoT.

HB-DSR [3] is known to be the first source routing protocol that
encodes the route into a Bloom filter. Bloom filters have been used
in several approaches for multicast, such as [33] and [35]. However,
those approaches are only targeted for wireline networks or mobile
networks without significant resource constraints.

After our OSR development, we learned that IETF Roll Working
Group is working on a draft Constrained-Cast [1] to consider using
the Bloom filter to encode the source-routes in RPL (non-storing
mode) for forwarding multicast traffic. However, this draft is still in
the process and many details are unclear. Besides, this draft defines
a few possible values of the Bloom filter size, as opposed to our
adaptive Bloom filter size in OSR.

6 CONCLUSION AND FUTUREWORK
By introducing opportunistic routing into the traditional souring
routing approach, we presented OSR, an opportunistic-supported
source routing approach and protocol which provides reliable and
scalable downward actuation in large-scale WSN/IoT systems. The
unique opportunistic nature of OSR effectively addresses the fun-
damental issues of the drastic wireless link dynamics in noisy and
resource-constrained WSNs. OSR only stores the direct child set
at each intermediate node rather than the entire subtree of descen-
dants as other address-based routing protocols. As a result, OSR
has small memory overhead and achieves great scalability while
maintaining good performance. The results on our simulations and
real-world WSN testbed experiments demonstrate the merits of
OSR. OSR significantly outperforms RPL storing mode and non-
storing mode on two most widely used implementations. On the
other hand, while OSR achieves desirable and comparable packet
delivery rate as the flooding based Drip, it has much lower duty
cycle in comparison with Drip. Our future work includes to extend
OSR for WSN downward multicast routing, and to apply/integrate
OSR with RPL non-storing mode. We believe OSR provides a sig-
nificant and practical solution to wireless actuation for large-scale
and resource-constrained WSN/IoT deployments.
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