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Introduction: Discovery of aqueous minerals on 

the surface of Mars has revolutionized our 

understanding of the planet. Yet more remains to be 

discovered in existing data sets, utilizing improved 

techniques. One such example is the isolation and 

discovery of accessory mineral phases or phases in 

small scale exposures. Identifying these missing phases 

is critical for having a more complete understanding of 

the underlying geological formations on Mars toward 

resolving the question of origin. Small, rare phases on 

Mars that occur infrequently or at low abundances are 

important for two reasons. First, specific minerals such 

as alunite, jarosite, serpentine, and illite, among others, 

serve as direct environmental indicators of the 

geochemistry of waters on the Mars surface. Second, 

the identification of rare phases, even in just a few 

pixels, enables characterizing the mineral assemblages 

within a geologic unit, which are critical for identifying 

the thermodynamic conditions and fluid composition 

during interactions of rocks with liquid water. 

However, the detection of these spatially restricted 

mineral phases is difficult using existing typical 

CRISM (Compact Reconnaissance Imaging 

Spectrometer for Mars) processing techniques. 

As part of our ongoing efforts to implement 

machine learning methods to fully automate mineral 

discovery in CRISM data, we have previously reported 

dozens of new jarosite and alunite detections across 

Mars [1]. Herein, we report new rare discoveries in 

significant locations for landed exploration with rovers. 

Methods: Our methods have been developed in 

two phases. In the first phase around fifty images from 

the Nili Fossae and Mawrth Vallis regions were pro-

cessed by a nonparametric Bayesian clustering tech-

nique [2]. This method generates a few hundred spectra 

per image processed, which are visually inspected and 

classified to create a spectral training library. This clus-

tering approach is not only very computational but also 

requires a tedious task of manually assigning extracted 

spectra to classes. Toward fully automating mineral 

discovery, in the second phase, the training library col-

lected in the first phase was used to implement two 

 
Figure 1. Small exposures of important accessory minerals at the Mars-2020 landing sites, discovered via automated processing with the 

Bayesian classification technique. CRISM false color infrared images are unprojected but oriented with north up. The single pixel detections 

are shown, with regions of interest circled. Original spectra extracted by the automated approach is shown in the far right panel. Pixels 

taken from automated detections are ratioed against several different denominators from “bland regions” to manually verify the detection. 

Reference library spectra are shown in black for comparison. Additional rare phase detections have been made in these images and their 

verification is the subject of our ongoing work. 
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models: a likelihood model for bland pixel identifica-

tion for columnwise ratioing and a classifier model that 

operates on the ratioed data to render mineral classifi-

cation. Both the likelihood model and the classifier 

uses our two-layer ensemble Bayesian Gaussian mix-

ture model. The two layer Gaussian mixture model 

uses one mixture model for each spectral pattern in the 

lower layer. The number of components in a mixture 

model for a given pattern is determined by the number 

of images in which that pattern occurs as the model 

introduces one Gaussian component for every image 

the pattern is detected. Mixture models of spectral pat-

terns in the lower layer are regulated by a global prior 

at the upper layer. This two-layer hierarchical model 

offers extreme flexibility and robustness for modeling 

pattern distributions. The lower layer models spectral 

variations of the same pattern across images whereas 

the upper layer models spectral variations across pat-

terns. The model has several hyperparameters, which 

are tuned on the training library to encode information 

about existing pattern variations into the model. 

Our models use 350 channels in the 1.0 - 3.5 µm 

range. As the discriminating features of each pattern 

fall in different subranges of channels, we adopt an 

ensemble learning approach to more effectively handle 

noisy spectral features. In this technique a single sub-

model is trained for each subrange and outputs of indi-

vidual models are weighted differently for each pattern 

to produce an aggregate score for each pixel being 

classified. We have used initial models trained with 

around fifty images to classify new images in an active 

learning setting. The training data set is augmented 

with classified spectra from each image processed pro-

spectively over time, which in turn is used to retrain 

models and classify new images. To date our models 

have been trained and tested with about five hundred 

CRISM images across Mars. The mineral classifier is 

designed to perform fine-grained classification with 

over one hundred sixty patterns composed of spectral 

classes of mineral phases, bland pixel categories, 

known artifacts, and unidentified patterns of potential 

interest. 

Results: Jezero Crater: Olivine, MgCO3, pyroxene, 

and iron smectite were previously detected in the sedi-

ments and floor of Jezero Crater using CRISM. Here, 

we report an aluminum phyllosilicate like kaolinite and 

montmorillonite in the walls of Jezero crater in an area 

accessible to the rover as well as Fe/Mg smectite in 

portions of the crater rim (Figure 1). The largest detec-

tions by area are reported here. We are in the process 

of vetting single pixel detections from the machine 

learning technique. These wallrock clay mineral detec-

tions likely indicate that blocks of crust from the sur-

rounding NE Syrtis region with a characteristic Al 

phyllosilicate over Fe/Mg smectite stratigraphy [3,4] 

may be preserved in the Jezero wallrock – albeit dis-

rupted by the Jezero impact – for exploration by the 

rover.   

NE Syrtis: The NE Syrtis candidate landing site ex-

tended mission area includes Hesperian hydrated sul-

fates and jarosite along with late Hesperian/Amazonian 

fluviodeltaic sediments [5]. In one late Hesperi-

an/Amazonian fluvial system, a new mineral phase is 

found associated with a local topographic low. The 

spectral characteristics are distinct from jarosite and 

other polyhydrated sulfates also present in the region. 

Locally, there is material with distinctive minimum at 

2.45 µm and steep spectral slope at VNIR wavelengths 

(Figure 1). Elsewhere on Mars, this has been attributed 

to akaganeite [6], Fe3+O(OH,Cl). This is consistent 

with a geologic setting where salty, possibly acidic, late 

Martian waters flowed over the Syrtis lavas and sul-

fates forming a set of local lake basins, perhaps 

dammed by ice, which then evaporated [5,7]. Akaga-

neite and select iron sulfate materials are excellent 

candidates to explain the observed spectral properties 

of this new phase discovered by the Bayesian classifi-

cation technique.  

Conclusions and Future Work: Vetting of smaller 

mineral detections and those of other minerals (e.g., Al 

clays, hydrated silica, illite, analcime, chlorite, car-

bonate) recovered by our machine learning approach at 

Jezero, NE Syrtis, and Gale are the subject of our on-

going work. Importantly, these small detections of rare 

phases are crucial for guiding the rover and for contex-

tualizing its discoveries. Although we reported results 

only from select locales owing to their significance, 

similar outcrops of rare phases have been detected 

across Mars along with several interesting patterns 

currently being considered as candidates for new phas-

es. Our study demonstrates that machine learning can 

be highly effective in exposing tiny outcrops of rare 

phases in CRISM. Some of these detections may offer 

new cues toward a more accurate and complete geolog-

ic mapping of Mars paving the way for future discover-

ies. 
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