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ABSTRACT
Despite years of research, many existing e-voting systems

do not adequately protect voting privacy. In most cases, such

systems only achieve “immediate privacy”, that is, they only

protect voting privacy against today’s adversaries, but not

against a future adversary, who may possess better attack

technologies like new cryptanalysis algorithms and/or quan-

tum computers. Previous attempts at providing long-term

voting privacy (dubbed “everlasting privacy” in the litera-

ture) often require additional trusts in parties that do not

need to be trusted for immediate privacy.

In this paper, we present a framework of adversary mod-

els regarding e-voting systems, and analyze possible threats

to voting privacy under each model. Based on our analysis,

we argue that secret-sharing based voting protocols offer a

more natural and elegant privacy-preserving solution than

their encryption-based counterparts. We thus design and im-

plement Koinonia, a voting system that provides long-term

privacy against powerful adversaries and enables anyone

to verify that each ballot is well-formed and the tallying is

done correctly. Our experiments show thatKoinonia protects
voting privacy with a reasonable performance.
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1 INTRODUCTION
Election is the cornerstone of modern democracies; however,

the correct functioning and public trust of election depends

on the equipment/technology used to cast and count bal-

lots. The events surrounding the 2000 United States presi-

dential election and the 2012 election interference by hur-

ricane Sandy demonstrated the shortcomings of conven-

tional voting technology, and amplified the needs to de-

velop more advanced voting technologies. Some countries

have experimented with online voting systems in their elec-

tions [67]. However, due to stringent security and privacy

requirements [21, 39], online voting systems have yet to be

widely deployed.

An e-voting system typically has many Voters, a central

Server, and multiple Authorities who help to ensure voting

privacy even when the Server is malicious. While e-voting

protocols and systems have been extensively studied, we

find that a comprehensive and careful analysis of the ad-

versary model is still lacking. For example, many e-voting

protocols provide voting privacy only against today’s adver-

saries. That is, they use public-key cryptographic primitives

with parameters that are believed to be secure today. We call

this level of privacy “immediate privacy”. However, in the

not-so-distant future, faster computers, better cryptanaly-

sis algorithms and/or the emergence of quantum computers

may compromise the privacy of these votes. In this paper,

we call privacy against such adversaries “long-term privacy”.
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In the literature, “long-term privacy” has been dubbed

“everlasting privacy”. Many attempts at achieving this re-

quire trusting parties that are not trusted for immediate

privacy, resulting in significantly weaker privacy guaran-

tee. For example, Helios [1], perhaps the most prominent

e-voting system, uses threshold cryptography to ensure that

the Server, even if malicious, cannot compromise voter pri-

vacywithout collusion from other Authorities involved in the

voting protocol. However, since Helios publishes encrypted

ballots in a public bulletin, it provides only immediate pri-

vacy. Demirel et al. [33] proposed enhancements that aim at

adding everlasting privacy to Helios. In the new protocol, the

server, instead of publishing encrypted votes in the public

bulletin, publishes cryptographic commitments (which are

information-theoretic hiding) of encrypted votes. We note

that while this provides long-term privacy against an exter-

nal advesary, it does not provide long-term privacy against

the Server, who still sees the ciphertexts and can recover

the plaintext in the future when the encryption scheme can

be broken. Therefore, while no single entity is trusted for

immediate privacy, trust in the Server is necessary for long-

term privacy. The idea for achieving everlasting privacy in

Demirel et al. [33] comes from Moran and Naor [48–50], and

the protocols therein suffer from the same weakness.

More recently, Pino [31] proposed a voting protocol to

deal with potential threats posed by quantum computers.

That protocol builds on [27], which uses cryptographic com-

mitments. In such protocols, privacy is information-theoretic

and is ensured so long as at least one single Authority is hon-

est, and integrity is guaranteed using cryptographic commit-

ment and zero-knowledge proofs, whose security is often

based on hard problems such as discrete logarithm, and can

be brokenwith quantum computers. Pino [31] developed new

commitment and zero-knowledge proof protocols whose se-

curity are based on hard problems involving lattices, so that

integrity can be ensured even when quantum computers

appear, so long as these problems remain hard.

We point out that previous work [31] is inadequate in

dealing with the threats that quantum computers pose to

today’s e-voting. First, quantum computers in the future can-

not retrospectively post threats to the integrity of voting

conducted today, since vote counting and verification are

performed in the present (assuming currently the adversary

does not already have access to quantum computers to break

the integrity). However, quantum computers in the future
post serious threats to the privacy of voting conducted to-

day. This is because the voting transcripts are often made

available to the public to enable verification of integrity and

correctness, but if the voting transcript contains ciphertexts

of votes under encryption schemes that can be broken by

quantum computers, then voting privacy can be compro-

mised in the future. This threat is not addressed by [31].

Second, when dealing with threats of future adversaries,

one has to also consider how the underlying communications

are protected. Most papers on voting protocols make the

standard assumption that communications between honest

parties are private. In practice, however, such communica-

tions are usually protected using standard computationally
secure cryptographic techniques, some of which are based

on the assumptions that certain problems are difficult to

solve. Such assumptions, however, might no longer hold in

the future, possibly in the face of new advancements in al-

gorithm design and quantum computers. This is true even

in the relatively new field of quantum-safe crypto
1
. Some

of the algorithms which are believed to be quantum-safe

today might turn out to be not as secure as expected in the

future. Hence, if one is concerned about future adversaries,

especially when the adversary can monitor all the commu-

nications, then simply encrypting all the networked traffic

might not be sufficient to assure voting privacy.

In order to better understand the threat of future adver-

saries to voting privacy, we propose a framework of adver-

sary models. There are two dimensions. The first is what

computational capabilities the adversary has, alongwhichwe

classify adversaries into current, future, and unbounded.
The second dimension is what the adversary can observe,

along which we classify adversaries into local and global.
(See Section 2 for details.) Composing these two dimensions

gives us a lattice of adversary capabilities. Our analysis sug-

gests that achieving privacy against the strongest adversarial

model, global and unbounded, is extremely difficult, if not im-

possible in practice. However, it is possible to achieve voting

privacy against the twomodels that are slightly weaker in the

lattice, namely, a local, unbounded adversary (who has un-

bounded computational power, but does not conduct global

eavesdropping), and a global, future adversary (who conducts

global eavesdropping, but is unable to break quantum-safe

crypto primitives used by the e-voting system).

Motivated by the principle of “current integrity; future pri-
vacy”, we design and implement an e-voting system dubbed

Koinonia, a Greek word that means “sharing”. The core

Koinonia protocol bears a resemblance to the protocol in [27],

however, we show that even simple additive secret sharing

scheme can be used to satisfy voting privacy needs in our

settings, which makes the solution easier to comprehend

and implement. Additionally, for integrity and correctness

guarantees, each ballot in Koinonia consists of cryptographic
commitments of a voter’s vote shares, as well as proofs that

the shares are well-formed. Koinonia achieves everlasting

(i.e., information theoretic) voting privacy, as long as at least

1
It is believed that quantum computers can only do limited damages to

many of today’s standardized hash and symmetric key algorithms, hence

most of the quantum-safe research focus on public-key crypto, including

the likes of digital signatures and key exchange algorithms.
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one Authority is honest, and the adversary does not see the

cleartext communication between a voter and this honest

Authority (either because the adversary cannot break the en-

cryption used to protect the communication, or when the ad-

versary becomes capable of breaking the encryption scheme,

the communication transcript no longer exists). We have

also enhanced the basic protocol to improve its robustness

against misbehaving entities.

The protocol in Koinonia is computationally efficient; only

a small number of modular exponentiations are needed for

each ballot. Verification of voting integrity can be conducted

by any parties with low computational cost. We have imple-

mented Koinonia and open-sourced the code
2
.

The contribution of the paper is as follows:

• We consider the threats of future adversaries to e-voting,

and identify a classification of possible adversaries. Using

this framework, we are able to identify weaknesses of ex-

isting attempts at providing long-term privacy in protocols

such as [33, 48–50].

• Our analysis suggests that a secret-sharing based voting

scheme is more natural and appropriate in handling the

threats of advanced future adversaries, especially in the

face of quantum computers and uncertainties regarding

the security of today’s computationally secure crypto al-

gorithms.

• We design and implement Koinonia, which uses an e-

voting protocol that achieves strong long-term privacy

guarantees, at a reasonably low cost of communication

and computation. Koinonia also allows anyone to verify

the final results.

The rest of our paper is organized as follows. Section 2

presents our framework of adversaries. Section 3 presents

the high-level ideas used in Koinonia. The Koinonia protocol
specification is given in Section 4, followed by descriptions

of our implementation and performance evaluation results in

Section 5. Related work is discussed in Section 6 and Section 7

concludes the paper.

2 AN FRAMEWORK OF ADVERSARIES
Intuitively, an e-voting protocol should hide how each in-

dividual votes. However, requiring that a voting protocol

leaks no information about how each individual votes is im-

possible to achieve, because the final vote outcome, which

is affected by each individual’s vote, must be public. This

problem becomes more acute when we consider that some

voters may be malicious or corrupted. In the extreme case,

suppose that all voters other than Alice are colluding, then

they can infer how Alice voted from the published vote out-

come and their own votes. Therefore, the best one can hope

to achieve is that a voting protocol reveals nothing beyond

2
https://github.com/gehuangyi20/Koinonia.

⟨дlobal ,unbounded⟩

⟨дlobal , f uture⟩

⟨дlobal , current⟩

⟨local ,unbounded⟩

⟨local , f uture⟩

⟨local , current⟩

Figure 1: Possible adversary models in terms of
message observation capabilities and computational
power

the aggregate of all votes from honest voters who follow the

protocol. This is formalized by requiring that the adversary

cannot distinguish between two worlds such that the only

differences between them are that honest voters vote dif-

ferently, subject to the constraint that the aggregates of the

honest voters are the same in both worlds.

While e-voting privacy has been studied quite extensively,

one aspect that has not been systematically analyzed is the

capabilities of the adversary. There are two dimensions. The

first is what computational capabilities the adversary has,

alongwhich we identify three classes of adversaries. The cur-
rent adversary is bounded by today’s computational power.

That is, we can assume that today’s widely used public-key

cryptography primitives, which are based on factoring and

discrete log, are secure. The next level-up future adver-

saries may have access to quantum computers and/or better

algorithms for breaking these primitives. Finally, we have

the computationally unbounded adversary, which models

the situation where even today’s quantum-safe crypto algo-

rithms turn out to be broken in the future.

The second dimension is what we assume the adversary

can observe. We categorize this into two levels. A local ad-
versary has access to all views of the parties involved in

the election, except for the honest parties who will follow

the protocol and not share additional information with the

adversary. A global adversary in addition has access to all

(possibly encrypted) communications between all honest

parties as well. Such an adversary is not unrealistic. Some

government agencies aim to monitor and store as much in-

ternet communications as possible. It is also easy to monitor

a small number of targeted users, since most likely the com-

munication channels are wireless. Figure 1 shows the lattice

of adversary models combining computational and commu-

nication access capabilities, ordered by strength.

Ideally, we want to achieve voting privacy against the

strongest possible (namely, ⟨дlobal ,unbounded⟩) adversary;
however, doing so is very difficult, if not impossible in a

https://github.com/gehuangyi20/Koinonia
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practicable setting. The reason is similar to why a commit-

ment that is both perfect hiding and perfect binding is im-

possible in the normal setting [30]. A global adversary can

observe all traffic from a voter.When the adversary is also un-

bounded, it can also decrypt all communications. (An excep-

tion is when an information-theoretically secure encryption

scheme such as one-time pad is used, which is impractical in

e-voting.) Thus the adversary sees all information sent by a

voter (which can be intended for multiple receivers). In order

for the election to be able to publish a result and produce a

proof of the correctness of the result, it must be possible to

interpret what the voter intends to vote from the combined

information sent by the voter. In that case, an unbounded

adversary should be able to discover what the voter votes as

well.

We aim at achieving voting privacy against slightly weaker

adversaries. First, consider the ⟨дlobal , f uture⟩ adversary,
which is assumed to be able to break number-theory based

public-key crypto, but not quantum-safe crypto. By applying

quantum-safe crypto to protect the communications between

the parties, one renders this adversary equivalent to a local

adversary.

The more interesting case is a ⟨local ,unbounded⟩ adver-
sary. We believe that privacy in this setting is important.

Such an adversary controls some parties in the voting pro-

cess and can see all information made available in the public

channel (such as a public bulletin board) and stores this in-

formation. When in the future quantum computers (or other

ways to break crypto) appear, the adversary can try to find

out retrospectively how the voters voted. There are two com-

mon ways of achieving voter privacy. One approach is to use

encryption, where one’s vote is encrypted, and the cipher-

text is sent to the Server. Either the encryption scheme is

homomorphic and can be decrypted in a threshold setting, or

mixing by multiple authorities is used to break the connec-

tion of an encrypted vote and its voter. The other approach

is to use secret sharing, where one’s vote is split into shares

and sent to a number of authorities. Either way, one has to

trust at least one authority is honest for privacy.

When we want to defend against a ⟨local ,unbounded⟩
adversary, it makes sense to use secret sharing instead of en-

cryption, for protecting voter privacy. In this setting, when

one’s vote is encrypted, then any party who sees the cipher-

text could potentially compromise the privacy in the future

(when crypto is broken). Therefore, instead of trusting at least
one Authority is non-malicious, one effectively must trust all
parties who have access to ciphertexts are non-malicious. On
the other hand, secret sharing schemes can be information

theoretic hiding, which is well suited for protecting privacy

in the face of a ⟨local ,unbounded⟩ adversary. While one can

also secret-share encrypted votes to prevent any single party

from obtaining the full ciphertext, the use of secret sharing

renders encryption unnecessary.

3 OVERVIEW OF KEY IDEAS
In this section, we present the high-level ideas behindKoinonia,
the e-voting software we designed and implemented, start-

ing with the parties involved in secret-sharing-based voting

schemes.

3.1 Sharing-based Voting Schemes
We consider the following parties:

• Election Service Provider (ESP).The ESP runs awebsite
in support of e-voting and provides a Bulletin Board,
which acts as a reliable broadcast channel.

• ElectionAuthority (EA). Each election has one EA,which
is in charge of maintaining a list of registered voters and

publishing information specific to that election.

• Tabulation Tellers. There are t > 1 tallying tellers, or

tellers,T 1,T 2, · · · ,T t
. They are involved in the voting and

tallying process. Voting privacy relies on the assumption

that at least one teller is honest and follows the protocol.

(A teller here is equivalent to what was referred to as

Authority in Section 1.)

• Voters. There are n > 1 voters, denoted as Vi where 1 ≤

i ≤ n. We overloadVi to also denote the id of the i’th voter.

We use subscript for voters and superscript for tellers.

ESP provides the software and platform for e-voting. One

ESP may be used to support many elections, each of which

may have its own EA.

In Koinonia, each vote is a vector of non-negative inte-

gers vi =
〈
vi,1,vi,2, . . . ,vi,c

〉
, where c is determined by the

election, e.g., the number of candidates in the election. In

most elections, each vi, j is one bit encoding a yes/no an-

swer for one question; for example, whether to support a

candidate for a position. Oftentimes, in an election, not all

integer vectors are valid selections. For example, there may

be three candidates, and each voter can vote for only one

candidate. We use the predicate valid to denote the condition

for valid votes; that is, valid(vi ) = ⊤ if and only if vi is a
valid selection vector for the election.

A voting scheme is specified by the follow-

ing algorithms (Setup,Vote,Verifyβ ,Verifyρ ,Verifyr,
Aggregate, TallyVerify). The three verification algorithms

Verifyβ ,Verifyρ ,Verifyr all output either ⊤ (indicating

success) or ⊥ (or failure). An election involves the following

interactions:

• ESP runs an algorithm Setup(λ), which on input a security

parameter λ outputs public system parameters Γ (including
q which is a large prime number). Γ is then published.

• EA publishes election information E, which specifies the

voting options such as the positions (e.g., president and
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secretary) and candidates per position, the list of tabulation

tellers (their online addresses and public keys), as well as

a list of voter ids that are legitimate voters.

Γ and E are implicit inputs to all algorithms below.

• Voter Vi , who wants to cast a vote vi , runs an algorithm

Vote(Vi , vi ), which outputs a vector

〈
βi , ρ

1

i , ρ
2

i , · · · , ρ
t
i

〉
.

The voter sends βi , whichwe call the ballot, to ESP. Ballots
contain auxiliary commitments of the vote used to achieve

correctness and robustness guarantees. VoterVi also sends
each ρki (which we call a vote share) to the teller T k

.

• Each teller T k
runs Verifyρ

(
ρki

)
on each received ρki , and

accepts it if and only if Verifyρ
(
ρki

)
= ⊤.

• ESP runs Verifyβ on each received ballot βi , and accepts

βi if and only if Verifyβ (βi ) = ⊤.
• ESP publishes and signs all accepted ballots, which we use

B to denote.

• Let Rk denote all ballot shares received by the k’th teller

T k
. Each T k

runs Aggregate(B,Rk ), which outputs rk . T k

sends rk to the ESP.

• On each rk , ESP runs Verifyr(B, r
k ) and accepts it if it is

valid. After ESP has accepted rk ’s from all tellers, ESP

publishes

〈
r1, r2, · · · , rt

〉
.

• Anyone can run TallyVerify
(
B,

〈
r1, r2, · · · , rt

〉)
, which

outputs either the vote outcome, which is a vector ∈ Nc

or ⊥, which denotes that the voting transcript is invalid.

As illustrated in Fig. 2, in voting schemes following the

above convention, the interactions between the voters and

the other entities, and between the tellers and the ESP are

minimal. Each voter, after having the election information,

computes the ballot and ballot shares without any interac-

tion with the ESP or the tellers, and then sends these out.

Each teller also computes the aggregates without interacting

with the ESP and only sends the ESP results in the end. This

enables proving voting privacy against the malicious adver-

sary (instead of the honest-but-curious adversary), since the

lack of interaction makes the two models equivalent in our

setting. Anything a malicious adversary can hope to learn

has to come from the messages computed by the honest

parties without being interfered by the malicious parties.

3.2 Using Secret Sharing
In [27], Shamir’s secret sharing is used for voting. Here we

replace it with simple additive sharing, which serves our

purpose. For simplicity, we consider a single election where

each voter Vi ’s vote is a single bit vi ∈ {0, 1}, and the final

election outcome is computed by

∑n
i=1

vi .
When voting, each voterVi splits her vote vi into t shares

by first choosing x1

i ,x
2

i , · · · ,x
t−1

i uniformly at random from

Zq , and then computing

x ti =
(
vi − x

1

i − x
2

i − · · · − x
t−1

i
)

mod q

Voter Vi Teller T k

ESP

❶ Compute ballot
and ballot shares

❷ Ballot share
❸ Ballot

❹ Compute
aggregates

❺ Results

Figure 2: A high-level view of voting schemes based
on secret sharing. Dashed lines show actions that en-
tities can take without interacting with others; Solid
lines show messages sent between entities. After the
initial election setup, such schemes typically require
only minimal interactions between entities for vote
casting and tallying.

Vi then sends xki , the k’th share of her vote, toT k
in a secure

channel.

Each teller T k
receives a number of shares from voters.

It then sends to the ESP the result of Aggregate, which is

X k =
∑n

i=1
xki mod q. The final outcome is

t∑
k=1

X k
mod q =

t∑
k=1

n∑
i=1

xki mod q =
n∑
i=1

t∑
k=1

xki mod q =
n∑
i=1

vi

Any party can do a modulo-q sum of these numbers and

recover the final outcome. After the voting finishes, each

voter and teller should remove from private storage all their

stored vote shares.

Note that given the voting outcome, the adversary can

figure out how the set of all honest voters voted as a whole;

however, assuming that at least one teller is honest, and

the adversary cannot decrypt the communication between

honest voters and the honest teller, even computationally

unbounded adversary cannot learn any additional informa-

tion.

3.3 Verifiable Teller Aggregates
Using only secret sharing does not provide any in-

tegrity/correctness guarantee. Any malicious voter, teller,

or ESP can manipulate vote outcomes. If a teller is malicious,

it can report an incorrect aggregate, e.g., adding or subtract-

ing some number from the reported aggregate. To prevent

this, each voter submits in the ballot cryptographic com-

mitments of all the shares. This ballot is published on the

bulletin board. When a teller publishes the aggregate, it also

needs to publish evidences that the aggregate is indeed that

of the shares in all published ballots.

Informally, a commitment scheme enables a party P to

commit to a value x by computing and publishing z = f (x ,y),
where y is a newly chosen random nonce. P can later “open”

the commitment by revealing x and y. The hiding property
of a commitment scheme requires that one cannot learn the

value x from z, and the binding property requires that P can-

not open the commitment using a pair of values x ′,y ′ such
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that x ′ , x . Both the hiding and binding property can be ei-

ther computational or unconditional (information theoretic).

However, it is impossible to have both unconditional hiding

and unconditional binding (in the normal setting [30]). For

Koinonia, we use the Pedersen commitment scheme [52],

which is given below.

Definition 1 (The Pedersen Commitment Scheme).

Setup A trusted third party chooses a group G of size q, a
generator д of the group G, and a random element h ∈ G
such that logд h is unknown.

Commit The domain of the committed values is Zq . To
commit to a value x ∈ Zq , one chooses a random nonce

y ← Zq and computes the commitment z = дxhy .
Open To open a commitment z, one reveals x and y, and
anyone can verify that z = дxhy .

The Pedersen commitment scheme is unconditionally hid-
ing: Even with unlimited computational power it is impos-

sible for an adversary to learn any information about the

value x from z. This commitment scheme is computationally
binding: Assuming that Discrete Logarithm is hard, it is com-

putationally infeasible for an adversarial committer to open

z = дxhy using x ′ , x . These two properties together make

the Pedersen commitment scheme well-suited for our needs

of future privacy and current integrity.
The Pedersen commitment scheme has the homomorphic

property. Given n commitments zi = дxihyi for 1 ≤ i ≤ n,
the product of these n commitments

Z =
n∏
i=1

zi =
n∏
i=1

дxihyi = д
∑
i xih

∑
i yi

is a commitment of X =
∑

i xi , and can be opened using X
and Y =

∑
i yi .

For each vote share xi , the voter Vi randomly chooses

yi , includes the Pedersen commitment zi = дxihyi in her

ballot βi , and sends both xi and yi to the teller. When the

teller reports an aggregated share X =
∑

i xi , it also reports

Y =
∑

i yi , and the ESP can verify that the aggregate (X ,Y )
is correct by invoking the Verifyr algorithm, which checks∏

i

zi = д
XhY

Since the Pedersen commitment scheme is information

theoretically hiding, the commitments of the shares leak

no information about the committed value; thus publishing

the ballots does not affect voting privacy against the most

powerful adversaries.

3.4 Proving Ballot Well-formedness
A malicious voter may try to cheat, by voting 2, 3, or more,

instead of 1, for a candidate. Since each teller sees only a

share of a vote, which reveals no information of the vote,

it cannot detect such cheating. To prevent such malicious

voter behavior, we require that each ballot have proofs that

the shares are well-formed. There are several different pos-

sible definitions of well-formedness. Typically, an election

requires that a vote for each candidate is either 1 or 0, that is,

the proof shows that the product of the commitments of all

shares for one candidate can be opened as either 1 or 0. Other

constraints such as “only one candidate among c candidates
can be selected” can also be established using proofs. This

would require a proof that the product of commitments of

vote shares for all candidates can be opened as a commit-

ment of 1. The techniques for doing these two proofs are

standard [26, 35, 52, 58]. We include descriptions for these

two proofs in Appendix B.1 & B.2.

Exactly which kinds of proofs are needed depends on the

actual requirements of a specific election, and is orthogo-

nal to the Koinonia protocol; however, voting privacy re-

quires that such proofs to be witness-indistinguishable [34].

A witness-indistinguishable proof (WIP) is a variant of a

zero-knowledge proof. In a typical zero-knowledge proof

of a statement, the prover will use a witness for the state-

ment as input to the protocol, and the verifier will learn

nothing other than the truth of the statement. In a WIP, this

zero-knowledge condition is weakened, and the guarantee

is that the verifier will not be able to distinguish between

provers that use different witnesses. In particular, the pro-

tocol may leak information about the set of all witnesses.

Unlike zero-knowledge proofs, WIP protocols remain secure

when multiple proofs are being performed concurrently. In

our context, a witness consists of the pair of a vote share x
and and a nonce y such that дxhy = z, and our privacy goal

requires that the proof does not enable one to distinguish

the usage of (x ,y) in the proof versus the usage of x ′,y ′ in
the proof where дx

′

hy
′

= z.
In Koinonia, such well-formedness proofs are included in

the ballots submitted to the ESP, and can be verified by ev-

eryone. This does not affect the everlasting privacy property

of Koinonia, as the proofs used by an election are witness-

indistinguishable, and reveal no information about the vote

shares and the secret nonces.

3.5 Robustness
A tellermay try to obstruct the tallying process by not submit-

ting aggregates, or submitting aggregates that are incorrect.

For example, a malicious party may register as a teller for the

purpose of obstructing the voting process. Such behavior can

be identified. If one desires to ensure that tallying can con-

tinue even in the presence of such tellers, each voter needs to

store the vote shares until the tallying phase finishes. After

a teller is identified as obstructing, the teller’s role needs to
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be replaced by a new teller or by the ESP, and having the

voters send their shares to the new teller.

We note that existing e-voting protocols are also vulnera-

ble to such a DoS attack. If homomorphic encryption is used,

and collaboration of multiple parties is needed to decrypt,

then one or more such parties can decide not to participate

in the protocol for decrypting voting results. This problem is

usually dealt with using threshold cryptography, so that not

allm parties are required to decrypt. So long as the number

of obstructing tellers is below a threshold, decryption can

continue. This, however, also means that the collusion of

fewer thanm parties can compromise vote privacy. In the

case of sharing a decryption key amongm parties, each party

possesses a piece of information that is not known to anyone

else. In our setting, the information possessed by a teller is

held by the voters, enabling the system to recover from an

obstructing teller; thus we choose to maximize privacy as-

surance and uses a simplem-out-of-m secret sharing, instead

of a k-out-of-m secret sharing.

A teller may try to obstruct in a more subtle manner. For

example, it may report an aggregate that does not include

some voters’ shares, and claim to have never received the

shares from the voters. This can be solved as follows. When

a voter submits a vote share x , noncey, and commitment z =
дxhy to a teller, the teller digitally signs ⟨z⟩ after verifying
that z = дxhy . This signature is then included in the ballot.

A ballot is valid only if it has signed acknowledgments for

share commitments. Thus for each share, the ballot needs

to include a commitment of the share as well as a signed

acknowledgment from the teller who receives the share.

If a teller does not provide a signature after receiving

the commitment, then the voter will immediately notice

that the process of submitting her vote is obstructed by the

teller. This needs to be resolved outside the voting protocol.

Obtaining the digital signatures ensures that after the ballot

is submitted, if a teller obstructs, then it can be identified as

obstructing.

3.6 Ballot Legitimacy
Given a list of all published ballots, together with vote share

aggregates from the tellers, everyone can verify that a vote

outcome is consistent with the published ballots. If one de-

fines voting correctness/integrity to mean just that, then this

can be achieved without the need to trust any of the parties

involved in the election. However, for the election result to

be correct, we also need ballot legitimacy, which we define
to mean that each of the published ballot is cast by an eligible

voter, and every ballot cast by an eligible voter is included

in the list.

Defending against the “missing ballot” attack. After

the election closes, the Election Service Provider (ESP), who

controls the bulletin board, publishes the list of all accepted

ballots. Each teller can then find all vote shares that corre-

spond to the commitments in the ballots, and compute their

aggregates. We note that it is possible that a small number

of vote shares are missing, as a voter may have started the

voting process and sent vote shares to some tellers, but did

not complete the voting process. However, if there are a

significant number of vote shares missing from the ballot,

then the teller can detect this. Also, each voter can check

whether her ballot is included in the tallying. Even if not all

voters actually perform the check, the fact that they can and

some of them do, should be sufficient to deter a malicious

ESP from intentionally not including a valid ballot. To be

able to identify whether the ESP is indeed to blame (and not

framed by malicious voters who submit all vote shares but

not the ballot), the voting process should require the ESP

to provide a signed receipt upon accepting a ballot. A voter

can choose to either perform the check herself, or send the

signed receipt to tellers to allow them to pursue the ESP if

her ballot is not included. Disputes regarding ESP obstruct-

ing an election by not issuing a signed receipt for a valid

ballot will be discovered immediately.

Defending against the “ballot stuffing” attack. Ensur-

ing that every published ballot is cast by an eligible voter

is more difficult. As entities such as ESP and EA can easily

play the role of voters and submit vote shares. To ensure this,

some mechanism is needed to authenticate ballots. This is

obviously needed if an election is not open to everyone. Even

if an election is open to everyone, somemechanism is needed

to prevent a voter from voting more than once. Exactly how

voter authentication is done is outside an e-voting protocol.

For example, the default setting of Helios requires the EA

to upload a list of allowed voters and their email addresses.

Then each voter registers with the ESP, proving ownership

of an email address on the list, before she can be allowed

to vote. However, trusting ESP for ballot authenticity seems

unsettling.

Another approach, which removes the trust on ESP, is for

each voter to submit her ballot to the EA, who verifies voter

identity, and then digitally signs the accepted ballot, which is

then published in the bulletin board. In this approach, trust is

shifted from the ESP to the EA. It might appear that trusting

the EA for ballot legitimacy is unavoidable, since after all EA

is the entity to decide the list of legitimate voters. However,

we argue this is not the case. When publishing the list of

eligible voters, cheating behavior by the EA will be detected,

and thus the EA is deterred from doing that. However, if

the EA signs each ballot that is not linked to any voter, this

cannot be detected.
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Another possibility is for the EA to publish a list of voters

together with their public keys (which can be a newly gen-

erated key specific to this voting, to provide pseudonymity).

Each voter then digitally signs her ballot, which is published.

This requires the existence of a public key infrastructure

(PKI) before an election starts.

Without a PKI, trust on ESP and EA can be shifted to

tellers. When the list of eligible voter email addresses is

made public, each teller can also verify ownership of email

addresses and accepts vote shares only from legitimate voters.

If it is required that each voter must send vote shares to all

tellers, then this removes trust in a single entity (ESP), and

replaces it with trust that at least one of the tellers is honest,

which is the same as the trust assumption for privacy.

What if one entity does not want to trust any of ESP, EA,

and tellers, for voting integrity/correctness? This is achiev-

able under the following conditions. First, the list of eligible

voters is public. Second, each ballot can be linked to one

voter, which can be contacted. Third, each voter can identify

one’s own ballot. To verify voting correctness, one can ran-

domly select a number of ballots in the published list, extract

the voter identities of them, and contact each one to confirm

that the published ballot on the list is indeed hers. Note that

this does not reveal how a voter voted, because the ballot

contains only commitments of shares.

4 THE PROTOCOL IN Koinonia
We now describe the protocol in Koinonia.

4.1 The Setup Phase

System Parameter Generation. The setup algorithm is

executed by the ESP and takes a security parameter λ as

input.

Setup(λ) = ⟨G,q,д,h⟩ , (1)

where G is a group consisting of q elements where discrete

logarithm is hard, д is a generator of G, and h is an element

of the group such that no party knows logд h. In our current

implementation, G,q,д are determined by choosing a stan-

dard Elliptic curve, and h is computed by hashing the string

“Koinonia”.

Voter Registration. The EA publishes election information

and the list of eligible voters. Let n be the total number of all

registered voters, the EA publishes:

⟨V1, · · · ,Vn⟩ . (2)

Tabulation Teller Registration. The EA publishes t Tab-
ulation Tellers, and publishes their network addresses and

public keys. 〈
T 1,PK1

; · · · ;T t ,PKt 〉 . (3)

4.2 The Voting Phase
As shown in Fig. 3, the voting phase involves voters, tellers,

and the ESP. For simplicity we focus on the interactions as

seen by a particular voter, Vi , involving only an arbitrary

teller, T k
.

Commitment Generation. Let c be the number of candi-

dates, and vi, j ∈ {0, 1} be Vi ’s vote for candidate j. Voter Vi
splits each votevi, j into t random shares: x1

i, j ,x
2

i, j , · · · ,x
t
i, j ∈

Zq by choosing, at uniform random, x1

i, j ,x
2

i, j , · · · ,x
t−1

i, j from

Zq , and computing

∀j ∈[1..c] x ti, j =
(
vi, j −

t−1∑
k=1

xki, j

)
mod q (4)

Vi chooses c ∗t nonce valuesy
k
i, j ’s at uniform random from

Zq , and constructs her matrix of commitments as follows:

Mi =

©­­­­«
z1

i,1=д
x 1

i,1hy
1

i,1 z2

i,1=д
x 2

i,1hy
2

i,1 · · · zti,1=д
x ti,1hy

t
i,1

z1

i,2=д
x 1

i,2hy
1

i,2 z2

i,2=д
x 2

i,2hy
2

i,2 · · · zti,2=д
x ti,2hy

t
i,2

· · · · · · · · · · · ·

z1

i,c =д
x 1

i,chy
1

i,c z2

i,c =д
x 2

i,chy
2

i,c · · · zti,c =д
x ti,chy

t
i,c

ª®®®®¬
(5)

In this matrix, the j’th row includes commitments for all

shares of Vi ’s votes for candidate j, and the k’th column

includes commitments of shares to be sent to teller T k
.

Sending Shares. Vi sends to T k
, via a secret channel,

ρki =
〈
X k
i ,Y

k
i ,Z

k
i

〉
, where X k

i = ⟨x
k
i,1,x

k
i,2, · · · ,x

k
i,c ⟩ con-

sists of secret shares of the votes for the c candidates,

Y k
i = ⟨yki,1,y

k
i,2, · · · ,y

k
i,c ⟩ are the nonces, and Zk

i =

⟨zki,1, z
k
i,2, · · · , z

k
i,c ⟩ are the commitments. Such a channel

can be established because T k
’s public key is published and

known to all voters.

The teller T k
verifies that the commitments in Zk

i are

indeed computed using values in X k
i and Y k

i , i.e.,

Verifyρ (X
k
i ,Y

k
i ,Z

k
i ) = ⊤ iff ∀j zki, j = дx

k
i, jhy

k
i, j (6)

If the verification succeeds,T k
storesX k

i ,Y
k
i ,Z

k
i , and sends a

digital signature of Zk
i to Vi . Let σ

k
i denote these signatures.

Constructing Well-formedness Proofs. Vi then con-

structs a proof Π that the commitments are well-formed.

As discussed in Section 3.4, what to prove depends on the

requirements of an election. For example, if the requirement

is that the vote for each candidate should be either 0 or 1,

and that Vi must vote for one and only one candidate, i.e.,∑c
j=1

vi, j = 1, then Π consists of the following two kinds of

proofs:

∀j ∈[1..c] πi, j

where πi, j is a proof that the product of the j’th row

inMi is a Pedersen commitment of either 0 or 1

(see Appendix B.2 for details about πi, j )

(7)
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Voter Vi

Teller T k

ESP

❶ Split votes into shares (eq. 4)
❷ Compute commitment
matrix Mi (eq. 5) ❸ The k ’th column of Mi (Zk

i )
| | secret shares (X k

i ) | | nonces (Y
k
i )

❹ Verify commitment Zk
i

with X k
i and Y k

i (eq. 6)

❺ Digital signature of Zk
i (σ ki )

❻ Construct proof of
well-formedness Π
(e.g., eq. 7 & 8)

❼ Ballot βi =
(
Vi , Mi , Π, σ 1

i , · · · , σ
t
i
)
(eq. 9)

❽ Verify βi is
well-formed

❾ Signed receipt (digital signature of βi )

❿ Signed receipt

Figure 3: The Voting Phase flow and messages exchanged between Voter, Tellers and ESP in Koinonia

πi,0 =
c∑
j=1

t∑
k=1

yki, j

where πi,0 is a proof that the product of all

elements inMi is a Pedersen commitment of 1

(see Appendix B.1 for details about πi,0)

(8)

Using πi,0, one can verify that

д1hπi,0 =
c∏
j=1

t∏
k=1

zki, j

This proves that a voter’s vote for all candidates sums up

to 1. Combining this with the condition that each vote for

every candidate is either 0 or 1, we can prove that any vote

is for one and only one candidate.

In our implementation of Koinonia, by default we assume

that the election allows null votes, that is, a voter can choose

not to support any candidates. In that case, Koinonia only
needs to support the proofs described by eq. (7).

Hence Vi ’s ballot consists of the following:

βi =
(
Vi ,Mi ,Π,σ

1

i , · · · ,σ
t
i
)

(9)

Submitting Ballot. Vi submits to the ESP her ballot βi . The
ESP runs Verifyβ , which verifies that βi iswell-formed, i.e.,
the voter is a valid voter, the signatures from the tellers are

valid, and the proofs are valid. Then the ESP publishes via

the bulletin board βi , and also signs βi and sends to Vi the
signature as a signed receipt. Vi sends the signed receipt to

all tellers.

4.3 Tallying and Verification
The tallying phase begins after the completion of the vot-

ing phase. As shown in Fig. 4, it mainly involves the ESP

and tellers. Results can be fetched and verified through the

bulletin board provided by the ESP.

Publishing Ballots. The ESP publishes the final list of all

accepted ballots.

B = ⟨βi , for i ∈ I+⟩ . (10)

Where I+ denotes all i’s such that Voter Vi ’s ballot βi is
included in the list of accepted ballots.

The Aggregate function. Each teller T k
first checks that

any ballot for which it has received a signed receipt is in-

cluded in I+. If not, it reports that the ESP is trying to exclude
ballots and produces the signed receipt as an evidence.

Each tellerT k
then computes the sum of the random shares

included in βi ’s for i ∈ I+〈(
X k
∗, j =

∑
i ∈I+

xki, j mod q,Y k
∗, j =

∑
i ∈I+

yki, j mod q

)
, for j ∈ [1..c]

〉
.

(11)

T k
sends (X k

∗, j ,Y
k
∗, j ) and its digital signature, signed by

T k
’s private key, to the ESP, who accepts it after verifying

that

∀j дX k
∗, jhY

k
∗, j =

∏
i ∈I+

Zk
i (12)

The ESP, after having accepted (X k
∗, j ,Y

k
∗, j )’s from all tellers,

publishes X k
∗, j ,Y

k
∗, j from all T k

’s and digitally signs them.

The final outcome can then be easily computed

X∗, j =
∑
k

X k
∗, j Y∗, j =

∑
k

Y k
∗, j (13)

Verification (the TallyVerify function). Each voter can

verify that her ballot is included in the list of accepted ballots.

Furthermore, even if a voter does not perform the check, so

long as the voter follows the protocol and distributes the

acknowledgment to all tellers, and at least one honest teller

follows the protocol and checks that the ballot is included,

omission of the ballot can be detected. Anyone can run the

following TallyVerify procedure using the published ballots

and aggregates as input.
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Teller
T k

Report

ESP
Bulletin Board
❶ All of the accepted
ballots (eq. 10)

❹ Xk
∗, j and Y k

∗, j from
all tellers (eq. 12)

❺ Final outcome
X∗, j and Y∗, j (eq. 13)

❷ ESP
excluded ballots?

❸ Sum of shares

2a Yes

2b No;
Compute
sum of
shares (eq. 11)

Figure 4: The Tallying Phase of Koinonia

• Check that the proof Π in each ballot βi is correct.
• Computes the final outcome (see eq. (13) above)

• Check that the final outcome for each candidate j ,X∗, j and
Y∗, j satisfies the following condition:

∀j дX∗, jhY∗, j =
∏
i ∈I+

t∏
k=1

zki, j (14)

• If any of the above checks fail, outputs ⊥.

4.4 Complexity of Koinonia
We analyze computational complexity for a voter, and for the

cost of verifying an election. We count the number of group

exponentiations since its cost dominates other computations.

Let c be the number candidates and t be the number of tellers.

In the ballot generation, a voter computes ct commitments

(eq. (5)), each of which requires 2 exponentiations. It also

needs to generate c proofs (eq. (7)) that a committed value

is either 0 or 1, each of which requires 3 exponentiations

(eq. (17) in Appendix B), and one additional proof on the

sum of all c votes. In our implementation, a voter can cast

null votes, so we need another proof of 0 or 1, and hence

2ct + 3c + 3 exponentiations in total. Alternatively, if the

election requires exactly one candidate to be chosen, then

the additional proof is a commitment of 1, which requires

only 1 exponentiation (eq. (16) in Appendix B). Thus, in total,

creating a ballot takes 2ct + 3c + 1 exponentiations.

To verify a proof that a committed value is either 0 or 1

takes 4 exponentiations, and verifying a proof that a com-

mitted value is 1 takes 2 exponentiations (eq. (18) and eq.

(16) in Appendix B, respectively). Hence verifying proofs in

a ballot needs 4c + 4 exponentiations if voters are allowed

to cast null votes, or 4c + 2 exponentiations if the election

requires each voter to choose exactly one candidate. Note

that the cost of verifying the aggregate shares published by

tellers are correct, when amortized over each ballot, is small

compared to that of verifying the well-formedness proofs of

each ballot.

5 IMPLEMENTATION AND
EXPERIMENTAL RESULTS

In this section, we describe our implementation of Koinonia.
We first show how it provides the capability of setting up

elections on servers (ESP, EA, and Tellers) and handling votes

from clients (Voters). We also discuss howwe provide flexibly

configurable secure communication channels as well as its

implications on privacy.

5.1 System Components
The Koinonia system is written in Node.js. ESP, EA, and
Tellers are independent server-side applications recom-

mended to be running on different machines. Clients will get

the Voter application from the Authority and execute it on a

Web browser. We use PostgreSQL on ESP, EA, and Tellers

as the database back-end for storing election data.

Koinonia Libraries. In Koinonia, ESP, EA, Tellers, and Vot-

ers share similar needs for protocol functions such as vote

share generation and proof verification. We thus built two

libraries, one for server-side and the other for client-side.

WebCryptoAPI [65] is a standard JavaScript API for per-

forming cryptographic operations in web applications. Al-

though WebCryptoAPI has already been supported by major

browser vendors, at the time of writing, it has a limited

number of cryptographic algorithms available, and does not

natively support expensive big integer operations such as

modular exponentiation. For ease of deployment, we imple-

mented a Koinonia library for Voter that is based on SJCL

[37, 62] and can run on typical web browsers, adding 500+

lines of JavaScript code.

Since cryptographic operations such as group exponentia-

tion are computationally expensive, we implemented some of

these functionally with native code as optimization for ESP,

EA and Tellers, as server-side applications allow a more flex-

ible deployment. Through Node.js C++ Addons, we added

1200+ lines of C++ code for wrapping around and routing

many cryptographic operations to OpenSSL for significantly

better performance. It initializes (eq.1) with an EC (Elliptic

Curve) scheme, which fixes the group G and generator д,
and a random EC point h = (x ,y) ∈ G generated based on

the digest of a common string (x ).

PKOV. Public Key Ownership Verification (PKOV) is a

challenge-response protocol to show the server owning the

public key under computational security. The client sends

a pseudo-random messagem to the server. The server com-

putes the digest d (using SHA-256) of the concatenation of

a prefix string “PKOV”, the messagem, and a 256-bit pseudo-

random salt encoded in Base64. Then, the server signs the

digestd with its private key. The server returns the signature,

salt, and public key. The client accepts the public key if the

signature verification is correct.

We run the PKOV protocol to retrieve the public key from

a remote server during the election setup phase (Section 4.1).

The PKOV protocol allows the server to choose asymmetric

keys independent from the X.509 certificates used in HTTPS,
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and allow one to experiment with new public-key crypto

that is not yet widely deployed in common browsers.

ESP. The ESP is a web server providing the software and

platform. One ESP may serve many EAs, who run different

elections. The ESP provides a Bulletin Board to accept the

well-formed ballot βi and return the digital signature to the

voter (see Fig. 3). The ESP is the only public channel to

broadcast the accepted ballots and the election final result.

EA. The EA is a web server which allows the election admin-

istrator to control the progress of an election. The election

administrator can use a browser to register an EA server on

the ESP to obtain an unique election ID for the newly created

election through the website hosted by the ESP. The ESP re-

trieves the public key of the EA using the PKOV protocol

before returning the election ID. The administrator creates

an election and registers teller servers that are to be used in

the newly created election on the EA with the election ID. It

is recommended that the administrator use only an internal

network to connect to the EA for the creation/administration

of elections.

In our current implementation, we use voters’ email ad-

dress and a 256-bit randomly generated voter ID to represent

their identity. The administrator publishes the election in-

formation (election positions & candidates), the list of valid

voter identities, and the list of teller servers with public keys.

The EA signs all published information before the election

opens. After an election is opened, the administrator sends

from the EA a voting link to voters through emails. Each

voting link contains the election ID, voter identity, and as-

sociated link digital signature. The digital signature in the

voting link is a secret to authenticate the voter submitting

the share and commitment to Tellers and the ballot to the

ESP.

Tellers. Each Teller T k
is a web server that accepts and

verifies (eq. 6) a vote share (X k
i ,Y

k
i ) and the associated com-

mitment (Zk
i , represented as an EC point) submitted by a

voter Vi . The teller signs Z
k
i with its private key and sends

the digital signature σk
i back to the voter Vi . X

k
i ,Y

k
i are en-

crypted using AES-CBC before storing in the database. The

encryption key is derived using PBKDF2 (Password-Based
Key Derivation Function 2) [42] from a startup password cho-

sen by the server administrator. We recommend the Teller

server administrator to be different from the election ad-

ministrator, the EA server administrator, and the ESP server

administrator.

In order for a Teller to serve an election, it has to be reg-

istered by the election administrator at the EA before the

election opens. The registration sends the election infor-

mation to the Teller server and retrieves the public key of

the Teller server by running the PKOV protocol. The Teller

server should retrieve the public key of the ESP and the EA

by running the PKOV protocol before returning its public

key to the EA.

Client. The voter uses the link received from the email to

access the voting page provided by the ESP. The voter selects

a candidate for each position and submits the vote.

On the client side (voter), the in-browser JavaScript gen-

erates the shares (eq. 4) and associated commitments (eq. 5)

for each Teller and sends the vote shares and commitments

to the Tellers via HTTP(S) requests. After receiving and ver-

ifying the signatures from all Tellers, the in-browser script

constructs proof of well-formedness Π (eq. 7) and send the

ballot βi (eq. 9) to the ESP. Note that NULL vote is accepted

so that πi,0 becomes a proof that a value of a commitment

of either 0 or 1. The in-browser script verifies signed re-

ceipt from the ESP and sends the receipt to one of the Teller

servers.

The in-browser script can be hosted either by a trusted

third party or by the ESP. The voter can run an offline script

to verify the ballot after the election closes.

System Parameters and Tuning. Our Koinonia imple-

mentation provides configuration flexibility, by allowing the

users to select appropriate security parameters to match their

specific concerns and security requirements. The system is

pre-configured with a default setting that is considered to

be reasonable under the computational power possessed by

future adversaries.

The ESP server administrator chooses the parameter λ
to initialize the Koinonia Library (eq. 1). We choose curve

secp256r1 [55], digest algorithm SHA-256, and “Koinonia” as
the common string in the experiment. The server adminis-

trator (ESP, EA, and Tellers) can use OpenSSL to generate a

private key which is recommended to be encrypted under a

key derived from a chosen server startup password. In the

experiment, we use EC key pairs with curve

Secure Communication and Long-term Privacy. Al-

though the commitment scheme used inKoinonia is designed
to be information theoretically hiding, however, if the com-

munications between voters and the ESP, EA, and Tellers is

being eavesdropped by a powerful ⟨дlobal , f uture⟩ adver-
sary, privacy can still be endangered. Thus, we use stunnel
to provide secure communication channels between com-

ponents. Stunnel provides a means of incorporating experi-

mental algorithms that are not standardized into typical web

browsers yet.

Specifically, with concerns about the possibility of a pas-

sive adversary monitoring enough of the current traffic and

try to break them in the future with advanced algorithms

or even quantum computers, we have incorporated Open
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Table 1: running time of Koinonia library based on an
election with one position (e.g. president), two candi-
dates, and three Tellers

Koinonia Library based on SJCL (sample size 30)

Voter

1. Generate MatrixMi (eq. 5) 146ms ± 8.1%

2. Generate Proof Π (eq. 7) 109ms ± 3.4%

3. Verify the Signature σk
i from the Teller T k

11.9ms ± 30%

4. Verify the Signature from the ESP 9.31ms ± 10%

5. Total Time (1+2+3×t (Number of Tellers) +4) 301ms ± 4.9%

Koinonia Library based on Node.js C++ Addons (sample size 10,000)

Teller

1. Verify Commitments Zk
i (eq. 6) 1.01ms ± 35%

2. Total Time for Accepting Zk
i 2.37ms ± 22%

(1 + Encrypt X k
i ,Y

k
i + Sign Zk

i + Verify the Sig-

nature of the Voter Identity)

ESP

1. Verify the Proof Π in the ballot βi 2.78ms ± 26%

2. Total Time for Accepting βi 5.77ms ± 27%

(1 +∀k , Verifyσk
i + Sign βi +Verify the Signature

of the Voter Identity)

Verifier

1. Verify Eq. 14 and the Proof Π in 10,000 Ballots

(run in 8 Threads)

6.7s

2. Total Time for the Verification (run in 8

Threads)

11s

(1 + ∀i,∀k , Verify σk
i + ∀i , Verify the Signature

of the Voter Identity)

Quantum Safe (OQS)
3
with stunnel to offer the possibility

of performing quantum-safe key exchange for the establish-

ment of TLS connections. Other known key exchange algo-

rithms, as supported by OpenSSL, can also be used. Like other
system parameters, the exact ciphersuite to be used for the

TLS connections can be configured by the users to address

their specific concerns. Users are free to choose classical key

exchange algorithms in favor of their maturity over the new

quantum-safe ones. An evaluation of the merits between

different algorithms is beyond the scope of this paper.

Since TLS is meant to provide end-to-end security, for

usability sake, we have implemented a client-side provision-

ing proxy for setting up the various TLS tunnels automati-

cally and multiplexing HTTP requests to the ESP and Tellers

through the correct tunnel.

5.2 Election Tallying and Verification

Share Publishing. After Admin closes the election, a list

of valid ballots are published on the ESP, the bulletin board.

On each Teller T k
, the server administrator runs an offline

script to discover the shares stored on the teller server by

using the 256-bit voter ID and the teller signature σk
i . The

script decrypts the X k
i ,Y

k
i from the filtered out shares and

computes (eq. 11). The script also checks that any ballot for

which a signed receipt has been received is included in the

3
https://github.com/open-quantum-safe/liboqs
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Figure 5: The Running Time of Koinonia Verification
With One Position (e.g. President) and Three Tellers.
Solid line shows the running time of verifying the
proof Π (Esq. 7 and (eq. 14). Dashed line shows the
running time taken by the solid line add with verifi-
cation time of the signature of the voter Identity and
σk
i signed by TellerT k . X ,Y axes are represented in log

scale.

published ballots. The teller deletes the share after finishing

the summation. After that, the script submits the summation

result X k
Û, j , Y

k
Û, j and its digital signature, signed byT

k
’s private

key, to the ESP.

Final Publishing. The ESP server administrator runs an

offline script which first verifies the signature of the summa-

tion results X k
Û, j , Y

k
Û, j and checks their correctness (eq. 12). The

script reports Tellers which try to submit incorrect results

and produces the signed result as evidence.

The script stores the final outcome XÛ, j =
∑

k X
k
Û, j and YÛ, j =∑

k Y
k
Û, j in the database, which will be immediately published

through the ESP website.

Verification. The verification program is implemented ac-

cording to Section 4.3. It is an offline script which can be

run by any third parties (e.g. voter or teller). The verification

program also provides an optional verification of the signa-

ture σk
i of the commitment Zk

i (signed by Teller T k
) and the

voter identity (signed by EA) for each ballot.

5.3 Performance Evaluation
We present the running time of Koinonia Library in Table

1 and show that the computation cost of our implementa-

tion is small, and the system can be deployed on commodity

machine
4
. In terms of storage cost, for an election with one

position (e.g. president), two candidates, and three Tellers,

the size of each ballot is roughly 2.6KB (kilobyte). This in-

creases linearly depending on the number of candidates and

4
The experiment runs on the machine with Intel Core i7-3770 3.40 GHz CPU

and 16 GB RAM, running Node.js v8.4.0, OpenSSL 1.1.0f, and PostgreSQL
v9.6.4.

https://github.com/open-quantum-safe/liboqs
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the number of Teller servers. Regarding total execution time,

the voter needs around 300 milliseconds to compute. Both

Teller and ESP servers can verify the voter’s submission

within about 5 milliseconds. It takes around 11 seconds to

verify the correctness of an election with 10,000 ballots (12

group exponentiations per ballot with 2 candidates).

We also measure the running time of the verification pro-

gram using simulation, with elections having one position

and three Tellers, 2 to 12 candidates, and 10,000 to 1 million

ballots (see Fig. 5). The verification time increases linearly

with the number of candidates and voters. Notice that the

verification of ballots is easily parallelizable. The verification

program running in 8 threads can verify the correctness of

an election given 1 million ballots, each containing 12 candi-

dates, within 1 hour. The optional verification of signature

σk
i (dashed line) adds a small overhead, depending on the

number of Tellers, on the original verification process (solid

line).

6 RELATEDWORK
In recent years, Internet-based voting has been utilized

in governmental elections around the world such as Esto-

nia [23, 24], New South Wales, Australia [13], Norway [38],

Switzerland [15], and Utah, USA [8]. Unfortunately, due to

the strict and conflicting requirements in voting [20], none

of the existing voting systems adequately addressed all the

challenges in e-voting [9, 36, 61]. Most of these systems focus

primarily on integrity and have not considered long-term

privacy as their main concerns.

E-voting protocols typically utilize the following crypto-

graphic techniques: mix-net [1, 3, 14, 16, 18, 19, 22, 29, 41, 45,

56, 57, 63, 66], homomorphic encryption [2, 4, 25, 27, 28, 40,

43, 47], blind signature [12, 17, 44, 51, 54] and secret shar-

ing based on polynomials [6, 7, 27, 59] or simple (n,n) secret
sharing [68]. Despite numerous previous work on everlasting

voting privacy [10, 11, 27, 32, 33, 46–50, 64], we note that the

adversary models under which these schemes can achieve

privacy could be different. For example, some systems re-

quire complex and contrasting assumptions in order to de-

liver privacy protections [5, 29]. Other attempts at achieving

everlasting privacy include [64] which combines ideas from

Punchscan [53] with Prêt à Voter [56], [32] which combines

Prêt à Voter [56] with unconditional hiding commitments,

and [46] which relies on membership proofs. Moran et al.
proposed an everlastingly private voting scheme [48] for

direct-recording electronic (DRE) voting systems, as well as

split-ballot voting [49, 50] for a conventional “voting booth”

setup.

Demirel et al. aimed to improve Helios [1] with everlast-

ing privacy [33], where each individual vote is encrypted

with the Paillier cryptosystem, and the tally correctness is

guaranteed by Pedersen commitments. However, under the

⟨дlobal , f uture⟩ and ⟨local ,unbounded⟩ adversary models,

this design suffers from the same problem of today’s en-

crypted information stored by the adversary might be used

to reconstruct plain votes in the future (e.g., when the de-

cisional composite residuosity assumption that the Paillier

cryptosystem relies on no longer holds).

Some protocols try to incorporate quantum-safe crypto

in e-voting. One such effort is EVOLVE [31]. EVOLVE

shares some similarities with Koinonia as it also uses a

simple (n,n)-secret sharing. However, EVOLVE relies on

a lattice-based homomorphic commitment scheme. Differ-

ent from Koinonia which uses Pedersen commitment and

is information-theoretically hiding, the lattice-based com-

mitment in EVOLVE, which is based on the (assumption of

the) hardness of M-SIS and M-LWE, is both computation-

ally hiding and computationally binding [31], and hence the

privacy guarantee is not as strong as that of Koinonia, espe-
cially in the face of ⟨дlobal , f uture⟩ and ⟨local ,unbounded⟩
adversaries.

The protocol closest in spirit to Koinonia is that by

Cramer et al. [27]. It uses Pedersen’s Verifiable Secret Shar-

ing scheme [52], which combines Pedersen commitment

with Shamir’s secret sharing scheme [60]. Instead of using

Shamir’s secret sharing scheme, we show that a simple addi-

tive secret sharing scheme, which is easier to comprehend

and implement, is sufficient for our privacy needs. We also

discuss the security considerations regarding communica-

tions among the entities in different adversary models.

7 CONCLUSION
In this paper, we consider the problem achieving strong

long-term privacy guarantees in e-voting protocols. We clas-

sify adversaries along two dimensions: local and global in

terms of what the adversary sees, and current, future, and

unbounded in terms of their computational ability. We argue

that voting protocols based on secret sharing offer a more

natural and elegant privacy-preserving solution than their

encryption-based counterparts. Motivated by the “current

integrity; future privacy” principle, we analyze the threats

posed by future adversaries to voting privacy today, and de-

sign and implement Koinonia, which combines a simple but

information theoretic hiding additive secret sharing scheme

with Perdersen commitments to achieve long-term privacy

and correctness guarantees. We also experimented ways of

using quantum-safe key exchange algorithms in protecting

the communication channels used by the entities in the pro-

tocol. Koinonia requires only modest computational costs to

operate. We consider handling other issues of e-voting like

voter coercion and vote selling as possible future work.
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A APPENDIX
B WITNESS INDISTINGUISHABLE

PROOFS OF BALLOT
WELL-FORMEDNESS

B.1 A Commitment of 1

To prove that a value z is a commitment of 1, i.e., one knows

y such that z = д1hy , one needs to prove the knowledge of
the discrete log of д−1z. This is a standard protocol, which is

obtained by applying the Fiat-Shamir heuristic to the Schnorr

protocol of knowledge of discrete logarithm.

To prove that one knows y such that z = д1hy , let H be

a one-way hash function, one randomly chooses r ←r Zq ,
computes d = hr , e = H (z,d), f = ((r − ey)mod q) and
publishes (d, f ). We write this as publishing

(d, f ) : r ←r Zq , d ← hr , e ← H (z,d),

f ← ((r − ey) mod q)
(15)

To verify, one computes e = H (z,d), and checks

d = hf
(
zд−1

)e
(16)

In the proof, the value e is the challenge. When running

in the interactive setting, the value e is generated by the

verifier. The protocol does not reveal the value y because

if the challenge e is generated first, then one can choose a

random f and then compute d that will satisfy the check (16),

without knowing the value y. When the prover follows the

https://github.com/bitwiseshiftleft/sjcl
https://github.com/bitwiseshiftleft/sjcl
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protocol, we have

hf
(
zд−1

)e
= hf +ey = h((r−ey) mod q)+ye = hr = d

Why this proves knowing y. The value e is an unpre-

dictable challenge, since it is the result of a one-way hash

function. Suppose that after one decides on d , one is able to
come up with f1 and f2 such that

hf1
(
zд−1

)e1

= d = hf2
(
zд−1

)e2

Then we know that

h(f1−f2)(e2−e1)
−1

mod q = zд−1

That is, one recovers y = (f1 − f2)(e1 − e2)
−1

mod q such that

z = д1hy .

B.2 A Commitment of either 0 or 1

To prove that a value z is a commitment of either 0 or 1,

we need to prove that one knows y such that д−bz = hy ,
without revealing y. We now give a non-interactive version

of the proof, which was given in [27]. Let
¯b denotes 1 − b.

The basic idea is that one conducts in parallel two proofs, for

knowing the discrete log of д−bz and д−
¯bz. Since one knows

only that ofд−bz, one has to cheat for the proof forд−
¯bz. One

does this by choosing the challenge e ¯b and then responding

to challenge eb , which is derived based on e and e ¯b . More

specifically, one publishes

(d0,d1, e0, e1, f0, f1) : r ←r Zq , e ¯b←r Zq , f ¯b ←r Zq ,

db ← hr , d ¯b ← hf ¯b (д−
¯bz)e ¯b ,

e ← H (z,d0,d1),

eb ← ((e − e ¯b ) mod q),

fb ← ((r − eby) mod q)
(17)

To verify the proof, one checks the following

e = eb + e ¯b mod q∧
db = h

fb
(
д−bz

)eb∧
d ¯b = h

f ¯b

(
д−

¯bz
)e ¯b

(18)

When the prover follows the protocol, we note that e = eb +e ¯b

mod q and d ¯b = h
f ¯b

(
д−

¯bz
)e ¯b

hold by setup, and we have:

hfb
(
д−bz

)eb
= hr−eby (hy )eb = hr = db
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