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Abstract 

The development of new vasculature plays a significant role in a number of chronic disease 

states, including neoplasm growth, peripheral arterial disease, and coronary artery disease, 

among many others. Traumatic injury and hemorrhage, however, is an immediate, often dramatic 

pathophysiologic insult which can also necessitate neovascularization to promote healing. 

Traditional understanding of angiogenesis involved resident endothelial cells branching outward 
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from localized niches in the periphery. Additionally, there are a small number of circulating 

endothelial progenitor cells which participate directly in the process of neovessel formation. The 

bone marrow stores a relatively small number of so-called pro-angiogenic hematopoietic 

progenitor cells (PACs) – that is, progenitor cells of a hematopoietic potential that differentiate 

into key structural cells and stimulate or otherwise support local cell growth/differentiation at the 

site of angiogenesis. Following injury, a number of cytokines and intercellular processes are 

activated or modulated to promote development of new vasculature. These processes initiate and 

maintain a robust response to vascular insult, allowing new vessels to canalize and anastomose 

and provide timely oxygen delivering to healing tissue.  Ultimately as we better understand the 

key players in the process of angiogenesis we can look to develop novel techniques to promote 

healing following injury.  

 
Keywords: hematopoietic stem cells, vascular endothelial growth factor, neovascularization, 

extracellular matrix, CXCL12, hypoxia-inducible factor, matrix metalloproteinase 

 

Introduction 

The development of new vasculature plays a significant role in traumatic injury and hemorrhage 

particularly during the acute phase of organ repair. Long-held theories concerning the 

development of new vasculature primarily focus on local endothelial and circulating endothelial 

progenitor cells. A cell of hematopoietic lineage stored in bone marrow, termed the 

proangiogenic hematopoietic progenitor cell (PAC), has also been identified that plays an 

important role in paracrine signaling and structural development of new vessels.(1, 2) This 

otherwise quiescent cell type interacts with a multitude of key signaling molecules both for 

storage and release as needed and is a key contributor to the development of needed vasculature 

in the post-natal human. The cascade of cytokine release and PAC mobilization is complex, 
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multifaceted, and tightly regulated by a number of important feedback loops. This cascade is 

particularly important in an abrupt deviation from homeostasis, as in the case of traumatic injury, 

particularly considering the immediately increased need for oxygen and nutrients by injured 

tissues.(3) Study of these HSCs may ultimately provide a better understanding of the varying 

healing potential of injured and severely ill patients. The purpose of this review is to: 1) 

summarize the process of angiogenesis at the level of neovessel formation, 2) identify key 

signaling molecules involved in the angiogenic process, and 3) identify how proangiogenic stem 

cells can improve outcomes following traumatic injury.  

Angiogenesis 

Embryology 

The human vascular system begins to develop around the seventeenth day of gestation. Clusters 

of primarily early erythrocytes are surrounded by vascular endothelial growth factor-positive 

endothelial progenitor cells (EPCs) in the yolk sac.  These EPCs will develop into endothelial 

cells, and ultimately coalesce to form tubes in a process termed vasculogenesis. As the 

responsibility for blood cell formation is transitioned from the yolk sac to the embryonic organs, 

these same organs become colonized with mature hematopoietic stem cells. Until the time of 

birth, the primary responsibility for the development and differentiation of hematopoietic cells 

lies with the liver before ultimately colonizing the bone marrow(4). As the embryo develops, the 

splanchnic mesoderm differentiates into a primitive vascular system. Further budding of the 

vascular branches – termed angiogenesis – subsequently occurs (5). Vasculogenesis in the 

developing embryo is subject to a number of regulatory pathways and molecules, including 

mechanical strain(6), fibroblast growth factors and associated tyrosine kinase receptors(7), as 

well as specific cell adhesion molecules such as VE-cadherin and Ang-2(8).   
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Conditions Precipitating Angiogenesis and the Vascular Extracellular Matrix 

Angiogenesis is the result of a complex cascade of signaling molecules and cell-cell interactions. 

In a physiologic state, normal human endothelial cells are closely connected via vascular 

endothelial cadherin (VE-cadherin) at adherens junctions, and occludin and JAM-1 at tight 

junctions. These junctions form a transendothelial barrier against the free passage of ions, 

solutes, and lipids from the apical to basolateral cell surfaces.(9) They also provide the basis for 

imperative cell-cell functions which allow the endothelial cell, under the appropriate conditions, 

to quickly sprout new cells in a direction of need.(10, 11) Transgenic mice with knockout of 

genes encoding involved proteins – for example-catenin(12) – demonstrated impaired 

endothelial maturation, vessel fragility, and disorganization that was frequently incompatible 

with life.   

The pathophysiologic conditions under which angiogenesis occurs vary – i.e. wound healing, 

cancer, hypoxia, etc. – but the cellular mechanisms underlying the eventual sprouting of new 

vessel structures have commonalities. Microvascular permeability to plasma proteins appears to 

be a relatively early event in the formation of new vessels. As have been described, both inter-

endothelial and trans-endothelial passages are opened as a downstream effect of vascular 

endothelial growth factor (VEGF) signaling. This allows the translocation of proteins necessary 

for the scaffolding of the fibrin-rich extracellular matrix.(13) As endothelial cells begin to 

migrate into the surrounding extracellular matrix (ECM), a number of key molecules exert strong 

effects on proliferation and tubulogenesis. Fibronectin, an ECM protein, is upregulated from its 

otherwise barely detectable concentration in angiogenetic pathologies.(14) Endothelial cells 

involved in neovascularization have demonstrated unfolding of fibronectin to create a 
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pericellular network of fibrils, which supports organization and migration of tubular cells in a 

type I collagen-dominant extracellular matrix.(15, 16) 

Another group of molecules key to maintaining perivascular homeostasis are laminins. Laminins 

are a group of polymers containing three polypeptide chains - , , and , giving rise to 16 

different isoforms, each with tissue-specific functions.(17) The 4 subunit, in particular, plays a 

critical role in interacting with integrins, namely v3 and 31, all of which serve to interact 

with endothelial cells and promote angiogenesis.(18) These molecules, present in the vascular 

basement membrane, have shown important roles in maintenance of vessel homeostasis as well, 

particularly in settings of homeostasis and fluid shear stress.(19) Laminin, type IV collagen, 

fibrin, and other factors make up the perivascular ECM which provides the initial scaffolding 

through which new vessels may form. 

The Process of Angiogenesis 

Angiogenic endothelial cells are generally characterized as either leading “tip” cells or trailing 

“stalk” cells. Tip cells, selected by Delta-like 4-Notch1 signaling and induced to angiogenic 

activity by VEGF-A, lead the way into the vascular basement membrane (vBM).(20) Notch 

signaling has been shown to not only identify tip cells, but keep stalk cells in position and 

prevent development of tip-like behavior. Maintaining cells in a stalk position is crucial for 

lumen formation and connection to existing vasculature as the new vessel sprouts and 

migrates.(21) 

In order to sprout new vasculature, angiogenic cells must first penetrate and degrade the vBM. 

Recent evidence using an in vivo model of transgenic and knockout mice demonstrated that 

endothelial cells, after sensing angiogenic signals, develop podosome rosettes, which are capable 

of invading and degrading the vBM.(22) This appears to be the key initial step in development of 
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new tubular vascular branches. Recent evidence shows that podosome formation coincides with 

loss of perivascular type IV collagen in a VEGF/Notch-dependent pathway.(23) 

Following entry into the basement membrane, proangiogenic endothelial cells are tasked with 

proliferation and new tubule formation, followed by maturation. Relatively little is known about 

the migration of endothelial cells in a three-dimensional matrix. Endothelial cells have been 

shown to migrate in functionally distinct patterns depending on the concentration of certain 

structural substrates in the surrounding migration matrix. In dense Matrigel, endothelial cells 

demonstrated an elongated pattern depositing dense ECM with migration, whereas in fibrillar 

collagen I-dominant matrix (notably lacking laminin), the cells take on a rounded shape of 

amoeboid-type migration with significant intracellular blebbing noted.(24) As cells migrate, 

endothelial cell interactions with ECM components promote tube formation. Laminin-511, 

particularly the 5 short arm, has demonstrated activity for both endothelial cell attachment and 

tube formation in vitro.(25) Hemodynamic stress within existing vessels, coupled with lumen 

formation in angiogenic sprouts prior to connection, result in a tightly regulated expansion of 

existing vasculature into new territory.(26, 27) 

As new vessels sprout, cell-cell signaling continues to play a crucial role, not only for 

maintenance of homeostasis but tight control of cells moving around one another and developing 

appropriate polarity. Appropriate apico-basal polarity is essential for tubule formation by 

migrating endothelial cells, a key part of a multistep process to allow branching endothelium to 

carry blood products.(28) During sprouting, VE-cadherin integrity at cell-cell junctions once 

more plays a crucial role. VE-cadherin is phosphorylated and translocated from the cell 

membrane in settings with high VEGF and/or Notch concentration.(29) This variability allows 
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cells to jostle position in areas of need while maintaining the structural integrity of the existing 

vascular structure.  

Angiogenesis in the Healing Process 

When tissue is injured, the initial angiogenetic response results in a surge of capillary growth that 

is orders of magnitude more dense than uninjured tissue. This occurs by the process described 

above and is mediated in accordance with the surge in cell signaling molecules that will be 

described in later sections. Capillaries sprout quickly and are subsequently pruned to create 

mature vasculature for the delivery of adequate oxygen and nutrients to the healing bed. This is 

correlated with a decline in circulating proangiogenic factors and allows secondary stages of 

healing to begin. Indeed, the argument can be made that the angiogenic response to injury results 

in wounds that heal with marked fibrosis. The resulting massive surge in capillary density may 

promote local inflammation to an unnecessarily robust degree.(30) 

Clinically, a great deal of attention has been paid to understanding and optimizing wound healing 

and angiogenesis. While the key steps remain consistent – that is, migration into and through 

extracellular matrix, tube formation, maturation, and anastomosis – conditions that cause a 

global alteration of physiology such as polytrauma, induce a cascade of cell signals which can 

induce or impair any or all of those steps of angiogenesis. We will subsequently discuss those 

signals, as well as their known or presumed role in the development of new vasculature.  

Cells Involved in Angiogenesis 

Endothelial outgrowth involves two general types of precursor cells which fall under the 

umbrella of endothelial progenitor cell (EPC). The first, termed the late-outgrowth endothelial 

colony forming cell, is a relatively differentiated, committed endothelial cell that is used to form 

new or repair damaged endothelium. These cells, in response to angiogenic signals, align in tip 
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or stalk roles as described above to facilitate the outward branching of existing vasculature. The 

second cell type, proangiogenic hematopoietic progenitor cells (PACs), serve to stimulate and 

enhance angiogenesis via paracrine mechanisms. These PACs are frequently bone marrow-

derived cells released into circulation via a variety of signaling cascades.(31) 

Flow cytometry has been utilized to elucidate the extracellular markers specific to PACs, and 

while the particular cell surface signature of these molecules has been known for some time, 

their function is continually being described. The most frequent cell surface protein signature 

used to identify circulating proangiogenic hematopoietic-lineage cells is 

CD34+CD133+VEGFR2+.(32, 33) Peichev, et al., demonstrated a distinct cell lineage of 

CD34+CD133+VEGFR2+ cells which formed a neo-intima on left ventricular assist devices, 

thereby uncovering a crucial role in angiogenesis.(34) Data has demonstrated that CD33+CD45+ 

cells are of hematopoietic-restricted lineage, and do not differentiate into endothelial cells proper 

to form new blood vessels.(35) Nevertheless, this signature of cell surface proteins does appear 

to identify a group of phenotypically distinct hematopoietic cells which participate in postnatal 

angiogenesis.  

Hematopoietic progenitor cells stored in bone marrow migrate into the periphery in the setting of 

traumatic hemorrhage. They have been shown to be a potential marker for mortality following a 

major traumatic event.(3) Proper identification of these cells - as well as the associated 

circulating stimuli for release - may not only yield prognostic information, but may also allow 

for cellular therapies to be developed for rapid revascularization following organ injury.(36) 

 

Maintenance of Quiescent PACs 

At steady state, there exists a delicate cellular signaling interplay that serves to maintain a supply 

of pro-angiogenic hematopoietic progenitors. The first of these cell surface molecules is C-X-C 



Copyright © 2020 by the Shock Society. Unauthorized reproduction of this article is prohibited.  

chemokine motif ligand 12 (CXCL12). CXCL12 is a chemokine mutually exclusive to the seven 

transmembrane G-protein coupled receptor CXCR4, which is expressed on bone marrow-derived 

hematopoietic stem and progenitor cells. Bone marrow stromal cells express CXCL12 at steady 

state, which promotes maintenance of CD34+/CD38-/low HSCs in mice.(37, 38) This has been 

shown in mice to promote maintenance of bone marrow HPCs and HSCs.(37) When the 

CXCL12-CXCR4 axis is compromised, both maintenance and migration of HPCs are impaired. 

When the CXCL12-CXCR4 axis is impaired, PAC maintenance and migration are both 

impaired. AMD3100 is a specific inhibitor of CXCR4 that competes with CXCL12, multiple 

studies have demonstrated that administration of AMD3100 resulted in rapid mobilization of 

hematopoietic progenitor cells from bone marrow to peripheral circulation.(39) This includes 

early PACs with long-term repopulation potential. (40-42) Bach, et al., demonstrated that 

antagonism of CXCR4 with AMD3100 in pigs who sustained polytrauma resulted in a sharp 

increase in circulating CXCL12 levels, suggesting a regulatory feedback loop.(43) Indeed, a 

recent study has demonstrated the imperative role of the CXCR4-CXCL12 axis in HPC 

maintenance, as well as homing for repopulation of bone marrow after myeloablation.(44) With 

this understanding of the key player in HPC maintenance, we can look at contributors to 

migration, particularly in the setting of traumatic injury, that serve to mobilize this cohort of 

proangiogenic cells when required.  

 

Mobilization of HPCs from Bone Marrow Niche 

Perhaps more intricate than the cellular interplay required for HPC maintenance, a number of 

cytokines and chemokines function to mobilize these cells when called upon.(Figure 1) These 

cyto/chemokines frequently have multiple functions as it relates to the immediate healing 
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process. Each will be discussed both generally and as it relates specifically to the mobilization of 

HPCs from the bone marrow. Traumatic injury itself is not an entirely unique physiologic 

phenomenon. Many of the cellular responses to injury parallel those of other well-studied 

processes, including shock and sepsis.  

Following traumatic injury, plasma levels of circulating CXCL12 increase with even higher 

concentration adjacent to the site of injury in humans.(45)Elevation of CXCL12 after trauma is 

similarly observed in patients with severe sepsis/septic shock.(46) As stated above the CXCL12-

CXCR4 axis is crucial to interaction with bone marrow-derived HPCs. While it may serve to 

promote steady-state quiescence, it also serves as a key homing molecule when proangiogenic 

cellular precursors are needed in an extramedullary capacity – namely at the site of injury. Akin 

to interaction with HPCs, inhibition of the CXCL12-CXCR4 axis impaired migration of bone 

marrow-derived mesenchymal stem cells.(47) The ligand is able to cross the bone marrow 

endothelium and reach the endosteum, interacting with early PACs and hematopoietic stem cells 

(HSCs).(48) Jin, et al., demonstrated in a mouse model that platelet-originated CXCL12 

enhances neovascularization by its interaction with CXCR4+ cells of hematopoietic lineage.(49) 

(Figure 2) 

To fully understand the role of CXCL12, an attempt should be made to understand additional 

downstream factors that are affected when it is upregulated. One such factor is matrix 

metalloproteinase 9 (MMP-9). MMP-9 belongs to a family of zinc endopeptidases that function 

at a physiologic pH to degrade ECM. The proenzymes are cleaved via thiol-modifying reagents, 

heat, chaotropic agents, and various other proteases.(50) MMP-9 has been shown to result in 

elevated CXCL12 levels, and reciprocally CXCL12 increased MMP-9 concentration in bone 

marrow cells.(51) Increases in circulating MMP-9 concentration have been observed following 
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traumatic insult.(52-54) This is quite similar to studies demonstrating the increase of MMP-9 in 

patients with sepsis.(55-57) MMP-9 release has been shown to be associated with endotoxemia 

and hematopoietic cell migration from bone marrow to peripheral organs.(58)The broad 

degradative function of MMP-9 results in a number of downstream effects. With regards to 

blood vessel development, the importance of MMP-9 begins with embryonic vasculogenesis. 

Theodore, et al., demonstrated that MMP-9 inhibition in zebrafish resulted in decreased tail 

vascularity and increased numbers of PACs within caudal hematopoietic tissue.(59) Post-

embryologically, endothelial cells create and release several matrix metalloproteases, including 

MMP-1, MMP-2, MMP-9, and MT1-MMP. The shedding of membrane vesicle-associated 

components containing MMP-2, MMP-9, and MT1-MMP comes about as a rapid response to 

angiogenetic signals.(60) The ECM-degrading property of MMPs acts locally to break down 

perivascular ECM and well as distantly to mobilize HSCs and proangiogenic HPCs. MMP-9 has 

been shown in mice to affect migration of PACs from the quiescent to the proliferative niche via 

release of soluble Kit-ligand (sKitL). This allows PACs to rapidly respond to BM suppressive 

insult and repopulate myeloid and lymphoid progenitor cell lineages after significant 

mobilization into the periphery.(61) By distilling this expansive degradative function, we can 

deduce that MMP-9 is not only key for angiogenesis at the level of local vascular injury, but also 

for disruption of HPCs in a quiescent state, thus promoting mobilization into the periphery. 

A third key molecule involved in both maintenance and mobilization of PACs is transforming 

growth factor-beta (TGF). TGF is a pleiotropic polypeptide that has a role in processes from 

embryological development to wound healing. TGF also exerts powerful, variable effects on 

angiogenesis. Firstly, it plays an important role in the transformation of HSCs into endothelial 

cells.(62) The receptor with which local TGF is interacting appears to play an important role in 
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determining the function of this molecule. Activation of ALK5 generally favors stabilization in 

new vasculature, while activation of ALK1 favors sprouting.(63) In the course of inhibiting 

angiogenesis, TGF has demonstrated a dose-dependent inhibition of SMAD2, Notch pathway, 

and VEGFR2.(64) 

Besides direct effects on angiogenesis at the site of new vessel development, TGF also acts in 

the bone marrow to induce quiescence in hematopoietic stem and progenitor cells. Recent 

research has identified the interaction of TGF with activation of downstream plasminogen 

activator inhibitor (PAI)-1 as important in the maintenance of PACs residing within the bone 

marrow niche. With this axis inhibited, PACs demonstrated MT1-MMP-dependent motility 

patterns and egress from bone marrow.(65) 

Following traumatic injury, circulating levels of TGF have been shown to be elevated, peaking 

on post-injury day 3.(66) This is thought to contribute to the transient immunosuppression that 

occurs following trauma, but may also have an effect on responsive angiogenesis with the 

ALK5-dependent inhibition of PACs and angiogenic endothelial cells. Additionally, TGF 

exposure has been shown to induce formation of endothelial podosome rosettes both in vivo and 

in vitro, which allow invasion into perivascular basement membrane.(67, 68) The precise role of 

elevated TGF on the mobilization of PACs from bone marrow remains unclear, however the 

role of this cytokine at the site of neovascularization is well-described.  

Like TGF, vascular endothelial growth factor (VEGF) plays a role in both PAC mobilization 

and angiogenesis. Regarding the former, VEGF receptor 2-positive (VEGFR2+) endothelial cell 

forming unit concentration in peripheral blood increased in response to VEGF administration, 

suggesting the importance of VEGF in releasing proangiogenic progenitor cells from the bone 

marrow. This interaction appears to be MMP-9 dependent, as MMP-9-/- did not demonstrate the 
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same response to VEGF.(61)Similarly, depleted expression of VEGFR-2 via adeno-associated 

virus-mediated CRISPR-associated endonuclease has been demonstrated to inhibit angiogenesis 

in vitro.(69)VEGF levels following traumatic injury have been observed to be insignificantly 

altered; however, sVEGFR1 was positively correlated with injury severity score (ISS). 

Alternately, sVEGFR2 was negatively correlated with ISS. This finding is consistent with acute 

lung injury in sepsis, with multi-organ downregulation of VEGFR2 genes noted in experimental 

critical illness.(70)While not as overtly pro-angiogenic as VEGFR2, VEGFR1 is shown to be 

related to pathological angiogenesis (i.e., ischemia, tumorigenesis) as it is expressed on 

endothelial cells.(71, 72) 

Krüppel-like factor-10 (KLF-10) is a member of the zinc-finger family of proteins with diverse 

regulatory function, including that of osteoblasts, hepatocytes, and bone marrow-derived 

progenitor cells. KLF-10 targets the VEGFR-2 promotor in HSCs with pro-angiogenic behavior. 

Pro-angiogenic cells derived from the bone marrow demonstrated strong expression of 

transforming growth factor beta 1 (TGF-β1)-responsive KLF-10, according to Wara et al. 

Functionally, KLF-10 knockout resulted in impaired blood flow recovery in murine hind limb 

ischemia models.(73) Insofar as reconstitution of the endothelium, KLF-10 has been shown to be 

integral to the mobilization of pro-angiogenic precursor cells from the bone marrow, such that 

KLF-10-/- mice demonstrate significantly impaired re-endothelization of injured carotid arteries 

after BM transplantation. To further investigate this phenomenon, the authors of this study 

evaluated the presence of other essential chemokines in BM HSC maintenance and migration. 

KLF-10-/- mice had impaired expression of CXCR4, which is imperative to maintenance and 

homing of PACs as previously discussed.(74) 
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Other members of the Krüppel-like factor family, including KLF-2, KLF-4, KLF-5, KLF-6, and 

KLF-15 have demonstrated a role in angiogenesis through various other pathways. KLF-2, which 

is expressed on mature endothelial cells and upregulated in response to stress, has demonstrated 

ability to rejuvenate circulating proangiogenic cells, thereby promoting angiogenesis in times of 

need.(75) KLF-4 has been shown to activate VEGF signaling to stimulate angiogenesis.(76) 

KLF-15 acts via activation of the bone morphogenetic protein endothelial cell precursor-derived 

regulator (BMPER) pathway to stimulation new vessel growth.(77) KLF-5 appears to act by a 

variety of pathways, including VEGF, PAI-1, and PDGF, among a host of others.(78) 

Taken in sum, these factors – CXCL12, MMP-9, TGF, and VEGF – which frequently arise 

from the site of injury or directly adjacent circulating cells, work in concert to promote 

angiogenesis and mobilize distantly-stored key PACs to aid in this healing process.  

The Nervous System and PAC Maintenance and Migration 

In addition to egress of PACs from bone marrow stimulated by circulating cyto/chemokines, the 

autonomic nervous system has been shown to play a key role in maintaining and releasing PACs 

and stem cells from bone marrow niches. This is critical, as the sympathetic nervous system is 

acutely upregulated in response to traumatic injury and neuroimmune modulation is crucial to 

response and recovery.(79)In addition to chemokine-related steady state maintenance of PACs 

within the bone marrow niche, PACs have been shown to express neurotransmitter receptors in 

various quantities. Kalinkovich, et al., showed that more primitive CD34+CD38(-/low) cells 

express higher levels of neurotransmitter receptors, namely dopamine and β-adrenergic 

receptors. This is in concert with the high degree of sympathetic innervation of the bone marrow, 

which stores a large amount of dopamine.(80) When sympathetic tone is altered or dopamine 

conversion to norepinephrine is inhibited, egress of PACs from bone marrow when treated with 
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granulocyte-colony stimulating factor (G-CSF) has been shown to be markedly impaired.(81) 

Macrophages also have the ability to modulate catecholamine release in the bone marrow, thus 

mobilizing PACs.(82) Méndez-Ferrer, et al., demonstrated that circadian norepinephrine release 

by the sympathetic nervous system controlled CXCL12 expression, which fluctuated in counter 

to concentration of PACs in peripheral blood.(83)  The importance of β-adrenergic signaling in 

CD34+ cell maintenance and migration has been studied, as engraftment of progenitor cells, 

motility, and proliferation are all increased with greater neurotransmitter exposure.(84) 

Nerve growth factor (NGF) is a polypeptide first identified in the 1950s, noteworthy in this 

context for its ability to induce growth and differentiation in the developing embryo neural 

system. A review published in 1987 by Levi-Montalcini identifies this as a key function, and it 

has been further studied in nerves and non-nerve cells alike.(85, 86) With regards to 

angiogenesis, Cantarella, et al., demonstrated interaction with trkA and p57 proteins present on 

human umbilical vein endothelial cells. NGF was found to promote angiogenesis and endothelial 

cell proliferation in vivo.(87) Notably, NGF has been shown to be produced by microvascular 

endothelial cells in the human dermis, with potential implications for healing following traumatic 

injury.(88) Additionally, NGF has been shown to stimulate aorta endothelial cell migration via 

PI3K-dependent and ERK-dependent pathways, migrating according to an NGF gradient.(89) 

NGF and VEGF have been shown to have similar effects on the cardiovascular and nervous 

systems, respectively, and research is ongoing into the synergy between these two 

molecules.(90) 

Altered Systemic Physiology Resulting in PAC Mobilization 

In addition to the cellular response to and release of the cytokines and chemokines in the 

previous section, local and systemic physiologic changes following injury and shock result in 
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mobilization of distant PACs. The first of these is hypoxia. Hypoxia itself results in the release of 

bone marrow-derived PACs into circulation.(91) In addition to this direct effect, hypoxia induces 

the formation and stability of hypoxia inducible factor 1 (HIF-1). The ⍺ subunit of HIF-1 is 

constitutively produced and rapidly degraded in normoxic conditions. In the setting of hypoxia, 

this degradation is halted and tissue and plasma concentrations are increased, and HIF-1⍺ 

subsequently heterodimerizes with the HIF-1β subunit.(92)HIF-1 is closely linked with 

angiogenesis, and numerous studies have demonstrated its importance in angiogenesis in disease 

states including cancer, lung injury, and traumatic brain injury.(93)HIF-1, when bound to 

hypoxia response elements, induces transcription of VEGF, angiopoietin 1 (ANGPT1) and 

ANGPT2, placental growth factor, platelet derived growth factor B, and in total greater than 2% 

of genes encoded by endothelial cells.(94)This results clinically in a compensatory response of 

the vasculature.(95) This has been shown in the setting of sepsis, wherein HIF-1 upregulation 

was essential to endothelial repair in inflammatory lung injury.(96)Insofar as it is related to bone 

marrow-derived HSCs and CXCL12, the increased concentration of HIF-1 may lead to 

upregulation of CXCL12 and increased interaction with CXCR4+ PACs. The ⍺ subunit of an 

alternate isoform of HIF - HIF-2⍺ - has been shown to enable bone marrow derived cells to 

overcome CXCL-12/CXCR4 retention signals, thus increasing migration from marrow into 

circulation, as in the migration of plasma cells in multiple myeloma.(97) 

In addition to upregulation of HIF, hypoxia upregulates erythropoietin, a hypoxia-regulated 

glycoprotein which has been extensively studied for both its endocrine effects on erythropoiesis 

and autocrine/paracrine effects in hypoxia. EPO exerts a chemotactic effect on endothelial cells 

and functions as a proangiogenic factor much like VEGF or FGF, a phenomenon that has been 

well-described since at least 1990.(98-100) Moreover, EPO interacts with human mesenchymal 
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stem cells to augment angiogenesis, as well as activation of MMP-2.(101)In addition to 

erythropoiesis, Heeschen and colleagues demonstrated that EPO increased the number of 

circulating endothelial progenitor cells and hematopoietic stem cells capable of participation in 

angiogenesis. Santhanam, et al. demonstrated that this process is critically dependent on 

endothelial nitric oxide synthase (eNOS).(102, 103) Endothelial progenitor cells in the presence 

of EPO show increased survival and efficacy in the setting of pulmonary vascular repair, and 

ultimately demonstrated improved pulmonary vessel angiogenesis.(104) Furthermore, EPO 

administration following dermal injury resulted in increased microvessel density at the site of 

injury.(105) EPO is a potent stimulator of erythroid and hematopoietic progenitors from the bone 

marrow niche, including cells identified as proangiogenic hematopoietic progenitor cells, and has 

been shown to be elevated following traumatic injury. Overall, administration of EPO has 

demonstrated improvement in survival following traumatic injury.(106) Conferring survival 

benefit, particularly at the vessel and microvessel level, is a phenomenon that is also seen in 

murine models of LPS-induced acute kidney injury, and speaks to the multi-receptor effects of 

this molecule.(107) 

 

Conclusion 

Rather than considering angiogenesis as occurring within a small, tightly regulated portion of 

existing endothelium, research has demonstrated that a small number of circulating and bone 

marrow-derived cells of hematopoietic lineage facilitate and augment angiogenesis. These cells 

respond to similar signaling cascades, home to areas of need, and play a crucial role in both 

signaling and new vessel development. The role that PACs play in the physiologic response to 

system dysfunction – as in the setting of traumatic injury – is an active area of research. 
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Augmenting the activity of these cells has the potential to improve vascularization of healing 

wounds, transiently ischemic tissues, and injured solid organs. Our goal is to identify 

pharmacologic or mechanistic means of improving host response to injury and blood vessel 

formation at areas of greatest need. Much in the way pro-hematopoietic cytokine administration 

(i.e. EPO) has improved survival in trauma patients, we hope to utilize an understanding of the 

factors in PAC mobilization to identify alternative methods to improve trauma patient survival.  

Future Directions 

As our understanding of the imperative role of endothelial progenitor cells and pro-angiogenic 

hematopoietic stem cells increases, applications including vascularizing mechanistically 

constructed tissues allow a peek into possible roles for further evaluation of vascular 

structures.(108) Identification of PACs allows new technologies to emerge which dramatically 

enhance how we understand wound healing and oxygen/nutrient delivery.  We may then begin to 

develop targeted therapies for patients in which angiogenesis is key to post-traumatic healing and 

overall survival.  
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Figure Legends 

Figure 1. Representative flowchart depicting the numerous cellular processes that ultimately 

result in the release of PACs from bone marrow and the eventual sprouting of neovasculature at 

the site of injury.  
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Figure 2. Schematic representation of post-traumatic angiogenesis. A) site of injury; B) Native 

vasculature at injury site. Circulating platelets contribute to angiogenesis via the release of 

CXCL12, while adjacent cells at the level of injury release MMP-9, TGFβ, and VEGF to aid in 

vascular development and recruit additional cells; C) At the level of neovascularization, the 

budding vessel forms a podosome rosette, led into the vascular basement membrane via 

endothelial “tip” cells, with “stalk” cells providing progressive support; D) At the level of the 

endothelial cell, occludins, Jam-1, and VE-Cadherin support the intercellular barrier, adjacent to 

a vascular basement membrane (vBM) composed of pericam, nidogen, and laminin, supported 

by a Type IV collagen scaffold; E) Erythropoietin is released from the kidney in response to the 

heterodimerization of HIF-2.   
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Table 1. Review of key signaling molecules in angiogenesis and mobilization of proangiogenic 

HSCs. 

 

Name Function in 

Angiogenesis 

Site of 

Production/Rele

ase 

Observed Response to 

Injury 

Experimental 

Results 

Matrix 

metalloprotein

ase family 

Degradation of 

ECM in 

advance of 

angiogenic 

sprouting. 

Disruption of 

ECM of bone 

marrow HSC 

niche. 

Endothelium Elevated(52-54) Inhibition 

causes 

decreased 

vascularity in 

zebrafish (59) 

C-X-C 

chemokine 

motif ligand 12 

(CXCL12) 

Maintenance of 

cells in 

CXCR4+ niche. 

Disruption 

leads to 

migration of 

HSCs from 

distant niche. 

Constitutively 

expressed on 

bone marrow 

stromal cells 

Elevated, 

particularly when 

CXCL12-CXCR4 

axis impaired (43, 45, 

109) 

AMD3100 

administration 

results in rapid 

mobilization of 

PACs to 

periphery in 

mice and 

humans (40-42) 

Hypoxia-

inducible 

factor (HIF) 

Degradation 

inhibited in 

response to 

hypoxia; 

upregulation of 

key cytokine 

transcription 

Endothelium Elevated with 

ischemia(93, 96) 

Key 

transcription 

induction, aids 

bone marrow 

derived cells in 

overcoming 

CXCL12-

CXCR4 bond 

(94, 97) 

Erythropoietin 

(EPO) 

Erythropoiesis, 

chemotaxis of 

proangiogenic 

factors, 

maintenance 

and promotion 

of EPCs 

Kidney, in 

response to 

hypoxia (110) 

Elevated(111, 112) Increased 

circulating 

endothelial 

progenitors and 

PACs via 

eNOS-

dependent 

pathway, 

autocrine/paracr

ine effects on 

angiogenesis 

(98, 102, 103) 

Transforming 

growth factor 

Low level: 

promotion of 

Broad 

expression, 

Elevated(66, 114) Lower doses 

promote new 
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(TGF) neovascularizati

on 

Maintenance of 

HSC niche 

including 

inflammatory 

cells and 

endothelium(11

3) 

vessel formation 

(115), maintain 

quiescent HSCs 

(65) 

Vascular 

endothelial 

growth factor 

(VEGF) 

Endothelial 

homeostasis 

and 

maintenance of 

vascular 

permeability 

Mobilization of 

proangiogenic 

HSCs 

Broad 

expression, 

including 

endothelium(11

3) 

Elevated(71, 72) MMP-9-

dependent PAC 

release, act via 

progenitor cells 

to induce wound 

healing (116) 

Krüppel-like 

factor (KLF) 

Mobilization of 

pro-angiogenic 

precursors 

Activation of 

VEGF 

signaling 

cascade 

Ubiquitous in 

bone marrow, 

broadly 

expressed 

throughout 

body(113) 

Unknown KLF-10: induce 

mobilization of 

PACs from 

marrow (73); 

KLF-4: activate 

VEGF signaling 

(76) 

Sympathetic 

nervous 

system/Nerve 

growth factor 

HSC 

mobilization 

from bone 

marrow 

Throughout the 

body consistent 

with 

sympathetic 

nervous system 

Hyperactive/elevated

(79, 88) 

PACs express 

dopamine/-

adrenergic 

receptors (80), 

Circadian 

norepinephrine 

release controls 

CXCL12 

expression (83) 

 


