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Abstract

Gas-phase ion/ion chemistry was coupled to ion mobility/mass spectrometry analysis to correlate 

the structure of gaseous ubiquitin to its solution structures with selective covalent structural 

probes. Collision cross section (CCS) distributions were measured to ensure the ubiquitin ions 

were not unfolded when they were introduced to the gas phase. Aqueous solutions stabilizing the 

native state of ubiquitin yielded folded ubiquitin structures with CCS values consistent with 

previously published literature. Denaturing solutions favored several families of unfolded 

conformations for most of the charge states evaluated. Gas-phase covalent labeling via ion/ion 

reactions was followed by collision induced dissociation of the intact, labeled protein to determine 

which residues were labeled. Ubiquitin 5+ and 6+ electrosprayed from aqueous conditions were 

covalently modified preferentially at the lysine 29 and arginine 54 positions, indicating that 

elements of three-dimensional structure were maintained in the gas phase. On the other hand, most 

ubiquitin ions produced in denaturing conditions were labeled at various other lysine residues, 

likely due to the availability of additional sites following methanol and low pHinduced unfolding. 

These data support the conservation of ubiquitin structural elements in the gas phase. The research 

presented here provides the basis for residue-specific characterization of biomolecules in the gas 

phase.

Graphical Abstract

Caption: A gas-phase ion/ion reaction covalent modification and ion mobility/mass spectrometry 

workflow for determining three-dimensional structural information.
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Introduction

Characterization of protein structures is critical for understanding their function.1 The 

development of “soft” ionization mass spectrometry in proteomics led to assays capable of 

preserving non-covalent bonds as proteins transition from solution to the gas phase.2–3 

Therefore, a branch of biological mass spectrometry referred to as ‘native mass 

spectrometry’ (native MS) has rapidly expanded, driven by the implicit hypothesis that 

specific interactions formed by biomolecules in solution can be maintained under carefully 

controlled conditions for MS analysis in the gas phase.4 Applications of native MS, ion 

mobility/mass spectrometry (IM/MS), and tandem MS (MS/MS) involve probing proteins to 

obtain information such as higher order subunit architecture, stoichiometry, shape, and 

sequence information.5–7

Ion/ion reaction chemistries have been exploited for analytical applications since the 

beginning of the adoption of electrospray ionization (ESI), using mass spectrometers as the 

gas-phase analog to the chemist’s wet bench.8–11 The increasing use and versatility of 

ion/ion reactions within the past half-decade has resulted from the development and 

commercial availability of novel instrumentation equipped to perform such experiments.12 

Covalent labeling analyzed by mass spectrometry (CLMS) is an example of a reaction that 

has been transferred from solution13–15 to the gas phase.16–19 Covalent modification by gas-

phase ion/ion reactions relies on long-lived complex formation between oppositely charged 

protein and reagent. In addition to containing an electrostatically ‘sticky’ group (e.g., 

sulfonate or phosphate), reagents for covalent modification require a reactive site that will 

undergo chemical reactions with the analyte ion. Several examples of nucleophilic addition, 

utilizing electrophilic reagents such as reactive esters, have been successfully applied.20 

Solution CLMS provides insight about protein conformations,21 dynamics, and amino acid 

residue reactivity and microenvironment.22 CLMS, conducted in a tandem mass 

spectrometer through ion/ion reactions, has the advantages of independent control/

optimization of reactant species, well-defined reaction conditions, reagent purification 

through mass-to-charge isolation, and tandem MS capabilities in conjunction with ion/ion 

reactions.12 Hence, ion/ion covalent labeling coupled to IM-MS/MS can, in principle, 

provide for the three-dimensional characterization of gaseous protein ions.23–24

Though most CLMS approaches have relied on ‘bottom-up’ proteomics, utilizing enzymatic 

digestion to enable the identification of modification sites, the ‘top-down’ approach in 

proteomics was developed in order to obtain primary structural information directly from the 

gas-phase dissociation of intact protein ions without the need for extensive separations or 

digestion prior to MS/MS analysis.25 During a typical ‘top-down’ experiment, protein 

identification is made by analyzing the sequence fragments of intact proteins from tandem 

MS, which allows for the examination of the entire amino acid sequence, thereby 
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characterizing intact proteins and identifying the number and type of post-translational and 

other modifications in various so-called proteoforms.26

Solvent-free, gaseous proteins can maintain their solution structures with careful control of 

experimental parameters.27–29 Pioneering studies from the laboratories of David Clemmer 

and Michael Bowers revealed that ubiquitin solution structures can be preserved as 

kinetically trapped intermediates in the gas phase after evaporative cooling associated with 

the electrospray process. Their data suggested minor structural changes occur during 

desolvation of low charge states ions (z ≅ 7) for native-like conformations, and unfolded 

gas-phase structure happens for higher charge states (z ≅ 13) caused by rapid unfolding (<10 

ms).30 Additional studies evaluated the abundance of different conformations of ubiquitin in 

the gas phase as a function of methanol content in solution, where the native state was 

favored in aqueous solutions and more elongated states of ubiquitin were dominant in 

solutions of 20:80 water:methanol content.31 The importance in revealing the behavior and 

overall structure of native proteins in the gas phase is a consequence of the increasing 

number of MS-related techniques applied in the field of structural biology.32 Hence, it is 

essential to evaluate protein structures in vacuo after their transition from solution into the 

gas phase with tools of higher structural specificity than ion mobility alone.

In this study, we focus on the three-dimensional characterization of gaseous protein ions 

with CLMS performed completely inside the mass spectrometer. The structures of gaseous 

ubiquitin generated from both aqueous and denaturing conditions were evaluated using 

ion/ion chemistry, top-down tandem mass spectrometry, and ion mobility-derived collision 

cross section measurements. Covalent labeling reactions between ubiquitin and sulfo-

benzoyl-1-hydroxy-7-azabenzotriazole ester (HOAt) were performed in the trap cell of a 

quadrupole IM-MS. The reaction results in the formation of amide bonds with primary 

amines and guanidine in the gas-phase. The protein ions are covalently modified by multiple 

additions of the reagent, separated by ion mobility, and fragmented with mass analysis of the 

fragmentation products. Mass shifts in the sequence fragments due to the covalent addition 

of the sulfo-benzoyl moiety allow for the identification of covalently labeled sites. The 

results demonstrate the power of combining collision cross section and covalent labeling 

approach to detect changes induced by solution conditions, with measurements conducted 

entirely in the gas phase.

Experimental

Materials.

Methanol, N,N-dimethyl formamide (DMF), and formic acid were purchased from Fisher 

Scientific (Fairmont, NJ). Ubiquitin from bovine erythrocytes, myoglobin from horse heart, 

cytochrome c from equine heart, and ammonium acetate were purchased from Sigma-

Aldrich (St. Louis, MO). 1-Hydroxy-7-azabenzonitrazole (HOAt) was purchased from TCI 

America (Portland, OR). 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride 

(EDC) was purchased from Thermo Scientific (Rockford, IL). 3-Sulfobenzoic acid 

monosodium salt was purchased from Alfa Aesar (Ward Hill, MA).
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Sample Preparation.

For the experiments performed in denaturing conditions, ubiquitin was dissolved in a 

50/50/0.1 vol/vol solution of water/methanol/formic acid at 1 μM. For analysis using 

aqueous conditions, ubiquitin was dissolved in an aqueous 10 mM ammonium acetate 

solution at 1 μM. The reagent used for the ion/ion reactions, sulfobenzoyl-HOAt, was 

synthesized following a previously published procedure.33 The calibrant mix used for CCS 

calculations consisted of 1 μM ubiquitin, cytochrome C, and myoglobin in 50:50:0.1 (v/v) 

solution of water/methanol/formic acid.

Traveling Wave Ion Mobility Spectrometry – CCS Calibration.

Calibration of drift time measurements to known collision cross section values is necessary 

for traveling wave-type IM instruments that use time-varying electric fields within the drift 

region. Traveling-wave drift times were calibrated by measuring TWIMS profiles of a 

calibrant mix for each set of experiments following a previously published protocol.34–36 A 

calibration curve (Fig. S3) was obtained by plotting natural logarithm of the nitrogen CCS to 

charge ratios versus the calibrant ion drift times.36 The data was fit with a power function of 

the form given by Equation 1 where CCSN2 is the calibrant nitrogen CCS value, z is the 

charge state of the ion, and td is the drift time.

ln CCSN2/z = atdb Equation 1

Nitrogen TWIMS CCS values were determined from measured drift times according to 

Equation 2.

CCS = z * eatd
b

Equation 2

The CCS values were reported as the average obtained from triplicate measurements in 

Table S1. The instrument settings used in CCS measurements and ion/ion reactions are 

summarized in Table S2. All the CCS calibration calculations and results were reported as 

recommended by recently introduced criteria.37

Mass Spectrometry and Ion/Ion Reactions.

Experiments were performed on a Synapt G2-Si High Definition Mass Spectrometer (Waters 

Corporation, Wilmslow, U.K.) furnished with electron transfer dissociation (ETD) and a 

NanoLockspray source. The instrumental arrangement for the ion/ion reactions performed 

has been previously described.38 Briefly, the source contains two nanoelectrospray (nESI) 

probes positioned normal to each other and the sampling cone. The nESI baffle was 

removed. Sequential anion (sulfobenzoyl-HOAt) and cation (ubiquitin) ionization was 

enabled by a WRENS (Waters Research Enabled Software) script coupled with ETD mode 

to synchronize ion injection with the polarity of the instrument optics and ETD refill times 

(1s each) for reagent and cation fills, respectively. Infusion flow rates were 500 nl/min or 

lower.

The control sequence consists of injecting ions through the stepwave region with m/z 
isolation in the quadrupole. Anions are trapped in the trap cell in the first step, followed by 
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introduction of a specific analyte (cationic) charge state (again, m/z isolated by the 

quadrupole) into the trap. Next, reaction products are pulsed out of the trap, separated by 

their mobilities, and then traverse the transfer cell where the transfer collision energy is 

increased allowing for collision induced dissociation after the reaction products exit the 

mobility cell. Thus, ion/ion reactions products and their sequence fragments share identical 

drift times since fragments were not generated until after IM separation. Ions were mass 

analyzed by the time-of-flight mass spectrometer in Resolution Mode (nominal resolving 

power of 20,000 FWHM). Tandem mass spectra were internally calibrated against the 

monoisotopic mass of the y18
2+ fragment ion from ubiquitin (m/z 1049.0997).

Data Analysis.

Mobility-selected mass spectra were extracted with the instrument control software 

MassLynx V4. Extracted mass spectra were converted into .mgf (Mascot Generic Format) 

files and imported into Mash Explorer,39 where spectra were deconvoluted by the eThrash 

algorithm40 with a S/N threshold of 3, peak background ratio of 1, peptide minimum 

background ratio of 1, and minimum isotopic fit % of 80. The covalently modified and 

unmodified CID fragments obtained for all experiments were investigated against the 

ubiquitin primary sequence by applying custom PTMs equal to the mass of the covalent 

modification formed by the ion/ion reactions (i.e., 182.98 Da) at the N and C termini. 

Covalently modified peaks were annotated with a mass error tolerance of 20 ppm.41 The 

annotations were then manually confirmed.

Results and Discussion

Protein Mass Spectra.

The ions produced by nESI ionization of ubiquitin from both aqueous and denaturing 

conditions exhibit characteristic distributions (Fig. S1) when analyzed with the “softest” 

conditions that allowed enough ion transmission to collect mass and mobility spectra (Table 

S2). A profile of high m/z signals with lower charge states (i.e., 6 ≥ z ≥ 4) peaks for 

ubiquitin was observed for the sample sprayed from aqueous conditions. A distribution of 

higher charge state peaks (13 ≥ z ≥ 5) with considerably higher relative intensities was 

obtained using denaturing conditions. The charge state distributions suggest that ubiquitin 

ions electrosprayed under aqueous conditions have a compact solution structure, as 

supported by the literature.32, 42 The compact native state of ubiquitin has a limited number 

of amino acid residues accessible for protonation. On the other hand, the higher charge states 

exhibited for denaturing conditions are evidence of the disruption of the tertiary structure of 

ubiquitin.43–45 The observed transition in charge state distributions indicates that methanol 

induces structural transitions for ubiquitin.

Gas-Phase Ubiquitin Conformations in the Trap Cell from Native and Denaturing 
Conditions.

To compare ubiquitin conformations generated from different solution conditions, calibrated 

collision cross sections were measured for each of the charge states that was investigated by 

covalent labeling with both denaturing and aqueous conditions (Table S1). The experimental 

conditions applied for CCS calibration and ion/ion reactions were identical (with exception 
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of the gas flows into the helium and mobility cells) and are summarized in Table S2. 

Ubiquitin conformers originating from aqueous and denaturing conditions were assessed by 

converting the peaks in the ion mobility arrival time distributions (ATDs) to CCS values, 

allowing for the characterization of ubiquitin populations that undergo ion/ion reaction 

chemistry. Thus, we are chiefly concerned with the ion populations present in the trap cell 

prior to the ion mobility separation, as these are the populations directly probed by the 

ion/ion reactions. Therefore, we minimized the trap and mobility voltages to prevent 

unintended activation. The %CV values for the calibrated CCS values measured on three 

different days were less than 2.5%. Figures 1A and 1B show the ATDs for ubiquitin 5+ and 

6+ in aqueous and denaturing conditions. In solution, aqueous conditions of ubiquitin favor 

the N-state (native state) while the partially unfolded so-called A-state is dominant in 

solutions containing 40% methanol or more.46–48 Ions generated from aqueous conditions 

presented a narrow structural region with similar cross section values (TWCCSN2 – 1193 Å2 

and 1233 Å2, for ubiquitin 5+ and 6+, respectively) corresponding to compact 

conformations.49 For aqueous ubiquitin 6+ a minor peak is present at ~1371 Å2, which is 

likely composed of partially folded states. Previous reports of the 6+ charge state generated 

from solutions of ubiquitin in aqueous ammonium acetate with ATDs measured by both drift 

tube and TWIMS instruments also display this feature.34, 50 The presence of these states is 

best explained by the increase in Coulombic repulsion from the additional proton bound to 

the 6+ charge state versus the 5+, as the 5+ charge state lacks this more extended feature.31 

Similarly, the distribution for ubiquitin 5+ in denaturing conditions (Fig. 1) displays a 

distribution of compact ions (~1228 Å2) that extends into the region corresponding to 

partially folded ions (~1333 Å2). Ubiquitin 6+ in denaturing conditions gives a broad 

distribution (from ~1300 Å2 to 1900 Å2) that can be related to multiple stable, elongated 

forms. Although this distribution is broad, there are 2 features with maxima at ~1398 Å2 and 

~1676 Å2, corresponding to a partially unfolded intermediate state and partially unfolded 

structure arising from the A state, respectively. Figure S2 presents the CCS distributions for 

all charge states of electrosprayed ubiquitin ions from aqueous and denaturing solutions. The 

distributions for ubiquitin 7+ and 8+ prepared in denaturing conditions are dominated by 

relatively sharper features at ~1834 Å2 and ~1906 Å2, respectively. Sharper features in 

protein ATDs indicate that the ion conformer population is collapsed into relatively few 

stable structures that exist over a narrow region of the available cross section space and 

appear as a result of protein unfolding.50

Characterization of Gaseous Ubiquitin Structures with Ion/Ion Reactions.

Covalent modification of ubiquitin via ion/ion reaction in the gas phase.—
Covalent bond formation occurs via ion/ion reactions by a three-step process: 1) Formation 

of a stable, long-lived electrostatically bound complex; 2) Activation of the complex; and 3) 

Dissociation of the leaving group from the complex. The first step is completed by trapping 

both reagent anions and protein cations in the trap cell. A minimal amplitude trap traveling 

wave (< 0.2 V) is used to promote better mixing and, in effect, increases the effective 

reaction time.51 The product is observed by a shift in m/z equal to a reduction in charge by 

the number of reagents electrostatically attached and an increase in mass equal to the 

molecular mass of the reagent. Next, the complex is activated. The pressures and voltages 

from the source and into the trap cell were kept identical to the conditions used for our CCS 
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measurements to prevent gas-phase unfolding prior to the ion/ion reaction. Thus, the protein 

ions that were labeled structurally correlate with the observed arrival time distributions and 

CCS values. The transition state for a covalent reaction between a model amine and 

sulfobenzoyl-HOAt has been calculated to be 17.4 kcal/mol higher in energy than the 

electrostatic product.33 The sulfonate is expected to be electrostatically attached to a 

protonated arginine, lysine, or histidine residue. The proton transfer barrier for transfer from 

guanidinium to sulfonate was calculated to be 61 kcal/mol and for transfer from ammonium 

to sulfonate was calculated to be 28 kcal/mol higher in energy than the complex. Since 

collisional activation on a mass spectrometry timescale is kinetically controlled, enough 

collisional energy must be applied to form the covalent reaction transition state but not high 

enough to result in proton transfer without covalent bond formation or fragmentation of the 

protein.

Though the application of this energy may lead to coulombically-driven unfolding of the 

protein, the strong electrostatic “anchor” holds the reagent in place. The through-bond 

distance from the reactive carbonyl carbon to the sulfonate oxygens in the reagent is 

approximately 6.4 Å. Thus, the reactive side chain must be close by the charged anchoring 

residue (i.e., on the surface of the protein) and a reactive nucleophile. Therefore, though 

collision-induced unfolding or intramolecular proton transfer may occur during the 

activation of the complex, these processes are not expected to affect the ability of the ion/ion 

reaction to report on surface accessible regions of the protein that are nearby external, 

protonated side chains. The fact that the reagent to protonated side chain noncovalent bond 

is not fragmented under these conditions illustrates that the applied activation to form the 

covalent product is mild. The applied collisional energy will drive off the weakly-bound 

leaving group after the covalent product is formed. The covalent reaction is observed by a 

decrease in m/z equal to neutral loss of the leaving group.

Ion/ion reactions were used to probe the gas phase microenvironment and relative reactivity 

of lysine and arginine side chains in ubiquitin cations formed from the aqueous and 

denaturing solutions. Previously, histidine was found to only react with low energy 

activation applied over long time periods.33 These conditions cannot be accessed with the 

instrument used in this study as CID is performed in transmission mode (beam-type CID). 

Therefore, we do not expect to observe histidine modification. Ion/ion reactions were 

performed under similar ion optics voltage conditions as the CCS measurements from the 

source up to and including the trap cell (vide supra). The choice of the sulfobenzoyl-HOAt 

reagent (versus, e.g., sulfobenzoyl-N-hydroxysuccinimide) was based on its relatively low 

activation energy for covalent reactions in the gas phase, its simple and one-pot synthesis, 

and the ability of sulfo-benzoyl-HOAt to react with amino acids side chains such as arginine 

and lysine.33

Figure 2A displays the ion/ion reaction of ubiquitin 6+ electrosprayed from aqueous 

conditions and sulfobenzoyl-HOAt−. The amide bond formation between ubiquitin and 3-

sulfobenzoate is characterized by the neutral loss of HOAt (Molecular mass = 135.1235 g/

mol) from the ion/ion reaction product. The peak [M+6H+♦]5+ represents the electrostatic 

product formed between ubiquitin 6+ and the reagent, [M+5H+*]5+ is covalently modified 

ubiquitin, and the [M + 5H]5+ peak is the proton transfer product corresponding to the loss 
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of the electrostatically attached reagent. In order to favor covalent product formation (as 

opposed to proton transfer) several parameters were optimized aiming to apply energy below 

the threshold for proton transfer product formation but above the transition state energy for 

covalent bond formation.52 With the helium cell and IM pressures used to measure CCS, the 

only observed product upon collisional activation was loss of the reagent from the ion/ion 

product complex. This is due to intentional rapid thermalization of ions by many low-energy 

collisions as they enter the mobility cell, preventing unintended activation of ions.53 

However, rapid thermalization results in the need to use much higher voltages to achieve ion 

activation, with the consequence of not being able to access the neutral loss of HOAt 

channel, as the loss of the entire reagent is kinetically favorable. Previous work has shown 

that the transition state for loss of an electrostatically bound reagent is very loose compared 

the transition state for covalent reaction,54 restraining the appearance of the covalent 

reaction to activation energies below the threshold for loss of the entire reagent. Therefore, 

the gas flows into the helium and IM cells were set to 20 mL/min each (0.59 and 0.66 mbar 

pressures for each of the cells. respectively). This way, the injection energy into the mobility 

cell was able to be reduced (center of mass energy of 3.6 kcal/mol for 5+, Table S4) and 

fewer energizing collisions occur. The result is efficient formation of the -HOAt without a 

dominant channel for loss of the entire reagent. The tune parameters used during ion/ion 

reactions are presented in Table S2. The trap pressure was kept the same. In this way, the 

ratio of the covalently modified product to the proton transfer (reagent loss) peak was 

maximized to yield the mass spectrum in Figure 2A.38 The ATD in Figure 2B was obtained 

under these conditions and represents the ion mobility separation of different numbers of 

sequential ion/ion reactions between ubiquitin 6+ and sulfobenzoyl-HOAt−. The peak at 65 

ms is related to the precursor ubiquitin 6+, the peak at ~78 ms corresponds to the attachment 

of one sulfobenzoyl-HOAt, and the peaks at ~96 and 120 ms correspond to attachment of 

two and three sulfobenzoyl-HOAt, respectively. Figure 2C displays the mass spectrum at 

extracted from drift time 72 – 83 ms resulting from CID of the ion/ion reaction covalent 

modified product. Figure 3 shows the mass spectra related to the peaks in the ATD which 

correspond to the ion/ion reactions products obtained for ubiquitin 7+ in denaturing 

conditions, with up to three covalent additions of sulfobenzoyl-HOAt reagents. Fragments 

from CID of the labeled protein ions were only investigated for addition of a single label to 

help prevent labelinduced structural changes from affecting our analysis.15

The charge states 5+ and 6+ ionized from aqueous conditions and 5+, 6+, 7+, and 8+ all 

displayed a neutral loss of m/z 136 (the mass of the leaving group, HOAT) following ion/ion 

reactions with sulfobenzoyl-HOAt. However, 7+ and 8+ from aqueous conditions and 9+ 

from denaturing conditions did not show neutral loss of HOAt. The only products were the 

electrostatic addition of sulfobenzoyl-HOAt and loss of the entire reagent. This observation 

is attributed to the lack of unprotonated lysine or arginine residues available on the exterior 

of the protein with 7+ and 8+ ionized from aqueous conditions and 9+ ionized from 

denaturing conditions. The difference in reactivity between the 7+ and 8+ charge states 

ionized from aqueous solution and 7+ and 8+ from denaturing solution indicate that their 

protonation sites and gas-phase structures are likely different. The injection energy was 

controlled to prevent fragmentation of the protein backbone. No fragments other than the 
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loss of HOAt or the entire reagent were observed without adding collisional energy in the 

transfer cell.

Comparison and characterization of the ubiquitin ion structures obtained from 
aqueous and denaturing solutions.—CID was performed upon injection into the 

transfer cell to form covalent modification sequence fragments originating from different 

charge states of ubiquitin in both aqueous (ubiquitin 5+ and 6+) and denaturing (ubiquitin 5+ 

to 8+) conditions. Table S3 summarizes the collision energy voltages applied to the transfer 

cell for each CID experiment. The covalent product ions generated b (N-terminal) and y (C-

terminal) fragment ions that matched drift times of their precursors. Figure 2C shows the 

fragment mass spectrum resulting from CID of the covalent product [M+5H+*]5+ that was 

used to determine the sites of covalent modification. The fragment ion annotations from the 

solution condition and charge state-dependent ion/ion gas-phase covalent modification of 

ubiquitin are shown in Tables 1 and 2.

For ubiquitin 5+ and 6+ electrosprayed from aqueous conditions the modified fragment ions 

generated suggested covalent modifications to lysine 29 (modified b29) and arginine 54 

(modified y24) which is in agreement with previously published work.38 The residues 

available for covalent modification must be accessible to the reagent – which excludes side 

chains buried in the interior of the protein – and reactive towards the reagent, precluding 

protonated and non-nucleophilic sites. Modification sites were annotated based on the 

smallest terminal (b- or y-ion) fragment that has a m/z shift corresponding to covalent 

addition. The process of assigning labeled sites is as follows: b- and y-ions that matched the 

m/z of sequence fragments plus the mass of the covalent label were annotated as covalently 

labeled fragments and manually validated. Next, the mass spectra were manually compared 

against spectra resulting from CID of unmodified ubiquitin at the same charge. Fragments 

that were originally annotated as covalently labeled that matched the m/z and isotopic 

distribution of fragments resulting from CID of unmodified ubiquitin were thrown out and 

considered false positives. Side chains were assigned as covalently labeled only if there was 

no evidence for covalent labeling of amino acid residues N-terminal (for b-ions) or C-

terminal (for y-ions) to the assigned site (i.e., no labeled sequence fragments that include 

these residues). For example, Table 1 shows that the smallest labeled b-ion was modified 

b29, but unmodified fragments are observed for b27 and b28, ions that include the N-

terminus, K6, K11, and K27, but not K29. Therefore, there is no evidence for labeling of any 

of these amino acids, but the observation of b-ions matching the mass of the addition of the 

covalent label that include K29 suggests that K29 is the labeled side chain. These results 

correlate to the crystal structure of ubiquitin (PDB 1UBQ)55 where the suggested modified 

residues are exposed and accessible to the reagent (Figure 4). Recently, results from 193 nm 

ultraviolet photodissociation (UVPD) were used to determine the protonation sites for 

different native charge states of ubiquitin in the gas phase.56 The possible protonation sites 

for the 5+ and 6+ charge state were determined to be Q2, P19, K33, R42, K48, K63, and 

R74. For both charge states, K29 and R54 are not protonated, rendering them reactive to 

sulfobenzoyl-HOAt. The solvent-accessible surface area (SASA) was calculated from the 

crystal structure with a probe size of 1.4 Å (i.e., the van der Waals radius of water) with the 

GETAREA program.57 Side chains with a SASA ratio above 30% were considered solvent 

Carvalho et al. Page 9

J Am Soc Mass Spectrom. Author manuscript; available in PMC 2020 May 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



accessible.58 Including the accessible arginine and lysine side chains from the SASA 

calculation and excluding the UVPD-determined protonated side chains limits the remaining 

available sites for labeling by sulfobenzoyl-HOAt to K6, K11, K29, R54, and R72, although 

K11 (and K27) participates in a salt bridge and thus may not be labeled if these salt bridges 

are not disrupted under our labeling conditions.59 The observed labeling of K29 and R54 

(Fig. 4) suggests that ubiquitin structures electrosprayed from aqueous conditions retain 

elements of solution structure, as predicted by molecular dynamics60 and the structure 

relaxation approximation60–61. K27 is not labeled, although it is only two residues away 

from K29, and is also not protonated. This may be evidence that elements of solution 

structure can be maintained, as K27 and K29 are in an alpha helix. Although the side chain 

of K27 faces the interior of the protein, the alpha helix positions K29 to be oriented 

outwards.55 Another interpretation of these results could suggest that the label is 

electrostatically bound to a side chain that is greater than 6.4 Å from the primary amine of 

the K27 side chain. Nonetheless, the labeling of K29 and K27 is not random (it occurs 

repeatably for both 5+ and 6+ charge states electrosprayed from aqueous solution) and does 

correlate with the region of the protein including K29 being accessible. The combination of 

CCS data, mass spectra, identified covalently modified residues, and modeling for native 

ubiquitin 5+ and 6+ suggests that ubiquitin structures remain compact in the gas phase when 

electrosprayed from aqueous conditions.60

Ubiquitin has been shown to undergo an alcohol-induced transition to a partially folded state 

(A state). For the A state, NMR experiments performed in a 40:60 water:methanol solution 

suggested that it retains a majority of its native secondary structural elements in the N-

terminal half, whereas the structure of the C-terminal half unfolds to a highly helical more 

elongated state.31, 62–64 For the 5+ ion sprayed from a denaturing solution, our ion/ion 

reaction results show that K29 and R54 are labeled (Table 2), the same results as determined 

for the 5+ ions from aqueous conditions, consistent with CCS distribution being very similar 

between the 5+ sprayed from denaturing conditions and the 5+ and 6+ sprayed from native 

conditions. The ion/ion covalent labeling also illustrates that the peak around 1400 Å in the 

aqueous 6+ and denaturing 5+ likely reflects compact structures, since the labeled sites are 

identical for native 5+/6+ and denaturing 5+. This is consistent with molecular dynamics data 

that show reversible unfolding and folding for ubiquitin 6+ ions generated from native 

conditions for 1 μs in the gas phase.60 Additionally, the 6+ and 7+ charge state fragments 

include modified y24, also indicating that R54 was labeled. The labeling of R54 under 

various conditions indicates that for charge states 5+−7+, R54 is unprotonated, accessible, 

and sufficiently reactive under all these conditions.

However, the 6+, 7+, and 8+ charge states of ubiquitin sprayed from denaturing solution were 

all labeled at different lysine residues, with no evidence for labeling at the K29 residue. As 

previously illustrated, these ions all produced ATDs showing more extended conformations. 

This suggests that K29 is no longer the most reactive accessible lysine side chain for these 

charge states. The 6+ fragmentation data shows that K48 is likely labeled (modified b52), the 

7+ fragmentation data shows labeling likely occurs on K33 (modified b36), and the 8+ data 

may provide evidence for the labeling of K27, though the lack of labeled b-ions for the 8+ 

charge state gives some ambiguity to this assignment. The reduced number of labeled 

sequence fragments for the 8+ ions is likely a consequence of most of the reactive residues in 
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ubiquitin being protonated, diminishing the overall reactivity and the number of available 

sites for labeling. The labeling of 6+ at K48 and 7+ at K33 is likely due to changes in 

preferred protonation sites following the unfolding of the protein, as are K33 and K48 can 

both be protonated when sprayed from aqueous conditions. NMR measurements have 

demonstrated that a characteristic of the A-state is that the solution salt bridge between K27 

and D52, which stabilizes the fold of the protein and buries K27 in the interior of the 

protein, is disrupted.63–64 Therefore, our results for 6+ and 7+ ionized from denaturing 

conditions correlate with at least partially disrupted solution states. Covalent labeling by 

ion/ion reactions is expected to be a powerful tool for protein structural analysis.

Conclusions

Ubiquitin ions electrosprayed from aqueous and denaturing solutions have been analyzed by 

IM-MS/MS and covalent structural probes delivered by ion/ion reactions inside of the mass 

spectrometer. Ubiquitin conformational populations were evaluated prior to performing 

ion/ion reactions by IM-MS, ensuring that energy imparted on the ions between the source 

and trap cell did not lead to collision induced unfolding. Examination of the conformation 

types as function of the solution conditions and charge states allowed for solution structures 

to be correlated to gas-phase measurements, suggesting the preservation of solution-like 

structures in the gas phase. Ions generated from aqueous solution had CCS values 

corresponding to compact conformations while ubiquitin 6+ also exhibited a minor peak at 

~1371 Å2, which has been attributed to partially folded states due to the increase in 

Coulombic repulsion over the 5+ charge state. On the other hand, arrival time distributions 

for ubiquitin in denaturing conditions presented much higher CCS values which have been 

previously correlated to multiple elongated stable conformations.44–45, 65

The covalent modification data revealed distinct characteristics for ions originating from 

either aqueous or denaturing conditions. For aqueous conditions, the modified fragment ions 

suggested covalent modifications to lysine 29 (modified b32) and arginine 54 (modified y24) 

It is possible that elements of secondary structure as well as tertiary structure are conserved 

explained by the covalent modification of K29 instead of the buried and salt-bridged 

K27.51–52 These results correlate to the crystal structure of ubiquitin (PDB 1UBQ)55, 

molecular dynamics results57, and UVPD data,48 where the modified residues are exposed 

and accessible to the reagent. Ion/ion reaction results for ubiquitin 5+ sprayed from 

denaturing solutions also reveal the labeling of K29 and R54, agreeing with the CCS data, 

and suggesting that aqueous 6+ and denaturing 5+ are structurally very similar. Therefore, 

the denaturing 5+ ion is produced from the remaining compact ubiquitin population in 

denaturing solutions. The 6+, 7+, and 8+ charge states of ubiquitin sprayed from denaturing 

solutions were labeled at various lysines, accessible most likely due to the changes in 

possible protonation sites as a result disruption of the salt bridge between K27 and D52 after 

methanol-induced unfolding.55–56 Overall, the analysis of protein structures by covalent 

modification in the gas phase analyzed by IM-MS/MS suggests that the gas phase is a 

suitable environment for probing protein structure if care is taken to ensure gentle ion 

introduction.
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Figure 1. 
Intensity normalized arrival time distributions (ATDs) of ubiquitin 5+ (A) and 6+ (B) charge 

states sprayed from native (black trace) and denaturing (red trace) conditions.
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Figure 2. 
Covalent modification of [ubiquitin+6H]6+ ionized from native conditions with [sulfo-

HOAt]−. (A) Product ion spectrum of the ion/ion reaction between [ubiquitin + 6H] 6+ and 

[sulfo-HOAt – H]− prior to activation. ♦ refers to electrostatic attachment of the reagent and 

* refers to covalent modification. (B) ATD of the full scan (mass range of 100 to 500 m/z) 

corresponding to ion/ion reactions between [ubiquitin + 6H]6+ and [sulfo-HOAt – H]-

revealing the mobility separation of covalently modified products generated with different 

extents of modification. (C) Mass spectrum resulting from CID of the ion/ion reaction 

product (corresponding to 72 – 83 ms in the ATD).
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Figure 3. 
(A) Post-ion/ion reaction IM spectrum and mass spectra from zero (B), one (C), two (D), 

and three (E) anion attachments. ♦ refers to electrostatic attachment of the reagent and * 

refers to covalent modification.
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Figure 4. 
X-ray structure of ubiquitin (1ubq). The blue residues (K29, R54) are labeled under native 

conditions and the red (K33, K48) and green residue (K27) are labeled only under 

denaturing conditions. The red residues are protonated under native conditions and the green 

residue is buried and participates in a salt bridge with D52 (black). K11 is black as it 

participates in a salt bridge but in not labeled under any conditions. The black line between 

K27 and D52 represents the salt bridge.
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Table 1.

Sequence Ladder for Aqueous Ubiquitin in different charge states displaying the covalently modified 

fragmentation sites and the modified residues.
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Table 2.

Sequence Ladder for Denatured Ubiquitin in different charge states displaying the covalently modified 

fragmentation sites and the modified residues.
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